WO2019113882A1 - 直流无刷低速电机、风扇及磁铁与磁轭带组合的制作工艺 - Google Patents

直流无刷低速电机、风扇及磁铁与磁轭带组合的制作工艺 Download PDF

Info

Publication number
WO2019113882A1
WO2019113882A1 PCT/CN2017/116138 CN2017116138W WO2019113882A1 WO 2019113882 A1 WO2019113882 A1 WO 2019113882A1 CN 2017116138 W CN2017116138 W CN 2017116138W WO 2019113882 A1 WO2019113882 A1 WO 2019113882A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
motor
cover
magnet
Prior art date
Application number
PCT/CN2017/116138
Other languages
English (en)
French (fr)
Inventor
梁锐权
Original Assignee
广东永丰智威电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东永丰智威电气有限公司 filed Critical 广东永丰智威电气有限公司
Priority to CN201780003965.8A priority Critical patent/CN108401475A/zh
Priority to PCT/CN2017/116138 priority patent/WO2019113882A1/zh
Publication of WO2019113882A1 publication Critical patent/WO2019113882A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • F04D25/088Ceiling fans
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • H02K5/1737Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings radially supporting the rotor around a fixed spindle; radially supporting the rotor directly

Definitions

  • the invention relates to the field of electric machines, in particular to a direct current brushless low speed motor, a fan using a magneto motor and a manufacturing process of a combination of a magnet and a yoke belt.
  • the stator core of an electric motor are generally made of silicon steel sheets. Due to the electromagnetic physical characteristics and geometrical dimensions of the silicon steel sheet, it has a certain limitation in the high-frequency response. The highest frequency of use is within the internal frequency of 400HZ. Above this upper limit frequency, the iron loss of the silicon steel sheet causes the core to heat up, and the efficiency drops sharply. Even burned the enameled wire of the coil to damage the motor.
  • large-scale ceiling fans sold in domestic and foreign markets require variable frequency speed regulation. This shortcoming is heavy weight, large volume, difficult to install, and high energy consumption. For example, a large 7.2-meter-diameter ceiling fan consumes 1.5 kW of power, which consumes time and energy.
  • the invention provides a DC brushless low speed motor, which solves the problems in the prior art.
  • DC brushless low speed motor including:
  • a rotor the rotor being an outer rotor, sleeved outside the stator;
  • a housing covering the stator and the outside of the rotor, and being fixedly connected to the rotor by a fixing structure;
  • a motor shaft passing through a center of the housing and the stator, and a bearing is disposed between the housing and the motor shaft;
  • the rotor is a cylindrical tube structure, and the rotor comprises a rotor body and a magnet inside the rotor body, and a yoke band is adhered to the outer side wall of the magnet, and the yoke band is an amorphous alloy strip.
  • the magnet is composed of a plurality of annular arrays of hard magnetic blocks, and the hard magnetic blocks are provided with a slot plate, and the hard magnetic blocks are provided with a plurality of magnetic poles.
  • the stator includes a stator support, and an outer portion of the stator support is provided with a mounting position, a stator winding is disposed in the mounting position, and an amorphous wedge is fixed to an outer portion of the mounting position.
  • the stator winding includes a central soft magnetic core and a coil surrounding the soft magnetic core.
  • the stator cover is provided on two opposite sides of the stator, and the surface of the stator cover that is in contact with the housing is coated with lubricating oil.
  • the outer casing includes a motor upper cover and a motor lower cover, and the motor upper cover and the motor lower cover are fixed by plugging, bolting, and/or gluing, the motor upper cover and the stator
  • a thrust groove is formed in a middle portion of the cover plate, and a thrust ball bearing is mounted in the thrust groove, and the thrust ball bearing is sleeved on a stepped position of the motor shaft.
  • an angular contact ball bearing is interposed between the upper cover of the motor and the motor shaft, and an outer cover of the middle circular hole of the upper cover of the motor has an upper end cover, and the upper end cover is provided with a supply end.
  • the middle hole through which the motor shaft passes.
  • a lower end cover is disposed outside the central circular hole of the lower cover of the motor.
  • a fan including a brushless DC motor the fan includes a blade, and the blade is fixed to the motor cover by a blade mounting plate and a blade safety plate, and the blade has a tail end at a free end thereof.
  • the manufacturing process of the combination of the magnet and the yoke belt is as follows:
  • the invention provides a DC brushless low-speed motor, comprising: a stator with a coil inside; a rotor sleeved on the outside of the stator; and a casing covering the stator and the outside of the rotor through a fixed knot a motor is coupled to the rotor; a motor shaft passes through a center of the housing and the stator, and a bearing is disposed between the housing and the motor shaft; the rotor includes a rotor body and a magnet inside the rotor body, the magnet outer side A yoke band is adhered to the wall, and the yoke band is an amorphous alloy strip.
  • Amorphous motor has excellent performance and advantages, high efficiency and energy saving.
  • the iron loss of motor made by using this material as iron core is much smaller than that of traditional silicon steel core motor.
  • Amorphous alloy material The loss at high frequency is only 1/8 ⁇ 1/10 of ordinary silicon steel sheet. The higher the frequency, the more obvious the trend is. It is especially used in medium and high frequency applications, and the motor operating efficiency is higher than 6%, and the energy saving effect is remarkable.
  • the magnetic yoke of the rotor is replaced by an amorphous strip material, and the thickness of the original steel ring is reduced from 8.5 mm to 5 mm, which greatly reduces the weight of the rotor and saves steel.
  • the motor works more stably and achieves energy saving effect.
  • the stator core is made of amorphous material. It uses electromagnetic properties of amorphous alloy, has high magnetic permeability and small coercive force. It has a soft magnetic material with strong broadband characteristics, which improves the efficiency of the motor and reduces the volume. Achieve low carbon energy efficiency indicators.
  • the stator strip wedge is made of an amorphous strip material, which is characterized in that the leakage inductance of the magnetic pole of the iron core stator is reduced, thereby increasing the inductance of the coil. Reduce electric electromagnetic noise and vibration to achieve power saving effect.
  • a 400W brushless motor is taken as an example: an amorphous wedge can save 10% of electricity.
  • Figure 1 is a schematic cross-sectional view of the present invention
  • FIG. 2 is a schematic plan view of the present invention.
  • upper end cover 1 motor upper cover 2, angular contact ball bearing 3, thrust ball bearing 4, motor shaft 5, stator cover 6, stator 7, coil 8, amorphous wedge 9, magnet 10, stator support 11.
  • Rotor 12 motor lower cover 13, lower end cover 14, blade 15, blade safety plate 16, blade mounting plate 17, tail 18.
  • a DC brushless low-speed motor includes: a stator 7 having a coil inside; a rotor 12 having an outer rotor sleeved outside the stator; and a housing covering the stator and the rotor. Externally fixed to the rotor by a fixed structure; the motor shaft passes through the center of the housing and the stator, and a bearing is disposed between the housing and the motor shaft;
  • the rotor is a cylindrical tube structure, and the rotor comprises a rotor body and a magnet 10 inside the rotor body.
  • a yoke band is adhered to the outer side wall of the magnet 10, and the yoke band is an amorphous alloy strip.
  • the magnet is composed of a plurality of annular arrays of hard magnetic blocks, the hard magnetic blocks are provided with slot plates, and the hard magnetic blocks are provided with a plurality of magnetic poles.
  • the stator 7 includes a stator support 11.
  • the outer side of the stator support 11 is provided with a mounting position, and stator windings are arranged in the mounting position, and an amorphous slot wedge 9 is fixed on the outer side of the mounting position.
  • the stator winding includes a soft magnetic core in the middle and a coil 8 surrounding the outer core of the soft magnetic core.
  • a stator cover plate 6 is disposed on two opposite sides of the stator, and a surface of the stator cover plate 6 in contact with the casing is coated with lubricating oil.
  • the outer casing includes a motor upper cover 2 and a motor lower cover 13.
  • the motor upper cover 2 and the motor lower cover 13 are fixed by plugging, bolting and/or gluing, and a thrust groove is formed in the middle of the motor upper cover 2 and the stator cover 6 in the thrust groove.
  • a thrust ball bearing 4 is mounted, and the thrust ball bearing is sleeved on the stepped position of the motor shaft 5.
  • An angular contact ball bearing 3 is also interposed between the motor upper cover 2 and the motor shaft 5.
  • the upper cover of the middle circular hole of the motor upper cover has an upper end cover 1, and the upper end cover 1 is provided with an intermediate hole through which the power supply shaft passes.
  • a lower end cover 14 is disposed outside the circular hole in the middle of the motor lower cover 13.
  • the fan includes a blade 15, and the blade 15 is fixed to the motor cover by a blade mounting plate 17 and a blade safety plate 16, and the blade 15 is provided with a tail 18 at a free end thereof.
  • the manufacturing process of the combination of the magnet and the yoke belt is as follows:
  • the yoke tape is wound around the outside of the magnet; b.
  • the curing agent is applied to the outside of the yoke tape; c. After standing for 24 hours, it is placed in an oven at 70 ° C for 3 hours.
  • the object of the present invention is to provide a DC brushless low-speed motor with reasonable structure, light weight, reliable performance, high torque, low voltage and energy saving, without a reduction box, and a circuit control board controls the speed of the motor by controlling the current.
  • an amorphous alloy strip with high magnetic permeability and low carbon energy which replaces the magnetic yoke of the rotor, the purpose of which is to reduce the weight, increase the density of the permanent magnet of the rotor, and improve the energy saving effect.
  • the other is to use a high magnetic permeability amorphous band pair as a wedge, placed between the stator slots, which is characterized by: reducing the leakage inductance of the core magnetic pole, increasing the inductance of the wire package, and reducing electromagnetic noise.
  • a DC brushless low-speed motor is designed.
  • the structure includes a rotor and a stator.
  • the inside of the rotor is relatively positioned by a permanent magnet strip, and the ring is arranged on the inner wall of the magnetic coil.
  • the permanent magnet strip is provided with a plurality of magnetic poles.
  • the stator is made of an amorphous magnetic core.
  • the amorphous strip has a thickness of 26 ⁇ m to 30 ⁇ m. The amorphous strip is cut into squares to form a curing agent, and a plurality of slots are cut by wire, and then placed in a wrapped package.
  • a large ceiling fan structure including a motor housing and a fan blade.
  • the fan blade is mounted on the upper cover of the re-housing, the upper cover of the casing is provided with a power control panel, and the associated stator is fixed in the casing, and the rotor is dragged by the adjustment of the control circuit, and the fan blade rotates with the casing.
  • the housing structure comprises a magnetic yoke upper and lower cover, two bearings of the rotor, and the fan blades are connected to the upper cover through the metal plate.
  • the motor shaft is connected to the mounting boom.
  • a core (easy to disassemble) is first arranged in the outer diameter of the core in the order of the magnetic path, and then amorphous.
  • the strip is wound up, the thickness of the coil is matched according to the power ratio of the motor, and the coiling agent is formed by using a curing agent, and the curing agent is v853-16A/B nano-polymerized epoxy glue. After curing for 24 hours, it was placed in an oven to strengthen at 70 ° C and baked for 3 hours. Then remove the core.
  • the utility model is characterized in that: the magnetic yoke made of the amorphous strip material is used instead of the steel magnetic yoke, and the magnetic permeability is higher than 10 times, the heat dissipation effect is obviously improved by 2 times, and the weight is reduced by four points. one.
  • the above-mentioned amorphous strip wedge manufacturing process the width of the amorphous strip is selected according to the spacing between the stator poles, and the strip-shaped overlapping thickness is cut from 3 mm to 5 mm, and the steel sheet is clamped and placed in a vacuum annealing furnace for heat treatment.
  • the treatment temperature is 360 ° C, and the furnace is cooled for 40 minutes, and then set with a curing agent.
  • the curing agent is v853-16A/B nano-polymerized glue. After 24 hours, it is placed in an oven and heated at 70 ° C, and baked for 3 hours.
  • the cutting process is as follows: According to the height dimension of the motor stator stack thickness, the amorphous groove wedge is pressed under the protection of the coolant (emulsion) for cutting.
  • the cutting tool is a diamond wheel, and the grinding wheel rotates at 3,500 rpm.
  • the temperature at the time of cutting does not exceed 80 °C.
  • the cut amorphous wedge is encapsulated by a PVC heat shrinkable tube.
  • the motor magnetic enthalpy forming process using amorphous strip is a very important part.
  • the main amorphous alloy strip is sensitive to stress, which is extremely important in the winding process and the curing process.
  • the groove of the stator is made of amorphous strip material, which is characterized by: improving the magnetic permeability of the soft magnetic material and reducing the number of turns of the enameled wire. Saving steel, suitable for iron core loss range under wide-band operation, so that the motor temperature rise is low. Compare the above three-point machine efficiency. For example, according to the 7.2-meter large ceiling fan, the power consumption is 950W, which is 1.5KW higher than the current model with frequency conversion speed control box, and the energy-saving effect is obviously improved by 58%.
  • amorphous materials Compared with crystalline materials, amorphous materials have undergone significant changes in physical properties, chemical properties, and mechanical properties. For example, amorphous alloys with iron-based materials have high saturation magnetic induction and low efficiency. The characteristics of loss, but amorphous alloy materials also have the disadvantages that cannot be ignored: the hardness is too high and extremely brittle. Not easy to machine and cut, the thickness is only 0.03mm, the filling factor is low, and it is also very sensitive to mechanical stress. As a result, its application brings difficulties.
  • amorphous materials have a series of excellent properties, they have carried out systematic theoretical and applied research at home and abroad, and have a wide application space in many fields such as electronics, aerospace, aerospace, machinery, microelectronics, etc. It is applied to various transformers and inductors, but its application in the field of motors is still in its infancy. It is also due to the characteristics of amorphous materials that it has become a major issue at home and abroad.
  • amorphous materials Compared with traditional materials, amorphous materials have superior performance and advantages, high efficiency and energy saving. Due to the low energy consumption characteristics of amorphous alloy materials, the iron loss of the motor made by using this material as the iron core is lower than that of the traditional silicon steel core. The motor is much smaller, and the loss of amorphous alloy material at high frequency is only 1/8 ⁇ 1/10 of that of ordinary silicon steel. The higher the frequency, the more obvious the trend, so the efficiency of amorphous motor is higher than that of traditional motor. Especially for medium and high frequency applications, the motor operating efficiency can be higher than 6%, and the energy saving effect is very remarkable.
  • a DC brush low speed motor comprising a rotor and a stator, the rotor being an outer rotor comprising a combination of a yoke and a hard magnetic block.
  • a plurality of slot plates are disposed on the annular uniform hard magnetic block.
  • the stator is a combination of a coil and a soft magnetic core in the rotor.
  • the amorphous core is arranged annularly on the inner walls of the yoke and the hard magnetic block.
  • This patent requires a yoke made of an amorphous material in the rotor.
  • a yoke made of an amorphous material in the rotor.
  • the use of an amorphous yoke has several advantages over a conventional steel yoke.
  • 1 weight is the magnetic flux density of the steel yoke 2/3.2 which increases the hard yoke.
  • 3 can adjust the rotor size arbitrarily. 4 reduce the rotor temperature rise.
  • Amorphous yoke material and manufacturing process 1 amorphous yoke material characterized by: Ni6%V, 0.8% ⁇ , 2.4%Si, 6.1%, Fe84.7%.2 amorphous magnetic by weight
  • Yoke manufacturing process After the core of the coil is heat-treated and annealed, it is vacuum-cured. Curing molding spray insulation protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种直流无刷低转速电机,包括:定子(7),内部设有线圈(8);转子(12),套在定子(7)外部;壳体,罩于定子(7)和转子(12)的外部,通过固定结构与所述转子(12)连接固定;电机轴(5),穿过壳体和定子(7)的中心,所述壳体与电机轴(5)之间设有轴承;所述转子(12)包括转子本体和转子本体内部的磁铁(10),所述磁铁(10)外侧壁上粘有磁轭带,所述磁轭带为非晶态合金带材。非晶电机具有卓越性能和优势,高效节能,由于非晶合金材料的低能耗特性,使得采用该材料作为铁芯制造的电机铁耗损比传统硅钢片铁芯电机小得多,非晶态合金材料在高频下的损耗只相当于普通硅钢片1/8~1/10。而且频率越高趋势越明显,特别应用于中高频场合,电机运行效率高出6%以上,节能效果显著。

Description

直流无刷低速电机、风扇及磁铁与磁轭带组合的制作工艺 技术领域
本发明涉及电机领域,特别是指一种直流无刷低速电机,使用磁电机的风扇及磁铁和磁轭带组合的制作工艺。
背景技术
目前电动机的定子铁芯不论是交流或者说直流,以及功率大小,一般都是采用硅钢片来制造的。由于硅钢片的电磁物理特性和几何尺寸,使得它在高频响应具有一定的限制,最高使用频率为交变频率400HZ以内,超过这个上限频率,硅钢片的铁损造成铁芯发热,效率急剧下降,甚至烧坏线圈的漆包线,使电机损坏。目前国内外市场销售的大型吊扇,都需要变频调速。这缺点是重量重、体积大,安装难度大、耗能大,例如一台7.2米直径的大型吊扇需耗用功率伟1.5KW,耗时耗能。
发明内容
本发明提出一种直流无刷低速电机,解决了现有技术中的问题。
本发明的技术方案是这样实现的:
直流无刷低转速电机,包括:
定子,内部设有线圈;
转子,所述转子为外转子,套在所述定子外部;
壳体,罩于所述定子和所述转子的外部,通过固定结构与所述转子连接固定;
电机轴,穿过壳体和定子的中心,所述壳体与电机轴之间设有轴承;
所述转子为圆柱筒结构,所述转子包括转子本体和转子本体内部的磁铁,所述磁铁外侧壁上粘有磁轭带,所述磁轭带为非晶态合金带材。
作为本发明的优选方案,所述磁铁由若干硬磁块环形阵列组合而成,所述硬磁块上设置有槽板,所述硬磁块内设有若干条磁极。
作为本发明的优选方案,所述定子包括定子支座,所述定子支座外侧部设有安装位,所述安装位内设有定子绕组,所述安装位外侧部固定有非晶槽楔。
作为本发明的优选方案,所述定子绕组包括中部的软磁铁芯和围绕在所述软磁铁芯外部的线圈。
作为本发明的优选方案,所述定子的两个相对侧面上设有定子盖板,所述定子盖板与所述壳体相接触的面上涂有润滑油。
作为本发明的优选方案,所述外壳包括电机上盖和电机下盖,所述电机上盖和所述电机下盖通过插接、螺栓和/或胶合固定,所述电机上盖与所述定子盖板中部形成一推力槽,所述推力槽内安装有推力球轴承,所述推力球轴承套接在所述电机轴的台阶位上。
作为本发明的优选方案,所述电机上盖与所述电机轴之间还夹有角接触球轴承,所述电机上盖中部圆孔外侧罩有一上端盖,所述上端盖上设有供所述电机轴穿过的中间孔。
作为本发明的优选方案,所述电机下盖中部圆孔外侧设有下端盖。
包括直流无刷低速电机的风扇,风扇包括扇叶,所述扇叶通过扇叶安装板和扇叶安全板固定在电机上盖上,所述扇叶的自由端上设有尾翼。
磁铁与磁轭带组合的制作工艺,步骤如下:
a.将磁轭带卷绕到磁铁外侧;
b.向磁轭带外部涂固化剂;
c.静置24小时后,放入70℃的烘箱3小时。
有益效果:
本发明提出了一种直流无刷低转速电机,包括:定子,内部设有线圈;转子,套在所述定子外部;壳体,罩于所述定子和所述转子的外部,通过固定结 构与所述转子连接固定;电机轴,穿过壳体和定子的中心,所述壳体与电机轴之间设有轴承;所述转子包括转子本体和转子本体内部的磁铁,所述磁铁外侧壁上粘有磁轭带,所述磁轭带为非晶态合金带材。非晶电机具有卓越性能和优势,高效节能,由于非晶合金材料的低能耗特性,使得采用该材料作为铁芯制造的电机铁耗损比传统硅钢片铁芯电机小得多,非晶态合金材料在高频下的损耗只相当于普通硅钢片1/8~1/10.而且频率越高趋势月明显,特别应用于中高频场合,电机运行效率高出6%以上,节能效果显著。
转子的磁扼由钢铁圈结构改用非晶态带材来替代,原来钢圈厚度由8.5mm减至5mm,使转子重量大大减少,节约钢材。电机工作更稳定达到节能效果。
定子磁芯由非晶态材料制成,利用非晶态合金电磁物理特性,磁导率高,矫顽力小,具有一个宽频特性强的软磁材料,使电机效率提升,体积减少。达到低碳节能指标。
利用非晶态带材做成定子槽楔,其特征是:减少铁芯定子磁极的漏感,从而增加线圈的电感量。降低电动的电磁噪音及振动,达到节电效果。例如以一个400W无刷电机为例:放入非晶态槽楔可节电10%。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明剖面结构示意图;
图2为本发明俯视结构示意图。
图中,上端盖1,电机上盖2,角接触球轴承3,推力球轴承4,电机轴5,定子盖板6,定子7,线圈8,非晶槽楔9,磁铁10,定子支座11,转子12,电机下盖13,下端盖14,扇叶15,扇叶安全板16,扇叶安装板17,尾翼18。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1,图2所示,直流无刷低转速电机,包括:定子7,内部设有线圈;转子12,转子为外转子,套在所述定子外部;壳体,罩于定子和转子的外部,通过固定结构与转子连接固定;电机轴,穿过壳体和定子的中心,壳体与电机轴之间设有轴承;
转子为圆柱筒结构,转子包括转子本体和转子本体内部的磁铁10,磁铁10外侧壁上粘有磁轭带,磁轭带为非晶态合金带材。
磁铁由若干硬磁块环形阵列组合而成,硬磁块上设置有槽板,硬磁块内设有若干条磁极。
定子7包括定子支座11,定子支座11外侧部设有安装位,安装位内设有定子绕组,安装位外侧部固定有非晶槽楔9。
定子绕组包括中部的软磁铁芯和围绕在所述软磁铁芯外部的线圈8。
定子的两个相对侧面上设有定子盖板6,定子盖板6与壳体相接触的面上涂有润滑油。
外壳包括电机上盖2和电机下盖13,电机上盖2和电机下盖13通过插接、螺栓和/或胶合固定,电机上盖2与定子盖板6中部形成一推力槽,推力槽内安装有推力球轴承4,推力球轴承套接在电机轴5的台阶位上。
电机上盖2与电机轴5之间还夹有角接触球轴承3,电机上盖中部圆孔外侧罩有一上端盖1,上端盖1上设有供电机轴穿过的中间孔。
电机下盖13中部圆孔外侧设有下端盖14。
风扇包括扇叶15,扇叶15通过扇叶安装板17和扇叶安全板16固定在电机上盖上,扇叶15的自由端上设有尾翼18。
其中,磁铁与磁轭带组合的制作工艺,步骤如下:
a.将磁轭带卷绕到磁铁外侧;b.向磁轭带外部涂固化剂;c.静置24小时后,放入70℃的烘箱3小时。
实施例1
本发明的目的在提供一种结构合理、重量轻、性能可靠,转矩力度大、低电压节能的直流无刷低转速电机,不带减速箱,由一个电路控制板通过控制电流调节电机的转速,及一种导磁率高、低碳节能的非晶态合金带材,取代转子的磁扼钢圈,其目的是减少重量,增加转子永磁体的密度,提高节能效果。
另外一项是利用高导磁率的非晶态带对做成槽楔,安放在定子槽极之间,其特点是:减少铁芯磁极的漏感,增加线包的电感量,减少电磁噪音。
按此目的设计一种直流无刷低速电动机,结构包括转子和定子,转子的内部用永磁条相对定位,环形排布在磁扼圈内壁,永磁条置有若干条磁极。所述的定子是采用非晶态磁芯做成。非晶态带材厚度为26μm-30μm。非晶态带材剪切为方块叠起用固化剂定型,用线切割若干槽极,再放入绕好线包。
一种大型吊扇结构:包括电机壳体和扇叶。扇叶安装再壳体上盖板上,所述壳体上盖设置有电源控制板,所属的定子固定于壳体内,通过控制电路的调节,转子被拖动,扇叶随壳体转的。
壳体结构包括磁扼钢圈上下盖板,转子的两个轴承,扇叶通过五金板块连接于上盖板。电机轴杆且连接安装吊杆。
上述的磁扼制作工艺,按照电机外转子的图纸尺寸,做一个模芯(易拆卸)先将永磁条(钕铁硼)按磁路方向顺序排列在模芯的外径,然后把非晶态带材卷绕上去,卷绕的厚度按电机功率配比,卷绕好用固化剂成型,固化剂为v853-16A/B纳米聚合环氧胶。固化时间为24小时后放入烘箱加强70℃,烘3小时结束。然后将模芯拆除。其特征是:利用非晶态带材制成的磁扼代替钢铁磁扼,优点是磁导率高出10倍以上,散热效果明显提高2倍,重量减轻四分 之一。
上述非晶态带材槽楔制作工艺:按定子磁极之间的间距尺寸选用非晶态带材的宽度,裁剪成长形条状重叠厚度3mm-5mm,用钢板夹紧放入真空退火炉热处理,处理温度为360℃,保温40分钟随炉冷却,然后用固化剂定型,固化剂为v853-16A/B纳米聚合胶,24小时后放进烘箱加温70℃,烘3小时结束,切割工艺:按电机定子叠厚的高度尺寸,将非晶态槽楔条压在冷却液(乳化液)保护下进行切割。
切割工具为金刚砂轮片,砂轮片转速为3500rpm。切割时温度不超80℃。切割完的非晶态槽楔用PVC热缩管包封。
利用非晶态带材的电机磁扼成型工艺是十分重要环节,主要非晶态合金带材对应力比较敏感性,在绕制时和固化工艺极为重要。为实现达到理想的目标我们采取了非晶态带材的厚度在50μm-60μmd带材进行卷绕。以保证磁扼的强度和几何尺寸。可有效增加磁扼的叠片系数。
利用非晶态带材做成定子的槽楔,其特征是:提高软磁材料的导磁率,减少漆包线的线圈匝数。节约钢材,适用于宽频工作下铁芯铁损范围,使电机温升低。对比上述三点整机效率提高。例如按7.2米大型吊扇耗用功率950W,比现在同一款机型带变频调速箱需用1.5KW,节能效果明显提高58%。
实施例2
非晶态合金材料的特点
非晶态材料与晶态材料相比,在物理性能、化学性能和机械性能方面都发生了显著的变化,以铁元素为主的非晶态合金为例,它具有高饱和磁感应强效和低损耗的特点,但非晶态合金材料也有不可忽视的缺点:硬度过高且极其脆。不容易加工和切割,厚度仅为0.03mm,填充系数低,对机械应力也非常敏感, 从而使它的应用带来困难。
非晶态合金材料的应用
因为非晶态材料有一系列优良特性,国内外均对其开展了系统性的理论与应用研究,在电子、航空、航天、机械、微电子等众多领域中具备了广阔的应用空间,目前已大量应用于各种变压器及电感器产品,但在电机领域的应用还处于起步阶段,也正是由于非晶态材料的特性,将其应用于电机产品成为国内外的一大课题。
非晶态合金材料的电机优点
非晶态材料与传统材料相比,非晶电机具有卓越性能和优势,高效节能,由于非晶合金材料的低能耗特性,使得采用该材料作为铁芯制造的电机铁耗损比传统硅钢片铁芯电机小得多,非晶态合金材料在高频下的损耗只相当于普通硅钢片1/8~1/10.而且频率越高趋势越明显,所以非晶电机的效率比传统电机要高,特别应用于中高频场合,电机运行效率可以高出6%以上,节能效果非常显著。
一种直流元刷低速电机,包括转子和定子,转子是外转子,包括磁轭、硬磁块组合。环形均布硬磁块上设置有若干槽板。
定子是在转子内的线圈和软磁铁芯组合而成的。非晶体磁芯环形排布于磁轭和硬磁块的内壁。
本专利要求转子内的非晶态材料做成的磁轭,取代传统的钢磁轭,使用非晶态磁轭比传统的钢磁轭有几个优点。①重量是钢磁轭2/3.②增加硬轭的磁通密度。③可以任意调整转子尺寸。④降低转子温升。
非晶态磁轭的材料与制造工艺:①非晶态磁轭材料其特征:按重量百分比包括Ni6%V、0.8%β、2.4%Si、6.1%、Fe84.7%.②非晶态磁轭制造工艺:卷铁芯成壁后热处理退火后,经真空固化处理。固化成型喷绝缘漆保护。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 直流无刷低转速电机,包括:
    定子(7),内部设有线圈;
    转子(12),所述转子为外转子,套在所述定子外部;
    壳体,罩于所述定子和所述转子的外部,通过固定结构与所述转子连接固定;
    电机轴,穿过壳体和定子的中心,所述壳体与电机轴之间设有轴承;
    其特征在于,所述转子为圆柱筒结构,所述转子包括转子本体和设置于转子本体内部的磁铁(10),所述磁铁(10)外侧壁上粘有磁轭带,所述磁轭带为非晶态合金带材。
  2. 根据权利要求1所述的直流无刷低转速电机,其特征在于,所述磁铁由若干硬磁块环形阵列组合而成,所述硬磁块上设置有槽板,所述硬磁块内设有若干条磁极。
  3. 根据权利要求1所述的直流无刷低转速电机,其特征在于,所述定子(7)包括定子支座(11),所述定子支座(11)外侧部设有安装位,所述安装位内设有定子绕组,所述安装位外侧部固定有非晶槽楔(9)。
  4. 根据权利要求3所述的直流无刷低转速电机,其特征在于,所述定子绕组包括中部的软磁铁芯和围绕在所述软磁铁芯外部的线圈(8)。
  5. 根据权利要求1所述的直流无刷低速电机,其特征在于,所述定子的两个相对侧面上设有定子盖板(6),所述定子盖板(6)与所述壳体相接触的面上涂有润滑油。
  6. 根据权利要求5所述的直流无刷低速电机,其特征在于,所述外壳包括电机上盖(2)和电机下盖(13),所述电机上盖(2)和所述电机下盖(13)通过插接、螺栓和/或胶合固定,所述电机上盖(2)与所述定子盖板(6)中部形成一推力槽,所述推力槽内安装有推力球轴承(4),所述推力球轴承套接在所述电机轴(5)的台阶位上。
  7. 根据权利要求6所述的直流无刷低速电机,其特征在于,所述电机上盖(2)与所述电机轴(5)之间还夹有角接触球轴承(3),所述电机上盖中部圆孔外侧罩有一上端盖(1),所述上端盖(1)上设有供所述电机轴穿过的中间孔。
  8. 根据权利要求6所述的直流无刷低速电机,其特征在于,所述电机下盖(13)中部圆孔外侧设有下端盖(14)。
  9. 包括权利要求1~8任意一项所述的直流无刷低速电机的风扇,其特征在于,所述风扇包括扇叶(15),所述扇叶(15)通过扇叶安装板(17)和扇叶安全板(16)固定在电机上盖上,所述扇叶(15)的自由端上设有尾翼(18)。
  10. 一种权利要求1~8任意一项所述的磁铁与磁轭带组合的制作工艺,其特征在于,步骤如下:
    a.将磁轭带卷绕到磁铁外侧;
    b.向磁轭带外部涂固化剂;
    c.静置24小时后,放入70℃的烘箱3小时。
PCT/CN2017/116138 2017-12-14 2017-12-14 直流无刷低速电机、风扇及磁铁与磁轭带组合的制作工艺 WO2019113882A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780003965.8A CN108401475A (zh) 2017-12-14 2017-12-14 直流无刷低速电机、风扇及磁铁与磁轭带组合的制作工艺
PCT/CN2017/116138 WO2019113882A1 (zh) 2017-12-14 2017-12-14 直流无刷低速电机、风扇及磁铁与磁轭带组合的制作工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/116138 WO2019113882A1 (zh) 2017-12-14 2017-12-14 直流无刷低速电机、风扇及磁铁与磁轭带组合的制作工艺

Publications (1)

Publication Number Publication Date
WO2019113882A1 true WO2019113882A1 (zh) 2019-06-20

Family

ID=63095114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116138 WO2019113882A1 (zh) 2017-12-14 2017-12-14 直流无刷低速电机、风扇及磁铁与磁轭带组合的制作工艺

Country Status (2)

Country Link
CN (1) CN108401475A (zh)
WO (1) WO2019113882A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113505427A (zh) * 2021-07-30 2021-10-15 广西交科集团有限公司 具有上下两锈蚀球坑的吊杆应力集中系数的计算方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111577628A (zh) * 2019-02-19 2020-08-25 金士盾科技股份有限公司 使用无轴风扇的空气对流站

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200944555Y (zh) * 2006-09-27 2007-09-05 哈尔滨风电设备股份有限公司 大容量低转速永磁交流发电机
CN101908809A (zh) * 2009-06-08 2010-12-08 深圳华任兴科技有限公司 基于模块化方式构建定子磁路的外转子无刷直流电机
CN102111028A (zh) * 2009-12-28 2011-06-29 株式会社日立产机系统 轴向间隙型旋转电机以及其中所使用的转子
JP2011130522A (ja) * 2009-12-15 2011-06-30 Minebea Co Ltd 微小回転電気機械の磁気回路
CN102684440A (zh) * 2011-07-29 2012-09-19 华锐风电科技(集团)股份有限公司 低速永磁同步发电机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1056778A (zh) * 1991-04-06 1991-12-04 鞍山钢铁公司 电机节能改造新方法
JP2006101673A (ja) * 2004-09-30 2006-04-13 Hitachi Industrial Equipment Systems Co Ltd 永久磁石を備えた回転電機及びその固定子鉄心の歯部製造方法
CN207705902U (zh) * 2017-12-14 2018-08-07 广东永丰智威电气有限公司 直流无刷低转速电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200944555Y (zh) * 2006-09-27 2007-09-05 哈尔滨风电设备股份有限公司 大容量低转速永磁交流发电机
CN101908809A (zh) * 2009-06-08 2010-12-08 深圳华任兴科技有限公司 基于模块化方式构建定子磁路的外转子无刷直流电机
JP2011130522A (ja) * 2009-12-15 2011-06-30 Minebea Co Ltd 微小回転電気機械の磁気回路
CN102111028A (zh) * 2009-12-28 2011-06-29 株式会社日立产机系统 轴向间隙型旋转电机以及其中所使用的转子
CN102684440A (zh) * 2011-07-29 2012-09-19 华锐风电科技(集团)股份有限公司 低速永磁同步发电机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113505427A (zh) * 2021-07-30 2021-10-15 广西交科集团有限公司 具有上下两锈蚀球坑的吊杆应力集中系数的计算方法
CN113505427B (zh) * 2021-07-30 2022-05-03 广西交科集团有限公司 具有上下两锈蚀球坑的吊杆应力集中系数的计算方法

Also Published As

Publication number Publication date
CN108401475A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
CN109274240B (zh) 复合型非晶合金轴向磁通电机
AU2004247246B2 (en) Radial airgap, transverse flux motor
US20040251761A1 (en) Radial airgap, transverse flux motor
US10892654B2 (en) Axial magnetic field motor with grain-oriented silicon steel sheets
WO2012012925A1 (zh) 一种拥有径向磁路的无槽非晶铁合金电机及其制造方法
CN104795909B (zh) 一种空压机用高速电机电磁结构
CN109194082B (zh) 宽弱磁扩速低转子损耗的非晶合金轴向磁通电机
CN102315741A (zh) 一种采用模块化非晶合金定子的轴向永磁电机
KR101091436B1 (ko) 영구자석 모터
CN107420321A (zh) 一种永磁轴向磁通变频风机
Tang et al. Overview on amorphous alloy electrical machines and their key technologies
WO2019113882A1 (zh) 直流无刷低速电机、风扇及磁铁与磁轭带组合的制作工艺
CN202957727U (zh) 轴向型永磁铁同步电动机
CN107124084B (zh) 一种永磁直线同步电机非均匀混合永磁体励磁拓扑结构
CN106230212B (zh) 一种单相多极高频铝绕组电机
CN206195496U (zh) 转子以及永磁电机
Neethu et al. High performance axial flux permanent magnet synchronous motor for high speed applications
CN114421654B (zh) 一种横向磁通c型内嵌式定子永磁无刷风力发电机
CN109256879A (zh) 一种内外层永磁体错位的双定子电机
CN209375272U (zh) 一种内外层永磁体错位的双定子电机
CN207184183U (zh) 直流低速电机及其大型吊扇
CN202231590U (zh) 一种采用模块化非晶合金定子的轴向永磁电机
CN107528445A (zh) 一种混合励磁式涡流调速器
CN105915007A (zh) 一种磁阻式盘式电机
CN205123431U (zh) 一种定子、分装式永磁电动机及全封闭变频制冷压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17934764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17934764

Country of ref document: EP

Kind code of ref document: A1