JP2013172623A - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
JP2013172623A
JP2013172623A JP2012036804A JP2012036804A JP2013172623A JP 2013172623 A JP2013172623 A JP 2013172623A JP 2012036804 A JP2012036804 A JP 2012036804A JP 2012036804 A JP2012036804 A JP 2012036804A JP 2013172623 A JP2013172623 A JP 2013172623A
Authority
JP
Japan
Prior art keywords
storage battery
acquisition unit
value
temperature
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012036804A
Other languages
English (en)
Inventor
Yosuke Otsuki
洋輔 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2012036804A priority Critical patent/JP2013172623A/ja
Publication of JP2013172623A publication Critical patent/JP2013172623A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】低温の場合であっても、蓄電池の放電容量を簡易に確保する技術を提供する。
【解決手段】温度計32は、蓄電池12近傍の温度を測定する。第1取得部42は、温度計32において測定した温度を取得する。指示部46は、電力を蓄えるための蓄電池12と、蓄電池12に接続されて熱源となりうる変換装置14とが内設された筐体内の熱を筐体外に放出するために、ファン34を第1回転方向に回転させる。指示部46は、第1取得部42において取得した温度がしきい値よりも低い場合に、第1回転方向とは逆の第2回転方向にファン34を回転させる。
【選択図】図2

Description

本発明は、制御技術に関し、特に蓄電池の動作を制御する制御装置に関する。
太陽電池を用いた配電システムに蓄電池が接続される場合、太陽電池において発電された電力は、蓄電池に蓄えられる。曇りや夜間など、発電された電力が負荷の要求する消費電力を下回る場合、蓄電池に蓄えられた電力が、負荷に供給されることによって、消費電力が満たされる。このような構成によって、太陽電池において発電される電力が不足した場合にも、負荷に安定的に電力が供給される。
このような蓄電池の温度が低くなると、蓄電池の内部抵抗が高くなることによって、蓄電池の放電容量の確保が困難になる。そのため、温度が低い状態で大電流で蓄電池を充電すると、蓄電池は、すぐに満充電電圧に到達する。これは、定電流充電可能な期間が短くなることに相当する。これにより、太陽電池が蓄電池に直接接続されている場合、太陽電池からの電流量を調節できないので、定電流充電ができなくなってしまう。その結果、温度が低い場合、発電量が十分に多いにもかかわらず、蓄電池は十分に充電されなくなる。これに対応するために、蓄電池をリボン状の電熱ヒータで加温させることが提案されている(例えば、特許文献1参照)。
特開2000−102192号公報
蓄電池が単体で設置されるのではなく、他の機器とともに筐体内に内設されることもある。筐体内に電熱ヒータを設けた場合、加熱によって、蓄電池以外の機器に影響を与えることもあり得る。また、影響を小さくするように、筐体内の機器の設置位置を設計する必要がある。そのため、太陽電池からの電流量が多く、かつ蓄電池が低温の場合に、蓄電池の放電容量を簡易に確保することが望まれる。
本発明はこうした状況に鑑みてなされたものであり、その目的は、低温の場合であっても、蓄電池の放電容量を簡易に確保する技術を提供することにある。
上記課題を解決するために、本発明のある態様の制御装置は、再生可能エネルギー発電装置から出力される電流の少なくとも一部を入力する蓄電池における電圧の値を取得する取得部と、取得部において取得した電圧の値をもとに、再生可能エネルギー発電装置から出力される電流のうち、蓄電池が内設された筐体の外部に接続された負荷にて消費すべき電流の値を調節する指示部とを備える。指示部は、取得部において取得した電圧の値が目標の値に近づくように、負荷にて消費すべき電流の値を決定する。
本発明の別の態様もまた、制御装置である。この装置は、並列に配置された複数の再生エネルギー発電装置のそれぞれと1対1で設けられた複数のスイッチに接続された蓄電池の電圧の値を取得する取得部と、取得部において取得した電圧の値をもとに、複数のスイッチのそれぞれの開閉を制御する指示部とを備える。指示部は、取得部において取得した電圧の値に応じて、開放したスイッチの数を段階的に増加させる。
なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
本発明によれば、低温の場合であっても、蓄電池の放電容量を簡易に確保できる。
図1(a)−(c)は、本発明の実施例に係る配電システムの構成を示す図である。 図1(a)−(c)の配電システムの構成を詳細に示す図である。 図3(a)−(b)は、本発明の実施例に係る筐体の構成を示す図である。 図4(a)−(b)は、図2の指示部に記憶されたテーブルのデータ構造を示す図である。 図2の制御部の処理手順を示すフローチャートである。 本発明の変形例に係る配電システムの構成を詳細に示す図である。 図6の指示部の処理概要を示す図である。 図6の指示部に記憶されたテーブルのデータ構造を示す図である。 図6の制御部の処理手順を示すフローチャートである。 本発明の別の変形例に係る配電システムの構成を詳細に示す図である。 図11(a)−(b)は、図10の蓄電池の外観を示す斜視図である。 図12(a)−(b)は、図10の指示部に記憶されたテーブルのデータ構造を示す図である。 図10の制御部の処理手順を示すフローチャートである。 本発明のさらに別の変形例に係る配電システムの構成を詳細に示す図である。 図14の指示部の処理概要を示す図である。
本発明を具体的に説明する前に、概要を述べる。本発明の実施例は、太陽電池を商用電力系統と並列に接続し、商用電源および太陽電池の両方から負荷へ電力を供給するとともに、蓄電池を充電する配電システムに関する。このように蓄電池は、商用電源および太陽電池によって充電される。一般的に充電処理では、まず定電流充電がなされ、満充電近くになると、定電流充電が定電圧充電に切りかえられる。前述のごとく、蓄電池の温度が低い場合、蓄電池の内部抵抗が高くなるので、定電流充電がほとんどできなくなってしまう。商用電源の場合、蓄電池に供給する電流の量を制御できるが、太陽電池の場合、発電される電力を制御できないので、蓄電池に供給する電流の量も制御できない。その結果、蓄電池が低温であり、かつ太陽電池からの電流の量が多い場合、太陽電池において発電される電力が十分多くても、蓄電池は十分に充電されないという現象が生じる。これに対応するために、本実施例は、次の処理を実行する。
蓄電池は、インバータ機能やコンバータ機能を有した変換装置とともに、ひとつの筐体内に設置される。変換装置は、処理によって発熱するので熱源となりうる。このような発熱による筐体内の温度上昇を抑制するために、筐体にはファンが設けられる。例えば、ファンと蓄電池との間に変換装置が設置される。変換装置によって生じた熱は、ファンによって筐体外に出力される。ここで、蓄電池の温度が第1しきい値よりも低い場合、ファンは逆回転に回転させられる。このようにすると、変換装置によって生じた熱は、ファンによって蓄電池の方向に出力される。その結果、変換装置から発せられる熱によって蓄電池は暖められるので、蓄電池の放電容量が増加する。
図1(a)−(c)は、本発明の実施例に係る配電システム100の構成を示す。図1(a)において配電システム100は、太陽電池10、蓄電池12、変換装置14、管理装置16、第1SW18、第2SW20、商用電源22、特定負荷24、一般負荷26を含む。商用電源22は、電力会社からの電力を供給するための交流電源である。図1(a)は、商用電源22が停電していない場合(以下、「通常時」という)における配電システム100の構成に相当する。
太陽電池10は、光起電力効果を利用し、光エネルギーを直接電力に変換する電力機器である。太陽電池10として、シリコン太陽電池、さまざまな化合物半導体などを素材にした太陽電池、色素増感型(有機太陽電池)等が使用される。太陽電池10は、発電した電力を出力する。蓄電池12は、充電を行うことにより電気を蓄えて電池として使用できるようになり、繰り返し使用することができる2次電池である。蓄電池12は、再生可能エネルギー源をもとに発電した電力、つまり太陽電池10において発電した電力、あるいは商用電源22からの電力によって充電される。
変換装置14は、一端側に太陽電池10を接続する。変換装置14と太陽電池10との経路は、途中で分岐されており、分岐された経路には、蓄電池12が接続される。つまり、変換装置14の一端側には、分岐点を介して、太陽電池10と蓄電池12とが並列に接続される。また、変換装置14は、他端側に商用電源22を接続する。変換装置14の動作は後述する。管理装置16は、蓄電池12の動作を制御するための指示を変換装置14に出力する。
一般負荷26は、交流駆動型の電気機器である。一般負荷26は、変換装置14と商用電源22との間の経路から分岐された経路に接続される。なお、変換装置14と商用電源22との間の経路上であって、かつ商用電源22への分岐点から商用電源22側には、図示しない逆潮流センサ、分電盤が接続される。逆潮流センサは、分電盤と商用電源22との間に設置され、分電盤から商用電源22に向かう電力を検出する。これは、電力が分電盤から商用電源22に向かうことを防止するためである。逆潮流センサにおける検出処理には、公知の技術が使用されればよいので、ここでは、説明を省略する。
第1SW18、第2SW20は、管理装置16からの指示に応じて経路を変更するためのスイッチである。第1SW18、第2SW20のオン/オフや切替は、変換装置14によって指示される。なお、管理装置16によって指示されてもよい。通常時において、第1SW18は、オンされ、第2SW20は、Y側の端子に接続される。その結果、第2SW20のY側の端子と特定負荷24とが接続される。なお、特定負荷24は、一般負荷26と同様に、交流駆動型の電気機器である。このような形態によって、通常時の(1)充電と(2)放電は、次のようになされる。
(1)通常時の充電
電力会社が時間帯別電気料金制度を採用している場合、夜間の時間帯の電気料金は、昼間の時間帯の電気料金よりも低く設定される。また、一例として、昼間の時間帯は7時から23時であり、夜間の時間帯は23時から翌日の7時というように規定される。そのため、夜間の時間帯において、商用電源22から供給される電力は、第1SW18、変換装置14を介して蓄電池12に充電される。その際、変換装置14は、商用電源22から入力した交流電力を直流電力に変換し、直流電力を蓄電池12に出力する。また、昼間の時間帯において、太陽電池10が発電した電力は、変換装置14に出力される。太陽電池10が発電した電力が、特定負荷24、一般負荷26において消費される電力よりも多い場合、余剰の電力が蓄電池12に充電される。
(2)通常時の放電
特定負荷24、一般負荷26において消費される電力が多くなる時間帯において、商用電源22からの電力の消費を低減するために、蓄電池12に蓄えられた電力が放電される。放電された電力は、変換装置14、第1SW18を介して、特定負荷24、一般負荷26に供給される。その際、変換装置14は、蓄電池12から入力した直流電力を交流電力に変換し、交流電力を第1SW18に出力する。さらに、通常時において、商用電源22からの電力が特定負荷24、一般負荷26に供給されるとともに、太陽電池10からの電力も特定負荷24、一般負荷26に供給される。その際、変換装置14は、太陽電池10から入力した直流電力を交流電力に変換し、交流電力を第1SW18に出力する。以上の説明のように、変換装置14は、交流電力を直流電力に変換したり、直流電力を交流電力に変換したりするが、これらの変換処理として公知の技術が使用されればよいので、ここでは説明を省略する。
図1(b)は、商用電源22が停電している場合(以下、「停電時」という)における配電システム100の構成に相当する。商用電源22からの電力の供給がなくなった場合、図示しない分電盤は、停電を検出する。停電を検出した場合、変換装置14は、第1SW18、第2SW20とを制御する。具体的に説明すると、停電時において、第1SW18がオフされ、第2SW20は、X側の端子に接続される。その結果、特定負荷24は、変換装置14に接続されるが、一般負荷26は、変換装置14から切り離される。そのため、太陽電池10からの電力は、変換装置14に出力され、変換装置14からの電力が、特定負荷24に供給される。なお、太陽電池10からの電力よりも、特定負荷24において消費される電力が少ない場合、余剰の電力が蓄電池12に充電される。なお、停電時において、蓄電池12は、電力を出力してもよい。放電した電力も、変換装置14に出力され、変換装置14からの電力が、特定負荷24に供給される。
このように、特定負荷24は、通常時において、太陽電池10、蓄電池12、商用電源22から電力の供給を受けることが可能であり、停電時においても太陽電池10、蓄電池12から電力の供給を受けることが可能である。一方、一般負荷26は、通常時において太陽電池10、蓄電池12、商用電源22から電力の供給を受けることが可能であるが、停電時において電力の供給を受けることができない。
図1(c)は、停電時から、商用電源22が停電していない状態に復旧した場合(以下、「復旧時」という)における配電システム100の構成に相当する。停電時において、商用電源22からの電力の供給が回復した場合、図示しない分電盤は、復旧を検出する。復旧を検出した場合、変換装置14は、第2SW20を制御する。具体的に説明すると、復旧時において、第1SW18のオフが維持され、第2SW20は、Y側の端子に接続される。その結果、特定負荷24および一般負荷26は、変換装置14から切り離され、商用電源22に接続される。その結果、商用電源22からの電力は、特定負荷24、一般負荷26に供給される。なお、変換装置14には、特定負荷24および一般負荷26が接続されていないので、変換装置14は、交流電力を出力しない。太陽電池10において発電された電力は、蓄電池12に供給される。
図2は、配電システム100の構成を詳細に示す。配電システム100は、太陽電池10、蓄電池12、変換装置14、管理装置16、電圧計30、温度計32、ファン34を含む。管理装置16は、制御部40を含み、制御部40は、第1取得部42、第2取得部44、指示部46を含む。図2では、図1(a)−(c)に示した配電システム100のうちの必要な部分を示す。
温度計32は、蓄電池12の近傍に設置され、蓄電池12の近傍の温度を測定する。近傍とは、蓄電池12での温度変化を検出できる程度の距離である。温度の測定には公知の技術が使用されればよい。温度計32は、測定した温度を出力する。第1取得部42は、温度計32から、蓄電池12近傍の温度を取得する。第1取得部42は、温度を指示部46に出力する。
指示部46は、電力を蓄えるための蓄電池12と、蓄電池12に接続されて熱源となりうる変換装置14とが内設された図示しない筐体内の熱を筐体外に放出するために、ファン34を第1回転方向に回転させる。図3(a)−(b)は、本発明の実施例に係る筐体90の構成を示す。図3(a)において、筐体90は、内部に蓄電池12、変換装置14、管理装置16、ファン34を備える。これらは、図1(a)−(c)、図2に示されている。また、これらの他の構成要素も筐体90に内設されているが、ここでは省略する。筐体90の上部にファン34が設置される。なお、ファン34は、筐体90の上部以外に設置されてもよい。また、ファン34と蓄電池12との間に、変換装置14が設置される。図示のごとく、変換装置14から発せられる熱を筐体90外部に出力するために、ファン34が回転させられる。このときのファン34の回転方向が前述の第1回転方向に相当する。図3(b)は後述し、図2に戻る。
指示部46は、第1取得部42から温度の値を受けつける。温度が第1しきい値以上である場合に、指示部46は、ファン34の第1回転方向を維持させる。一方、温度が第1しきい値よりも低い場合に、指示部46は、第1回転方向とは逆の第2回転方向にファン34を回転させる。図3(b)は、第2回転方向にファン34が回転させられている場合を示す。図示のごとく、変換装置14から発せられる熱が蓄電池12に向かう。蓄電池12は、変換装置14からの熱によって暖められる。図2に戻る。
このような処理を実現するために、指示部46は、テーブルを記憶する。図4(a)−(b)は、指示部46に記憶されたテーブルのデータ構造を示す。図4(a)において示されたように、条件欄200、回転方向欄202が含まれる。指示部46は、受けつけた温度を条件欄200と比較し、該当する方の回転方向を回転方向欄202から選択する。図4(b)は後述し、図2に戻る。
指示部46は、次のようにファン34の回転方向を選択してもよい。電圧計30は、蓄電池12における電圧の値を測定する。電圧の測定には公知の技術が使用されればよい。電圧計30は、電圧の値を出力する。第2取得部44は、電圧計30から、電圧の値を取得する。
指示部46は、第1取得部42において取得した温度が第1しきい値よりも低い場合に加えて、第2取得部44において取得した電圧の値が第2しきい値よりも大きい場合に、第2回転方向にファン34を回転させる。つまり、指示部46は、温度だけではなく、電圧の量にも応じて、ファン34の回転方向を制御する。上記以外の場合に、指示部46は、第1回転方向にファン34を回転させる。図4(b)は、指示部46に記憶されたテーブルのデータ構造を示す。図4(a)と同様に、図4(b)でも、条件欄200、回転方向欄202が含まれる。温度が第1しきい値よりも低くても、電圧の値が第2しきい値以下であれば、指示部46は、第1回転方向を維持させる。
この構成は、ハードウエア的には、任意のコンピュータのCPU、メモリ、その他のLSIで実現でき、ソフトウエア的にはメモリにロードされたプログラムなどによって実現されるが、ここではそれらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックがハードウエアのみ、ハードウエアとソフトウエアの組合せによっていろいろな形で実現できることは、当業者には理解されるところである。
以上の構成による配電システム100の動作を説明する。図5は、制御部40の処理手順を示すフローチャートである。温度が第1しきい値よりも低ければ(S10のY)、指示部46は、ファン34を第2回転方向に回転させる(S12)。一方、温度が第1しきい値よりも低くなければ(S10のN)、指示部46は、ファン34を第1回転方向に回転させる(S14)。
次に、本発明の変形例を説明する。変形例も、実施例と同様に、配電システムに関する。変形例においても、蓄電池が低温であり、かつ太陽電池からの電流の量が多い場合、太陽電池において発電される電力が十分多くても、蓄電池は十分に充電されないという現象が生じる。変形例は、次の処理を実行する。
太陽電池は複数のパネルによって構成されており、複数のパネルは並列に接続されている。なお、各パネルでは、複数のパネルがさらに直列に接続されてもよいが、ここでは、直列に接続された複数のパネルを単にパネルという。各パネルにはスイッチが接続されている。スイッチがオフされた場合、スイッチに対応したパネルにおいて発電された電力が出力されない。なお、初期状態においては、すべてのスイッチがオンされている。ここで、蓄電池の温度が第1しきい値よりも低い場合、蓄電池の電圧を監視し、電圧が一定になるように、スイッチが段階的にオフされていく。その結果、太陽電池において発電される電力が十分多い場合に、蓄電池に入力される電流が抑制される。
図6は、本発明の変形例に係る配電システム100の構成を詳細に示す。配電システム100は、パネル60と総称される第1パネル60a、第2パネル60b、第Nパネル60n、パネルSW62と総称される第1パネルSW62a、第2パネルSW62b、第NパネルSW62n、蓄電池12、変換装置14、管理装置16、電圧計30、温度計32を含む。管理装置16は、制御部40を含み、制御部40は、第1取得部50、第2取得部52、指示部56を含む。
複数のパネル60は、既に説明した太陽電池10に相当する。複数のパネル60のそれぞれは、並列に配置されている。また、パネル60は、パネルSW62と1対1で接続されている。パネルSW62がオンされている場合、当該パネルSW62に対応したパネル60において発電された電力は、蓄電池12や変換装置14へ出力される。一方、パネルSW62がオフされている場合、当該パネルSW62に対応したパネル60において発電された電力は出力されない。各パネル60は、パネルSW62を介して、蓄電池12と変換装置14との間の経路に接続される。前述のごとく、ひとつのパネル60は、直列に接続された複数のパネルによって構成されてもよい。ここで、パネル60には、ひとつのパネルSW62によって制御される数のパネルが含まれるものとする。
第1取得部50は、図2に示された第1取得部42と同様に、温度計32から、蓄電池12近傍の温度を取得する。第1取得部50は、温度を指示部56に出力する。第2取得部52も、図2に示された第2取得部44と同様に、電圧計30から、蓄電池12における電圧の値を取得する。第2取得部52は、電圧の値を指示部56に出力する。
指示部56は、第1取得部50において取得した温度と、第2取得部52において取得した電圧の値とをもとに、複数のパネルSW62のそれぞれの開閉を制御する。ここで、初期段階においては、すべてのパネルSW62が閉じられている、つまりオンされている。これは、すべてのパネル60において発電された電力が出力されていることに相当する。第1取得部50において取得した温度が第1しきい値以上である場合、指示部56は、すべてのパネルSW62を閉じたままに維持させる。一方、第1取得部50において取得した温度が第1しきい値よりも低い場合、指示部56は、第2取得部52において取得した電圧の値に応じて、開放するパネルSW62の数を段階的に増加させる。具体的に説明すると、指示部56は、第2取得部52において取得した電圧の値が目標値に近づくように、開放したパネルSW62の数を段階的に増加させる。
図7は、指示部56の処理概要を示す図である。縦軸が電圧値を示し、横軸が時間を示す。また、ここでは、温度が第1しきい値よりも低いとする。また、前述の目標値がVMとして示される。前述のごとく、初期状態においては、すべてのパネルSW62が閉じられているので、時間の経過とともに、電圧値が上昇する。時間T1において、電圧値がVMになると、指示部56は、ひとつ目のパネルSW62を開放する。また、時間T2において、電圧値が再びVMになると、指示部56は、ふたつ目のパネルSW62を開放する。このように、電圧値がVMになるたびに、指示部56は、パネルSW62を順次開放する。図6に戻る。
このような処理を実現するために、指示部56は、テーブルを記憶する。図8は、指示部56に記憶されたテーブルのデータ構造を示す。図8において示されたように、条件欄210、パネルSW欄212が含まれる。指示部46は、受けつけた温度を条件欄210と比較し、該当する方の動作をパネルSW欄212から選択する。図6に戻る。
なお、図7では、説明を明瞭にするために、パネルSW62を解放して、しばらくすると常にVMまで電圧が上昇している。しかしながら、充電により蓄電池12が温められると充電可能容量が回復し、パネル60の数によっては、電圧が下降する場合もある。これに対応させるために、指示部56は、第2取得部52において取得した電圧の値が目標値に近づくように、開放したパネルSW62の数を段階的に減少させてもよい。
以上の構成による配電システム100の動作を説明する。図9は、制御部40の処理手順を示すフローチャートである。温度が第1しきい値よりも低く(S20のY)、電圧値がVMに達すると(S22のY)、指示部56は、パネルSW62をオフする(S24)。電圧値がVMに達しなければ(S22のN)、ステップ24はスキップされる。温度が第1しきい値よりも低くない場合(S20のN)、すべてのパネルSW62はオンされる(S26)。
次に、本発明の別の変形例を説明する。別の変形例も、これまでと同様に、配電システムに関する。別の変形例においても、蓄電池が低温であり、かつ太陽電池からの電流の量が多い場合、太陽電池において発電される電力が十分多くても、蓄電池は十分に充電されないという現象が生じる。別の変形例は、次の処理を実行する。蓄電池には、内部の熱を外部に出力するための通風口が設けられている。ここで、蓄電池の温度が第1しきい値よりも低い場合、蓄電池の電圧を監視し、通風口が蓋によって閉じられる。その結果、蓄電池の内部にて発せられる熱が外部に逃げずに、蓄電池内に蓄えられる。一方、蓄電池の温度が第1しきい値よりも低くなければ、通風口が開放される。
図10は、本発明の別の変形例に係る配電システム100の構成を詳細に示す。配電システム100は、太陽電池10、蓄電池12、変換装置14、管理装置16、電圧計30、温度計32、開閉部64を含む。管理装置16は、制御部40を含み、制御部40は、第1取得部70、第2取得部72、指示部74を含む。
第1取得部70は、図2に示された第1取得部42と同様に、温度計32から、蓄電池12近傍の温度を取得する。第1取得部70は、温度を指示部74に出力する。指示部74は、第1取得部70において取得した温度をもとに、蓄電池12の通風口の開閉を制御する。具体的に説明すると、指示部74は、第1取得部70において取得した温度が第1しきい値以上である場合、開閉部64に対して通風口を開けさせる。一方、指示部74は、第1取得部70において取得した温度が第1しきい値よりも低い場合、開閉部64に対して通風口を閉じさせる。
図11(a)−(b)は、蓄電池12の外観を示す斜視図である。図11(a)において、蓄電池12には、通風口92と総称される第1通風口92a、第2通風口92b、第3通風口92c、第4通風口92dが含まれる。そのため、図11(a)は、図10の開閉部64によって、通風口92が開けられている場合に相当する。図11(b)において、蓄電池12には、蓋94と総称される第1蓋94a、第2蓋94b、第3蓋94c、第4蓋94dが含まれる。蓋94によって通風口92がふさがれている。そのため、図11(b)は、図10の開閉部64によって、通風口92が閉じられている場合に相当する。図10に戻る。
このような処理を実現するために、指示部74は、テーブルを記憶する。図12(a)−(b)は、指示部74に記憶されたテーブルのデータ構造を示す。図12(a)において示されたように、条件欄220、通風口欄222が含まれる。指示部74は、受けつけた温度を条件欄220と比較し、該当する方の動作を通風口欄222から選択する。図12(b)は後述し、図10に戻る。
指示部74は、次のように通風口92を閉じるか否かを選択してもよい。第2取得部72は、図2の第2取得部44と同様に、電圧計30から、電圧の値を取得する。指示部74は、第1取得部70において取得した温度が第1しきい値よりも低い場合に加えて、第2取得部72において取得した電圧の値が第2しきい値よりも大きい場合に、開閉部64に対して通風口92を閉じさせる。上記以外の場合に、指示部74は、開閉部64に対して通風口92を開けさせる。図12(b)は、指示部74に記憶されたテーブルのデータ構造を示す。図12(a)と同様に、図12(b)でも、条件欄220、通風口欄222が含まれる。温度が第1しきい値よりも低くても、電圧の値が第2しきい値以下であれば、指示部74は、通風口92を開けさせる。
以上の構成による配電システム100の動作を説明する。図13は、制御部40の処理手順を示すフローチャートである。温度が第1しきい値よりも低ければ(S30のY)、指示部74は、開閉部64に通風口92を閉じさせる(S32)。一方、温度が第1しきい値よりも低くなければ(S30のN)、指示部74は、開閉部64に通風口92を開けさせる(S34)。
次に、本発明のさらに別の変形例を説明する。さらに別の変形例も、これまでと同様に、配電システムに関する。さらに別の変形例においても、蓄電池が低温であり、かつ太陽電池からの電流の量が多い場合、太陽電池において発電される電力が十分多くても、蓄電池は十分に充電されないという現象が生じる。さらに別の変形例は、次の処理を実行する。配電システムに接続された一般負荷のうち、少なくともひとつが稼働時間を調節可能な負荷である。これの一例が、ネットワークで制御可能な自然冷媒ヒートポンプ給湯機である。また、このような負荷は、蓄電池が内設された筐体の外部に接続されている。
ここで、蓄電池の温度が第1しきい値よりも低い場合、稼働時間を調節可能な負荷に電力が供給されることによって、電力が消費される。その結果、蓄電池へ出力される電流が制限される。また、定電圧充電となるように、蓄電池へ出力される電流が調節される。その結果、太陽電池において発電される電力が十分多い場合に、蓄電池に入力される電流が抑制される。
図14は、本発明のさらに別の変形例に係る配電システム100の構成を詳細に示す。配電システム100は、太陽電池10、蓄電池12、変換装置14、管理装置16、一般負荷26、電圧計30、温度計32を含む。管理装置16は、制御部40を含み、制御部40は、第1取得部80、第2取得部82、指示部84を含む。
一般負荷26は、前述のとおりであるが、ここでは特に稼働時間を調節可能な負荷、例えば、自然冷媒ヒートポンプ給湯機であるとする。また、一般負荷26は、蓄電池12が内設された筐体の外部に接続される。電圧計30は、蓄電池12における電圧の値を測定する。なお、蓄電池12は、太陽電池10から出力される電流の少なくとも一部を入力する。第1取得部80は、電圧計30から、電圧の値を取得する。第1取得部80は、電圧の値を指示部84に出力する。第2取得部82は、図2に示された第1取得部42と同様に、温度計32から、蓄電池12近傍の温度を取得する。ここで、蓄電池12には、太陽電池10から出力される電流の少なくとも一部が入力される。第2取得部82は、温度を指示部84に出力する。
指示部84は、第1取得部80において取得した電圧の値と、第2取得部82において取得した温度とをもとに、太陽電池10から出力される電流のうち、一般負荷26にて消費すべき電流の値を調節する。具体的に説明すると、指示部84は、第2取得部82において取得した温度がしきい値よりも低い場合に、第1取得部80において取得した電圧の値が目標の値に近づくように、一般負荷26にて消費すべき電流の値を決定する。
図15は、指示部84の処理概要を示す。縦軸が電流値を示し、横軸が時間を示す。発電電流値230は、太陽電池10から出力される電流の値である。また、出力電流値232は、蓄電池12に入力すべき電流の値である。図示のごとく、出力電流値232は、時間の経過とともに低減する。これは、蓄電池12において定電圧充電がなされるようにするためである。指示部84は、発電電流値230から出力電流値232を減算した値が正であれば、当該値に応じた電流を一般負荷26に消費させる。一般負荷26に消費させる電流は、図15の斜線部分に相当する。図14に戻る。
さらに別の変形例に係る配電システム100において、制御部40は、次の処理を実行してもよい。(1)指示部84は、第2取得部82において取得した温度がしきい値よりも低い場合に、第1取得部80において取得した電圧の値が目標の値に達すれば、蓄電池12を放電させる。蓄電池12を放電させてから一定期間経過後、指示部84は、蓄電池12への充電を実行する。
(2)図14の制御部40に、図示しない第3取得部が含まれてもよい。第3取得部は、太陽電池10における発電開始の予想時刻に関する情報を取得する。発電開始の予想時刻は、例えば、午前7時のような一定時間として記憶されてもよく、季節によって変動する時間として記憶されていてもよい。指示部84は、第2取得部82において取得した温度がしきい値よりも低い場合に、第3取得部において取得した情報での予定時刻が到来する前に、蓄電池12を放電させる。なお、予定時刻が到来する前は、一定の期間として規定されていればよい。(3)配電システム100に一般負荷26が接続されていない場合、変換装置14は、太陽電池10からの電力を商用電源22に出力してもよい。
本発明の実施例によれば、蓄電池の温度が低いと、筐体内の熱を筐体外に放出するためのファンを逆回転に回転させるので、筐体内に熱を保持できる。また、筐体内に熱が保持されるので、蓄電池を暖めることができる。また、蓄電池が暖まるので、太陽電池からの電流が大きい場合であっても、蓄電池の放電容量を簡易に確保できる。また、蓄電池の温度が低く、蓄電池における電圧が大きい場合に、筐体内の熱を筐体外に放出するためのファンを逆回転に回転させるので、蓄電池を暖めることができる。また、いずれか一方が満たされない場合には、ファンを逆回転させないので、熱の放出を実行できる。
また、蓄電池の温度が低いと、パネルに接続されたパネルSWを段階的に開放するので、蓄電池に入力される電流を抑制できる。また、蓄電池の電圧に応じて、パネルSWを段階的に開放するので、蓄電池を定電圧充電させることができる。また、蓄電池が定電圧充電されるので、蓄電池の放電容量を簡易に確保できる。また、蓄電池の温度が低く、蓄電池における電圧が大きい場合に、パネルに接続されたパネルSWを段階的に開放するので、蓄電池に入力される電流を抑制できる。また、いずれか一方が満たされない場合には、パネルSWを開放しないので、電流の低下を抑制できる。また、蓄電池の電圧が目標値に値が近づくように、開放したパネルSWの数を段階的に増加させるので、蓄電池を定電圧充電させることができる。
また、蓄電池の温度が低いと、蓄電池の通風口を閉じるので、蓄電池内に熱を保持できる。また、蓄電池内に熱が保持されるので、蓄電池を暖めることができる。また、蓄電池の温度が低く、蓄電池における電圧が大きい場合に、蓄電池の通風口を閉じるので、蓄電池を暖めることができる。また、いずれか一方が満たされない場合には、通風口を閉じないので、熱の放出を実行できる。また、蓄電池の温度が低いと、発電された電力の一部を外部の一般負荷に消費させるので、蓄電池に入力される電流を抑制できる。また、蓄電池における電圧が目標の値に近づくように、一般負荷に電力を消費させるので、定電圧充電を実行できる。また、定電圧充電が実行されるので、蓄電池の放電容量を簡易に確保できる。また、蓄電池の電圧が目標値に達しても、温度が低ければ、蓄電池を放電させるので、蓄電池の温度を上昇させることができる。また、発電を開始する予想時刻の前に、蓄電池を放電させるので、蓄電池の温度を上昇させることができる。
以上、本発明を実施例をもとに説明した。この実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
本発明の実施例において、制御部40は、管理装置16に含まれている。しかしながらこれに限らず例えば、制御部40は、変換装置14に含まれていてもよい。本変形例によれば、設計の自由度を向上できる。
本発明の実施例において、発電するために太陽電池10が設けられている。しかしながらこれに限らず例えば、太陽電池10以外に、再生可能エネルギー源をもとした電力を生成するための装置が設けられてもよい。例えば、風力発電機である。本変形例によれば、配電システム100の構成の自由度を向上できる。
10 太陽電池、 12 蓄電池、 14 変換装置、 16 管理装置、 18 第1SW、 20 第2SW、 22 商用電源、 24 特定負荷、 26 一般負荷、 30 電圧計、 32 温度計、 34 ファン、 40 制御部、 42 第1取得部、 44 第2取得部、 46 指示部、 50 第1取得部、 52 第2取得部、 56 指示部、 60 パネル、 62 パネルSW、 64 開閉部、 70 第1取得部、 72 第2取得部、 74 指示部、 80 第1取得部、 82 第2取得部、 84 指示部。

Claims (6)

  1. 再生可能エネルギー発電装置から出力される電流の少なくとも一部を入力する蓄電池における電圧の値を取得する取得部と、
    前記取得部において取得した電圧の値をもとに、前記再生可能エネルギー発電装置から出力される電流のうち、前記蓄電池が内設された筐体の外部に接続された負荷にて消費すべき電流の値を調節する指示部とを備え、
    前記指示部は、前記取得部において取得した電圧の値が目標の値に近づくように、負荷にて消費すべき電流の値を決定することを特徴とする制御装置。
  2. 前記取得部は、前記蓄電池の近傍の温度も取得し、
    前記指示部は、前記取得部において取得した温度がしきい値よりも低い場合に、前記取得部において取得した電圧の値が目標の値に近づくように、負荷にて消費すべき電流の値を決定することを特徴とする請求項1に記載の制御装置。
  3. 並列に配置された複数の再生エネルギー発電装置のそれぞれと1対1で設けられた複数のスイッチに接続された蓄電池の電圧の値を取得する取得部と、
    前記取得部において取得した電圧の値をもとに、前記複数のスイッチのそれぞれの開閉を制御する指示部とを備え、
    前記指示部は、前記取得部において取得した電圧の値に応じて、開放したスイッチの数を段階的に増加させることを特徴とする制御装置。
  4. 前記取得部は、前記蓄電池の近傍の温度も取得し、
    前記指示部は、前記取得部において取得した温度がしきい値よりも低い場合に、前記取得部において取得した電圧の値に応じて、開放したスイッチの数を段階的に増加させることを特徴とする請求項3に記載の制御装置。
  5. 前記指示部は、前記取得部において取得した電圧の値が目標値に近づくように、開放したスイッチの数を段階的に増加させることを特徴とする請求項3または4に記載の制御装置。
  6. 前記指示部は、前記取得部において取得した電圧の値が目標値に近づくように、開放したスイッチの数を段階的に減少させることを特徴とする請求項3から5のいずれかに記載の制御装置。
JP2012036804A 2012-02-22 2012-02-22 制御装置 Pending JP2013172623A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012036804A JP2013172623A (ja) 2012-02-22 2012-02-22 制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012036804A JP2013172623A (ja) 2012-02-22 2012-02-22 制御装置

Publications (1)

Publication Number Publication Date
JP2013172623A true JP2013172623A (ja) 2013-09-02

Family

ID=49266216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012036804A Pending JP2013172623A (ja) 2012-02-22 2012-02-22 制御装置

Country Status (1)

Country Link
JP (1) JP2013172623A (ja)

Similar Documents

Publication Publication Date Title
US8860252B2 (en) Power storage system, method of controlling the same, and computer readable recording medium storing a program for executing the method
EP3148037B1 (en) Energy storage system
JP5652196B2 (ja) パワーコンディショナ
JP5028517B2 (ja) 直流給電システム
JP2010130836A (ja) 電力供給システム及び電力切替装置
US20130088900A1 (en) Energy storage system and controlling method of the same
JP5929258B2 (ja) 電力供給システムおよび電源装置
US10418820B2 (en) Power supply apparatus, power supply system, and control method of power supply apparatus
JPWO2012049915A1 (ja) 電力管理システム
US20150207322A1 (en) Power Supply System
JP2011250673A (ja) エネルギーコントローラおよび制御方法
JP2009232668A (ja) 電力供給システムおよび電力供給方法
JP5944269B2 (ja) 電力供給システム
WO2013125155A1 (ja) 制御装置
JP5820984B2 (ja) 配電システム
JP6047929B2 (ja) バッテリ制御装置
JP6478032B2 (ja) 制御装置およびそれを利用した配電システム
JP2013172623A (ja) 制御装置
JP6713101B2 (ja) 蓄電池システム及び蓄電池の制御方法
JP2013198270A (ja) 制御装置
JP2016140206A (ja) 電力供給機器、電力供給システム、および電力供給方法
JP7165507B2 (ja) 直流給電システム
JP2019193317A (ja) 蓄電システム、充放電制御装置、その制御方法、およびプログラム
Barca et al. Optimal energy management of a photovoltaic stand-alone dual battery system
JP5879559B2 (ja) 配電システム