WO2022227580A1 - 低温下电池储能系统高效率工作方法 - Google Patents

低温下电池储能系统高效率工作方法 Download PDF

Info

Publication number
WO2022227580A1
WO2022227580A1 PCT/CN2021/136182 CN2021136182W WO2022227580A1 WO 2022227580 A1 WO2022227580 A1 WO 2022227580A1 CN 2021136182 W CN2021136182 W CN 2021136182W WO 2022227580 A1 WO2022227580 A1 WO 2022227580A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
energy storage
storage system
temperature
iron phosphate
Prior art date
Application number
PCT/CN2021/136182
Other languages
English (en)
French (fr)
Inventor
丁昊晖
胡秦然
全相军
窦晓波
吴在军
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/770,529 priority Critical patent/US11611102B2/en
Publication of WO2022227580A1 publication Critical patent/WO2022227580A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the invention belongs to the technical field of electric power systems, and particularly relates to a battery energy storage system at low temperature.
  • the output efficiency of energy storage per minute is greatly affected by temperature; the winter temperature in some parts of northern China can reach below -20 °C, and battery energy storage systems are mostly composed of lithium iron phosphate batteries, which have poor performance at low temperatures. At -20°C, the discharge efficiency of the lithium iron phosphate battery is only about 30% of that at room temperature, and it is almost impossible to charge. If the lithium titanate battery is used to replace the lithium iron phosphate battery to make a battery energy storage system, although the input and output efficiency is high at low temperature, the cost is high and the energy density is low.
  • lithium iron phosphate batteries have poor low-temperature starting ability, low input and output efficiency at low temperatures, but high energy density and cheap.
  • Lithium titanate has good low-temperature starting ability, high input and output efficiency at low temperature, but low energy density and expensive. Therefore, the current single-battery-type energy storage system has significant deficiencies at low temperatures.
  • the present invention proposes a high-efficiency working method of a battery energy storage system at low temperature, which jointly dispatches a lithium titanate battery with good low-temperature performance but expensive and low energy density, low-temperature performance but low cost and high energy density.
  • the lithium iron phosphate battery makes the advantages of the two batteries complement each other to achieve high-efficiency operation of the battery energy storage system at low temperatures.
  • the invention proposes a high-efficiency working method of a battery energy storage system at low temperature, establishes an energy storage system framework composed of multiple batteries, builds an energy storage system optimization model based on the complementary advantages of various batteries, and uses a solver to solve the optimization model, The optimal scheduling scheme of the battery energy storage system composed of various batteries at low temperature is obtained.
  • the energy storage system is composed of a lithium titanate battery, a lithium iron phosphate battery, and a heating device, and the heating device is first charged with a lithium titanate battery, Increase the temperature in the energy storage tank, and when the temperature reaches a certain range, the lithium iron phosphate battery will perform the charging and discharging work;
  • the optimization model is constructed as follows:
  • ⁇ ES1 (T t ) is the output efficiency of the lithium iron phosphate battery, is the total electrical energy output by the lithium iron phosphate battery; is the power output by the lithium iron phosphate battery, It is the power delivered by the lithium iron phosphate battery to the heating equipment; is the electric energy consumed inside the lithium titanate battery, ⁇ ES2 (T t ) is the output efficiency of the lithium titanate battery, is the total electrical energy output by the lithium titanate battery; is the power output by the lithium titanate battery, is the power delivered by the lithium titanate battery to the heating equipment;
  • T in is the temperature in the storage tank, is the fitting coefficient.
  • the total power consumed by both sets of batteries cannot exceed the maximum power they can store and The power emitted by the two sets of batteries cannot exceed their maximum power and which is:
  • the heat balance model is shown below (a11) to (a14):
  • the formula (a11) indicates that the sum of the added heat in the chamber is equal to the thermal capacitance C multiplied by the temperature change in the chamber, Q ES1 represents the heat emitted by the lithium iron phosphate battery, Q ES2 represents the heat emitted by the lithium titanate battery, and Q AC represents the heat generated by the lithium iron phosphate battery.
  • the heat emitted by the two batteries is linearly related to the temperature in the chamber.
  • the relationship between the heat released by the batteries and the temperature is as follows:
  • the heat Q AC emitted by the heater is proportional to the product of its voltage and current, which is proportional to the electrical energy L AC consumed by the heater
  • the invention proposes a high-efficiency working method of a battery energy storage system at a low temperature, and the battery adopts a pulsed discharge method.
  • the storage battery is stored.
  • the temperature in the energy compartment is controlled at a suitable level for the battery to work, so that the battery output efficiency is the highest.
  • the present invention adopts the above technical scheme, and compared with the prior art, the progress that it has is:
  • the invention realizes the complementary advantages of multiple batteries through the joint scheduling of multiple batteries, and solves the problem that a single battery type energy storage system has low input and output efficiency at low temperature, or is expensive and has low energy density, and realizes battery storage at low temperature. Can work efficiently.
  • the present invention takes the joint dispatch of two batteries as an example to establish an energy storage system framework, and selects lithium iron phosphate batteries and lithium titanate batteries for joint dispatch.
  • the present invention exerts the input and output efficiency of lithium titanate batteries at low temperatures. The advantages of high and low cost and high energy density of lithium iron phosphate.
  • the cost per kilowatt-hour of electric energy output at low temperature and the weight of the battery system are significantly lower than the current single-battery type energy storage system, so it has extremely important significance.
  • Fig. 1 is an explanatory diagram of the electric system of the energy storage shelter.
  • Fig. 2 is an explanatory diagram of the thermal system of the energy storage shelter.
  • Figure 3 is a flow chart of the method of the present invention.
  • FIG. 1 The description of the electrical system of the battery energy storage system designed by the present invention is shown in FIG. 1 , and the thermal system of the battery energy storage system is shown in FIG. 2 . Specifically include the following:
  • the battery energy storage system there are three heat sources within the battery energy storage system. 1.
  • the heating device emits heat to the outside, 2.
  • the lithium iron phosphate battery will heat up when it is working, and 3.
  • the lithium titanate battery will also heat up when it is working.
  • the storage tank has also been exchanging heat with the outside world.
  • Lithium titanate batteries have good low temperature performance, but are expensive and have low energy density.
  • LiFePO4 batteries have poor low temperature performance, but are relatively cheap and have high energy density.
  • a small amount of lithium titanate battery is used to charge the heating equipment first to increase the temperature in the energy storage compartment, thereby improving the charging and discharging efficiency of the lithium iron phosphate battery. Then use a large number of lithium iron phosphate batteries to perform charging and discharging work. Because the number of lithium titanate is less, and the number of lithium iron phosphate is more. Therefore, after the combination of these two batteries, the price is relatively cheap, and the energy density is high. In addition, low temperature performance is also very good.
  • the modeling method of the energy storage shelter electric system is:
  • ⁇ ES1 (T t ) is the output efficiency of the lithium iron phosphate battery
  • T t is the total electrical energy output by the lithium iron phosphate battery
  • ⁇ ES2 (T t ) is the output efficiency of the lithium titanate battery
  • T t is the total electrical energy output by the lithium titanate battery
  • T in is the temperature in the storage tank, is the fitting coefficient.
  • the total power consumed by both sets of batteries cannot exceed the maximum power they can store and The power emitted by the two sets of batteries cannot exceed their maximum power and
  • the thermal model of the present invention is as follows:
  • Storage tanks are similar to buildings in terms of thermal balance. Therefore, the present invention uses a thermal balance model similar to that of a building.
  • the energy storage bin There are three heat sources inside the energy storage bin, namely the heat Q ES1 emitted by the lithium iron phosphate battery, the heat Q ES2 emitted by the lithium titanate battery, and the heat Q AC emitted by the heater.
  • the energy storage tank has been exchanging heat with the outside, and the value is the difference between the temperature T out outside the tank and the temperature T in inside the tank divided by the thermal resistance R.
  • Equation a(11) the sum of the added heat in the tank is equal to the thermal capacitance C multiplied by the change in the temperature in the tank.
  • Q ES1 and Q ES2 are related to the current and the internal resistance of the battery.
  • the change of the output current of the battery is small, and is set as a constant in order to avoid nonlinearity.
  • the internal resistance of the battery is related to the temperature, so as shown in equations (a12) and (a13), the heat emitted by the two batteries is linearly related to the temperature in the chamber. The invention obtains the relationship between the heat released by the battery and the temperature based on artificial intelligence and measured data.
  • the heat Q AC emitted by the heater is proportional to the product of its voltage and current, that is, proportional to the electrical energy L AC consumed by the heater.
  • the objective function is to use the maximum total output power of the two types of batteries, and an optimization model is constructed as shown below.
  • the present invention uses a solver to solve the above-mentioned optimization model, and obtains the optimal scheduling of two kinds of battery energy storage.
  • the thermal resistance of the energy storage bin is 23°C/kW
  • the thermal capacitance is 20kJ/°C
  • the capacity of the lithium iron phosphate battery is 248kWh
  • the capacity of the lithium titanate battery is 122kWh
  • the maximum power output is within 1 hour.
  • the optimal schedule for the target is as follows.
  • the lithium iron phosphate battery outputs electric energy per minute as shown in Table a2:
  • the lithium titanate battery outputs electric energy per minute as shown in Table a4:
  • the present invention compares the performance of pure lithium iron phosphate battery, pure lithium titanate battery and the joint scheduling of the two batteries at low temperature, and the results are shown in Table 1.
  • the total electrical energy output at low temperature is 448.5% of the total output electrical energy of the pure lithium iron phosphate battery, and 166.8% of the output electrical energy of the pure lithium titanate battery. %.
  • the cost of 7937.6 yuan and a load of 40.7kg are required for each 1kWh output in case 1; the cost of 9448.82 yuan and a load of 26.24kg for each 1kWh output in case 2; the cost of 3115.4 yuan per 1kWh output in case 3 and a load of 11.4kg.
  • the cost per kWh of electric energy output by the method of the present invention is only 37% of that of pure lithium iron phosphate battery, and 32.9% of that of pure lithium titanate battery.
  • the load required for outputting electric energy per kWh by the method of the invention is only 28% of that of pure lithium iron phosphate battery, and 43.4% of that of pure lithium titanate battery. From this, it can be seen that the present invention has significant advantages compared with the existing methods, and therefore has great significance.
  • the present invention tests the effectiveness of the method proposed by the present invention by taking a battery energy storage system composed of a 122kWh lithium titanate battery, a 248kWh lithium iron phosphate battery and a heating device as the test object.
  • the results show that the cost per kWh of electric energy output by the method proposed in the present invention is only 37% of that of pure lithium iron phosphate battery, and 32.9% of that of pure lithium titanate battery.
  • the load required for outputting electric energy per kWh by the method of the invention is only 28% of that of pure lithium iron phosphate battery, and 43.4% of that of pure lithium titanate battery.
  • the method proposed in the present invention realizes the high-efficiency operation of the battery energy storage system at low temperature.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开一种低温下电池储能系统高效率的工作方法。本发明以两种电池联合调度为例建立储能系统框架,选择磷酸铁锂电池和钛酸锂电池进行联合调度使两块电池优势互补;接着,建立考虑温度对电池输入输出效率影响的两种电池联合调度储能系统模型;最后,给出在低温下由钛酸锂电池和磷酸铁锂电池构成的电池储能系统的最优调度方案。通过以上步骤,本发明实现了低温下电池储能系统高效率的电能输出,实现了不同种类电池的优势互补,同时还保证了总体成本较低。

Description

低温下电池储能系统高效率工作方法 技术领域
本发明属于电力系统技术领域,特别涉及低温下电池储能系统。
背景技术
随着可再生能源比例不断提高,为了保证供电稳定,储能也越来越多的被使用。然而储能每分钟的输出效率受温度影响很大;中国北方部分地区冬季气温会达到-20℃以下,而电池储能系统大多是由磷酸铁锂电池组成,其低温下性能很差。在-20℃时,磷酸铁锂电池的放电效率仅为常温时的30%左右,且几乎无法充电。若用钛酸锂电池取代磷酸铁锂电池来制作电池储能系统,虽然低温下输入输出效率高,但是成本高昂且能量密度较低。
综合来看,磷酸铁锂电池低温启动能力差,低温下输入输出效率低,但能量密度高且便宜。钛酸锂低温启动能力好,低温下输入输出效率高,但能量密度低且昂贵。所以,目前单一电池种类储能系统在低温下有显著不足。
发明内容
为了解决此问题,本发明提出一种低温下电池储能系统高效率工作方法,其联合调度了低温性能好但是昂贵且能量密度的低的钛酸锂电池、低温性能差但是便宜且能量密度高的磷酸铁锂电池,让这两种电池优势互补,以实现低温下电池储能系统的高效率工作。
本发明为解决以上技术问题,采用以下技术方案:
本发明提出一种低温下电池储能系统高效率工作方法,建立多种电池构成的储能系统框架,以各类电池优势互补为基础构建储能系统优化模型,使用求解器求解该优化模型,得到在低温下由多种电池构成的电池储能系统的最优调度方案。
进一步的,本发明所提出的一种低温下电池储能系统高效率工作方法,储能系统由钛酸锂电池、磷酸铁锂电池、加热设备组成,先用钛酸锂电池给加热设备充电,提高储能仓内温度,待温度达到一定范围时,再由磷酸铁锂电池执行充放电工作;构建优化模型如下所示:
Figure PCTCN2021136182-appb-000001
其中,电系统的平衡模型如下(a1)至(a10)所示:
Figure PCTCN2021136182-appb-000002
Figure PCTCN2021136182-appb-000003
Figure PCTCN2021136182-appb-000004
Figure PCTCN2021136182-appb-000005
式中,
Figure PCTCN2021136182-appb-000006
是磷酸铁锂电池内部消耗的电能,η ES1(T t)是磷酸铁锂电池输出效率,
Figure PCTCN2021136182-appb-000007
是磷酸铁锂电池输出的总电能;
Figure PCTCN2021136182-appb-000008
是磷酸铁锂电池向外输出的功率,
Figure PCTCN2021136182-appb-000009
是磷酸铁锂电池输送给加热设备的功率;
Figure PCTCN2021136182-appb-000010
是钛酸锂电池内部消耗的电能,η ES2(T t)是钛酸锂电池输出效率,
Figure PCTCN2021136182-appb-000011
是钛酸锂电池输出的总电能;
Figure PCTCN2021136182-appb-000012
是钛酸锂电池向外输出的功率,
Figure PCTCN2021136182-appb-000013
是钛酸锂电池输送给加热设备的功率;
式(a1)(a2)中电池组的效率受温度影响,如式(a5)-(a6)所示:
Figure PCTCN2021136182-appb-000014
Figure PCTCN2021136182-appb-000015
其中,T in是储能仓内温度,
Figure PCTCN2021136182-appb-000016
是拟合系数。此外,两组电池消耗的总电能不能超过其存储的最大电能
Figure PCTCN2021136182-appb-000017
Figure PCTCN2021136182-appb-000018
两组电池发出的功率不能超过其最大功率
Figure PCTCN2021136182-appb-000019
Figure PCTCN2021136182-appb-000020
即:
Figure PCTCN2021136182-appb-000021
Figure PCTCN2021136182-appb-000022
Figure PCTCN2021136182-appb-000023
Figure PCTCN2021136182-appb-000024
热平衡模型如下(a11)至(a14)所示:
Figure PCTCN2021136182-appb-000025
式(a11)表示仓体内增加的热量之和等于热电容C乘以仓体内温度的改变量,Q ES1表示磷酸铁锂电池发出的热量、Q ES2表示钛酸锂电池发出的热量、Q AC表示加热器发出的热量,T out为仓体外的温度,T in为仓体内温度,R为热电阻;
两块电池发出的热量和仓体内的温度线性相关,电池放出热量和温度的关系如下:
Figure PCTCN2021136182-appb-000026
Figure PCTCN2021136182-appb-000027
加热器发出的热量Q AC正比于其电压电流的乘积,也即正比于加热器消耗的电能L AC
Figure PCTCN2021136182-appb-000028
式中,
Figure PCTCN2021136182-appb-000029
都是拟合系数。
进一步的,本发明所提出的一种低温下电池储能系统高效率工作方法,电池采用脉冲式的放电方法。
进一步的,本发明所提出的一种低温下电池储能系统高效率工作方法,在放电过程即将结束的时候,停止向加热设备供电。
进一步的,本发明所提出的一种低温下电池储能系统高效率工作方法,在放电过程中,通过调节加热设备消耗的功率和电池自身输出功率,在考虑制热耗电的同时,把储能仓内温度控制在合适电池工作的程度,从而使电池输出效率最高。
本发明采用以上技术方案,与现有技术相比,所具有的进步在于:
本发明通过多种电池联合调度以实现多种电池的优势互补,解决了单一电池种类储能系统在低温下要么输入输出效率低,要么价格昂贵且能量密度低的问题, 实现了低温下电池储能系统高效率的工作。
同时,本发明以两种电池联合调度为例建立储能系统框架,并选择磷酸铁锂电池和钛酸锂电池进行联合调度,在联合调度中本发明发挥了钛酸锂电池低温下输入输出效率高的优势和磷酸铁锂成本低且能量密度高的优势。
采用本发明的方法,在低温下输出每千瓦时电能所需成本和电池系统重量都显著低于目前单一电池种类储能系统,因此具有极其重要的意义。
附图说明
图1是储能方舱电系统说明图。
图2是储能方舱热系统说明图。
图3是本发明的方法流程图。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明设计的电池储能系统电系统说明如图1所示,电池储能系统热系统如图2所示。具体包括以下内容:
如图1所示,两块电池以一定的效率向外输出电能之后,一部分电能向外界负荷供电,一部分电能供给加热设备。加热设备通电之后会提高电池的温度,从而提高电池的输出效率。
如图2所示,电池储能系统内有三个热源。1.加热设备向外放出热量,2.磷酸铁锂电池工作的时会发热,3.钛酸锂电池在工作的时候也会发热。此外,储能仓也一直在和外界交换热量。通过控制三个热源发出的热量,可以把电池储能系统内保持合适的温度,从而让电池高效率的输出。
结合图3所示,下面详细介绍本发明的一种低温下高效率电池储能系统工作方法的具体实施例:
本发明把多种电池联合调度,使其优势互补,实现了电池储能系统低温下高效率的工作。钛酸锂电池低温性能好,但是昂贵,且能量密度低。磷酸铁锂电池低温性能较差,但是相对便宜,且能量密度高。把两者结合,用少量钛酸锂电池先给加热设备充电,提高储能仓内温度,从而提高磷酸铁锂电池的充电放电效率。 然后再用大量磷酸铁锂电池执行充放电工作。因为钛酸锂数量较少,而磷酸铁锂铁锂数量较多。所以这两种电池组合之后,价格较为便宜,且能量密度较高。此外,低温性能也非常好。
其中,储能方舱电系统的建模方法是:
Figure PCTCN2021136182-appb-000030
式中,
Figure PCTCN2021136182-appb-000031
是磷酸铁锂电池内部消耗的电能,η ES1(T t)是磷酸铁锂电池输出效率,
Figure PCTCN2021136182-appb-000032
是磷酸铁锂电池输出的总电能。
Figure PCTCN2021136182-appb-000033
式中,
Figure PCTCN2021136182-appb-000034
是磷酸铁锂电池向外输出的功率,
Figure PCTCN2021136182-appb-000035
是磷酸铁锂电池输送给加热设备的功率。
Figure PCTCN2021136182-appb-000036
式中,
Figure PCTCN2021136182-appb-000037
是钛酸锂电池内部消耗的电能,η ES2(T t)是钛酸锂电池输出效率,
Figure PCTCN2021136182-appb-000038
是钛酸锂电池输出的总电能。
Figure PCTCN2021136182-appb-000039
式中,
Figure PCTCN2021136182-appb-000040
是钛酸锂电池向外输出的功率,
Figure PCTCN2021136182-appb-000041
是钛酸锂电池输送给加热设备的功率。
式(a1)(a2)中电池组的效率受温度影响,本发明拟合了实测数据,结果如式(a5)-(a6)所示。
Figure PCTCN2021136182-appb-000042
Figure PCTCN2021136182-appb-000043
式中,T in是储能仓内温度,
Figure PCTCN2021136182-appb-000044
是拟合系数。此外,两组电池消耗的总电能不能超过其存储的最大电能
Figure PCTCN2021136182-appb-000045
Figure PCTCN2021136182-appb-000046
两组电池发出的功率不能超过其最大功率
Figure PCTCN2021136182-appb-000047
Figure PCTCN2021136182-appb-000048
Figure PCTCN2021136182-appb-000049
Figure PCTCN2021136182-appb-000050
Figure PCTCN2021136182-appb-000051
Figure PCTCN2021136182-appb-000052
本发明的热模型如下所示:
储能仓在热平衡方面和建筑物很相似。因此,本发明采用了和建筑物相似的热平衡模型。
储能仓内部有三个热源,分别是磷酸铁锂电池发出的热量Q ES1、钛酸锂电池发出的热量Q ES2、加热器发出的热量Q AC。同时,储能仓一直和外部交换热量,数值为仓体外的温度T out和仓体内温度T in的差值除以热电阻R。如式a(11)所示,仓体内增加的热量之和等于热电容C乘以仓体内温度的改变量。
Figure PCTCN2021136182-appb-000053
式(a11)中Q ES1和Q ES2和电流以及电池内阻有关。本发明中,电池输出电流变化较小,为避免非线性,设定为常数。而电池内阻和温度有关,所以如式(a12)(a13)所示,两块电池发出的热量和仓体内的温度线性相关。本发明基于人工智能和实测数据得到了电池放出热量和温度的关系。
Figure PCTCN2021136182-appb-000054
Figure PCTCN2021136182-appb-000055
加热器发出的热量Q AC正比于其电压电流的乘积,也即正比于加热器消耗的电能L AC
Figure PCTCN2021136182-appb-000056
式中,
Figure PCTCN2021136182-appb-000057
都是拟合系数。
本发明以两种电池输出总电能最多为目标函数,构建了优化模型如下所示
Figure PCTCN2021136182-appb-000058
Figure PCTCN2021136182-appb-000059
本发明使用求解器求解上述优化模型,得到了两种电池储能的最优调度。当外界温度为-30摄氏度,储能仓热电阻为23℃/kW,热电容为20kJ/℃,磷酸铁锂电池容量为248kWh,钛酸锂电池容量为122kWh时,以1小时内输出电能最多为目标的最优调度如下。
磷酸铁锂电池每分钟供给给加热器的功率如表a1所示:
表a1磷酸铁锂电池供给加热器的功率
Figure PCTCN2021136182-appb-000060
Figure PCTCN2021136182-appb-000061
磷酸铁锂电池每分钟向外输出电能如表a2所示:
表a2磷酸铁锂电池向外输出功率
Figure PCTCN2021136182-appb-000062
Figure PCTCN2021136182-appb-000063
钛酸锂电池每分钟供给给加热器的电能如表a3所示:
表a3钛酸锂电池供给加热器的功率
Figure PCTCN2021136182-appb-000064
钛酸锂电池每分钟向外输出电能如表a4所示:
表a4钛酸锂电池向外输出的功率
Figure PCTCN2021136182-appb-000065
在电池总容量一致的条件下,本发明对比了纯磷酸铁锂电池,纯钛酸锂电池和两种电池联合调度在低温下的表现,结果如表1所示。
表1单一电池种类储能系统和多电池储能系统对比
Figure PCTCN2021136182-appb-000066
结果表明本发明所提方法在总重量较轻,总成本较低的情况下,低温下输出的总电能是纯磷酸铁锂电池输出总电能的448.5%,是纯钛酸锂电池输出电能的166.8%。此外,案例1中每输出1kWh电能需要7937.6元的成本和40.7kg的负重;案例2中每输出1kWh电能需要9448.82元的成本和26.24kg的负重;案例3中每输出1kWh电能需要3115.4元的成本和11.4kg的负重。所以,本发明所提方法输出每kWh电能所需成本仅为纯磷酸铁锂电池的37%,为纯钛酸锂电池的32.9%。本发明所提方法输出每kWh电能所需负重仅为纯磷酸铁锂电池的28%,为纯钛酸锂电池的43.4%。由此可以看出,本发明对比现有方法有显著优势,因此具有重要意义。
本发明在-30℃的环境下,以由122kWh钛酸锂电池,248kWh磷酸铁锂电池和加热设备构成的电池储能系统为测试对象,测试了本发明提出的方法的有效性。结果显示,本发明所提方法输出每kWh电能所需成本仅为纯磷酸铁锂电池的37%,为纯钛酸锂电池的32.9%。本发明所提方法输出每kWh电能所需负重仅为纯磷酸铁锂电池的28%,为纯钛酸锂电池的43.4%。
由此可见,本发明所提出的方法实现了低温下电池储能系统高效率的工作。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (5)

  1. 一种低温下电池储能系统高效率工作方法,其特征在于,建立多种电池构成的储能系统框架,以各类电池优势互补为基础构建储能系统优化模型,使用求解器求解该优化模型,得到在低温下由多种电池构成的电池储能系统的最优调度方案。
  2. 如权利要求1所述的一种低温下电池储能系统高效率工作方法,其特征在于:储能系统由钛酸锂电池、磷酸铁锂电池、加热设备组成,先用钛酸锂电池给加热设备充电,提高储能仓内温度,待温度达到一定范围时,再由磷酸铁锂电池执行充放电工作;构建优化模型如下所示:
    Figure PCTCN2021136182-appb-100001
    其中,电系统的平衡模型如下(a1)至(a10)所示:
    Figure PCTCN2021136182-appb-100002
    Figure PCTCN2021136182-appb-100003
    Figure PCTCN2021136182-appb-100004
    Figure PCTCN2021136182-appb-100005
    式中,
    Figure PCTCN2021136182-appb-100006
    是磷酸铁锂电池内部消耗的电能,η ES1(T t)是磷酸铁锂电池输出效率,
    Figure PCTCN2021136182-appb-100007
    是磷酸铁锂电池输出的总电能;
    Figure PCTCN2021136182-appb-100008
    是磷酸铁锂电池向外输出的功率,
    Figure PCTCN2021136182-appb-100009
    是磷酸铁锂电池输送给加热设备的功率;
    Figure PCTCN2021136182-appb-100010
    是钛酸锂电池内部消耗的电能,η ES2(T t)是钛酸锂电池输出效率,
    Figure PCTCN2021136182-appb-100011
    是钛酸锂电池输出的总电能;
    Figure PCTCN2021136182-appb-100012
    是钛酸锂电池向外输出的功率,
    Figure PCTCN2021136182-appb-100013
    是钛酸锂电池输送给加热设备的功率;
    式(a1)(a2)中电池组的效率受温度影响,如式(a5)-(a6)所示:
    Figure PCTCN2021136182-appb-100014
    Figure PCTCN2021136182-appb-100015
    其中,T in是储能仓内温度,
    Figure PCTCN2021136182-appb-100016
    是拟合系数。此外,两组电池消耗 的总电能不能超过其存储的最大电能
    Figure PCTCN2021136182-appb-100017
    Figure PCTCN2021136182-appb-100018
    两组电池发出的功率不能超过其最大功率
    Figure PCTCN2021136182-appb-100019
    Figure PCTCN2021136182-appb-100020
    即:
    Figure PCTCN2021136182-appb-100021
    Figure PCTCN2021136182-appb-100022
    Figure PCTCN2021136182-appb-100023
    Figure PCTCN2021136182-appb-100024
    热平衡模型如下(a11)至(a14)所示:
    Figure PCTCN2021136182-appb-100025
    式(a11)表示仓体内增加的热量之和等于热电容C乘以仓体内温度的改变量,Q ES1表示磷酸铁锂电池发出的热量、Q ES2表示钛酸锂电池发出的热量、Q AC表示加热器发出的热量,T out为仓体外的温度,T in为仓体内温度,R为热电阻;
    两块电池发出的热量和仓体内的温度线性相关,电池放出热量和温度的关系如下:
    Figure PCTCN2021136182-appb-100026
    Figure PCTCN2021136182-appb-100027
    加热器发出的热量Q AC正比于其电压电流的乘积,也即正比于加热器消耗的电能L AC
    Figure PCTCN2021136182-appb-100028
    式中,
    Figure PCTCN2021136182-appb-100029
    都是拟合系数。
  3. 如权利要求1或2任一所述的一种低温下电池储能系统高效率工作方法,其特征在于:电池采用脉冲式的放电方法。
  4. 如权利要求2所述的一种低温下电池储能系统高效率工作方法,其特征在于:在放电过程即将结束的时候,停止向加热设备供电。
  5. 如权利要求1所述的一种低温下电池储能系统高效率工作方法,其特征在于:在放电过程中,通过调节加热设备消耗的功率和电池自身输出功率,在考虑制热耗电的同时,把储能仓内温度控制在合适电池工作的程度,从而使电池输出效率最高。
PCT/CN2021/136182 2021-04-28 2021-12-07 低温下电池储能系统高效率工作方法 WO2022227580A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/770,529 US11611102B2 (en) 2021-04-28 2021-12-07 High-efficiency working method for battery energy storage system at low temperature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110463244.3A CN112883596B (zh) 2021-04-28 2021-04-28 低温下电池储能系统高效率工作方法
CN202110463244.3 2021-04-28

Publications (1)

Publication Number Publication Date
WO2022227580A1 true WO2022227580A1 (zh) 2022-11-03

Family

ID=76040750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136182 WO2022227580A1 (zh) 2021-04-28 2021-12-07 低温下电池储能系统高效率工作方法

Country Status (3)

Country Link
US (1) US11611102B2 (zh)
CN (1) CN112883596B (zh)
WO (1) WO2022227580A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112883596B (zh) 2021-04-28 2021-09-28 东南大学 低温下电池储能系统高效率工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125155A1 (ja) * 2012-02-22 2013-08-29 三洋電機株式会社 制御装置
CN103812165A (zh) * 2014-01-30 2014-05-21 许玉林 超低温车用启动电源
CN205543078U (zh) * 2016-01-29 2016-08-31 广东精进能源有限公司 一种锂离子二次电池模组
CN206098546U (zh) * 2016-09-18 2017-04-12 广东精进能源有限公司 一种双温电池模块
CN111159916A (zh) * 2020-01-05 2020-05-15 开沃新能源汽车集团有限公司 一种车载双电池复合储能系统及其参数优化设计方法
CN112086982A (zh) * 2020-09-07 2020-12-15 南通大学 一种包含电热多元储能的电热联合系统优化调度方法
CN112883596A (zh) * 2021-04-28 2021-06-01 东南大学 低温下电池储能系统高效率工作方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10008873B2 (en) * 2008-11-12 2018-06-26 Bruce Eric Zeier High frequency multiphase flyback power supply
US8901885B2 (en) * 2012-03-09 2014-12-02 Tesla Motors, Inc. Low temperature fast charge
CN107039708B (zh) * 2016-11-29 2019-08-02 北京交通大学 一种锂离子电池组低温自加热方法
JP7172015B2 (ja) * 2017-09-12 2022-11-16 セントラル硝子株式会社 非水電解液用添加剤、非水電解液電池用電解液、及び非水電解液電池
JP7296044B2 (ja) * 2017-12-15 2023-06-22 株式会社Gsユアサ 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
CN107947294B (zh) * 2017-12-25 2021-02-09 四川长虹电器股份有限公司 混合动力电芯的电池管理系统
CN109687559A (zh) * 2019-02-26 2019-04-26 四川腾利恒欣科技有限公司 一种动力电池的电-电混合供电系统
CN211844152U (zh) * 2019-12-31 2020-11-03 济南圣泉集团股份有限公司 一种复合蓄电池及配备该复合蓄电池的车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125155A1 (ja) * 2012-02-22 2013-08-29 三洋電機株式会社 制御装置
CN103812165A (zh) * 2014-01-30 2014-05-21 许玉林 超低温车用启动电源
CN205543078U (zh) * 2016-01-29 2016-08-31 广东精进能源有限公司 一种锂离子二次电池模组
CN206098546U (zh) * 2016-09-18 2017-04-12 广东精进能源有限公司 一种双温电池模块
CN111159916A (zh) * 2020-01-05 2020-05-15 开沃新能源汽车集团有限公司 一种车载双电池复合储能系统及其参数优化设计方法
CN112086982A (zh) * 2020-09-07 2020-12-15 南通大学 一种包含电热多元储能的电热联合系统优化调度方法
CN112883596A (zh) * 2021-04-28 2021-06-01 东南大学 低温下电池储能系统高效率工作方法

Also Published As

Publication number Publication date
CN112883596A (zh) 2021-06-01
CN112883596B (zh) 2021-09-28
US20220399566A1 (en) 2022-12-15
US11611102B2 (en) 2023-03-21

Similar Documents

Publication Publication Date Title
Lin et al. Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries
CN101882699B (zh) 动力电池组充放电均衡控制方法
Jinlei et al. Economic operation optimization for 2nd use batteries in battery energy storage systems
Bose et al. Study on Li-ion battery fast charging strategies: Review, challenges and proposed charging framework
CN103745268A (zh) 含分布式电源的微电网多目标优化调度方法
CN108197726B (zh) 一种基于改进进化算法的家庭能量数据优化方法
CN106099965A (zh) 交流微电网并网状态下复杂混合储能系统的协调控制方法
WO2022227580A1 (zh) 低温下电池储能系统高效率工作方法
WO2022237831A1 (zh) 一种储能系统、温度控制方法及光伏发电系统
CN202308227U (zh) 一种适应低温环境的电池组合
Cui et al. Optimal co-scheduling of HVAC control and battery management for energy-efficient buildings considering state-of-health degradation
Fäßler et al. Decentralized price-driven grid balancing via repurposed electric vehicle batteries
Tazvinga et al. Optimal energy management strategy for distributed energy resources
CN112131712B (zh) 客户侧多能源系统多目标优化方法和系统
Li et al. Evaluation of flywheel energy storage systems for residential photovoltaic installations
Khan et al. A novel strategy of thermal management system for battery energy storage system based on supercritical CO2
WO2020211487A1 (zh) 储能设备温度控制方法和装置
CN111523204A (zh) 一种并网型综合能源网电-气储能系统优化配置求解方法
CN114595961A (zh) 一种生物质能多能源利用系统调度方法及装置
Chmielewski et al. Simulation of energy storage work and analysis of cooperation between micro combined heat and power (μCHP) systems and energy storage
CN109119988B (zh) 基于动态批发市价的光伏-电池微电网能量调度管理方法
Cai et al. Economic model-based control of sustainable buildings with photovoltaic (PV) and battery systems considering battery degradation costs
Corbus et al. Battery voltage stability effects on small wind turbine energy capture
CN114447963A (zh) 储能电池功率控制方法及系统
Zuo et al. A switching MPC-based power management strategy for DC microgrids with SOC consistency and energy loss

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939039

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939039

Country of ref document: EP

Kind code of ref document: A1