WO2016058446A1 - 电机 - Google Patents

电机 Download PDF

Info

Publication number
WO2016058446A1
WO2016058446A1 PCT/CN2015/087666 CN2015087666W WO2016058446A1 WO 2016058446 A1 WO2016058446 A1 WO 2016058446A1 CN 2015087666 W CN2015087666 W CN 2015087666W WO 2016058446 A1 WO2016058446 A1 WO 2016058446A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
permanent magnet
rotor
motor according
rotating shaft
Prior art date
Application number
PCT/CN2015/087666
Other languages
English (en)
French (fr)
Inventor
陈金涛
李春江
Original Assignee
广东威灵电机制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东威灵电机制造有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2016058446A1 publication Critical patent/WO2016058446A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles

Definitions

  • the invention belongs to the field of electric machines, and in particular to electric machines.
  • a small high-speed motor provided by the prior art includes a casing 2', a stator and a rotor V, the stator includes a stator core 3 and a stator winding 32', and the stator core 3 includes a stator yoke 311. 'and the stator teeth 312', the stator windings 32' are wound around the stator teeth 312' of the stator core 3; the rotor 1' includes a rotating shaft 1, a rotor core 13' disposed on the rotating shaft 1, and a rotor core 13 'The permanent magnet 12' on the 'the permanent magnet 12' and the guard ring 14' located outside the permanent magnet 12', the small high-speed motor has the following deficiencies in the specific application:
  • the stator winding 32' is wound around the stator teeth 312' of the stator core 3, so that on the one hand, due to the small size of the small high-speed motor, the small inner diameter of the stator, the small area inside the slot, and the small width in the slot, The winding of the stator winding 32' is not easy to be automated by the machine; on the other hand, due to the high frequency, large electromagnetic loss and high temperature of the small high-speed motor, the heat dissipation area of the stator is small, and the air-cooling heat dissipation effect is not good. Therefore, the efficiency of the motor is difficult to increase.
  • the object of the present invention is to overcome the above-mentioned deficiencies of the prior art, and to provide a motor, which aims to solve the problem that the stator winding of the existing small high-speed motor is wound around the stator teeth, and it is difficult to use the machine for automatic winding operation, and the motor efficiency is difficult to improve.
  • the rotor structure is complex, the rotor assembly process is complicated, the dynamic performance of the rotor rotating at high speed is poor, and it is not conducive to the technical problem of high-speed operation of the motor.
  • the technical solution adopted by the present invention is: a motor including a casing, a stator disposed in the casing, and a rotor passing through the stator, the stator including a stator core and Stator winding,
  • the stator core includes a stator yoke and a plurality of stator teeth disposed on the stator yoke, the stator winding is wound around the stator yoke, the rotor includes a permanent magnet structure, and the permanent magnet structure is a pair The pole structure, and the permanent magnet structure is a permanent magnet magnetic ring or a tile-like permanent magnet split structure or a cylindrical permanent magnet structure or an inline embedded structure formed by a combination of an inline permanent magnet and a magnetic conductive core.
  • the stator yoke has an inner side wall and an outer side wall, and each of the stator teeth is circumferentially spaced apart from the inner side wall, and the stator core further includes a plurality of circumferentially spaced protrusions. And a support portion on the outer side wall and extending against the inner wall of the casing.
  • the number of the supporting portions is the same as the number of the stator teeth or the half of the number of the stator teeth, and each of the supporting portions and the stator teeth are respectively disposed opposite to each other; or
  • the number of the support portions is half of the number of the stator teeth, and each of the support portions is disposed opposite to the half of the stator teeth.
  • the support portion extends in a direction of an equal circumferential width along the outer side wall toward the direction of the stator teeth.
  • any two adjacent stator teeth and the inner sidewall are enclosed to form a first groove, and any two adjacent support portions and the outer sidewall are enclosed a second recess, the stator winding having an inner winding in the first recess and an outer winding in the second recess.
  • the stator winding is a three-phase winding, the number of the stator teeth is six; or the stator winding is a two-phase winding, and the number of the stator teeth is four.
  • the stator core is formed by splicing and splicing at least two split bodies in a circumferential direction.
  • the stator core is formed by splicing and splicing two split bodies, and the two split bodies divide the stator core into two halves of the opposite stator teeth.
  • the rotor further includes a rotating shaft and an adhesive member, and the permanent magnet magnetic ring is adhesively fixed to the rotating shaft by the bonding member.
  • the bonding member is glue
  • the permanent magnet magnetic ring is an integrally formed sintered NdFeB magnetic ring or a bonded magnetic ring or a pressed magnetic ring.
  • the tile-like permanent magnet split structure is composed of two tile-shaped permanent magnets having different polarities, and the tile-shaped permanent magnets are integrally formed structures; or , said The tile-like permanent magnet is formed by splicing a plurality of permanent magnets of the same polarity.
  • the rotor further includes a rotating shaft that is disposed in the tile-like permanent magnet split structure and a first protective sleeve that is sleeved outside the tile-shaped permanent magnet splitting structure.
  • the tile-like permanent magnet split structure is bonded to the rotating shaft.
  • the rotor further includes a second protective sleeve sleeved outside the cylindrical permanent magnet structure.
  • the rotor further includes a rotating shaft
  • the second protective sleeve is a partial structure of the rotating shaft.
  • the magnetic core is an integral magnetism structure having a mounting hole on the inner side, and the inline permanent magnet is embedded in the mounting hole.
  • the rotor further includes a third protective sleeve sleeved outside the inline embedded structure.
  • the rotor further includes a rotating shaft
  • the third protective sleeve is a partial structure of the rotating shaft.
  • the magnetic core is composed of two divided magnets, and the inline permanent magnet is embedded between the two divided magnets.
  • the rotor further includes a fourth protective sleeve sleeved outside the inline embedded structure.
  • the rotor further includes a rotating shaft
  • the fourth protective sleeve is a partial structure of the rotating shaft.
  • the motor provided by the invention has the stator winding wound around the stator yoke, so that the space for the stator winding to be placed around the stator teeth to be reserved for the winding head can be omitted, and the stator core is improved.
  • the slot area utilization rate can make the stator winding use an enameled wire with a larger wire diameter than the tooth winding mode, thereby effectively reducing the resistance of the stator winding and reducing the coil loss of the stator winding; on the other hand, it can improve the stator
  • the heat dissipation system of the windings slows the temperature rise of the stator windings, effectively reduces the heat generation of the stator windings, slows the increase of the resistance with the increase of the torque and current of the motor, and further helps to keep the coil losses of the stator windings low.
  • the level is beneficial to improve the efficiency of the motor, and can slow down the aging speed of the insulation of the stator winding and prolong the service life of the insulation of the stator winding.
  • the permanent magnet structure of the rotor is set as a pair of pole structures, and the permanent magnet structure is specifically set as a permanent magnet magnetic ring or a tile-like permanent magnet split structure or a cylindrical permanent magnet structure or by a straight-shaped permanent magnet and
  • the magnetic core body is combined into an in-line embedded structure, thereby effectively improving the dynamic performance of the rotor at high speed.
  • Peer because it does not need to be designed
  • FIG. 1 is a schematic structural view of a rotor according to Embodiment 1 of the present invention.
  • Figure 2 is a left side view of Figure 1;
  • FIG. 3 is a schematic structural view of a permanent magnet magnetic ring according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural view of a three-phase six-slot motor according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic structural view of a three-phase six-slot stator according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural view of a split body of a three-phase six-slot stator according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural view of a two-phase four-slot stator according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic structural view of a tile-like permanent magnet split structure according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic view showing the assembly structure of a tile-like permanent magnet split structure, a first protective sleeve and a rotating shaft according to a second embodiment of the present invention.
  • FIG. 10 is an exploded perspective view showing a cylindrical permanent magnet structure and a second protective cover according to Embodiment 3 of the present invention.
  • FIG. 11 is a linear permanent magnet and a magnetic core provided by Embodiment 4 of the present invention; An exploded view of the third protective cover;
  • FIG. 12 is a schematic structural view of a inline permanent magnet according to Embodiment 4 of the present invention.
  • FIG. 13 is an exploded perspective view of a first-line permanent magnet, a magnetic core, and a third protective cover according to Embodiment 5 of the present invention.
  • FIG. 14 is a schematic structural view of a motor provided by the prior art.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a motor includes a casing 2, a stator 3 disposed in the casing 2, and a rotor 1 disposed in the stator 3.
  • the stator 3 includes a stator iron.
  • the core 31 and the stator winding 32, the stator core 31 includes a stator yoke 311 and a plurality of stator teeth 312 disposed on the stator yoke 311.
  • the stator winding 32 is wound around the stator yoke 311.
  • the rotor 1 includes a rotating shaft 11 and a permanent magnet magnetic ring.
  • the permanent magnet magnetic ring 12 is a permanent magnet structure of the rotor 1, and the permanent magnet structure of the rotor 1 is a pair of pole structures.
  • the stator teeth 312 are enclosed to form a central hole 301 through which the permanent magnet ring 12 is inserted.
  • the permanent magnet ring 12 is bonded and fixed to the rotating shaft 11 by an adhesive member, and the permanent magnet ring 12 is a pair of pole magnetic rings.
  • the stator winding 32 is wound around the stator yoke 311.
  • the space for the stator winding 32 to be placed around the stator teeth 312 to be reserved for the winding head can be omitted, and the stator core is improved.
  • the heat generation slows down the increase of the resistance with the increase of the torque and current of the motor, and further helps to keep the coil loss of the stator winding 32 at a low level, which is beneficial to improve the efficiency of the motor and slow down the aging speed of the insulation of the stator winding 32.
  • the service life of the insulation of the stator winding 32 is extended.
  • the permanent magnet magnetic ring 12 is directly bonded and fixed to the rotating shaft 11 by the bonding member, and the magnetic strength of the permanent magnet magnetic ring 12 itself is resisted by the centrifugal stress generated by the high-speed rotation of the rotor 1 to make the permanent magnet magnetic.
  • a protective ring made of a non-magnetic metal material, carbon fiber, a glass ribbon or the like is not required outside the ring 12, thereby reducing the effective air gap length between the stator 3 and the rotor 1, and simplifying the structure of the rotor 1,
  • the installation process of the guard ring is removed, the risk of the outer diameter of the rotor 1 being increased due to the installation of the guard ring and the uneven distribution of the mass due to the installation are avoided, the dynamics of the high-speed rotation of the rotor 1 is improved, and the rotor 1 is lowered. Natural frequency.
  • the permanent magnet magnetic ring 12 is set as a pair of pole magnetic rings (magnet rings with a pole pair number of one), so that the frequency of the magnetic field can be minimized at the same rotation speed, thereby The stator core 31 is minimized by the influence of the magnetic field switching frequency; At the same time, it can also reduce the electrical communication frequency of the controller corresponding to the frequency of the magnetic field switching, thereby reducing the switching loss of the controller.
  • the permanent magnet magnetic ring 12 is an integrally formed sintered NdFeB magnetic ring.
  • the permanent magnet ring 12 is made of a sintered NdFeB material, which is advantageous for ensuring the magnetic properties and material strength of the permanent magnet ring 12.
  • the permanent magnet ring 12 can also be a bonded magnetic ring or a pressed magnetic ring.
  • the stator yoke 311 has an inner side wall 3111 and an outer side wall 3112.
  • the stator teeth 312 are circumferentially protruded from the inner side wall 3111, and the stator core 31 is spaced apart.
  • the utility model further includes a plurality of support portions 313 which are circumferentially spaced apart from the outer side wall 3112 and extend against the inner wall of the casing 2. Specifically, the end of the support portion 313 away from the outer side wall 3112 is abutted against the inner wall of the casing 2, so that the support positioning of the stator 3 in the casing 2 can be achieved.
  • the supporting portion 313 is used for supporting and positioning with the inner wall of the casing 2, so that the stator yoke 311 can be retracted toward the center hole 301 of the stator core 31 under the premise that the outer diameter of the stator core 31 is constant. Therefore, the circumference of the stator yoke 311 can be reduced, and the mass (weight) of the stator yoke 311 can be effectively reduced, thereby reducing the total mass of the motor;
  • the length of the main magnetic circuit of the stator teeth 312 and the stator yoke 311 of the present embodiment is shortened, so that the loss of the stator core 31 is further reduced, thereby facilitating the improvement of the motor. effectiveness. Specifically, as shown in FIG. 4, FIG.
  • any two adjacent stator teeth 312 and the inner side wall 3111 are enclosed to form a first groove 302, and any two adjacent supporting portions 313 and outer side walls 3112 are formed.
  • a second recess 303 is formed between the two, and the stator winding 32 is wound around the stator yoke 311, and the stator winding 32 has an inner winding 321 located in the first recess 302 and an outer side located in the second recess 303. Winding 322.
  • the first groove 302 and the second groove 303 can form axial heat dissipation air passages on the inner and outer sides, and the inner winding 321 and the outer winding 322 are respectively located in the inner and outer heat dissipation air passages, so that after the motor runs, The air flow in the heat dissipation air passage accelerates the heat dissipation speed of the stator winding 32, thereby slowing the temperature rise of the stator winding 32, effectively reducing the heat generation of the stator winding 32, and slowing down the increase in resistance with the increase of the motor torque and current.
  • stator winding 32 it is advantageous to keep the coil loss of the stator winding 32 at a low level, which is advantageous for improving the efficiency of the motor, slowing down the aging speed of the insulating portion of the stator winding 32, and prolonging the service life of the insulating portion of the stator winding 32.
  • the number of the support portions 313 is the same as the number of the stator teeth 312, and the support portions 313 and the stator teeth 312 are respectively disposed opposite each other. Conducive to guarantee The structural symmetry and coordination of the sub-core 31.
  • the number of the supporting portions 313 may be less than the number of the stator teeth 312.
  • the number of the supporting portions 313 may be half of the number of the stator teeth 312, and each supporting portion 313 and half The number of stator teeth 312 are disposed opposite each other.
  • the support portion 313 faces the back-tooth stator along the outer ring wall 3112 in an equal circumferential width (the circumferential width is a width extending in the circumferential direction).
  • the direction of the 312 is extended, that is, the support portion 313 is a member having a circumferential width; the stator teeth 312 extend along the inner ring wall 3111 in the circumferential direction of the central hole 301, that is, the stator teeth 312 are in the same circumferential direction.
  • both the support portion 313 and the stator teeth 312 are provided with members having equal circumferential widths, which facilitates further evolution of the structure of the stator core 31.
  • the stator core 31 is formed by splicing and enclosing the at least two split bodies 310 in the circumferential direction.
  • the split windings may be separately performed on each of the divided bodies 310, and then each The split body 310 is welded and connected to form an integral stator core 31, thereby facilitating avoidance of space limitation of the winding of the stator winding 32 due to the small inner diameter of the stator core 31, thereby facilitating the automatic winding of the stator winding 32 by machine.
  • the specific structure of the divided body 310 differs depending on the number of required stator cores 31 to be combined.
  • the stator core 31 is formed by splicing and splicing two split bodies 3 10 , and the two split bodies 310 are stator cores. 31 is divided into two along the opposite stator teeth 312 and halved along a diametrical direction thereof.
  • the two divided bodies 310 are mutually symmetrical structures, which facilitates the process of winding the stator windings 32 on the respective divided bodies 310.
  • each of the divided bodies 310 includes a semicircular yoke 3101, and both ends of the semicircular yoke 3101 have divided half teeth 3102 and a semi-support portion 3103, and the divided semi-support portions 3103 are provided with welding grooves 3104. .
  • the two divided bodies 310 are placed in such a manner that the end faces of the semicircular yoke portions 3101 are butted, and by welding at the welding grooves 3104, the two divided bodies 310 can be welded into one integral stator core 31.
  • stator core 31 is made of electrical pure iron or silicon steel sheets or insulated iron powder or iron amorphous.
  • the stator winding 32 may be a three-phase winding, that is, the stator winding 32 includes three sets of different phase windings, the motor is operated in three phases; the stator teeth 312, the first groove 302, and The second grooves 303 are each provided with six.
  • the stator winding 32 may also be a two-phase winding, that is, the stator winding 32 includes two sets of different phase windings, and the motor operates in two phases; the stator teeth 312, the first groove 302, and the second groove 303 All set There are four.
  • the number of phases of the stator windings 32, the number of stator teeth 312, the number of first grooves 302, and the number of second grooves 303 can also be set to other values while satisfying the design requirements.
  • the bonding member is glue, which has good bonding reliability and is easy to install.
  • the permanent magnet ring 12 is provided with an axial through hole 121, and the axial through hole 121 is disposed in a clearance fit with the rotating shaft 11, and the glue is disposed on the inner wall of the axial through hole 121. Between the outer wall of the shaft 11.
  • the glue should be evenly applied between the axial through hole 121 and the gap of the rotating shaft 11, and the glue can be solidified between the axial through hole 121 and the rotating shaft 11 by heating or long time.
  • the permanent magnet magnetic ring 12 can utilize the bonding action of the glue and the tensile strength of the self-material, and can effectively resist the centrifugal stress generated by the high-speed rotation of the rotor 1 within a certain range without an external protection ring, and further It effectively ensures the safety and reliability of the rotor 1 at high speed.
  • the motor provided in this embodiment is a high-speed small motor (such as a small motor with a rotational speed greater than 25000 rpm), so that the simplified motor structure is obtained, the motor production process is simplified, and the effective air gap between the stator 3 and the rotor 1 is reduced. The effect of length and motor efficiency is more significant.
  • the motor provided in this embodiment can be applied to a vacuum cleaner, a centrifuge, a fan, a power tool, a small generator, and a spindle motor.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1
  • the main difference between the motor and the first embodiment is that the rotor 1 is arranged differently, and the permanent magnet structure in the embodiment is a tile.
  • the permanent magnet split structure 13 , the tile-like permanent magnet split structure 13 is composed of two tile-like permanent magnets 131 having different polarities, that is, the tile-like permanent magnet split structure 13 is made of a tile having a polarity of N poles.
  • the magnet 131 is formed by splicing with a tile-shaped permanent magnet 131 having a polarity of S pole, and the tile-shaped permanent magnet 131 is an integrally formed structure; or, the tile-shaped permanent magnet 131 is formed by splicing a plurality of permanent magnets having the same polarity. .
  • the processing process is simple and convenient; and when the tile-shaped permanent magnet 131 is formed by splicing a plurality of permanent magnets of the same polarity, the eddy current loss of the rotor 1 can be reduced. .
  • the structure of the rotor 1 can be simplified, the assembly process can be simplified, the dynamic performance of the high-speed rotation of the rotor 1 can be improved, and the high-speed operation of the motor can be facilitated.
  • the rotor 1 further includes a rotating shaft 11 that is disposed in the tile-like permanent magnet splitting structure 13 and a first protective sleeve 16 that is sleeved outside the tile-shaped permanent magnet splitting structure 13.
  • the setting of the first protective cover 16 is favorable for The structural strength of the rotor 1 is increased, thereby facilitating the stable reliability of the rotor 1 at high speed.
  • the tile-like permanent magnet split structure 13 is bonded to the rotating shaft 11 by glue or the like, which is convenient to install and reliable in fastening, and is advantageous for high-speed operation of the rotor 1.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the main difference between the motor provided in this embodiment and the first embodiment is that the arrangement of the rotor 1 is different, and the permanent magnet structure in the embodiment is a cylindrical permanent magnet structure. 14.
  • the cylindrical permanent magnet structure 14 is specifically a solid cylindrical permanent magnet, and the rotor 1 further includes a second protective sleeve 17 sleeved outside the cylindrical permanent magnet structure 14.
  • the structure of the cylindrical permanent magnet structure 14 is very simple and the processing is very convenient.
  • the cylindrical permanent magnet structure 14 itself has a high structural strength, and the second protective sleeve is also added, thereby facilitating the extremely high-speed operation of the rotor 1.
  • the integrated assembly is facilitated.
  • the structure of the rotor 1 can be simplified, the assembly process can be simplified, the dynamic performance of the high-speed rotation of the rotor 1 can be improved, and the high-speed operation of the motor can be facilitated.
  • the rotor 1 further includes a rotating shaft 11, and the second protective sleeve 17 is a partial structure of the rotating shaft 11, that is, the second protective sheath 17 is formed by providing an inner hole inside a part of the shaft portion of the rotating shaft 11.
  • the present embodiment uses the rotating shaft 11 to form the second protective sleeve 17, which is advantageous for further simplifying the structure and installation process of the rotor 1.
  • the main difference between the motor provided in this embodiment and the first embodiment is that the arrangement of the rotor 1 is different, and the permanent magnet structure in the embodiment is composed of one.
  • the in-line magnet structure 152 is a one-piece in-line structure 15 combined with the magnetic core 152, and the magnetic core 152 is an integral magnetism structure having a mounting hole 1521 on the inner side, and the in-line permanent magnet 151 is embedded and mounted. Inside the hole 1521.
  • the magnetic core 152 is specifically made of a magnetically permeable material.
  • the in-line permanent magnet 151 is specifically a rectangular block structure having a thin thickness, which is very simple and convenient to process, and which can realize very high processing precision.
  • the structure of the rotor 1 can be simplified, the assembly process can be simplified, and the speed of the rotor 1 can be improved.
  • the dynamic performance of the rotation is beneficial to the high-speed operation of the motor.
  • the rotor 1 further includes a third protective sleeve 18 sleeved outside the inline embedded structure 15.
  • the arrangement of the third retaining sheath 18 is advantageous for further improving the structure of the rotor 1 and facilitating the extremely high speed operation of the rotor 1.
  • the rotor 1 further includes a rotating shaft 11, and the third protective sleeve 18 is a partial structure of the rotating shaft 11, that is, the third protective sheath 18 is formed by providing an inner hole inside a part of the shaft portion of the rotating shaft 11.
  • the third protective sleeve 18 is formed by using the rotating shaft 11, which is advantageous for further simplifying the structure and installation process of the rotor 1.
  • the main difference between the motor provided in this embodiment and the first embodiment is that the arrangement of the rotor 1 is different, and the permanent magnet structure in the embodiment is a permanent magnet.
  • the in-line embedded structure 15 is combined with the magnetic core 152, and the magnetic core 152 is composed of two divided magnets 152 2 , and the in-line permanent magnet 151 is embedded between the two divided magnets 1522.
  • the magnetic core 152 is specifically made of a magnetically permeable material.
  • the in-line permanent magnet 151 is specifically a rectangular block structure having a thin thickness, which is very simple and convenient to process, has high structural strength, and can realize very high processing precision.
  • the structure of the rotor 1 can be simplified, the assembly process can be simplified, the dynamic performance of the high-speed rotation of the rotor 1 can be improved, and the high-speed operation of the motor can be facilitated.
  • the rotor 1 further includes a fourth protective sleeve 19 sleeved outside the inline embedded structure 15.
  • the arrangement of the fourth retaining sheath 19 is advantageous for further improving the structure of the rotor 1 and facilitating the extremely high speed operation of the rotor 1.
  • the rotor 1 further includes a rotating shaft 11, and the fourth protective sleeve 19 is a partial structure of the rotating shaft 11, that is, the fourth retaining sheath 19 is formed by providing an inner hole inside a portion of the shaft portion of the rotating shaft 11.
  • the fourth protective sleeve 19 is formed by using the rotating shaft 11, which is advantageous for further simplifying the structure and installation process of the rotor 1.
  • the other structural arrangement principles of the motor provided in this embodiment are the same as those in the first embodiment except for the above-described arrangement of the rotor 1 and will not be described in detail herein.

Abstract

一种电机,其包括机壳(2)、设于机壳(2)内的定子(3)和穿设于定子(3)内的转子(1),定子(3)包括定子铁芯(31)和定子绕组(32),定子铁芯(31)包括定子扼(311)和若干个设于定子扼(311)上的定子齿(312),定子绕组(32)绕设于定子扼(311)上,转子(1)包括永磁体结构,永磁体结构为一对极结构,且永磁体结构为永磁体磁环(12)或者瓦片状永磁体拼合结构(13)或者圆柱体永磁体结构(14)或者由一字形永磁体(151)与导磁芯体(152)组合成的一字形内嵌式结构(15)。该电机通过将定子绕组(32)绕设于定子扼(311)上,解决了小型高速电机的定子绕组不易采用机器进行自动化绕线操作、电机效率难以提高的技术问题;同时,其还解决了转子结构复杂、转子组装工艺复杂、转子高速转动的动态性能差的技术问题。

Description

t明名称:电机
技术领域
[0001] 本发明属于电机领域, 尤其涉及电机。
背景技术
[0002] 如图 14所示, 现有技术提供的一种小型高速电机包括机壳 2 ' 、 定子 和转子 V , 定子 包括定子铁芯 3 和定子绕组 32 ' , 定子铁芯 3 包括定子轭 311 ' 和定子齿 312 ' , 定子绕组 32 ' 绕设于定子铁芯 3 的定子齿 312 ' 上; 转子 1 ' 包括转轴 1 、 设于转轴 1 上的转子铁芯 13 ' 、 设于转子铁芯 13 ' 上的永 磁体 12 ' 和设于永磁体 12 ' 外的保护环 14 ' , 该小型高速电机在具体应用中存 在以下不足之处:
[0003] 1) 转子 的结构比较复杂, 并会导致转子 的组装工艺比较复杂; 同吋其 转子 高速转动的动态性能较差, 不利于电机的高速运行;
2) 定子绕组 32 ' 绕设于定子铁芯 3 的定子齿 312 ' 上, 这样, 一方面由于小 型高速电机体积小、 定子 内径小、 槽内面积小和槽内宽度小的特点, 故, 使 得定子绕组 32 ' 的绕制不易采用机器进行自动化操作; 另一方面由于小型高速 电机频率高、 电磁损耗大、 温升高的特点, 故使得定子 的散热面积较小, 风 冷散热效果不佳, 从而使得电机的效率难以提高。
技术问题
[0005] 本发明的目的在于克服上述现有技术的不足, 提供了电机, 其旨在解决现有小 型高速电机的定子绕组绕在定子齿上不易采用机器进行自动化绕线操作、 电机 效率难以提高、 转子结构复杂、 转子组装工艺复杂、 转子高速转动的动态性能 差、 不利于电机高速运行的技术问题。
问题的解决方案
技术解决方案
[0006] 为达到上述目的, 本发明采用的技术方案是: 电机, 包括机壳、 设于所述机壳 内的定子和穿设于所述定子内的转子, 所述定子包括定子铁芯和定子绕组, 所 述定子铁芯包括定子轭和若干个设于所述定子轭上的定子齿, 所述定子绕组绕 设于所述定子轭上, 所述转子包括永磁体结构, 所述永磁体结构为一对极结构 , 且所述永磁体结构为永磁体磁环或者瓦片状永磁体拼合结构或者圆柱体永磁 体结构或者由一字形永磁体与导磁芯体组合成的一字形内嵌式结构。
[0007] 具体地, 所述定子轭具有内侧壁和外侧壁, 各所述定子齿沿圆周方向间隔凸设 于所述内侧壁上, 所述定子铁芯还包括若干个沿圆周方向间隔凸设于所述外侧 壁上并延伸抵顶于所述机壳内壁上的支撑部。
[0008] 优选地, 所述支撑部的设置数量与所述定子齿的设置数量相同或是定子齿数量 的一半, 且各所述支撑部与各所述定子齿分别两两相对设置; 或者, 所述支撑 部的设置数量为所述定子齿设置数量的一半, 且各所述支撑部与一半数量的所 述定子齿分别两两相对设置。
[0009] 优选地, 所述支撑部沿所述外侧壁以等周向宽度的形式朝背对所述定子齿的方 向延伸。
[0010] 具体地, 任意两相邻所述定子齿与所述内侧壁之间都围合形成一个第一凹槽, 任意两相邻所述支撑部与所述外侧壁之间都围合形成一个第二凹槽, 所述定子 绕组具有位于所述第一凹槽内的内侧绕组和位于所述第二凹槽内的外侧绕组。
[0011] 优选地, 所述定子绕组为三相绕组, 所述定子齿的数量为六; 或者, 所述定子 绕组为两相绕组, 所述定子齿的数量为四。
[0012] 优选地, 所述定子铁芯由至少两个分割体沿圆周方向拼接围合而成。
[0013] 更优选地, 所述定子铁芯由两个分割体拼接围合而成, 两所述分割体为所述定 子铁芯沿两相对的所述定子齿对半分成。
[0014] 作为转子设置方式的第一具体实施方案, 所述转子还包括转轴和粘接件, 所述 永磁体磁环通过所述粘接件粘接固定于所述转轴上。
[0015] 优选地, 所述粘接件为胶水。
[0016] 具体地, 所述永磁体磁环为一体成型的烧结钕铁硼磁环或者粘结磁环或者压制 磁环。
[0017] 作为转子设置方式的第二具体实施方案, 所述瓦片状永磁体拼合结构由两个极 性不同的瓦片状永磁体构成, 所述瓦片状永磁体为一体成型结构; 或者, 所述 瓦片状永磁体由若干个极性相同的永磁体拼接而成。
[0018] 优选地, 所述转子还包括穿设于所述瓦片状永磁体拼合结构内的转轴和套设于 所述瓦片状永磁体拼合结构外的第一保护套。
[0019] 优选地, 所述瓦片状永磁体拼合结构粘接于所述转轴上。
[0020] 作为转子设置方式的第三具体实施方案, 所述转子还包括套设于所述圆柱体永 磁体结构外的第二保护套。
[0021] 优选地, 所述转子还包括转轴, 所述第二保护套为所述转轴的局部结构。
[0022] 作为转子设置方式的第四具体实施方案, 所述导磁芯体为内侧具有安装孔的一 体式导磁体结构, 所述一字形永磁体嵌入安装于所述安装孔内。
[0023] 优选地, 所述转子还包括套设于所述一字形内嵌式结构外的第三保护套。
[0024] 优选地, 所述转子还包括转轴, 所述第三保护套为所述转轴的局部结构。
[0025] 作为转子设置方式的第五具体实施方案, 所述导磁芯体由两分割导磁体构成, 所述一字形永磁体嵌入安装于两所述分割导磁体之间。
[0026] 优选地, 所述转子还包括套设于所述一字形内嵌式结构外的第四保护套。
[0027] 优选地, 所述转子还包括转轴, 所述第四保护套为所述转轴的局部结构。
发明的有益效果
有益效果
[0028] 本发明提供的电机, 将定子绕组绕设于定子轭上, 这样, 一方面可省去定子绕 组绕设于定子齿上需预留供绕线头穿设的空间, 提高了定子铁芯的槽面积利用 率, 且可使定子绕组可以使用比齿绕线方式中线径更大的漆包线, 从而有效降 低了定子绕组的电阻, 减小了定子绕组的线圈损耗; 另一方面可利于改善定子 绕组的散热系统, 从而使得定子绕组的温升减缓, 有效减小了定子绕组的发热 量, 减缓了电阻随电机转矩和电流增加上升的幅度, 进而利于使定子绕组的线 圈损耗保持较低的水平, 利于提高电机的效率, 并可减缓定子绕组绝缘部的老 化速度, 延长了定子绕组绝缘部的使用寿命。 同吋, 其将转子的永磁体结构设 为一对极结构, 并具体将永磁体结构设为永磁体磁环或者瓦片状永磁体拼合结 构或者圆柱体永磁体结构或者由一字形永磁体与导磁芯体组合成的一字形内嵌 式结构, 从而有效提高了转子高速转动的动态性能。 同吋, 由于其不需设计由 硅钢片制成的转子铁芯, 故, 其减少了转子的组成部件数量, 从而进一步简化 了转子的结构和安装工艺, 极大程度地提高了转子的生产效率。
对附图的简要说明
附图说明
[0029] 图 1是本发明实施例一提供的转子的结构示意图;
[0030] 图 2是图 1的左视图;
[0031] 图 3是本发明实施例一提供的永磁体磁环的结构示意图;
[0032] 图 4是本发明实施例一提供的三相六槽电机的结构示意图;
[0033] 图 5是本发明实施例一提供的三相六槽定子的结构示意图;
[0034] 图 6是本发明实施例一提供的三相六槽定子的分割体的结构示意图;
[0035] 图 7是本发明实施例一提供的两相四槽定子的结构示意图;
[0036] 图 8是本发明实施例二提供的瓦片状永磁体拼合结构的结构示意图;
[0037] 图 9是本发明实施例二提供的瓦片状永磁体拼合结构、 第一保护套及转轴的装 配结构示意图;
[0038] 图 10是本发明实施例三提供的圆柱体永磁体结构及第二保护套的分解示意图; [0039] 图 11是本发明实施例四提供的一字形永磁体、 导磁芯体及第三保护套的分解示 意图;
[0040] 图 12是本发明实施例四提供的一字形永磁体的结构示意图;
[0041] 图 13是本发明实施例五提供的一字形永磁体、 导磁芯体及第三保护套的分解示 意图;
[0042] 图 14是现有技术提供的电机的结构示意图。
本发明的实施方式
[0043] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0044] 需要说明的是, 当一个元件被描述为 "固定于"或"设置于 "另一个元件上吋, 它 可以直接在另一个元件上或者可能同吋存在居中元件。 当一个元件被描述为是" 连接"另一个元件, 它可以是直接连接另一个元件或者可能同吋存在居中元件。
[0045] 实施例一:
[0046] 如图 1〜7所示, 本发明实施例一提供的电机, 包括机壳 2、 设于机壳 2内的定子 3和穿设于定子 3内的转子 1, 定子 3包括定子铁芯 31和定子绕组 32, 定子铁芯 31 包括定子轭 311和若干个设于定子轭 311上的定子齿 312, 定子绕组 32绕设于定子 轭 311上, 转子 1包括转轴 11、 永磁体磁环 12和粘接件 (图未示) , 永磁体磁环 1 2为转子 1的永磁体结构, 转子 1的永磁体结构为一对极结构。 各定子齿 312围合 形成供永磁体磁环 12穿设的中心孔 301, 永磁体磁环 12通过粘接件粘接固定于转 轴 11上, 且永磁体磁环 12为一对极磁环。 本发明实施例, 将定子绕组 32绕设于 定子轭 311上, 这样, 一方面可省去定子绕组 32绕设于定子齿 312上需预留供绕 线头穿设的空间, 提高了定子铁芯 31的槽面积利用率, 且即使定子铁芯 31槽面 积减小的情况下也可以使用比齿绕线方式 (定子绕组 32绕设于定子齿 312上的方 式) 中线径更大的漆包线, 从而有效降低了定子绕组 32的电阻, 减小了定子绕 组 32的线圈损耗; 另一方面可改善定子绕组 32的散热系统, 从而使得定子绕组 3 2的温升减缓, 有效减小了定子绕组 32的发热量, 减缓了电阻随电机转矩和电流 增加上升的幅度, 进而利于使定子绕组 32的线圈损耗保持较低的水平, 利于提 高电机的效率, 并可减缓定子绕组 32绝缘部的老化速度, 延长了定子绕组 32绝 缘部的使用寿命。 同吋, 其通过粘接件将永磁体磁环 12直接粘接固定于转轴 11 上, 并利用永磁体磁环 12本身的材料强度抵抗转子 1高速转动吋产生的离心应力 , 从而使得永磁体磁环 12外不需设置由不导磁金属材料、 碳纤维、 玻璃丝带等 制成的保护环, 进而减小了定子 3与转子 1之间的有效气隙长度, 并简化了转子 1 的结构, 省去了保护环的安装工艺, 避免了由于安装保护环造成转子 1外径增大 且有因为安装原因造成质量分布不均匀的风险, 提高了转子 1高速转动的动态性 育 , 降低了转子 1的固有频率。 同吋, 由于其不需设计由硅钢片制成的转子铁芯 , 故, 其减少了转子 1的组成部件数量, 从而进一步简化了转子 1的结构和安装 工艺, 极大程度地提高了转子 1的生产效率。 此外, 本实施例, 将永磁体磁环 12 设为一对极磁环 (极对数为一的磁环) , 这样, 在相同的转速下可使磁场的转 换频率降至最低, 从而可将定子铁芯 31受磁场转换频率的影响降到最低水平; 同吋, 其还可使与磁场转换频率相对应的控制器电气幵通频率降低, 进而降低 了控制器的幵关损耗。
[0047] 优选地, 永磁体磁环 12为一体成型的烧结钕铁硼磁环。 永磁体磁环 12由烧结钕 铁硼材料制成, 这样, 利于保证永磁体磁环 12的磁性和材料强度。 当然了, 具 体应用中, 永磁体磁环 12也可为粘结磁环或者压制磁环。
[0048] 具体地, 如图 4、 图 5和图 7所示, 定子轭 311具有内侧壁 3111和外侧壁 3112, 各 定子齿 312沿圆周方向间隔凸设于内侧壁 3111上, 定子铁芯 31还包括若干个沿圆 周方向间隔凸设于外侧壁 3112上并延伸抵顶于机壳 2内壁上的支撑部 313。 具体 安装吋, 支撑部 313之远离外侧壁 3112的一端抵顶于机壳 2的内壁上, 这样, 可 实现定子 3在机壳 2内的支撑定位。 本实施例, 利用支撑部 313与机壳 2内壁进行 支撑定位, 这样, 在定子铁芯 31设计外径不变的前提下, 可使得定子轭 311朝向 定子铁芯 31的中心孔 301方向缩进, 从而在定子轭 311厚度不变的前提下, 可使 得定子轭 311的周长减小了, 有效减小了定子轭 311的质量 (重量) , 进而利于 降低电机的总质量; 相对于定子绕组 32绕设于定子齿 312上的方式, 本实施例的 定子齿 312和定子轭 311主磁路的长度均减短了, 从而利于进一步减小定子铁芯 3 1的损耗, 进而利于提高电机的效率。 具体地, 如图 4、 图 5和图 7所示, 任意两 相邻定子齿 312与内侧壁 3111之间都围合形成一个第一凹槽 302, 任意两相邻支 撑部 313与外侧壁 3112之间都围合形成一个第二凹槽 303, 定子绕组 32绕设于定 子轭 311上, 且定子绕组 32具有位于第一凹槽 302内的内侧绕组 321和位于第二凹 槽 303内的外侧绕组 322。 本实施例, 第一凹槽 302和第二凹槽 303可形成内外两 侧轴向散热风道, 且内侧绕组 321和外侧绕组 322分别处于内外两侧散热风道中 , 这样, 在电机运转吋, 散热风道中的空气流动可加速定子绕组 32的散热速度 , 从而使得定子绕组 32的温升减缓, 有效减小了定子绕组 32的发热量, 减缓了 电阻随电机转矩和电流增加上升的幅度, 进而利于使定子绕组 32的线圈损耗保 持较低的水平, 利于提高电机的效率, 并可减缓定子绕组 32绝缘部的老化速度 , 延长了定子绕组 32绝缘部的使用寿命。
[0049] 优选地, 如图 4、 图 5和图 7所示, 支撑部 313的设置数量与定子齿 312的设置数 量相同, 且各支撑部 313与各定子齿 312分别两两相对设置, 这样, 利于保证定 子铁芯 31的结构对称性和协调性。 当然了, 具体应用中, 支撑部 313的设置数量 也可少于定子齿 312的设置数量, 如: 支撑部 313的设置数量可为定子齿 312的设 置数量的一半, 且各支撑部 313与一半数量的定子齿 312分别两两相对设置。
[0050] 具体地, 如图 4、 图 5和图 7所示, 支撑部 313沿外环壁 3112以等周向宽度 (周向 宽度为沿圆周方向延伸的宽度) 的形式朝背对定子齿 312的方向延伸设置, 即支 撑部 313为等周向宽度的部件; 定子齿 312沿内环壁 3111以等周向宽度的形式朝 中心孔 301的方向延伸设置, 即定子齿 312为等周向宽度的部件。 本实施例, 支 撑部 313和定子齿 312均设为等周向宽度的部件, 这样, 可利于进一步进化定子 铁芯 31的结构。
[0051] 优选地, 定子铁芯 31由至少两个分割体 310沿圆周方向拼接围合而成, 这样, 在具体应用中, 可先分别在各分割体 310上进行集中绕线, 再将各分割体 310焊 接连接形成一个整体定子铁芯 31, 从而利于避免由于定子铁芯 31内径小而造成 定子绕组 32绕制吋受空间限制的情形发生, 进而了利于定子绕组 32采用机器进 行自动化绕制。 分割体 310的具体结构根据其围合成定子铁芯 31所需数量的不同 而不同。
[0052] 更为优选地, 如图 5、 图 6和图 7所示, 本实施例中, 定子铁芯 31由两个分割体 3 10拼接围合而成, 两分割体 310为定子铁芯 31沿两相对的定子齿 312且沿其一直 径方向对半分成, 这样, 两个分割体 310为相互对称的结构, 利于简化定子绕组 32在各分割体 310上绕制的工艺。 本实施例, 每个分割体 310包括半圆周轭部 310 1, 且半圆周轭部 3101的两端均具有分割成的半齿 3102和半支撑部 3103, 分割成 的半支撑部 3103上均设有焊接槽 3104。 具体生产中, 将两个分割体 310以半圆周 轭部 3101端面对接的方式放置, 并通过在焊接槽 3104处进行焊接, 可将两个分 割体 310焊接成为一个整体定子铁芯 31。
[0053] 具体地, 定子铁芯 31由电工纯铁或者硅钢片或者绝缘铁粉或者铁剂非晶制成。
[0054] 优选地, 如图 4〜6所示, 定子绕组 32可为三相绕组, 即定子绕组 32包括三组相 性不同的绕组, 电机三相运行; 定子齿 312、 第一凹槽 302和第二凹槽 303均设有 六个。 或者, 如图 7所示, 定子绕组 32也可为两相绕组, 即定子绕组 32包括两组 相性不同的绕组, 电机两相运行; 定子齿 312、 第一凹槽 302和第二凹槽 303均设 有四个。 当然了, 在满足设计要求的前提下, 定子绕组 32的相数、 定子齿 312的 数量、 第一凹槽 302的数量和第二凹槽 303的数量也可设为其它数值。
[0055] 优选地, 粘接件为胶水, 其粘结可靠性佳, 易于安装。
[0056] 具体地, 如图 1和图 3所示, 永磁体磁环 12贯穿设有轴向通孔 121, 轴向通孔 121 与转轴 11间隙配合设置, 胶水设于轴向通孔 121内壁与转轴 11外壁之间。 具体安 装吋, 应将胶水均匀涂抹于轴向通孔 121与转轴 11的间隙之间, 并可采用加热或 久置的方式使胶水固化于轴向通孔 121与转轴 11之间。 经过处理之后, 永磁体磁 环 12可利用胶水的粘结作用和自身材料的抗拉能力, 在无外加保护环的情形下 , 在一定范围内有效抵抗转子 1高速转动吋产生的离心应力, 进而有效保证了转 子 1高速转动的安全可靠性。 优选地, 本实施例提供的电机为高速小型电机 (如 转速大于 25000rpm的小型电机) , 这样, 其取得的简化电机结构、 简化电机生 产工艺、 减小定子 3与转子 1之间的有效气隙长度、 提高电机效率的效果更加显 著。
[0057] 具体地, 本实施例提供的电机可应用于吸尘器、 离心机、 风机、 电动工具、 小 型发电机、 主轴电机中。
[0058] 实施例二:
[0059] 如图 8和图 9所示, 本实施例提供的电机, 与实施例一的主要区别在于, 转子 1 的设置方式不同, 具体体现在, 本实施例中的永磁体结构为瓦片状永磁体拼合 结构 13, 瓦片状永磁体拼合结构 13由两个极性不同的瓦片状永磁体 131构成, 即 瓦片状永磁体拼合结构 13由极性为 N极的瓦片状永磁体 131与由极性为 S极的瓦片 状永磁体 131拼接形成, 瓦片状永磁体 131为一体成型结构; 或者, 瓦片状永磁 体 131由若干个极性相同的永磁体拼接而成。 当瓦片状永磁体 131为一体成型结 构吋, 其加工过程简单、 方便; 而当瓦片状永磁体 131为由若干个极性相同的永 磁体拼接而成吋, 其可降低转子 1涡流损耗。 采用本实施例中转子 1的设置方式 , 也可达到简化转子 1结构、 简化组装工艺、 提高转子 1高速转动的动态性能、 利于电机高速运行的目的。
[0060] 优选地, 转子 1还包括穿设于瓦片状永磁体拼合结构 13内的转轴 11和套设于瓦 片状永磁体拼合结构 13外的第一保护套 16。 此处, 第一保护套 16的设置, 利于 提高转子 1的结构强度, 从而利于转子 1高速运行的稳定可靠性。
[0061] 优选地, 瓦片状永磁体拼合结构 13通过胶水等粘接于转轴 11上, 其安装方便、 紧固可靠, 利于转子 1的高速运行。
[0062] 除了上述转子 1的设置方式不同之外, 本实施例提供的电机的其它结构设置原 理与实施例一相同, 在此不再详述。
[0063] 实施例三:
[0064] 如图 10所示, 本实施例提供的电机, 与实施例一的主要区别在于, 转子 1的设 置方式不同, 具体体现在, 本实施例中的永磁体结构为圆柱体永磁体结构 14, 圆柱体永磁体结构 14具体为实心的圆柱状永磁体, 转子 1还包括套设于圆柱体永 磁体结构 14外的第二保护套 17。 圆柱体永磁体结构 14的结构非常简单、 加工非 常方便, 圆柱体永磁体结构 14本身的结构强度高, 同吋还外加第二保护套 17, 这样, 利于实现转子 1的极高速运行。 此外, 圆柱体永磁体结构 14与第二保护套 17组装形成一个整体组件后, 利于以该整体组件进行一体化安装。 采用本实施 例中转子 1的设置方式, 也可达到简化转子 1结构、 简化组装工艺、 提高转子 1高 速转动的动态性能、 利于电机高速运行的目的。
[0065] 优选地, 转子 1还包括转轴 11, 第二保护套 17为转轴 11的局部结构, 即第二保 护套 17通过在转轴 11的一部分轴段内侧设置内孔形成。 本实施例采用转轴 11形 成第二保护套 17, 利于进一步简化转子 1的结构和安装工艺。
[0066] 除了上述转子 1的设置方式不同之外, 本实施例提供的电机的其它结构设置原 理与实施例一相同, 在此不再详述。
[0067] 实施例四:
[0068] 如图 11和图 12所示, 本实施例提供的电机, 与实施例一的主要区别在于, 转子 1的设置方式不同, 具体体现在, 本实施例中的永磁体结构为由一字形永磁体 15 1与导磁芯体 152组合成的一字形内嵌式结构 15, 且导磁芯体 152为内侧具有安装 孔 1521的一体式导磁体结构, 一字形永磁体 151嵌入安装于安装孔 1521内。 导磁 芯体 152具体为由导磁材料制成。 一字形永磁体 151具体为厚度较薄的矩形块状 结构, 其加工非常简单、 方便, 且其可实现非常高的加工精度。 采用本实施例 中转子 1的设置方式, 也可达到简化转子 1结构、 简化组装工艺、 提高转子 1高速 转动的动态性能、 利于电机高速运行的目的。
[0069] 优选地, 转子 1还包括套设于一字形内嵌式结构 15外的第三保护套 18。 第三保 护套 18的设置, 利于进一步提高转子 1的结构简单, 利于实现转子 1的极高速运 行。
[0070] 优选地, 转子 1还包括转轴 11, 第三保护套 18为转轴 11的局部结构, 即第三保 护套 18通过在转轴 11的一部分轴段内侧设置内孔形成。 本实施例采用转轴 11形 成第三保护套 18, 利于进一步简化转子 1的结构和安装工艺。
[0071] 除了上述转子 1的设置方式不同之外, 本实施例提供的电机的其它结构设置原 理与实施例一相同, 在此不再详述。
[0072] 实施例五:
[0073] 如图 13所示, 本实施例提供的电机, 与实施例一的主要区别在于, 转子 1的设 置方式不同, 具体体现在, 本实施例中的永磁体结构为由一字形永磁体 151与导 磁芯体 152组合成的一字形内嵌式结构 15, 且导磁芯体 152由两个分割导磁体 152 2构成, 一字形永磁体 151嵌入安装于两分割导磁体 1522之间。 导磁芯体 152具体 为由导磁材料制成。 一字形永磁体 151具体为厚度较薄的矩形块状结构, 其加工 非常简单、 方便, 结构强度高, 且其可实现非常高的加工精度。 采用本实施例 中转子 1的设置方式, 也可达到简化转子 1结构、 简化组装工艺、 提高转子 1高速 转动的动态性能、 利于电机高速运行的目的。
[0074] 优选地, 转子 1还包括套设于一字形内嵌式结构 15外的第四保护套 19。 第四保 护套 19的设置, 利于进一步提高转子 1的结构简单, 利于实现转子 1的极高速运 行。
[0075] 优选地, 转子 1还包括转轴 11, 第四保护套 19为转轴 11的局部结构, 即第四保 护套 19通过在转轴 11的一部分轴段内侧设置内孔形成。 本实施例采用转轴 11形 成第四保护套 19, 利于进一步简化转子 1的结构和安装工艺。 除了上述转子 1的 设置方式不同之外, 本实施例提供的电机的其它结构设置原理与实施例一相同 , 在此不再详述。
[0076] 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换或改进等, 均应包含在本发明的保 护范围之内。

Claims

权利要求书
电机, 包括机壳、 设于所述机壳内的定子和穿设于所述定子内的转子 , 所述定子包括定子铁芯和定子绕组, 所述定子铁芯包括定子轭和若 干个设于所述定子轭上的定子齿, 其特征在于: 所述定子绕组绕设于 所述定子轭上, 所述转子包括永磁体结构, 所述永磁体结构为一对极 结构, 且所述永磁体结构为永磁体磁环或者瓦片状永磁体拼合结构或 者圆柱体永磁体结构或者由一字形永磁体与导磁芯体组合成的一字形 内嵌式结构。
如权利要求 1所述的电机, 其特征在于: 所述定子轭具有内侧壁和外 侧壁, 各所述定子齿沿圆周方向间隔凸设于所述内侧壁上, 所述定子 铁芯还包括若干个沿圆周方向间隔凸设于所述外侧壁上并延伸抵顶于 所述机壳内壁上的支撑部。
如权利要求 2所述的电机, 其特征在于: 所述支撑部的设置数量与所 述定子齿的设置数量相同, 且各所述支撑部与各所述定子齿分别两两 相对设置; 或者, 所述支撑部的设置数量为所述定子齿设置数量的一 半, 且各所述支撑部与一半数量的所述定子齿分别两两相对设置。 如权利要求 3所述的电机, 其特征在于: 所述支撑部沿所述外侧壁以 等周向宽度的形式朝背对所述定子齿的方向延伸。
如权利要求 1至 4任一项所述的电机, 其特征在于: 任意两相邻所述定 子齿与所述内侧壁之间都围合形成一个第一凹槽, 任意两相邻所述支 撑部与所述外侧壁之间都围合形成一个第二凹槽, 所述定子绕组环绕 于定子轭上, 位于所述第一凹槽内的内侧和位于所述第二凹槽内的外
[权利要求 6] 如权利要求 1所述的电机, 其特征在于: 所述定子绕组为三相绕组, 所述定子齿的数量为六; 或者, 所述定子绕组为两相绕组, 所述定子 齿的数量为四。
[权利要求 7] 如权利要求 1至 4任一项所述的电机, 其特征在于: 所述定子铁芯由至 少两个分割体沿圆周方向拼接围合而成。 如权利要求 7所述的电机, 其特征在于: 所述定子铁芯由两个分割体 拼接围合而成, 两所述分割体为所述定子铁芯沿两相对的所述定子齿 对半分成。
如权利要求 1至 4任一项所述的电机, 其特征在于: 所述转子还包括转 轴和粘接件, 所述永磁体磁环通过所述粘接件粘接固定于所述转轴上 如权利要求 9所述的电机, 其特征在于: 所述粘接件为胶水。
如权利要求 10所述的电机, 其特征在于: 所述永磁体磁环为一体成型 的烧结钕铁硼磁环或者粘结磁环或者压制磁环。
如权利要求 1至 4任一项所述的电机, 其特征在于: 所述瓦片状永磁体 拼合结构由两个极性不同的瓦片状永磁体构成, 所述瓦片状永磁体为 一体成型结构; 或者, 所述瓦片状永磁体由若干个极性相同的永磁体 拼接而成。
如权利要求 12所述的电机, 其特征在于: 所述转子还包括穿设于所述 瓦片状永磁体拼合结构内的转轴和套设于所述瓦片状永磁体拼合结构 外的第一保护套。
如权利要求 13所述的电机, 其特征在于: 所述瓦片状永磁体拼合结构 粘接于所述转轴上。
如权利要求 1至 4任一项所述的电机, 其特征在于: 所述转子还包括套 设于所述圆柱体永磁体结构外的第二保护套。
如权利要求 15所述的电机, 其特征在于: 所述转子还包括转轴, 所述 第二保护套为所述转轴的局部结构。
如权利要求 1至 4任一项所述的电机, 其特征在于: 所述导磁芯体为内 侧具有安装孔的一体式导磁体结构, 所述一字形永磁体嵌入安装于所 述安装孔内。
如权利要求 17所述的电机, 其特征在于: 所述转子还包括套设于所述 一字形内嵌式结构外的第三保护套。
如权利要求 18所述的电机, 其特征在于: 所述转子还包括转轴, 所述 第三保护套为所述转轴的局部结构。
[权利要求 20] 如权利要求 1至 4任一项所述的电机, 其特征在于: 所述导磁芯体由两 分割导磁体构成, 所述一字形永磁体嵌入安装于两所述分割导磁体之 间。
[权利要求 21] 如权利要求 20所述的电机, 其特征在于: 所述转子还包括套设于所述
一字形内嵌式结构外的第四保护套。
[权利要求 22] 如权利要求 21所述的电机, 其特征在于: 所述转子还包括转轴, 所述 第四保护套为所述转轴的局部结构。
PCT/CN2015/087666 2014-10-13 2015-08-20 电机 WO2016058446A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201420590253.4 2014-10-13
CN201420590253.4U CN204258576U (zh) 2014-10-13 2014-10-13 电机

Publications (1)

Publication Number Publication Date
WO2016058446A1 true WO2016058446A1 (zh) 2016-04-21

Family

ID=52962839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087666 WO2016058446A1 (zh) 2014-10-13 2015-08-20 电机

Country Status (2)

Country Link
CN (1) CN204258576U (zh)
WO (1) WO2016058446A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394921A (zh) * 2017-08-22 2017-11-24 广东美芝制冷设备有限公司 电机转子、永磁同步电机和压缩机
CN110556994A (zh) * 2019-09-16 2019-12-10 续客商城(深圳)有限公司 电机
CN114614637A (zh) * 2022-03-29 2022-06-10 江西泰豪军工集团有限公司 一种用于瓦形永磁块定位安装工装
CN114977576A (zh) * 2022-05-16 2022-08-30 南通和力磁材有限公司 一种磁环外套粘结钕铁硼磁环内转子机构

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204258576U (zh) * 2014-10-13 2015-04-08 广东威灵电机制造有限公司 电机
WO2019114252A1 (zh) * 2017-12-11 2019-06-20 广东威灵电机制造有限公司 电机定子和具有其的电机
CN107994691A (zh) * 2017-12-11 2018-05-04 广东威灵电机制造有限公司 电机定子和具有其的电机
CN107834721A (zh) * 2017-12-11 2018-03-23 广东威灵电机制造有限公司 电机定子和具有其的电机
WO2019114250A1 (zh) * 2017-12-11 2019-06-20 广东威灵电机制造有限公司 电机定子和具有其的电机
CN108050017A (zh) * 2017-12-28 2018-05-18 桂林电子科技大学 一体化垂直轴风力发电机
CN113497495A (zh) * 2020-04-01 2021-10-12 长城汽车股份有限公司 用于高速永磁电机的定子铁芯、电机和车辆
CN113890222A (zh) * 2021-10-12 2022-01-04 广州市昊志机电股份有限公司 电机定子、电机、电机定子绕线装置和电机定子制作方法
CN113991933B (zh) * 2021-10-19 2023-01-06 华中科技大学 一种紧凑型飞轮储能电池
WO2023108922A1 (zh) * 2021-12-17 2023-06-22 淮安威灵电机制造有限公司 定子结构、电机和电器设备
WO2023164866A1 (zh) * 2022-03-03 2023-09-07 罗灿 轭绕组多速单相交流电机
CN116388417A (zh) * 2023-02-10 2023-07-04 张勇 可变径向环绕绕组分布结构的无槽型超高速永磁电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178165A (ja) * 2007-01-16 2008-07-31 Tokyo Univ Of Science ベアリングレスモータ
CN102185401A (zh) * 2011-05-09 2011-09-14 北京交通大学 一种高速永磁同步电机转子
CN102299597A (zh) * 2011-09-05 2011-12-28 王誉燕 一种永磁两相无刷分定子的电机
CN203014620U (zh) * 2013-01-16 2013-06-19 珠海格力节能环保制冷技术研究中心有限公司 永磁电机
CN204258576U (zh) * 2014-10-13 2015-04-08 广东威灵电机制造有限公司 电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008178165A (ja) * 2007-01-16 2008-07-31 Tokyo Univ Of Science ベアリングレスモータ
CN102185401A (zh) * 2011-05-09 2011-09-14 北京交通大学 一种高速永磁同步电机转子
CN102299597A (zh) * 2011-09-05 2011-12-28 王誉燕 一种永磁两相无刷分定子的电机
CN203014620U (zh) * 2013-01-16 2013-06-19 珠海格力节能环保制冷技术研究中心有限公司 永磁电机
CN204258576U (zh) * 2014-10-13 2015-04-08 广东威灵电机制造有限公司 电机

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394921A (zh) * 2017-08-22 2017-11-24 广东美芝制冷设备有限公司 电机转子、永磁同步电机和压缩机
CN110556994A (zh) * 2019-09-16 2019-12-10 续客商城(深圳)有限公司 电机
CN114614637A (zh) * 2022-03-29 2022-06-10 江西泰豪军工集团有限公司 一种用于瓦形永磁块定位安装工装
CN114614637B (zh) * 2022-03-29 2023-05-16 江西泰豪军工集团有限公司 一种用于瓦形永磁块定位安装工装
CN114977576A (zh) * 2022-05-16 2022-08-30 南通和力磁材有限公司 一种磁环外套粘结钕铁硼磁环内转子机构
CN114977576B (zh) * 2022-05-16 2023-10-13 南通和力磁材有限公司 一种磁环外套粘结钕铁硼磁环内转子机构

Also Published As

Publication number Publication date
CN204258576U (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2016058446A1 (zh) 电机
KR101911978B1 (ko) 토크 리플을 감소시킨 스포크 영구 자석 머신 및 그 제조 방법
EP3038240B1 (en) Power generator
CN203135665U (zh) 盘式三相无刷永磁直流电机
JP2000156947A (ja) 磁石式電動機及び発電機
CN110061603B (zh) 一种转子磁路解耦型高速混合励磁同步电机
CN105071562A (zh) 一种定子永磁型场调制电机
KR101426169B1 (ko) 고 토크 제공구조를 갖는 매립형 영구자석 동기 전동기의 회전자
CN105703508A (zh) 一种磁钢内置式的盘式电机转子
WO2017177740A1 (zh) 一种永磁电动机
CN110838779B (zh) 一种混合励磁绕线转子及混合励磁绕线式同步电机
CN203522480U (zh) 新型切向磁钢混合励磁同步电机
JP2014093794A (ja) 回転電機
JP2013115899A (ja) 永久磁石式電動機の回転子及びその製造方法並びに永久磁石式電動機
CN104218758A (zh) 一种永磁无铁芯无刷电机
CN204103628U (zh) 一种混合励磁双气隙爪极电机
CN203193469U (zh) 无铁芯盘式直流无刷电机
JP2007143331A (ja) 永久磁石埋設型ロータ
CN102299599B (zh) 一种定子永磁体高速电机
US11728716B2 (en) Stator assembly and center disk spindle double-rotor motor
JP2016220434A (ja) 回転電機の固定子
CN110620484A (zh) 一种双气隙电动机
JP2014099990A (ja) 回転電機
TWI385899B (zh) 永磁式電機之轉子結構及其製造方法
JP5975759B2 (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850215

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850215

Country of ref document: EP

Kind code of ref document: A1