WO2013123647A1 - 拥有非晶铁合金轴向磁路的盘式电机及其制造方法和定子组件 - Google Patents

拥有非晶铁合金轴向磁路的盘式电机及其制造方法和定子组件 Download PDF

Info

Publication number
WO2013123647A1
WO2013123647A1 PCT/CN2012/071449 CN2012071449W WO2013123647A1 WO 2013123647 A1 WO2013123647 A1 WO 2013123647A1 CN 2012071449 W CN2012071449 W CN 2012071449W WO 2013123647 A1 WO2013123647 A1 WO 2013123647A1
Authority
WO
WIPO (PCT)
Prior art keywords
axial
stator
winding
assembly
stator core
Prior art date
Application number
PCT/CN2012/071449
Other languages
English (en)
French (fr)
Inventor
石雷
刘青山
谢伟
Original Assignee
深圳华任兴科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华任兴科技有限公司 filed Critical 深圳华任兴科技有限公司
Priority to PCT/CN2012/071449 priority Critical patent/WO2013123647A1/zh
Priority to US14/375,300 priority patent/US20150008779A1/en
Priority to EP12869022.9A priority patent/EP2802061A4/en
Publication of WO2013123647A1 publication Critical patent/WO2013123647A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/024Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with slots
    • H02K15/026Wound cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/14Casings; Enclosures; Supports
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/15Mounting arrangements for bearing-shields or end plates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor

Definitions

  • This invention relates to magnetic circuit components for the manufacture of electric machines, and more particularly to magnetic circuit components for the manufacture of disc motors, and more particularly to stator or rotor bodies characterized by armature windings and featuring magnetic materials.
  • the disc motor was invented by Faraday in 1821 and has not been further developed for more than 100 years due to limitations in materials and workmanship. In the 1940s and 1950s, disc motors were re-emphasized and used in products such as computer hard drives and micro tape recorders. Compared with the conventional radial magnetic circuit motor, the disc motor has the advantages of short axial dimension, less moving parts and high motor efficiency, and is especially suitable for occasions where the axial installation size of the motor is strictly limited.
  • the conventional permanent magnet motor uses a radial magnetic pole structure, which embeds the windings in the iron core lamination according to a certain rule, but the motor has a long axial dimension and is not suitable for installation in a thin space. For this reason, the disc type motor with the compression axial dimension as the target and the change of the radial magnetic circuit of the conventional motor as the axial magnetic circuit structure has received more and more attention.
  • the stator core of the prior art disc type motor is made of silicon steel material, which has large iron loss and severe heat generation, thereby causing inefficiency.
  • disc motor With the development of disc motor technology, it has been found that the utilization of disc motors has not been very satisfactory. It is known that the conventional motor stator encloses the rotor in the inside, and the heat dissipation effect is not very good. However, the disc motor avoids this phenomenon in the structure, but the number of teeth of the disc motor in the same volume is generally larger than that of the conventional motor. This means that the iron loss is high and the efficiency is low.
  • the technical problem to be solved by the present invention is to avoid the above-mentioned deficiencies of the prior art and to provide a disk motor having an axial magnetic circuit of an amorphous iron alloy, a manufacturing method thereof and a stator assembly, which not only have short axial dimensions and
  • the utility model has the advantages of less moving parts, small eddy current loss, high frequency characteristics, low temperature rise, high efficiency, high power density and high material utilization rate, and is an energy-efficient motor.
  • the technical solution to solve the technical problem of the present invention is -.
  • a disk motor having an axial magnetic circuit of an amorphous iron alloy, comprising a casing, an end cover, a stator assembly, a rotor assembly and a motor shaft adapted to the stator assembly; one end face of the stator assembly axially Fixed to the inner surface of the end cap; the rotor assembly is fixed on the motor shaft, and is adjacent to the other end surface of the stator assembly in parallel to form an axial air gap; the motor shaft is rotatably supported on the motor shaft Where the end cap and/or the housing are defined, the end cap is fixed to the open end of the casing; the stator assembly includes a stator core; and the stator core is processed by stacking of amorphous iron alloy sheets a cylindrical body having an axial central through hole, the outer cylindrical surface of the stator core being radially evenly spaced from the central axis by a plurality of axial armature slots; the stator assembly further comprising the stator iron
  • the axial armature slot of the core has the same number of
  • the stator winding is fastened in a slot of the winding bobbin with a quick-drying adhesive.
  • the winding assembly is secured within the axial armature slot of the stator core with an adhesive.
  • the rotor assembly includes a disc-shaped rotor piece made of a non-magnetic stainless steel material, and an even-numbered permanent magnet; the rotor piece is evenly spaced with the same number of through holes as the permanent magnet, each of which The permanent magnets are uniformly spaced apart in the through holes of the rotor piece, and the N and S poles are alternately arranged.
  • the rotor assembly further includes a cylindrical beam magnetic plate made of a non-magnetic stainless steel material, the outer diameter of the beam magnetic plate being smaller than an outer diameter of the rotor piece, the beam magnetic plate being provided with a central through hole;
  • the beam magnetic plate is fixed on an end surface of the rotor piece facing away from the stator assembly, and each permanent magnet fixed in each through hole of the rotor piece is covered.
  • the rotor piece is provided with a central through hole, and a plurality of axial through holes are arranged around the periphery of the central through hole;
  • the motor shaft is provided with a ring step, and the step is provided with a plurality of axial threaded holes;
  • the motor shaft Inserting into the central through hole of the rotor piece, each screw is screwed into the step of the motor shaft through each axial through hole on the rotor piece
  • Each of the axially threaded holes is configured to secure the rotor piece to the motor shaft.
  • the inner surface of the end cover is provided with an axial central boss adapted to the axial central through hole of the stator core; the axial central boss of the end cover is assembled in the axial central through hole of the stator core And the stator core of the stator assembly is fixed to the end cap with an adhesive.
  • the disc motor further includes two bearings mounted in the axially central through bore of the end cap, by means of which the motor shaft is rotatably supported on the end cap.
  • stator assembly for a disc motor, comprising a stator core, the stator core being processed from a stack of amorphous iron alloy sheets into a cylinder having an axial central through hole, the stator core outer cylinder a plurality of axial armature slots are radially evenly spaced from the central axis; the stator assembly further includes the same number of winding assemblies as the axial armature slots of the stator core, each of the winding assemblies a winding bobbin adapted to the axial armature slot of the stator core, a stator winding disposed in a slot of the winding bobbin, and a magnetizer disposed in the through hole of the winding bobbin; Winding assemblies are respectively disposed within each of the axial armature slots of the stator core.
  • the present invention also provides a method for manufacturing an axial magnetic circuit disk motor having an amorphous iron alloy, comprising the following steps:
  • stator core is fabricated by selectively performing one of the following steps:
  • the blank of the stator core is a cylindrical profile, an axial central through hole needs to be processed on the stator core blank, and the outer cylindrical surface of the stator core blank needs to be processed radially evenly at a central axis. a plurality of axial armature slots;
  • the blank of the stator core is a cylindrical profile having an axial central through hole
  • the outer cylindrical surface of the stator core blank only needs to be radially and evenly spaced to the central axis to process a plurality of axial electric Pivot slot
  • fixing the stator core and the end cover applying an adhesive on an axial end surface of the stator core and an inner cylindrical surface of the axial center through hole thereof, and fitting the axial center through hole of the stator core Adjacent to the axial center boss of the end cap, the axial end surface of the stator core coated with the adhesive is adhered to the inner surface of the end cap, and then baked Forming, for example, baking at a temperature of 125 ⁇ 5 degrees Celsius and a time of 3 to 4 hours to complete the fixing of the stator core and the end cap;
  • stator assembly The winding assembly and the stator core are assembled into a stator assembly:
  • each winding assembly is respectively installed in each axial armature slot of the stator core fixed to the end cover, noting that each winding component is not higher than the axial end surface of the stator core;
  • e 2 The condition of the coil assembly of each of the axial armature slots of the stator core is filled with an adhesive, and then baked and set, for example, at a temperature of 66 ⁇ 5 degrees Celsius and a time of 1.5 to 2.5 hours. The lower baking is set so that the winding assemblies and the stator core are firmly bonded together;
  • the rotor assembly is fixed on the motor shaft according to a conventional operation, and the rotor assembly includes a rotor piece and an even block fixed on the rotor piece Permanent magnets;
  • step d the whole machine assembly: according to a conventional operation, the motor shaft is rotatably supported at a position determined by the end cover and/or the casing, and the end cover is fixed to the casing to complete the motor Overall assembly.
  • step d d 3 further comprising a step d 2, the stator winding with an adhesive adhesively secured within slot winding bobbin.
  • the rotor piece of the rotor assembly is formed into a disc shape by a non-magnetic stainless steel sheet, and the rotor piece is uniformly spaced apart from the same number of through holes as the permanent magnet; the permanent magnets of the rotor assembly are cleaned After the agent is cleaned, an adhesive is applied on one surface thereof, and is uniformly fixed and fixed in each through hole of the rotor piece, and then baked and set, for example, at a temperature of 125 ⁇ 5 degrees Celsius, and the time is 3 ⁇
  • the molding of the rotor assembly was completed by baking and setting under the conditions of 4 hours.
  • the rotor assembly further includes a cylindrical beam magnetic plate made of a non-magnetic stainless steel material, the outer diameter of the beam magnetic plate being smaller than an outer diameter of the rotor piece, the beam magnetic plate being provided with a central through hole; After the magnetic plate is cleaned by the cleaning agent, an adhesive is applied to one end surface thereof, and is bonded and fixed on the end surface of the rotor piece facing away from the stator assembly, and is fixed to each through hole of the rotor piece. The permanent magnets inside are covered, and then baked and shaped, such as baking at a temperature of 125 ⁇ 5 degrees Celsius for 3 to 4 hours.
  • the magnetizer embedded in the through hole of the winding bobbin is made of carbon structural steel of the grade Q235.
  • the temperature resistance is not lower than the motor The temperature resistance level of the insulation class.
  • the disc motor having the axial magnetic circuit of the amorphous iron alloy of the present invention, the manufacturing method thereof and the stator assembly have the beneficial effects of:
  • each winding assembly can be separately fabricated and placed in the shaft of the stator core. In the armature slot, the assembly is convenient and the man-hour is saved; the inner surface of the end cover is provided with an axial central boss inserted into the axial central through hole of the stator core, and the two bearings of the fixed motor shaft are mounted on the end cover.
  • the axial center through hole fully utilizes the thickness of the stator core to make the axial dimension of the disc motor shorter; the stator core of the stator assembly is fixed on the end cover with an adhesive, and the motor shaft is designed As a stepped shaft, the rotor assembly is directly fixed on the step of the motor shaft, so that the disk motor has fewer components; in order to prevent magnetic flux leakage, the magnetic storage capacity is improved, and the rotor is deviated from the stator assembly.
  • a beam of magnetic plates is fixed on the end faces of the sheets.
  • the invention not only has the advantages of short axial dimension and less moving parts, but also has the advantages of small eddy current loss, excellent high frequency characteristics, low temperature rise, high efficiency, high power density and high material utilization rate, and is an energy-efficient motor. . [Description of the Drawings]
  • Figure 1 is a schematic longitudinal cross-sectional view showing the overall structure of a preferred embodiment of a disk motor having an axial magnetic circuit of an amorphous iron alloy;
  • FIG. 3 is a schematic projection view of the winding assembly 22 of the disk motor when it is loaded into the stator core 21, and the arrow A indicates the loading direction;
  • FIG. 4 is a schematic view of a magnetic circuit of the disk motor, in which arrows ⁇ C, D and E indicate the flow direction of the magnetic circuit;
  • FIG. 5 is a winding of the stator winding 221 of the disk motor on the winding wire frame 111 Schematic diagram of the axial projection of the winding assembly 22, the magnetic field 223 is not shown in the figure;
  • Figure 6 is a schematic projection view of the winding bobbin 222 of the disc motor
  • Figure 7 is a schematic projection view of the magnetizer 223 of the disc motor
  • Figure 8 is a top plan view of the stator assembly 20 of the disk motor shown in Figure 1;
  • Figure 9 is a cross-sectional view taken along line GG of Figure 8;
  • Figure 10 is a front elevational elevational view of the rotor assembly 30 of the disc motor of Figure 1;
  • Figure 11 is a schematic projection view of the rotor assembly 30 of the disc motor
  • Figure 12 is a schematic isometric view of the rotor assembly 30 in another direction.
  • a disk motor having an amorphous magnetic alloy axial magnetic circuit including a casing 10, an end cover 40, a stator assembly 20, a rotor assembly 30 and a motor adapted to the stator assembly 20.
  • the stator assembly 20 includes a stator core 21; the stator core 21 is processed from a stack of amorphous iron alloy sheets into a cylinder having an axial central through hole 211 thereon, the outer cylindrical surface of the stator core 21 being centered The axis is radially evenly spaced with a plurality of axial armature slots 212; the stator assembly 20 further includes the same number of winding assemblies 22 as the axial armature slots 212 of the stator core 21, each of the windings
  • the assemblies 22 each include a winding wire that is adapted to the axial armature slot 212 of the stator core 21 222.
  • stator winding 221 disposed in the slot 2221 of the winding bobbin 222 and a magnetic conductor 223 disposed in the through hole 2222 of the winding bobbin 222; each of the winding assemblies 22 is disposed on the stator core 21 Within each axial armature slot 212.
  • stator winding 221 is secured within the slot 2221 of the winding bobbin 222 with a quick-drying adhesive.
  • the winding assembly 22 is secured within the axial armature slot 212 of the stator core 21 with an adhesive.
  • the rotor assembly 30 includes a disc-shaped rotor piece 31 made of a non-magnetic stainless steel material, and an even-numbered permanent magnet 32; the rotor piece 31 is evenly spaced The same number of through holes 315 as the permanent magnets 32 are provided, and the permanent magnets 32 are uniformly spaced apart in the through holes 315 of the rotor piece 31, and the N and S poles are alternately arranged.
  • the rotor assembly 30 in order to prevent magnetic flux leakage and improve magnetic storage capability, the rotor assembly 30 further includes a cylindrical beam magnetic plate 33 made of a non-magnetic stainless steel material, such as the magnetic plate 33.
  • the outer diameter of the bundle magnetic plate 33 is smaller than the outer diameter of the rotor piece 31, and the bundle magnetic plate 33 is provided with a central through hole 331; the bundle magnetic plate 33 is fixed at The end faces 319 of the rotor piece 31 facing away from the stator assembly 20 are placed away from each of the permanent magnets 32 fixed in the respective through holes 315 of the rotor piece 31.
  • the rotor piece 31 is provided with a central through hole 311.
  • a plurality of axial through holes 312 are defined around the periphery of the central through hole 311.
  • the motor shaft 50 is provided with a step 51.
  • the step 51 is provided with a plurality of axial threaded holes 512; the motor shaft 50 is inserted into the central through hole 311 of the rotor piece 31, and the screws are screwed into the axial through holes 312 of the rotor piece 31.
  • the axially threaded holes 512 in the step 51 of the motor shaft 50 are described to secure the rotor piece 31 to the motor shaft 50. Referring to FIGS.
  • the inner surface of the end cap 40 is provided with an axial center boss 42 adapted to the axial center through hole 211 of the stator core 21; the axial center boss 42 of the end cap 40 Mounted in the axial center through hole 211 of the stator core 21, and the stator core 21 of the stator assembly 20 is fixed to the end cover 40 with an adhesive.
  • the disc motor further includes two bearings 60 mounted in the axial central through-holes 41 of the end cap 40, by means of which the motor shaft 50 is rotatably supported On the end cover 40.
  • the number of rotors can be made into a single stator single rotor, a double stator double rotor, a single stator double rotor and a multi-rotor multi-stator disc motor, which can be freely combined according to requirements.
  • the motor shown in Figs. 1 to 11 is a 48-slot 32-pole single-stator single-rotor disk motor, that is, the stator assembly 20 and the rotor assembly 30 of the disk motor are one piece, and the stator core 21 of the stator assembly 20
  • the number of axial armature slots 212 is 48
  • the winding assembly 22 is 48
  • the permanent magnet 32 of the rotor assembly 30 is 32.
  • the end of the winding bobbin 222 has an annular flange 2223.
  • the two annular flanges 2223 form a slot 2221 for accommodating the stator winding.
  • the stator winding needs to be directly on the winding wire.
  • the frame 111 is wound.
  • the winding wire frame 222 is designed to have two windings with only one end face having an annular flange 2223 Set the wire frame, first use the enameled wire winding on the winding mold to make the sub-winding, then insert the inner cavity of the stator winding from the unflanged side of the first winding wire frame, and then the second winding wire frame is not set.
  • the permanent magnet 32 is a neodymium iron boron high magnetic energy alloy, or a neodymium or barium ferrite.
  • the "fixing” includes adhesive bonding using an adhesive, and the adhesive for adhesive fixing may be any adhesive that uses a temperature resistance not lower than the temperature resistance level of the motor insulation grade.
  • the present invention also provides a method for manufacturing an amorphous magnetic alloy axial magnetic circuit disc type motor, comprising the following steps:
  • the stator core 21 is fabricated by selectively performing one of the following steps:
  • b if the blank of the stator core 21 is a cylindrical profile, an axial central through hole 211 is required to be formed on the stator core 21 blank, and the outer cylindrical surface of the stator core 21 needs to be centered.
  • the plurality of axial armature slots 212 are radially and evenly spaced from the axis; b 2 , if the blank of the stator core 21 is a cylindrical profile having an axial central through hole 211, the stator core only needs to be 21 a plurality of axial armature slots 212 are machined radially outwardly from the outer cylindrical surface of the blank;
  • Fixing of the stator core 21 and the end cover 40 an adhesive is applied to the inner cylindrical surface of the stator core 21 and the axial center end surface 211, and the shaft of the stator core 21 is applied The central through hole 211 is sleeved on the axial center boss 42 of the end cover 40, so that the axial end surface of the stator core 21 coated with the adhesive is in close contact with the inner surface of the end cover 40, and then baked and shaped, such as Bake and set at a temperature of 125 ⁇ 5 degrees Celsius and a time of 3 to 4 hours to complete the fixing of the stator core 21 and the end cap 40; the applicants set the same parameters for baking and setting, the applicant It is baked and set at a temperature of 130 ° C and a time of 3.5 hours;
  • the enamelled wire is wound in the slot 2221 of the winding bobbin 222 to become the stator winding 221; d 3 , the guiding magnet 223 is embedded in the through hole 2222 of the winding bobbin 222;
  • stator assembly 20 the winding assembly 22 and the stator core 21 are assembled into a stator assembly 20:
  • each winding assembly 22 is respectively loaded into each of the stator cores 21 that have been fixed to the end cover 40 In the axial armature slot 212, note that the winding assemblies 22 are not raised above the axial end faces of the stator core 21;
  • the rotor assembly 30 is fixed to the motor shaft 50, the rotor assembly 30 includes a rotor piece 31 and an even number of permanent magnets 32 fixed to the rotor piece 31;
  • the motor shaft 50 is rotatably supported at a position determined by the end cover 40 and/or the casing 10 in a conventional operation, and the end cover 40 is fixed to the casing 10 , complete the overall assembly of the motor.
  • the adhesive 221 bonded and fixed to the stator winding in the winding slot of bobbin 222 2221.
  • the rotor piece 31 of the rotor assembly 30 is formed in a disk shape by a non-magnetically permeable stainless steel sheet, and the rotor piece 31 is equally spaced apart from the permanent magnet 32.
  • the inside of the rotor assembly 30 is then baked and set, for example, at a temperature of 125 ⁇ 5 degrees Celsius for a period of 3 to 4 hours. The temperature must be controlled during the baking.
  • the permanent magnets 32 are easily demagnetized. If the temperature is too low, the adhesive will not dry. For example, the applicant is baked at a temperature of 130 ° C and a time of 3.5 hours. Baked and shaped.
  • the rotor assembly 30 further includes a cylindrical beam magnetic plate 33 made of a non-magnetic stainless steel material, such as the magnetic plate 33. It can be made of carbon structural steel of the grade Q235, the outer diameter of the bundle magnetic plate 33 is smaller than the outer diameter of the rotor piece 31, and the bundle magnetic plate 33 is provided with a central through hole 331; the bundle magnetic plate 33 is cleaned After the agent is cleaned, an adhesive is applied to one end surface thereof, and is fixedly attached to the end surface of the rotor piece 31 facing away from the stator assembly 20, and is fixed in each of the through holes 315 of the rotor piece 31.
  • a cylindrical beam magnetic plate 33 made of a non-magnetic stainless steel material, such as the magnetic plate 33. It can be made of carbon structural steel of the grade Q235, the outer diameter of the bundle magnetic plate 33 is smaller than the outer diameter of the rotor piece 31, and the bundle magnetic plate 33 is provided with a central through hole 331; the bundle magnetic plate 33 is cleaned After the agent is cleaned, an adhesive is applied to
  • Each permanent magnet 32 is covered and then baked and shaped, for example, at a temperature of 125 ⁇ 5 degrees Celsius for a period of 3 to 4 hours.
  • each of the permanent magnets 32 and the bundle magnetic plates 33 may be bonded and fixed to the rotor piece 31, and then baked at a temperature of 125 ⁇ 5 degrees Celsius for a period of 3 to 4 hours.
  • the temperature is too high, the temperature is too high, the permanent magnet 32 is easy to demagnetize, the temperature is too low, the adhesive is not dried, as the applicant is at a temperature of 130 degrees Celsius, and the time is 3.5 hours. Baked and shaped.
  • the magnetizer 223 embedded in the through hole 2222 of the winding bobbin 222 is made of carbon structural steel of the designation Q235.
  • the amorphous iron alloy material used in the stator core 21 is wound with a profile or profile blank produced by a nano-iron-based amorphous iron alloy strip produced by China Antai Company.
  • the adhesive used for the bonding between the components is temperature-resistant not lower than the temperature resistance level of the motor insulation class.
  • the embodiments of the present invention use the resin of ESP110 produced by Henkel Corporation and the high-strength, high-temperature resistant 200 degree, two-component 3034A and 3034B epoxy resin produced by Langbowan, and the bonding operation is related to the prior art. Adhesive requirements are carried out.
  • the above-described embodiments are merely illustrative of the preferred embodiments of the present invention, and the description thereof is more specific and detailed, but is not to be construed as limiting the scope of the invention; it should be noted that one of ordinary skill in the art It is to be understood that the scope of the present invention is to be construed as being limited to the scope of the present invention. The scope of the claims of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

拥有非晶铁合金轴向磁路的盘式电机,包括设有定子铁芯(21)的定子组件(20);定子铁芯(21)由非晶铁合金片材堆叠加工为圆柱体,其上有轴向中央通孔(211),该定子铁芯(21)外圆柱面往中心轴线均匀间隔地加工有多条轴向电枢槽(212);定子组件(20)还包括与电枢槽(212)同样数量的绕组组件(22),各绕组组件(22)均包括与电枢槽(212)适配的绕组线架(222)、设置在该绕组线架(222)之槽位(2221)内的定子绕组(221)和设置在该绕组线架(222)之通孔(2222)内的导磁体(223);各绕组组件(22)分别设置在定子铁芯(21)的各电枢槽(212)内。该盘式电机轴向尺寸短、运动部件少、涡流损耗小、高频特性优良、温升低、效率高、功率密度大和材料利用率高、高效节能。

Description

说 明 书 拥有非晶铁合金轴向磁路的盘式电机及其制造方法和定子组件
【技术领域】
本发明涉及电机制造的磁路零部件,特别是涉及盘式电机制造的磁路零部件, 尤其涉及以电枢绕组为特征和以磁性材料为特征的定子或转子本体。
【背景技术】
盘式电机是 1821 年由法拉第发明, 100 多年来,由于材料和工艺水平的限制, 始终未能得到进一步发展。 上世纪四五十年代, 盘式电机重新受到重视,被应用在 计算机硬盘和微型磁带录音机等产品上。 盘式电机与传统径向磁路电机相比较具 有轴向尺寸短、 运动部件少和电机效率高等优点,特别适合于电机轴向安装尺寸有 严格限制的场合。
传统永磁电机釆用径向磁极结构, 它将绕组按一定的规律嵌放在铁芯叠片中, 但这种电机轴向尺寸长, 不适合在薄型的空间内安装。 为此, 以压缩轴向尺寸为 目标, 改变传统电机径向磁路为轴向磁路结构的盘式电机越来越受到人们重视。 现有技术盘式电机的定子铁芯釆用硅钢材料, 铁损大, 发热严重, 从而造成效率 低下。
随着盘式电机技术的一步步发展, 人们发现, 盘式电机的利用率一直做得不是 很理想。 大家知道传统电机定子把转子包在里面,散热效果不是很好,而盘式电机 在结构上虽然避免了这种现象,但是在相同体积下盘式电机的定子齿数一般比传统 电机的齿数多,也就意味着铁损多,效率低。
在电机的损耗中, 铁损占据了相当大的比例, 这些损耗都以发热形式耗散了, 不可再生能源, 同时提高了电机温升, 降低电机效率。 减少电机铁损是电机设计 一大课题, 釆用导磁率高, 电阻大, 涡流损耗小的新材料取代硅钢片是电机研发 的一个方向。 硅钢片在导磁率、 电阻、 涡流损耗和高频特性等方面的固有缺点使 我们无法用其制造出更高效率的盘式电机。
【发明内容】
本发明要解决的技术问题在于避免上述现有技术的不足之处而提供一种拥有 非晶铁合金轴向磁路的盘式电机及其制造方法和定子组件,不仅具有轴向尺寸短和 运动部件少的优点,而且还具有涡流损耗小、 高频特性优良、 温升低、 效率高、 功 率密度大和材料利用率高等优点,是一种高效节能的电机。
本发明解决所述技术问题釆用的技术方案是-.
提供一种拥有非晶铁合金轴向磁路的盘式电机,包括机壳、 端盖、 定子组件、 与所述定子组件适配的转子组件和电机轴;所述定子组件的一个端面轴向地固定在 所述端盖内面;所述转子组件固定在所述电机轴上、 平行地靠近所述定子组件另一 端面而与之形成轴向气隙;所述电机轴可转动地支承在所述端盖和 /或机壳确定的 位置上,所述端盖固定在所述机壳的敞口端部;所述定子组件包括定子铁芯;所述定 子铁芯由非晶铁合金片材堆叠加工为圆柱体,其上有轴向中央通孔,该定子铁芯外 圆柱面往中心轴线呈放射状被均匀间隔地加工有多条轴向电枢槽;所述定子组件则 还包括与所述定子铁芯之轴向电枢槽同样数量的绕组组件,各该绕组组件均包括与 所述定子铁芯之轴向电枢槽适配的绕组线架、 设置在该绕组线架之槽位内的定子 绕组和设置在该绕组线架之通孔内的导磁体;各该绕组组件分别设置在所述定子铁 芯的各轴向电枢槽内。 所述定子绕组用快干型胶粘剂固定在所述绕组线架之槽位内。 所述绕组组件用胶粘剂固定在所述定子铁芯的轴向电枢槽内。 所述转子组件包括用不导磁的不锈钢材料制作的、 圆盘形的转子片,以及偶数 块永磁体;所述转子片上均匀间隔地设有与所述永磁体同等数量的通孔,各该永磁 体均匀间隔地固定在所述转子片的各通孔内, N、 S极交替排列。 所述转子组件还包括用不导磁的不锈钢材料制作的、 圆柱形的束磁板,该束磁 板的外部直径小于所述转子片的外部直径,所述束磁板设有中央通孔;所述束磁板 固定在背离所述定子组件的所述转子片的端面上,并将固定在所述转子片之各通孔 内的各永磁体遮盖住。 所述转子片设有中央通孔,围绕该中央通孔的周边设有多个轴向通孔;所述电 机轴上设有一圈台阶,该台阶上设有多个轴向螺紋孔;所述电机轴插入所述转子片 的中央通孔内,各螺丝穿越所述转子片上的各轴向通孔拧入所述电机轴之台阶上的 各轴向螺紋孔内,从而将所述转子片固定到所述电机轴上。 所述端盖内面设有与所述定子铁芯的轴向中央通孔适配的轴向中央凸台;所述 端盖之轴向中央凸台装配于所述定子铁芯的轴向中央通孔内,并且所述定子组件之 定子铁芯用胶粘剂固定在所述端盖上。 所述盘式电机还包括安装在所述端盖之轴向中央通孔内的两只轴承,借助该两 轴承,所述电机轴可转动地支承在所述端盖上。 还提供一种用于盘式电机上的定子组件,包括定子铁芯,所述定子铁芯由非晶 铁合金片材堆叠加工为圆柱体,其上有轴向中央通孔,该定子铁芯外圆柱面往中心 轴线呈放射状被均匀间隔地加工有多条轴向电枢槽;所述定子组件则还包括与所述 定子铁芯之轴向电枢槽同样数量的绕组组件,各该绕组组件均包括与所述定子铁芯 之轴向电枢槽适配的绕组线架、 设置在该绕组线架之槽位内的定子绕组和设置在 该绕组线架之通孔内的导磁体;各该绕组组件分别设置在所述定子铁芯的各轴向电 枢槽内。 相应地, 本发明还提供一种拥有非晶铁合金轴向磁路盘式电机的制造方法, 包括如下步骤-.
a、 准备: 选用巿售的、 尺寸分别符合要求的由非晶铁合金片材堆叠加工为圆 柱体作为定子组件之定子铁芯的坯料;
b、 定子铁芯的制作,选择性地执行如下步骤之一:
如果所述定子铁芯的坯料是圆柱体型材,则需要在所述定子铁芯坯料上 加工出轴向中央通孔,而且该定子铁芯坯料外圆柱面还需要往中心轴 线呈放射状均匀间隔地加工出多条轴向电枢槽;
b2、 如果所述定子铁芯的坯料是已经有轴向中央通孔的圆柱体型材, 则只 需将该定子铁芯坯料外圆柱面往中心轴线呈放射状均匀间隔地加工出 多条轴向电枢槽;
c、 定子铁芯与端盖的固定: 在所述定子铁芯一轴向端面和其轴向中央通孔的 内圆柱面上涂覆胶粘剂,并将所述定子铁芯的轴向中央通孔套于所述端盖之轴向中 央凸台上,使涂有胶粘剂的所述定子铁芯的轴向端面紧贴所述端盖内面,然后烘烤 定型,如在温度为 125 ± 5摄氏度,时间为 3 ~ 4小时的条件下烘烤定型,完成所述定 子铁芯与所述端盖的固定;
d、 定子组件之绕组组件的制作:
将漆包线绕制在绕组线架的槽位内而成为定子绕组;
d3、 将导磁体嵌入所述绕组线架之通孔内;
e、 绕组组件与定子铁芯装配成定子组件:
ei、 将各绕组组件分别装入已与所述端盖固定的定子铁芯之各轴向电枢槽 内,注意各绕组组件不要高出所述定子铁芯的轴向端面; e2、 用胶粘剂对所述定子铁芯之各轴向电枢槽内的绕组组件进行整体灌胶, 然后烘烤定型,如在温度为 66 ± 5 摄氏度,时间为 1. 5 ~ 2. 5 小时的条 件下烘烤定型,使各绕组组件和定子铁芯牢牢地粘成一体; f、 按常规操作, 将转子组件固定在电机轴上,该转子组件包括转子片和固定 在该转子片上的偶数块永磁体;
g、 整机装配: 按常规操作,将所述电机轴可转动地支承在所述端盖和 /或机 壳确定的位置上,将所述端盖与所述机壳固定,完成所述电机整体装配。 在步骤 d的 之后和步骤 d的 d3之前,还包括步骤 d2、 用胶粘剂将所述定 子绕组粘接固定在绕组线架的槽位内。 所述转子组件之转子片用不导磁的不锈钢片材制作为圆盘形,该转子片上均匀 间隔地设有与所述永磁体同等数量的通孔; 所述转子组件之各永磁体被清洗剂清 洗干净后,在其一表面上涂覆胶粘剂,并均匀间隔地粘接固定在所述转子片的各通 孔内,然后烘烤定型,如在温度为 125 ± 5摄氏度,时间为 3 ~ 4小时的条件下烘烤定 型,完成所述转子组件的制作。 所述转子组件还包括用不导磁的不锈钢材料制作的、 圆柱形的束磁板,该束磁 板的外部直径小于所述转子片的外部直径,所述束磁板设有中央通孔;所述束磁板 被清洗剂清洗干净后,在其一端面上涂覆胶粘剂, 粘接固定在背离所述定子组件的 所述转子片的端面上,并将固定在所述转子片之各通孔内的各永磁体遮盖住,然后 烘烤定型,如在温度为 125 ± 5摄氏度,时间为 3 ~ 4小时的条件下烘烤定型。 嵌入所述绕组线架之通孔内的导磁体是用牌号为 Q235的碳素结构钢制成。 所述定子组件中各部件间的粘接固定、 定子铁芯与端盖间的粘接固定和所述 转子组件中各部件间的粘接固定所使用的胶粘剂,耐温不低于所述电机绝缘等级的 耐温水平。 同现有技术相比较, 本发明拥有非晶铁合金轴向磁路的盘式电机及其制造方 法和定子组件之有益效果在于:
釆用非晶铁合金材料构筑盘式电机的轴向磁路,可有效缩小盘式电机的体积, 降低损耗和提高效率;同时可单独制作各绕组组件,再将其放入定子铁芯的各轴向 电枢槽内,装配方便和节约工时;端盖内面设有插入到定子铁芯之轴向中央通孔内 的轴向中央凸台,而将固定电机轴的两只轴承都安装在端盖的轴向中央通孔内,充 分利用了定子铁芯的厚度,使该盘式电机的轴向尺寸更短;所述定子组件之定子铁 芯用胶粘剂固定在所述端盖上,并将电机轴设计成台阶轴,直接将转子组件固定在 电机轴的台阶上,使该盘式电机的所用部件更少;为了防止磁路漏磁, 提高蓄磁能 力,特意在背离所述定子组件的所述转子片的端面上固定了一块束磁板。 本发明不 仅具有轴向尺寸短和运动部件少的优点,而且还具有涡流损耗小、 高频特性优良、 温升低、 效率高、 功率密度大和材料利用率高等优点,是一种高效节能的电机。 【附图说明】
图 1 是本发明 "拥有非晶铁合金轴向磁路的盘式电机" 优选实施例的整体结 构正投影纵剖面示意图;
图 2是所述盘式电机的轴测投影示意图;
图 3是所述盘式电机之绕组组件 22装入定子铁芯 21 时的轴测投影示意图,图 中箭头 A指示装入方向;
图 4是所述盘式电机的磁路示意图,图中箭头^ C, D和 E表示磁路的流向; 图 5是所述盘式电机之定子绕组 221 绕制在绕组线架 111 上而成为绕组组件 22的轴测投影示意图,图中没有画出导磁体 223;
图 6是所述盘式电机之绕组线架 222的轴测投影示意图;
图 7是所述盘式电机之导磁体 223的轴测投影示意图;
图 8是图 1所示盘式电机之定子组件 20的正投影俯视示意图; 图 9是图 8的 G-G剖视图;
图 10是图 1所示盘式电机之转子组件 30的正投影仰视示意图;
图 11是所述盘式电机之转子组件 30的轴测投影示意图;
图 12是所述转子组件 30另一方向的轴测投影示意图。
【具体实施方式】
下面结合各附图对本发明作进一步详细说明。
参见图 1 至图 12,提供一种拥有非晶铁合金轴向磁路的盘式电机, 包括机壳 10、 端盖 40、 定子组件 20、 与所述定子组件 20适配的转子组件 30和电机轴 50; 所述定子组件 20 的一个端面轴向地固定在所述端盖 40 内面;所述转子组件 30 固 定在所述电机轴 50 上、 平行地靠近所述定子组件 20 另一端面而与之形成轴向气 隙 90;所述电机轴 50可转动地支承在所述端盖 40和 /或机壳 10确定的位置上,所 述端盖 40固定在所述机壳 10的敞口端部;所述定子组件 20包括定子铁芯 21;所述 定子铁芯 21 由非晶铁合金片材堆叠加工为圆柱体,其上有轴向中央通孔 211,该定 子铁芯 21外圆柱面往中心轴线呈放射状被均匀间隔地加工有多条轴向电枢槽 212; 所述定子组件 20则还包括与所述定子铁芯 21 之轴向电枢槽 212 同样数量的绕组 组件 22,各该绕组组件 22均包括与所述定子铁芯 21之轴向电枢槽 212适配的绕组 线架 222、 设置在该绕组线架 222之槽位 2221 内的定子绕组 221和设置在该绕组 线架 222之通孔 2222 内的导磁体 223;各该绕组组件 22分别设置在所述定子铁芯 21的各轴向电枢槽 212内。 参见图 5和图 6,所述定子绕组 221用快干型胶粘剂固定在所述绕组线架 222 之槽位 2221内。 参见图 3、 图 8和图 9,所述绕组组件 22用胶粘剂固定在所述定子铁芯 21 的 轴向电枢槽 212内。 参见图 1、 图 10 和图 11,所述转子组件 30包括用不导磁的不锈钢材料制作 的、 圆盘形的转子片 31,以及偶数块永磁体 32;所述转子片 31 上均匀间隔地设有 与所述永磁体 32 同等数量的通孔 315,各该永磁体 32均匀间隔地固定在所述转子 片 31的各通孔 315内, N、 S极交替排列。 参见图 1和图 12,为了防止磁路漏磁, 提高蓄磁能力,所述转子组件 30还包括 用不导磁的不锈钢材料制作的、 圆柱形的束磁板 33,如该束磁板 33 可用牌号为 Q235 的碳素结构钢制成,该束磁板 33 的外部直径小于所述转子片 31 的外部直径, 所述束磁板 33设有中央通孔 331;所述束磁板 33固定在背离所述定子组件 20的所 述转子片 31的端面 319上,并将固定在所述转子片 31之各通孔 315 内的各永磁体 32遮盖住。 参见图 2、 图 10和图 11,所述转子片 31 设有中央通孔 311,围绕该中央通孔 311的周边设有多个轴向通孔 312;所述电机轴 50上设有一圈台阶 51,该台阶 51上 设有多个轴向螺紋孔 512;所述电机轴 50插入所述转子片 31的中央通孔 311 内,各 螺丝穿越所述转子片 31上的各轴向通孔 312拧入所述电机轴 50之台阶 51上的各 轴向螺紋孔 512内,从而将所述转子片 31固定到所述电机轴 50上。 参见图 1 至图 3,所述端盖 40 内面设有与所述定子铁芯 21 的轴向中央通孔 211适配的轴向中央凸台 42;所述端盖 40之轴向中央凸台 42装配于所述定子铁芯 21的轴向中央通孔 211 内,并且所述定子组件 20之定子铁芯 21用胶粘剂固定在所 述端盖 40上。 参见图 1 和图 2,所述盘式电机还包括安装在所述端盖 40之轴向中央通孔 41 内的两只轴承 60,借助该两轴承 60,所述电机轴 50 可转动地支承在所述端盖 40 上。 本发明根据定、 转子的数量可以做成单定子单转子、 双定子双转子、 单定子 双转子和多转子多定子结构的盘式电机, 根据需求可以自由结合。 图 1 至图 11所 画出的电机是 48 槽 32 极的单定子单转子盘式电机,即该盘式电机的定子组件 20 和转子组件 30都是一件, 定子组件 20的定子铁芯 21之轴向电枢槽 212为 48条, 绕组组件 22为 48件,转子组件 30的永磁体 32为 32块。 参见图 6,该绕组线架 222的两端面有环状凸缘 2223,该两环状凸缘 2223之间 就形成了容纳定子绕组的槽位 2221,此种结构,定子绕组需要直接在绕组线架 111 上绕制。 或者是将绕组线架 222设计成有两个都只有一端面有环状凸缘 2223 的绕 组线架, 先在绕线模上使用漆包线绕制定子绕组,再将定子绕组的内腔从第一个绕 组线架未设凸缘的一边套入,再将第二个绕组线架未设凸缘的一边嵌入定子绕组内 腔内与第一个绕组线架互相对接固定。 参见图 7,所述永磁体 32是钕铁硼高磁能合金、 或者是锶或钡铁氧体。 所述 "固定" 包括使用胶粘剂粘合固定, 粘合固定用的胶粘剂可以是任何一 种使用耐温不低于所述电机绝缘等级耐温水平的胶粘剂。 参见图 1至图 11 ,相应地, 本发明还提供一种拥有非晶铁合金轴向磁路盘式电 机的制造方法, 包括如下步骤-.
a、 准备: 选用巿售的、 尺寸分别符合要求的由非晶铁合金片材堆叠加工为圆 柱体作为定子组件 20之定子铁芯 21的坯料;
b、 定子铁芯 21的制作,选择性地执行如下步骤之一:
b,、 如果所述定子铁芯 21 的坯料是圆柱体型材,则需要在所述定子铁芯 21 坯料上加工出轴向中央通孔 211 ,而且该定子铁芯 21 坯料外圆柱面还 需要往中心轴线呈放射状均匀间隔地加工出多条轴向电枢槽 212 ; b2、 如果所述定子铁芯 21 的坯料是已经有轴向中央通孔 211 的圆柱体型 材, 则只需将该定子铁芯 21 坯料外圆柱面往中心轴线呈放射状均匀 间隔地加工出多条轴向电枢槽 212 ;
c、 定子铁芯 21与端盖 40的固定: 在所述定子铁芯 21—轴向端面和其轴向 中央通孔 211的内圆柱面上涂覆胶粘剂,并将所述定子铁芯 21的轴向中央通孔 211 套于所述端盖 40之轴向中央凸台 42上,使涂有胶粘剂的所述定子铁芯 21的轴向 端面紧贴所述端盖 40内面,然后烘烤定型,如在温度为 125 ± 5摄氏度,时间为 3 ~ 4 小时的条件下烘烤定型,完成所述定子铁芯 21与所述端盖 40的固定;为了烘烤定 型时各参数设置一致,本申请人是在温度为 130摄氏度,时间为 3. 5小时的条件下 烘烤定型的;
d、 定子组件 20之绕组组件 22的制作:
将漆包线绕制在绕组线架 222的槽位 2221内而成为定子绕组 221; d3、 将导磁体 223嵌入所述绕组线架 222之通孔 2222内;
e、 绕组组件 22与定子铁芯 21装配成定子组件 20:
ei、 将各绕组组件 22分别装入已与所述端盖 40 固定的定子铁芯 21 之各 轴向电枢槽 212 内,注意各绕组组件 22不要高出所述定子铁芯 21 的 轴向端面;
e2、 用胶粘剂对所述定子铁芯 21之各轴向电枢槽 212内的绕组组件 22进 行整体灌胶,然后烘烤定型,如在温度为 66 ± 5 摄氏度,时间为 1. 5 ~ 2. 5小时的条件下烘烤定型,使各绕组组件 22和定子铁芯 21牢牢地粘 成一体;本申请人是在温度为 66 摄氏度,时间为 2 小时的条件下烘烤 定型的;
f、 按常规操作, 将转子组件 30固定在电机轴 50上,该转子组件 30包括转 子片 31和固定在该转子片 31上的偶数块永磁体 32;
g、 整机装配: 按常规操作,将所述电机轴 50 可转动地支承在所述端盖 40 和 /或机壳 10确定的位置上,将所述端盖 40 与所述机壳 10 固定,完成所述电机整 体装配。 参见图 5和图 6,在步骤 d的 之后和步骤 d的 d3之前,还包括步骤 d2、 用胶 粘剂将所述定子绕组 221粘接固定在绕组线架 222的槽位 2221内。 参见图 1、 图 10和图 11,所述转子组件 30之转子片 31用不导磁的不锈钢片 材制作为圆盘形,该转子片 31上均匀间隔地设有与所述永磁体 32 同等数量的通孔 315;所述转子组件 30之各永磁体 32被清洗剂清洗干净后,在其一表面上涂覆胶粘 剂,并均匀间隔地粘接固定在所述转子片 31 的各通孔 315 内,然后烘烤定型,如在 温度为 125 ± 5摄氏度,时间为 3 ~ 4小时的条件下烘烤定型,完成所述转子组件 30 的制作。 在烘烤定型时一定要控制好温度,温度过高永磁体 32 容易去磁, 温度过 低胶粘剂烤不干,如本申请人是在温度为 130 摄氏度,时间为 3. 5 小时的条件下烘 烤定型的。 参见图 1 和图 12,为了防止磁路漏磁,提高蓄磁能力,所述转子组件 30还包括 用不导磁的不锈钢材料制作的、 圆柱形的束磁板 33,如该束磁板 33 可用牌号为 Q235 的碳素结构钢制成,该束磁板 33 的外部直径小于所述转子片 31 的外部直径, 所述束磁板 33设有中央通孔 331;所述束磁板 33被清洗剂清洗干净后,在其一端面 上涂覆胶粘剂, 粘接固定在背离所述定子组件 20的所述转子片 31 的端面上,并将 固定在所述转子片 31 之各通孔 315 内的各永磁体 32遮盖住,然后烘烤定型,如在 温度为 125 ± 5摄氏度,时间为 3 ~ 4小时的条件下烘烤定型。 特别说明,可将各永磁体 32和束磁板 33都粘接固定在所述转子片 31上后,在 温度为 125 ± 5摄氏度,时间为 3 ~ 4小时的条件下一次烘烤定型。 在烘烤定型时一 定要控制好温度,温度过高永磁体 32 容易去磁, 温度过低胶粘剂烤不干,如本申请 人是在温度为 130摄氏度,时间为 3. 5小时的条件下烘烤定型的。 参见图 6和图 7,嵌入所述绕组线架 222之通孔 2222内的导磁体 223是用牌号 为 Q235的碳素结构钢制成。 在本发明各实施例中, 所述定子铁芯 21 使用的非晶铁合金材料釆用中国安泰 公司生产的纳米铁基非晶铁合金带材卷绕生产的型材或型材坯料。 参见图 1和图 2,在本发明各实施例中,所述定子组件 20 中各部件间的粘接固 定、 定子铁芯 21与端盖 40间的粘接固定和所述转子组件 20中各部件间的粘接固 定所使用的胶粘剂,耐温不低于所述电机绝缘等级的耐温水平。 本发明各实施例使 用了美国汉高公司生产的牌号为 ESP110 的树脂和朗博万公司生产的高强度、 耐高 温 200度, 双组分 3034A和 3034B环氧树脂, 粘接操作按现有技术有关胶粘剂的 要求进行。 以上所述实施例仅表达了本发明的优选实施方式, 其描述较为具体和详细, 但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普 通技术人员来说, 在不脱离本发明构思的前提下,还可以做出若干变形和改进, 这 些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修 饰, 均应属于本发明权利要求的涵盖范围。

Claims

权 利 要 求 书
1. 一种拥有非晶铁合金轴向磁路的盘式电机, 包括机壳(10)、 端盖(40)、 定子组 件(20)、 与所述定子组件(20)适配的转子组件(30)和电机轴(50);所述定子组 件(20)的一个端面轴向地固定在所述端盖(40)内面;所述转子组件(30)固定在 所述电机轴(50)上、 平行地靠近所述定子组件(20)另一端面而与之形成轴向气 隙(90);所述电机轴(50)可转动地支承在所述端盖(40)和 /或机壳(10)确定的位 置上,所述端盖 (40)固定在所述机壳(10)的敞口端部;所述定子组件 (20)包括定 子铁芯(21) ; 其特征在于:
所述定子铁芯(21)由非晶铁合金片材堆叠加工为圆柱体,其上有轴向中央 通孔(211) ,该定子铁芯(21)外圆柱面往中心轴线呈放射状被均匀间隔地加工有 多条轴向电枢槽(212);所述定子组件(20)则还包括与所述定子铁芯(21)之轴向 电枢槽(212)同样数量的绕组组件(22) ,各该绕组组件(22)均包括与所述定子铁 芯(21)之轴向电枢槽(212)适配的绕组线架(222)、 设置在该绕组线架(222)之 槽位(2221)内的定子绕组(221)和设置在该绕组线架(222)之通孔(2222)内的导 磁体(223);各该绕组组件(22)分别设置在所述定子铁芯(21)的各轴向电枢槽 (212)内。
2. 根据权利要求 1所述的拥有非晶铁合金轴向磁路的盘式电机, 其特征在于: 所述定子绕组(221)用快干型胶粘剂固定在所述绕组线架(222)之槽位 (2221)内。
3. 根据权利要求 1所述的拥有非晶铁合金轴向磁路的盘式电机, 其特征在于: 所述绕组组件(22)用胶粘剂固定在所述定子铁芯(21)的轴向电枢槽(212) 内。
4. 根据权利要求 1所述的拥有非晶铁合金轴向磁路的盘式电机, 其特征在于: 所述转子组件(30)包括用不导磁的不锈钢材料制作的、 圆盘形的转子片
(31) ,以及偶数块永磁体(32);所述转子片(31)上均匀间隔地设有与所述永磁体
(32)同等数量的通孔(315) ,各该永磁体(32)均匀间隔地固定在所述转子片 (31) 的各通孔(315)内, N、 S极交替排列。
5. 根据权利要求 4所述的拥有非晶铁合金轴向磁路的盘式电机, 其特征在于: 所述转子组件(30)还包括用不导磁的不锈钢材料制作的、 圆柱形的束磁板 (33) ,该束磁板(33)的外部直径小于所述转子片(31)的外部直径,所述束磁板 (33)设有中央通孔(331) ;所述束磁板(33)固定在背离所述定子组件(20)的所述 转子片 (31)的端面 (319)上,并将固定在所述转子片 (31)之各通孔 (315)内的各 永磁体(32)遮盖住。
6. 根据权利要求 4所述的拥有非晶铁合金轴向磁路的盘式电机, 其特征在于:
所述转子片(31)设有中央通孔(311) ,围绕该中央通孔(311)的周边设有多 个轴向通孔 (312);所述电机轴 (50)上设有一圈台阶 (51),该台阶 (51)上设有多 个轴向螺紋孔(512) ;所述电机轴(50)插入所述转子片 (31)的中央通孔(311)内, 各螺丝穿越所述转子片(31)上的各轴向通孔(312)拧入所述电机轴(50)之台阶 (51)上的各轴向螺紋孔 (512)内,从而将所述转子片 (31)固定到所述电机轴 (50) 上。
7. 根据权利要求 1 至 6之任一项所述的拥有非晶铁合金轴向磁路的盘式电机, 其 特征在于-.
所述端盖(40)内面设有与所述定子铁芯(21)的轴向中央通孔(211)适配的 轴向中央凸台(42);所述端盖(40)之轴向中央凸台(42)装配于所述定子铁芯(21) 的轴向中央通孔(211)内,并且所述定子组件 (20)之定子铁芯(21)用胶粘剂固定 在所述端盖(40)上。
8. 根据权利要求 7所述的拥有非晶铁合金轴向磁路的盘式电机, 其特征在于:
还包括安装在所述端盖(40)之轴向中央通孔(41)内的两只轴承(60) ,借助 该两轴承(60) ,所述电机轴(50)可转动地支承在所述端盖(40)上。
9. 一种用于盘式电机上的定子组件 (20) ,包括定子铁芯(21) ; 其特征在于:
所述定子铁芯(21)由非晶铁合金片材堆叠加工为圆柱体,其上有轴向中央 通孔(211) ,该定子铁芯(21)外圆柱面往中心轴线呈放射状被均匀间隔地加工有 多条轴向电枢槽(212);所述定子组件(20)则还包括与所述定子铁芯(21)之轴向 电枢槽(212)同样数量的绕组组件 (22) ,各该绕组组件 (22)均包括与所述定子铁 芯(21)之轴向电枢槽(212)适配的绕组线架(222)、 设置在该绕组线架(222)之 槽位(2221)内的定子绕组(221)和设置在该绕组线架(222)之通孔(2222)内的导 磁体(223);各该绕组组件(22)分别设置在所述定子铁芯(21)的各轴向电枢槽 (212)内。
10. 根据权利要求 9所述的用于盘式电机上的定子组件 (20) ,其特征在于:
所述定子绕组(221)用快干型胶粘剂固定在所述绕组线架(222)之槽位 (2221)内。
11. 根据权利要求 9或 10所述的用于盘式电机上的定子组件 (20) ,其特征在于: 所述绕组组件(22)用胶粘剂固定在所述定子铁芯(21)的轴向电枢槽(212) 内。
12. 一种拥有非晶铁合金轴向磁路盘式电机的制造方法, 包括如下步骤:
a、 准备: 选用由非晶铁合金片材堆叠加工为圆柱体作为定子组件 (20)之定子 铁芯(21)的坯料;
b、 定子铁芯(21)的制作,选择性地执行如下步骤之一:
b,、 如果所述定子铁芯(21)的坯料是圆柱体型材,则需要在所述定子铁芯 (21)坯料上加工出轴向中央通孔(21 1) ,而且该定子铁芯(21)坯料外圆 柱面还需要往中心轴线呈放射状均匀间隔地加工出多条轴向电枢槽 (212) ;
b2、 如果所述定子铁芯(21)的坯料是已经有轴向中央通孔(211)的圆柱体型 材, 则只需将该定子铁芯(21)坯料外圆柱面往中心轴线呈放射状均匀 间隔地加工出多条轴向电枢槽(212);
c、 定子铁芯(21)与端盖(40)的固定: 在所述定子铁芯(21)—轴向端面和其轴 向中央通孔(211)的内圆柱面上涂覆胶粘剂,并将所述定子铁芯(21)的轴向 中央通孔(211)套于所述端盖(40)之轴向中央凸台(42)上,使涂有胶粘剂的 所述定子铁芯(21)的轴向端面紧贴所述端盖(40)内面,然后烘烤定型,完成 所述定子铁芯(21)与所述端盖 (40)的固定;
d、 定子组件(20)之绕组组件(22)的制作:
将漆包线绕制在绕组线架(222)的槽位(2221)内而成为定子绕组(221); d3、 将导磁体 (223)嵌入所述绕组线架(222)之通孔(2222)内; e、 绕组组件(22)与定子铁芯 (21)装配成定子组件 (20):
将各绕组组件(22)分别装入已与所述端盖(40)固定的定子铁芯(21)之 各轴向电枢槽(212)内,注意各绕组组件(22)不要高出所述定子铁芯(21)的 轴向端面;
e2、 用胶粘剂对所述定子铁芯(21)之各轴向电枢槽(212)内的绕组组件(22) 进行整体灌胶,然后烘烤定型,使各绕组组件(22)和定子铁芯(21)牢牢地粘 成一体;
f、 按常规操作, 将转子组件(30)固定在电机轴(50)上,该转子组件(30)包括 转子片(31)和固定在该转子片(31)上的偶数块永磁体(32);
g、 整机装配: 按常规操作,将所述电机轴(50)可转动地支承在所述端盖(40) 和 /或机壳(10)确定的位置上,将所述端盖(40)与所述机壳(10)固定,完成 所述电机整体装配。
13. 根据权利要求 12 所述的拥有非晶铁合金轴向磁路盘式电机的制造方法,其特 征在于:
在步骤 c中,烘烤定型时的温度为 125 ± 5摄氏度,时间为 3 ~ 4小时。
14. 根据权利要求 12 所述的拥有非晶铁合金轴向磁路盘式电机的制造方法,其特 征在于:
在步骤 d的 之后和步骤 d的 d3之前,还包括步骤 d2、 用胶粘剂将所述定 子绕组(221)粘接固定在绕组线架(222)的槽位(2221)内。
15. 根据权利要求 12 所述的拥有非晶铁合金轴向磁路盘式电机的制造方法,其特 征在于:
在步骤 e2中,烘烤定型时的温度为 66 ± 5摄氏度,时间为 1. 5 ~ 2. 5小时。
16. 根据权利要求 12 所述的拥有非晶铁合金轴向磁路盘式电机的制造方法,其特 征在于:
所述转子组件(30)之转子片(31)用不导磁的不锈钢片材制作为圆盘形,该 转子片(31)上均匀间隔地设有与所述永磁体(32)同等数量的通孔(315) ;所述转 子组件(30)之各永磁体(32)被清洗剂清洗干净后,在其一表面上涂覆胶粘剂,并 均匀间隔地粘接固定在所述转子片(31)的各通孔(315)内,然后烘烤定型完成所 述转子组件(30)的制作。
17. 根据权利要求 16 所述的拥有非晶铁合金轴向磁路盘式电机的制造方法,其特 征在于:
所述烘烤定型时的温度为 125 ± 5摄氏度,时间为 3 ~ 4小时。
18. 根据权利要求 16 所述的拥有非晶铁合金轴向磁路盘式电机的制造方法,其特 征在于:
所述转子组件(30)还包括用不导磁的不锈钢材料制作的、 圆柱形的束磁板 (33) ,该束磁板(33)的外部直径小于所述转子片(31)的外部直径,所述束磁板 (33)设有中央通孔(331) ;所述束磁板(33)被清洗剂清洗干净后,在其一端面上 涂覆胶粘剂, 粘接固定在背离所述定子组件 (20)的所述转子片(31)的端面(319) 上,并将固定在所述转子片(31)之各通孔(315)内的各永磁体(32)遮盖住,然后 烘烤定型。
19. 根据权利要求 18 所述的拥有非晶铁合金轴向磁路盘式电机的制造方法,其特 征在于:
所述烘烤定型时的温度为 125 ± 5摄氏度,时间为 3 ~ 4小时。
20. 根据权利要求 12 所述的拥有非晶铁合金轴向磁路盘式电机的制造方法,其特 征在于:
嵌入所述绕组线架(222)之通孔(2222)内的导磁体(223)是用牌号为 Q235 的碳素结构钢制成。
21. 根据权利要求 12 至 20 之任一项所述的拥有非晶铁合金轴向磁路盘式电机的 制造方法,其特征在于:
所述定子组件 (20)中各部件间的粘接固定、 定子铁芯(21)与端盖 (40)间的 粘接固定和所述转子组件(20)中各部件间的粘接固定所使用的胶粘剂,耐温不 低于所述电机绝缘等级的耐温水平。
PCT/CN2012/071449 2012-02-22 2012-02-22 拥有非晶铁合金轴向磁路的盘式电机及其制造方法和定子组件 WO2013123647A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2012/071449 WO2013123647A1 (zh) 2012-02-22 2012-02-22 拥有非晶铁合金轴向磁路的盘式电机及其制造方法和定子组件
US14/375,300 US20150008779A1 (en) 2012-02-22 2012-02-22 Disc-type electric machine with amorphous iron alloy axial magnetic circuit as well as its manufacturing method and stator assembly
EP12869022.9A EP2802061A4 (en) 2012-02-22 2012-02-22 AXIAL FLOOD DISK ENGINE FROM AMORPHIC IRON ALLOY, MANUFACTURING METHOD AND STATOR ARRANGEMENT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/071449 WO2013123647A1 (zh) 2012-02-22 2012-02-22 拥有非晶铁合金轴向磁路的盘式电机及其制造方法和定子组件

Publications (1)

Publication Number Publication Date
WO2013123647A1 true WO2013123647A1 (zh) 2013-08-29

Family

ID=49004924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071449 WO2013123647A1 (zh) 2012-02-22 2012-02-22 拥有非晶铁合金轴向磁路的盘式电机及其制造方法和定子组件

Country Status (3)

Country Link
US (1) US20150008779A1 (zh)
EP (1) EP2802061A4 (zh)
WO (1) WO2013123647A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111431301A (zh) * 2020-04-21 2020-07-17 南京理工大学 定子侧具有不导磁间隔的背绕式绕组无齿槽高速永磁电机
CN111900824A (zh) * 2019-09-17 2020-11-06 深圳市实能高科动力有限公司 隔离潜水泵

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014106851A1 (de) * 2014-05-15 2015-11-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrische Maschine, Spulenpaket für eine elektrische Maschine und Verfahren zum Herstellen desselben
MX2018001782A (es) * 2015-08-11 2018-08-01 Genesis Robotics Llp Maquina electrica.
JP6785528B2 (ja) * 2016-10-14 2020-11-18 Nittoku株式会社 巻線装置及び巻線方法
CN107863831B (zh) * 2017-12-13 2024-06-21 冶金自动化研究设计院 大功率高速盘式电机
CN109861423B (zh) * 2018-12-27 2020-06-05 北京迈格电机科技有限公司 一种盘式低速大扭矩永磁电机
CN110545010B (zh) * 2019-01-20 2024-05-31 深圳市实能高科动力有限公司 无轴承电机和安装有无轴承电机的铁路货车车厢
CN112713670A (zh) * 2020-12-30 2021-04-27 浙江盘毂动力科技有限公司 一种盘式电机
CN114094788B (zh) * 2021-11-19 2023-09-08 中国船舶重工集团公司第七0七研究所 一种有限转角力矩电机定子灌胶方法
US11942829B2 (en) * 2022-07-26 2024-03-26 Borgwarner Inc. Bonded rotor plate

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578610A (en) * 1978-06-12 1986-03-25 General Electric Company Synchronous disk motor with amorphous metal stator and permanent magnet rotor and flywheel
JPH02307339A (ja) * 1989-05-19 1990-12-20 Hitachi Ltd 電機固定子
KR20020076211A (ko) * 2002-08-27 2002-10-09 조윤현 평판형 영구자석 bldc 전동기 및 동기전동기
CN200966011Y (zh) * 2006-06-26 2007-10-24 林修鹏 一种盘式低磁阻永磁交流发电机
CN201104348Y (zh) * 2007-10-08 2008-08-20 宏锐电子股份有限公司 发电机的定子线架结构
CN201113749Y (zh) * 2007-10-12 2008-09-10 深圳市大族精密机电有限公司 盘式音圈电机
CN101800456A (zh) * 2009-02-11 2010-08-11 深圳华任兴科技有限公司 用模块化方式制备非晶态合金定子铁芯的方法
CN201656704U (zh) * 2009-09-29 2010-11-24 深圳华任兴科技有限公司 用于永磁电机盘形转子装配的冲压夹具
CN101951106A (zh) * 2010-08-06 2011-01-19 深圳创维-Rgb电子有限公司 一种超薄大功率直流永磁电机
CN102035280A (zh) * 2009-09-29 2011-04-27 深圳华任兴科技有限公司 永磁体轴向磁场电机的盘形转子结构、装配成型方法和冲压夹具
CN202435153U (zh) * 2012-02-22 2012-09-12 深圳华任兴科技有限公司 拥有非晶铁合金轴向磁路的盘式电机及其定子组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262536B2 (en) * 2003-08-11 2007-08-28 General Motors Corporation Gearless wheel motor drive system
JP2006204085A (ja) * 2004-12-24 2006-08-03 Sumitomo Electric Ind Ltd アキシャルギャップ型超電導モータ
KR101140614B1 (ko) * 2010-07-26 2012-05-02 한국전기연구원 극이동된 고정자 코어 및 이를 포함하는 전기기기

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578610A (en) * 1978-06-12 1986-03-25 General Electric Company Synchronous disk motor with amorphous metal stator and permanent magnet rotor and flywheel
JPH02307339A (ja) * 1989-05-19 1990-12-20 Hitachi Ltd 電機固定子
KR20020076211A (ko) * 2002-08-27 2002-10-09 조윤현 평판형 영구자석 bldc 전동기 및 동기전동기
CN200966011Y (zh) * 2006-06-26 2007-10-24 林修鹏 一种盘式低磁阻永磁交流发电机
CN201104348Y (zh) * 2007-10-08 2008-08-20 宏锐电子股份有限公司 发电机的定子线架结构
CN201113749Y (zh) * 2007-10-12 2008-09-10 深圳市大族精密机电有限公司 盘式音圈电机
CN101800456A (zh) * 2009-02-11 2010-08-11 深圳华任兴科技有限公司 用模块化方式制备非晶态合金定子铁芯的方法
CN201656704U (zh) * 2009-09-29 2010-11-24 深圳华任兴科技有限公司 用于永磁电机盘形转子装配的冲压夹具
CN102035280A (zh) * 2009-09-29 2011-04-27 深圳华任兴科技有限公司 永磁体轴向磁场电机的盘形转子结构、装配成型方法和冲压夹具
CN101951106A (zh) * 2010-08-06 2011-01-19 深圳创维-Rgb电子有限公司 一种超薄大功率直流永磁电机
CN202435153U (zh) * 2012-02-22 2012-09-12 深圳华任兴科技有限公司 拥有非晶铁合金轴向磁路的盘式电机及其定子组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2802061A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111900824A (zh) * 2019-09-17 2020-11-06 深圳市实能高科动力有限公司 隔离潜水泵
CN111431301A (zh) * 2020-04-21 2020-07-17 南京理工大学 定子侧具有不导磁间隔的背绕式绕组无齿槽高速永磁电机

Also Published As

Publication number Publication date
US20150008779A1 (en) 2015-01-08
EP2802061A1 (en) 2014-11-12
EP2802061A4 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2013123647A1 (zh) 拥有非晶铁合金轴向磁路的盘式电机及其制造方法和定子组件
CN109962584B (zh) 盘式电机及其制造方法
US11381123B2 (en) Hybrid stator core component design for axial flux motor
JP5507759B2 (ja) 径方向に磁気回路を有するスロットレス非結晶鉄合金電気装置及びその製造方法
WO2013166919A1 (zh) 漏抗可调整结构的多相永磁电机
WO2016058446A1 (zh) 电机
WO2017190292A1 (zh) 一种高效叠片式无铁芯发电机及其制作方法
CN207652280U (zh) 盘式电机
WO2014036883A1 (zh) 永磁叠层电机
CN103296792B (zh) 拥有非晶铁合金轴向磁路的盘式电机及其制造方法和定子组件
CN203135665U (zh) 盘式三相无刷永磁直流电机
US20200153293A1 (en) Axial magnetic field motor with grain-oriented silicon steel sheets
CN104184234A (zh) 一种混合励磁双气隙爪极电机
CN214045195U (zh) 一种具有环形冲片和多极磁环的电机结构
JP2022158796A (ja) ステーターコンポーネント、およびセンターディスクシャフトコアデュアルローターモータ
CN207652155U (zh) 用于盘式电机上的转子组件
WO2019113882A1 (zh) 直流无刷低速电机、风扇及磁铁与磁轭带组合的制作工艺
CN203193469U (zh) 无铁芯盘式直流无刷电机
CN219204219U (zh) 一种电机铁芯结构
CN108900057B (zh) 一种定子齿外侧连线正多边形的轴向磁通永磁电机
CN102347669A (zh) 一种有限转角力矩电动机及其制作方法
CN201733147U (zh) 一种有限转角力矩电动机
WO2018076486A1 (zh) 电机
CN207652161U (zh) 用于盘式电机上的定子组件
WO2015085771A1 (zh) 大功率无硅钢片电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012869022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14375300

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE