WO2012012925A1 - 一种拥有径向磁路的无槽非晶铁合金电机及其制造方法 - Google Patents

一种拥有径向磁路的无槽非晶铁合金电机及其制造方法 Download PDF

Info

Publication number
WO2012012925A1
WO2012012925A1 PCT/CN2010/001969 CN2010001969W WO2012012925A1 WO 2012012925 A1 WO2012012925 A1 WO 2012012925A1 CN 2010001969 W CN2010001969 W CN 2010001969W WO 2012012925 A1 WO2012012925 A1 WO 2012012925A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
motor
core
permanent magnet
Prior art date
Application number
PCT/CN2010/001969
Other languages
English (en)
French (fr)
Inventor
石雷
谢伟
Original Assignee
深圳华任兴科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华任兴科技有限公司 filed Critical 深圳华任兴科技有限公司
Priority to JP2013520940A priority Critical patent/JP5507759B2/ja
Priority to EP10855153.2A priority patent/EP2587630B1/en
Priority to US13/811,790 priority patent/US20140319951A1/en
Publication of WO2012012925A1 publication Critical patent/WO2012012925A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/47Air-gap windings, i.e. iron-free windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/145Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having an annular armature coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49009Dynamoelectric machine
    • Y10T29/49012Rotor

Definitions

  • This invention relates to magnetic circuit components for the manufacture of electrical machines, and more particularly to stator or rotor bodies characterized by armature windings and featuring magnetic materials.
  • the amorphous iron alloy material is an alloy material having a long-range disordered structure formed by using metal atoms in an active state in a high-temperature molten state to be in an orderly arrangement of a crystal phase in a rapid cooling.
  • this amorphous iron alloy material has a series of advantages such as high magnetic permeability, large electric resistance, small eddy current loss and high frequency characteristics, but its processing characteristics are poor, it is difficult to punch into sheets and it is difficult to carry out large volume. Cutting processing.
  • the prior art motor includes a generator and an electric motor, including a casing, an end cover, a stator, a rotor and a motor shaft.
  • the stator is fixed in the casing, the rotor is fixed on the motor shaft and arranged in the stator, and an air gap is provided between the stator and the motor.
  • the shaft passes through the stator core and is rotatably mounted to the mounting position determined by the casing and the end cover.
  • the stator is composed of a stator core and a stator winding.
  • the stator core is generally made of a soft magnetic material such as a silicon steel sheet, and has an axial tooth groove on the inner side thereof, and the stator winding is embedded in the tooth groove.
  • the iron loss occupies a considerable proportion.
  • a prior art motor using an amorphous iron alloy material such as the Chinese patent application "New Type A Motor of Amorphous Material” disclosed in CN 1874113A, wherein the stator core is a cylindrical amorphous material shell and a silicon steel sheet stacked pole. Bonding forms a slot, a stator winding is embedded in the slot to form a stator, and an amorphous material is partially used in the stator core of the motor.
  • the rotor of the hybrid material core motor is still a traditional structure, and the stator core is made of two materials and two parts respectively, and the structure and the manufacturing process are complicated, and the cogging effect is given to the motor belt. The resulting electromagnetic noise and cogging losses have not been overcome.
  • the stator core In the slotless motor to overcome the defects caused by the cogging effect, such as the technology disclosed in CN 2 891450Y entitled "High-output permanent magnet brushless slotless motor", the stator core still uses the traditional The silicon steel sheet material is laminated, and the rotor is composed of a core of a conventional material and a permanent magnet magnetic steel wrapped around the core.
  • the inherent disadvantages of silicon steel sheets in terms of magnetic permeability, electrical resistance, eddy current loss and high frequency characteristics make it impossible to manufacture more efficient motors. [Summary of the Invention]
  • the technical problem to be solved by the present invention is to provide a motor having a slotless amorphous iron alloy radial magnetic circuit, which has low eddy current loss, excellent high frequency characteristics, and electrical 'magnetic', avoiding the above-mentioned deficiencies of the prior art.
  • the invention has the advantages of low noise, no cogging loss, high efficiency, high power density and high material utilization rate; and the invention also provides a manufacturing method for a radial magnetic circuit motor having a slotless amorphous iron alloy.
  • the invention may constitute an inner rotor motor or an outer rotor motor.
  • a motor having a slotless amorphous iron alloy radial magnetic circuit including a casing, an end cover, a stator, a rotor and a motor shaft; the end cover is mounted at the end of the casing and
  • the casing jointly determines the mounting position of the motor shaft, the stator is fixed in the casing, the rotor is fixed on the motor shaft and arranged in the stator, and has a radial air gap with the stator, and the motor shaft and the upper rotor thereof pass through the stator a content cavity rotatably mounted on the mounting position determined by the casing and the end cover;
  • the stator includes a stator core and a stator winding; the stator core is a cylinder wound from an amorphous iron alloy strip; the stator The winding is generally circular and fixed on the inner cylindrical surface of the stator core; the inner wall of the stator winding is also fixed with a metal reinforcing bushing having the same
  • the inner wall of the stator core may further be provided with a first insulating skeleton, the main body of the first insulating skeleton is cylindrical, and one end surface has an annular radial flange, and two identical first insulations
  • the skeletons are respectively inserted and abutted from the ends of the stator core cavity by their unflanged ends, and are fixed to the inner wall of the stator core, and the annular radial flanges of the end faces of the two first insulating skeletons are abutted Both ends of the stator core content cavity.
  • the stator winding inner cavity further has a circular second insulating frame supported and fixed therein, wherein the second insulating frame has the same axial length as the stator winding; the inner wall of the second insulating frame is The outer surface of the metal reinforcing bushing is fixed. 'The structure of each insulation skeleton can enhance the stability and insulation safety of the stator windings.
  • stator winding ' is fixed on the inner cylindrical surface of the stator core', and the stator winding may be directly fixed to the inner wall of the stator core; or the stator winding may be fixed to the inner wall of the first insulating frame, the first insulating skeleton It is fixed to the inner wall of the stator core.
  • the "fixing” includes adhesive bonding using an adhesive, and the adhesive for bonding fixation may be any adhesive that has a temperature not lower than the maximum temperature rise of the motor.
  • the motor having the slotless amorphous iron alloy radial magnetic circuit of the present invention is a brushless DC motor or an AC synchronous motor, including a DC or AC motor and a generator. It can also be an AC asynchronous motor.
  • the rotor of the present invention comprises a rotor core and a permanent magnet; the rotor core may be formed by laminating a conventional material such as silicon steel; or the rotor core is a hollow columnar structure made of an amorphous iron alloy material.
  • the radial outer surface is matched with the permanent magnet, and the permanent magnet is inlaid or sleeved on the outer surface of the rotor core; the inner wall of the rotor core is provided with a key groove for coupling with the motor shaft.
  • the permanent magnet is a neodymium iron boron high magnetic energy alloy, or a neodymium or barium ferrite.
  • the permanent magnet When the permanent magnet is a hollow cylinder, the permanent magnet is formed by forming a plurality of magnetic poles on the circumferential surface, the outer surface of the rotor core is cylindrical, and the outer diameter thereof is adapted to the inner diameter of the permanent magnet.
  • the magnet cylinder is directly sleeved on the rotor core.
  • the outer surface of the rotor core has the same number of axial four slots adapted to the cross-sectional shape of each permanent magnet, Permanent magnets are embedded in these axial grooves to be fixed.
  • the axial IHJ slot may be a dovetail slot, and correspondingly the permanent magnet has a dovetail structure.
  • the rotor of the present invention When the present invention is implemented on an AC asynchronous motor, the rotor of the present invention includes a rotor core and a squirrel cage on the surface thereof, the rotor core is set on the motor shaft, and the squirrel cage is fixed on the outer surface of the rotor core;
  • the rotor core may be formed by laminating a conventional material such as a silicon steel sheet; or the rotor core is a hollow columnar structure made of an amorphous iron alloy material, the radially outer surface thereof and the squirrel cage shaft Adapting to the shape of a copper strip or an aluminum strip, the copper strip or the aluminum strip is embedded on the outer surface of the rotor core, and is fixed by copper or aluminum rings at both ends; the inner wall of the rotor core is also opened a keyway for coupling to the motor shaft.
  • a motor having a slotless amorphous iron alloy radial magnetic circuit includes a stator, an outer rotor, and a motor support shaft for mounting; the outer rotor is disposed outside the stator, including the casing, Left and right end caps and permanent magnets, the permanent magnets are fixed on the inner wall of the casing, the left and right end caps are fixed to the left and right ends of the casing, and the outer rotor is rotatably mounted on the motor support shaft; the stator is fixed to the motor support shaft And comprising: a stator core and a stator winding; the stator core is a hollow columnar structure made of an amorphous iron alloy material; the stator winding is generally cylindrical, fixed on the outer cylindrical surface of the stator core, and the stator winding The radial outer surface has a metal reinforcing sleeve, and a radial air gap is formed between the outer cylindrical surface of the metal reinforcing sle
  • the rotor core of the present invention is produced by processing a profile blank obtained by winding a ribbon of an amorphous iron alloy.
  • the present invention can simultaneously employ a profile wound from an amorphous iron alloy strip as a radial magnetic circuit blank for the stator and rotor of the motor. Accordingly, for an inner rotor motor, the present invention also provides a method of manufacturing a radial magnetic circuit motor having a slotless amorphous iron alloy, comprising the steps of:
  • Stator fabrication first make a sub-winding, then shape it to form the shape and size required for the stator winding; and selectively perform one of the following steps:
  • the first insulating skeleton is fixed to the inner wall of the stator core, and the outer cylindrical surface of the stator winding is fixed to the inner wall of the first insulating frame to complete the stator production;
  • stator winding is directly fixed on the inner wall of the stator core to complete the stator fabrication
  • Rotor production a keyway connected to the motor shaft is machined on the inner wall of the hollow cylindrical profile blank wound by the amorphous iron alloy strip used as the rotor core, and selectively performs the following steps.
  • the permanent magnet is a hollow cylinder. When the permanent magnet is magnetized to form a multi-pole on the circumferential surface, since the outer surface of the profile of the rotor core is cylindrical, the rotor core is directly embedded into the permanent magnet. Internal fixation, assembly of the rotor;
  • the outer surface of the rotor core is opened with the same number of axial recesses adapted to the cross-sectional shape of each permanent magnet. a slot, in which each permanent magnet is embedded in these axial EI slots, and the rotor is assembled;
  • an axial groove is formed on the outer surface of the rotor core to match the shape of the squirrel cage axial copper strip or aluminum strip, and the copper or aluminum strip of the squirrel cage Inlaid on the outer surface of the rotor core, and fixedly welded by copper or aluminum rings at both ends;
  • stator is loaded into the casing and the rotor is set on the motor shaft to complete the production of the two components;
  • the present invention accordingly provides a method of manufacturing a radial magnetic circuit motor having a slotless amorphous iron alloy, comprising the steps of:
  • Stator fabrication The keyway for connecting the motor shaft to the inner surface of the stator core is machined, the sub-winding is wound, and then the shape and size required for the stator winding are formed by shaping; the stator winding: the outer cylindrical surface of the group The metal reinforcement sleeve is fixed; the stator winding is sleeved on the outer cylindrical surface of the stator core, the stator core and the motor shaft are fixedly connected by a key, and the motor support shaft is mounted with two bearings to complete the stator production;
  • Rotor production The permanent magnet is made into an even number of strips or made into a hollow cylinder.
  • the steel plate is rolled or directly used as a casing, and the inner wall of the casing is shaped to match the permanent magnet to be fixed. ;
  • the permanent magnet is embedded in the inner wall of the casing to fix the rotor;
  • the motor of the invention having the radial magnetic circuit of the slotless amorphous iron alloy and the manufacturing method thereof have the beneficial effects of:
  • the amorphous magnetic alloy material is used as the radial magnetic circuit material of the motor stator, which effectively reduces the volume of the motor, reduces the loss and improves the efficiency.
  • the stator adopts the toothless and grooveless design, eliminating the processing of the cogging. Difficulty and saving man-hours, greatly reducing the processing cost, eliminating the cogging effect of the motor and reducing the electromagnetic noise, improving the running performance of the motor;
  • FIG. 1 is a schematic longitudinal sectional view showing the overall structure of a preferred embodiment of a motor having a radial magnetic circuit of a slotless amorphous iron alloy and a method of manufacturing the same;
  • Figure 2 is a schematic longitudinal sectional view showing the structure of the rotor 3 of the preferred embodiment
  • Figure 3 is a cross-sectional view showing the assembly of the rotor core 31 and the permanent magnet 32 of the preferred embodiment;
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • Figure 5 is a schematic longitudinal sectional view of the rotor core 31 of the preferred embodiment
  • Figure 6 is a left side view of Figure 5;
  • Figure 7 is a schematic cross-sectional view showing the overall structure of the stator 2 of the preferred embodiment
  • Figure 8 is a left side elevational cross-sectional view of Figure 7;
  • Figure 9 is a schematic cross-sectional view of the stator core 21
  • Figure 10 is a left side elevational cross-sectional view of Figure 9;
  • Figure 11 is a longitudinal sectional view showing the structure of the first insulating bobbin 23;
  • Figure 12 is a longitudinal sectional view showing the structure of the stator core 21 after bonding the two first insulating frames 23;
  • Figure 13 is a longitudinal sectional view showing the structure of the second insulating frame 24;
  • Figure 14 is a schematic longitudinal cross-sectional view showing the overall structure of an embodiment of the outer rotor motor of the present invention.
  • the names of the labels in each figure are as follows:
  • 1 is the casing
  • 2 is the stator
  • 3 is the rotor
  • 4 is the end cover
  • 5 is the air gap
  • 6 is the motor shaft
  • 7 is the bearing
  • 8 is the snap ring
  • 21 is the stator core
  • 22 is a stator winding
  • 23 is a first insulating bobbin
  • 231 is a (circular) main body
  • 232 is an annular radial flange
  • 24 is a second insulating bobbin
  • 25 is a metal reinforcing bush
  • in the configuration of the rotor 3 31 is a rotor core
  • 32 is a permanent magnet
  • 311 is an axial groove
  • 312 is a key groove
  • 2' is the stator
  • 3' is the outer rotor
  • 5' is the air gap
  • 6' is the motor support shaft
  • 7' is the bearing
  • in the structure of the stator 2' 2 is The stator core
  • 22' is a stator winding
  • 25' is a metal reinforcing sleeve
  • in the structure of the rotor 3' 31' is a casing
  • 32' is a permanent magnet
  • 33' is a right end cover
  • 34' is a left end cover.
  • a motor having a slotless amorphous iron alloy radial magnetic circuit includes a casing 1, an end cover 4, a stator 2, a rotor 3, and a motor shaft 6; 4 is installed at the end of the casing 1 and together with the casing 1 to determine the installation position of the motor shaft 6, the stator 2 is fixed in the casing 1, the rotor 3 is fixed on the motor shaft 6 and arranged in the stator 2, and the stator There is a radial air gap 5 between the motor shaft 6 and its upper rotor 3 passing through the inner cavity of the stator 2, and is rotatably mounted on the mounting position determined by the casing 1 and the end cover 4, such as by means of two bearings 7
  • the motor shaft 6 can be rotatably mounted on the mounting position determined by the casing 1 and the end cover 4; the stator 2 includes the
  • stator winding 22 is directly fixed to the inner wall of the stator core 21, and the metal reinforcing bushing 25 is directly fixed to the inner wall of the stator winding 22.
  • the inner wall of the stator core 21 is provided with a first insulating bobbin 23, and the main body 231 of the first insulating bobbin 23 is cylindrical.
  • One end surface has an annular radial flange 232, and two identical first insulating frames 23 are respectively embedded with the ends of the stator core 21 from the ends of the stator core 21 with their unflanged ends, and the inner wall of the stator core 21
  • the annular radial flanges 232 of the end faces of the two first insulating bobbins 23 are fixed to both ends of the inner cavity of the stator core 21.
  • the second winding frame 24 having a circular shape in the inner cavity of the stator winding 22 is supported and fixed therein.
  • the axial length of the second insulating frame 24 is the same as that of the stator winding 22; the inner wall and the metal of the second insulating frame 24 are The outer cylindrical surface of the reinforcing bushing 25 is fixed.
  • the motor having the slotless amorphous iron alloy radial magnetic circuit is a brushless DC motor or an AC synchronous motor, including a DC or AC motor and a generator. It can also be an AC asynchronous motor. Referring to FIG. 1 and FIG.
  • the rotor 3 of the present invention includes a rotor core 31 and a permanent magnet 32; the rotor core 31 may be formed by laminating a conventional material such as silicon steel; or according to the technical solution of the present invention,
  • the rotor core 31 is a hollow columnar structure made of an amorphous iron alloy material, the radially outer surface of which is adapted to the permanent magnet 32, and the permanent magnet 32 is inlaid or sleeved on the outer surface of the rotor core 31; the rotor core A key groove 312 for coupling to the motor shaft 6 is formed in the inner wall of the opening 31.
  • the permanent magnet 32 is a 4 female iron boron high magnetic energy alloy. Or it is strontium or barium ferrite.
  • the permanent magnet 32 is a hollow cylinder and is magnetized to form a permanent magnet having a plurality of magnetic poles on the circumferential surface
  • the outer surface of the profile blank of the rotor core 31 is cylindrical, its outer diameter and the permanent magnet
  • the inner diameter of the circular shape is adapted to directly fix the permanent magnet to the rotor core 31.
  • the outer surface of the rotor core 31 has the same number of cross-sectional shapes of the permanent magnets 32.
  • the adapted axial grooves 311 are inlaid into the axial grooves 311 by the permanent magnets 32.
  • the axial groove 311 is a dovetail groove, and correspondingly the permanent magnet 32 has a dovetail structure.
  • the rotor 3 of the present invention when the present invention is implemented on an AC asynchronous motor, the rotor 3 of the present invention includes a rotor core 31 and a squirrel cage on its surface, and the rotor core 31 is fitted over the motor shaft 6, and the squirrel cage is fixed to The outer surface of the rotor core 31; the rotor core 31 may be formed by laminating a conventional material such as silicon steel; or, according to the technical solution of the present invention, the rotor core 31 is a hollow column made of an amorphous iron alloy material.
  • a key groove 312 for coupling to the motor shaft 6 is also formed on the inner wall of the rotor core 31.
  • a motor having a slotless amorphous iron alloy radial magnetic circuit includes a stator 2', an outer rotor 3', and a motor support shaft 6' for mounting;
  • the rotor 3' is disposed outside the stator 2', and includes a casing 31', left and right end covers 34', 33' and permanent magnets 32'.
  • the permanent magnets 32' are fixed to the inner wall of the casing 31', and the left and right end covers 34'33' is fixed to the left and right ends of the casing 31', and the outer rotor 3' is rotatably mounted on the motor support shaft 6'.
  • the outer rotor 3' can be rotatably mounted by means of two bearings 7'.
  • the stator 2' is fixed on the motor support shaft 6', including the stator core 21' and the stator winding 22';
  • the stator core 21' is a hollow made of amorphous iron alloy material a columnar structure;
  • the stator winding 22' is generally circular and fixed on the outer cylindrical surface of the stator core 21', and the radially outer surface of the stator winding 22' has a metal reinforcing sleeve 25', which is outside the metal reinforcing sleeve 25'.
  • a cylindrical air gap 5' is formed between the cylindrical surface and the inner surface of the outer rotor 3'.
  • the electrically conductive strands drawn from the stator windings 22' can be led out of the casing 31' along the upper surface grooves or the in-shaft passages of the motor support shaft 6' in the prior art.
  • the permanent magnet 32' is inlaid on the inner surface of the casing 31' in an even strip shape, or is directly fixed to the inner surface of the casing 31' in a hollow cylindrical shape.
  • the casing 3 is rolled up with a steel plate or directly made of steel.
  • the "fixing" is adhesively bonded using an adhesive having a temperature resistance not lower than the temperature resistance level of the motor insulation class. Accordingly, the present invention also provides a method of manufacturing a radial magnetic circuit motor having a slotless amorphous iron alloy, comprising the following steps:
  • Stator 2 fabrication The sub-winding 22 is first wound and then shaped to form the desired shape and size of the stator winding 22; and one of the following steps is selectively performed:
  • the second insulating frame 24 is fixed to the inner cylindrical surface of the stator winding 22; then the metal reinforcing bushing 25 is fixed to the inner wall of the second insulating frame 24;
  • stator winding 22 does not use the second insulating bobbin 24, the inner cylindrical surface of the stator winding 22 is directly fixed to the metal reinforcing bushing 25;
  • first insulating bobbin 23 is included in the stator core 21, the first insulating bobbin 23 is fixed to the inner wall of the stator core 21, and the outer cylindrical surface of the stator winding 22 is fixed to the inner wall of the first insulating bobbin 23 to complete the stator fabrication. ;
  • stator winding 22 is directly fixed on the inner wall of the stator core 21 to complete the stator fabrication
  • a key groove 312 coupled to the motor shaft 6 is machined in the inner wall of the hollow cylindrical profile blank wound by the amorphous iron alloy strip used as the rotor core 31, and the following steps are selectively performed.
  • the permanent magnet 32 is a hollow cylindrical shape and is magnetized to form a permanent magnet having a plurality of magnetic poles on the circumferential surface, since the outer surface of the profile blank of the rotor core 31 is cylindrical, the rotor core 31 is directly embedded.
  • the permanent magnet 32 is fixed in a cylinder and assembled with a rotor; c2, when the permanent magnet 32 is a strip-shaped body of an even-numbered tile-like section or a strip-shaped body of a "V"-shaped section, the outer surface of the rotor core 31 is opened
  • the axial grooves 311 are matched with the cross-sectional shapes of the permanent magnets 32, and the permanent magnets 32 are embedded in the axial grooves 311 to fix the rotor;
  • a method for manufacturing a radial magnetic circuit motor having a slotless amorphous iron alloy includes the following steps:
  • the sub-winding 22 is formed by using a self-adhesive enameled wire on the winding mold, and then shaped by a shaping die and heated and shaped according to the self-adhesive enameled wire heating standard, thereby obtaining the circular shape and the required shape of the stator winding 22 and Dimensions; in the shaping die, the inner cylindrical surface of the stator winding 22 and the metal reinforcing bushing 25 are adhesively cured by adhesive bonding; then the outer cylindrical surface of the stator winding 22 is bonded with the inner cylindrical surface of the stator core 21 by an adhesive, and then The stator is produced by baking and setting at a temperature of 60 - 100 degrees Celsius and a time of 2 to 3 hours;
  • the inner wall of the hollow cylindrical profile wound by the amorphous iron alloy strip used as the rotor core 31 is machined with a key groove 312 coupled to the motor shaft 6, and selectively performs the following steps.
  • the permanent magnet 32 is a hollow cylindrical shape, and is magnetized to form a permanent magnet having a plurality of magnetic poles on the circumferential surface. Since the outer surface of the profile blank of the rotor core 31 is cylindrical, the outer diameter thereof is adapted to the inner diameter of the permanent magnet.
  • the rotor core 31 is directly embedded in the permanent magnet cylinder to be bonded and solidified, and the rotor is assembled, and baked at a temperature of 60-100 degrees Celsius for 2 to 3 hours;
  • the outer surface of the rotor core 31 is opened with the same number of axial grooves adapted to the cross-sectional shape of the permanent magnet 32. 311, the permanent magnets 32 are embedded in the axial grooves 311, the rotor is assembled, and the rotor is baked and set at a temperature of 60 - 100 degrees Celsius for 2 - 3 hours;
  • an axial groove is formed on the outer surface of the rotor core 31 to match the shape of the squirrel cage axial copper strip or aluminum strip, and the squirrel cage copper strip or aluminum The strip is embedded on the outer surface of the rotor core 31, and is fixedly welded by copper or aluminum rings at both ends, and the rotor is assembled;
  • stator 2 is loaded into the casing 1 and the rotor 3 is set on the motor shaft 6 to complete the production of the two components;
  • a method for manufacturing a radial magnetic circuit motor having a slotless amorphous iron alloy includes the following steps:
  • the sub-winding 22 is formed by using a self-adhesive enamelled wire on the winding mold, and then shaped by a shaping die and heated and shaped according to the self-adhesive enameled wire heating standard to obtain the cylindrical shape required for the stator winding 22 and Size; then the second insulating skeleton 24 is adhered with an adhesive in the shaping mold
  • the cylindrical surface is solidified, and then the metal reinforcing bushing 25 and the inner wall of the second insulating frame 24 are bonded and cured by an adhesive in the shaping die, and then two identical first insulating frames 23 are formed.
  • the ends of the stator core 21 are embedded and mutually abutted from one end of the stator core 21, and the inner wall of the stator core 21 is adhesively solidified by an adhesive.
  • the annular projections of the end faces of the two first insulating frames 23 are respectively formed.
  • stator winding assembly 22, 24, 25 made according to the above steps is adhesively bonded to the inner wall of the stator core 21 by the first insulating frame 23
  • the entire stator 2 is placed at a temperature of 60 ⁇ 100 degrees Celsius, and the time is 2 - 3 hours, the baking is finalized to complete the stator production;
  • a key groove 312 coupled to the motor shaft 6 is machined on the inner wall of the hollow cylindrical profile material wound by the amorphous iron alloy strip used as the rotor core 31, and one of the following steps is selectively performed :
  • the permanent magnet 32 is a hollow cylindrical shape and is magnetized to form a permanent magnet having a plurality of magnetic poles on a cylindrical surface
  • the outer surface of the profile blank of the rotor core 31 is cylindrical, its outer diameter and the inner diameter of the permanent magnet Adapting, the rotor core 31 is directly embedded in the permanent magnet body to be bonded and solidified, the rotor is assembled, and the rotor is baked and set at a temperature of 60 to 100 degrees Celsius for 2 to 3 hours;
  • the outer surface of the rotor core 31 is opened with the same number of axial grooves adapted to the cross-sectional shape of the permanent magnet 32. 311, the permanent magnets 32 are embedded in the axial grooves 311 to be bonded and solidified, the rotor is assembled, and the rotor is baked and set at a temperature of 60 to 100 degrees Celsius for 2 to 3 hours;
  • the present invention accordingly provides a method of manufacturing a radial magnetic external rotor motor having a slotless amorphous iron alloy, comprising the steps of:
  • Stator fabrication a keyway for coupling the motor shaft to the inner surface of the stator core 21', winding the sub-winding 22', and then shaping to form the shape and size required for the stator winding 22';
  • the outer cylindrical surface of the 22' is fixed to the metal reinforcing sleeve 25';
  • the stator winding 22' is sleeved on the outer cylindrical surface of the stator core 21', and the stator core 21' and the motor shaft 6' are fixed by a key joint, and
  • the motor support shaft 6' is equipped with two bearings 7' to complete the stator production;
  • the permanent magnet 32' is made into an even number of strips or made into a hollow cylindrical shape.
  • the steel plate is rolled or directly used as the casing 31', and the permanent magnet to be fixed is machined on the inner wall of the casing 3.
  • 32' matching shape; the permanent magnet 32' is embedded in the inner wall of the casing 31' to be fixed, and the rotor is assembled;
  • the amorphous iron alloy material used for the stator core 21 and the rotor core 31 is produced by using a nano-iron-based amorphous iron alloy strip produced by China Antai Co., Ltd. to produce profiles and profile blanks.
  • the adhesion between the components in the stator 2 and the adhesive used between the rotor core 31 and the permanent magnet 32 are temperature-resistant not lower than the insulation level of the motor.
  • Adhesive The embodiments of the present invention use the resin of ESP110 produced by Henkel Corporation and the high-strength, high-temperature resistant 200 degree, two-component 3034A and 3034B epoxy resin produced by Langbowan, and the bonding operation is related to the prior art. Adhesive requirements are carried out.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

说 明 书 一种拥有径向磁路的无槽非晶铁合金电机及其制造方法
【技术领域】
本发明涉及电机制造的磁路零部件, 尤其涉及以电枢绕组为特征和以磁性材 料为特征的定子或转子本体。
【背景技术】
非晶铁合金材料是利用高温熔融状态下处于活跃状态的金属原子在急骤冷 却中来不及按一定的晶态规律有序排列而形成的具有长程无序结构的合金材料。 这种非晶铁合金材料比起传统的硅钢材料具有导磁率高, 电阻大, 涡流损耗小和 高频特性优良等一系列优点, 但其加工特性较差, 难于冲压成片状和难于进行大 体积切削加工。 现有技术电机包括发电机和电动机, 包括机壳、 端盖、 定子、 转 子和电机轴, 定子固定于机壳中, 转子固定于电机轴上布置于定子内, 与定子间 有气隙, 电机轴穿过定子铁芯, 可转动地装于机壳与端盖确定的安装位置上。 定 子由定子铁芯和定子绕组组成, 定子铁芯一般釆用硅钢片等软磁性材料压叠制 成, 其内侧有轴向齿槽, 定子绕组嵌装于齿槽中。 在电机的损耗中, 铁损占据了 相当大的比例, 这些损耗都以发热形式消耗了不可再生能源, 同时增加了电机的 温升, 降低了电机的效率。 降低电机铁损是电机设计一大课题, 采用导磁率高, 电阻大, 涡流损耗小的新材料取代硅钢片是电机研发的一个方向。 现有技术使用 非晶铁合金材料的电机, 如公开号为 CN 1874113A的中国专利申请 《非晶材料的 新型电动机》, 其定子铁芯采用圆筒形的非晶材料外壳与硅钢片叠制极柱粘接形 成齿槽, 在齿槽内嵌装定子绕组制成定子, 局部地在电机定子铁芯中使用非晶材 料。 这种混合材料铁芯电机其转子仍然是传统结构, 其定子铁芯采用两种材料、 两个部件分别制作后粘合, 结构和制作过程复杂, 且因有齿槽, 齿槽效应给电机 带来的电磁噪音和齿槽损耗, 仍然未得到克服。 而在为克服齿槽效应带来的缺陷 的无槽电机中, 如公告号为 CN2891450Y名称为 《高出力永磁无刷无槽电动机》 所公开的技术, 其定子铁芯仍然沿用传统的硅钢片材料叠压制成, 其转子采用传 统材料的铁芯和套在铁芯周围的永磁磁钢组成。 硅钢片在导磁率, 电阻, 涡流损 耗和高频特性等方面的固有缺点使其不能制造出更高效率的电机。 【发明内容】
本发明要解决的技术问题在于避免上述现有技术的不足之处而提供一种拥 有无槽非晶铁合金径向磁路 ^的电机,该电机具有涡流损耗小、 高频特性优良、 电' 磁噪音低、 没有齿槽损耗、 效率高、 功率密度大和材料利用率高等优点;本发明 还提供了一种拥有无槽非晶铁合金径向磁路电机的制造方法。
本发明解决所述技术问题采用的技术方案是:
根据转子的不同形式, 本发明可以构成内转子电机或者外转子电机。
当本发明实施于内转子电机时, 提供一种拥有无槽非晶铁合金径向磁路的电 机, 包括机壳、 端盖、 定子、 转子和电机轴;端盖装于机壳端部并与机壳共同确 定电机轴的安装位置,定子固装于机壳内,转子固装于电机轴上且布置于定子内、 与定子之间有径向气隙, 电机轴及其上转子穿过定子内容腔, 可转动地装于机壳 与端盖确定的安装位置上;定子包括定子铁芯和定子绕组; 所述定子铁芯是由非 晶铁合金带材卷绕成的圆筒;所述定子绕组整体呈圆简形, 固定于定子铁芯内圆 柱面上;定子绕组内壁还固定有金属加强衬套, 该金属加强衬套的轴向长度与定 子绕组相同、 其内圆柱面与所述转子的外表面之间形成径向气隙。 在本发明中, 定子绕组可以直接固定于所述定子铁芯内壁, 金属加强衬套直 接固定于定子绕组内壁。
在本发明中, 所述定子铁芯内壁还可以装有第一绝缘骨架, 该第一绝缘骨架 的主体是圆筒形, 其一端面有环状径向凸缘, 两只相同的第一绝缘骨架分别以其 未设凸缘的一端从定子铁芯内容腔的两端嵌入互相对接, 并与定子铁芯内壁固 定, 所述两只第一绝缘骨架端面的环状径向凸缘抵紧在定子铁芯内容腔的两端 部。
在本发明中, 所述定子绕组内腔还有圆简形的第二绝缘骨架支撑并固定于其 中, 该第二绝缘骨架的轴向长度与定子绕组相同; 所述第二绝缘骨架的内壁与金 属加强衬套外圆柱面固定。 ' 各绝缘骨架的结构可以加强定子绕组的稳定性和绝缘安全。
因此, 本发明的所述定子绕组 '固定于定子铁芯内圆柱面上', 可以是定子 绕组直接与定子铁芯内壁固定; 亦可以是定子绕组固定于第一绝缘骨架内壁, 第 一绝缘骨架再固定于定子铁芯内壁。 所述 "固定" 包括使用胶粘剂粘合固定, 粘 合固定用的胶粘剂可以是任何一种使用温度不低于电机最大温升限度的胶粘剂。 本发明拥有无槽非晶铁合金径向磁路的电机是无刷直流电机或交流同步电 机, 包括直流或交流的电动机和发电机。 也还可以是交流异步电机。 本发明所述转子包括转子铁芯和永磁体;所述转子铁芯可采用常规材料如硅 钢冲片叠压制成; 或者是, 所述转子铁芯是由非晶铁合金材料制成的空心柱状结 构, 其径向外表面与永磁体相适配, 永磁体镶嵌或套于转子铁芯外表面固定;所 述转子铁芯的内孔壁上开有与所述电机轴连结用的键槽。 所述永磁体是钕铁硼高 磁能合金,或者是锶或钡铁氧体。
当永磁体是中空圆柱状, 经磁化为圆周面上形成多磁极的永磁体圆简肘, 转 子铁芯外表面是圆柱形、 其外径与该永磁体圆简内径相适配, 所述永磁体圆筒直 接套于转子铁芯上固定。
当永磁体是偶数瓦片状断面的条形体或 "V" 状断面的条形实体时, 转子铁 芯外表面开有相同数量的与各永磁体断面形状适配的轴向四槽, 将各永磁体镶嵌 入这些轴向凹槽中固定。 所述轴向 IHJ槽可以是燕尾槽, 相应地所述永磁体带有燕 尾结构。 当本发明在交流异步电机上实施时, 本发明所述转子则包括转子铁芯及其表 面的鼠笼, 转子铁芯套装于电机轴上, 所述鼠笼固装于转子铁芯外表面; 所述转 子铁芯可釆用常规材料如硅钢冲片叠压制成; 或者是, 所述转子铁芯是由非晶铁 合金材料制成的空心柱状结构,其径向外表面与所述鼠笼轴向铜条或铝条的形状 适配, 该铜条或铝条镶嵌于转子铁芯外表面, 借助两端部的铜或铝环固装;所述 转子铁芯的内孔壁上也开有与所述电机轴连结用的键槽。
当本发明实施于外转子电机时, 一种拥有无槽非晶铁合金径向磁路的电机, 包括定子、 外转子和用于安装的电机支承轴; 外转子布置于定子外、 包括机壳、 左、 右端盖和永磁体, 永磁体固定于机壳内壁上, 左、 右端盖固装于机壳左、 右 端部, 外转子可转动地安装于电机支承轴上; 定子固装于电机支承轴上、 包括定 子铁芯和定子绕组; 所述定子铁芯是由非晶铁合金材料制成的空心柱状结构;所 述定子绕组整体呈圆筒形, 固定于定子铁芯外圆柱面上, 定子绕组径向外表面有 金属加强套, 该金属加强套的外圆柱面与外转子的内表面之间形成径向气隙; 永 磁体呈偶数条状体镶嵌于机壳内表面, 或呈中空圆柱状直接固定于机壳内表面。 机壳用钢板卷成或者直接用钢管制成。 本发明定子铁芯使用的非晶铁合金材料是巿售的由非晶铁合金带材卷绕而 成的型材;
本发明转子铁芯使用巿售非晶铁合金带材卷绕成的型材坯料经加工制成。 本发明可同时采用由非晶铁合金带材卷绕成的型材作为电机定子和转子的 径向磁路坯料。 相应地, 对于内转子电机, 本发明还提供一种拥有无槽非晶铁合金径向磁路 电机的制造方法, 包括如下步骤:
a、 准备: 选用非晶铁合金带材卷绕成的中空圆柱状型材作为定子铁芯和转 子铁芯的坯料;
b、 定子制作: 先绕制定子绕组, 然后通过整形, 形成定子绕组所需要的形 状和尺寸; 并选择性地执行如下步骤之一:
bl、 如果定子绕组使用第二绝缘骨架, 则将第二绝缘骨架固定于定子绕 组内圆柱面上; 然后将金属加强衬套与第二绝缘骨架内壁固定; b2、 如果定子绕组不使用第二绝缘骨架, 则将定子绕组内圆柱面直接与 金属加强衬套固定;
另外, 还再选择性地执行如下步骤之一:
b3、 如果定子铁芯内有第一绝缘骨架, 则将第一绝缘骨架与定子铁芯内 壁固定, 并将定子绕组外圆柱面与第一绝缘骨架内壁固定, 完成定 子制作;
b4、 如果定子铁芯内不用第一绝缘骨架, 则将定子绕组直接固定于定子 铁芯内壁上, 完成定子制作;
c、 转子制作: 在用作转子铁芯的非晶铁合金带材卷绕成的中空圆柱状型材 坯料内孔壁上加工出与电机轴连结的键槽, 并选择性地执行如下步骤之 cl、 当永磁体是中空圆柱状, 经磁化为圆周面上形成多磁极的永磁体圆 简时, 因转子铁芯的型材坯料外表面是圆柱形, 则直接将转子铁芯 镶嵌入所述永磁体圆简内固定, 装配好转子;
c2、 当永磁体是偶数瓦片状断面的条形体或 "V" 状断面的条形实体时, 转子铁芯外表面开出同样数量与各永磁体断面形状适配的轴向凹 槽, 将各永磁体镶嵌入这些轴向 EI槽中固定, 装配好转子;
c3、 当转子是鼠笼式结构时, 在转子铁芯外表面加工出与所述鼠笼轴向 铜条或铝条的形状适配的轴向沟槽, 该鼠笼的铜条或铝条镶嵌于转 子铁芯外表面,借助两端部的铜或铝环固装焊接;
d、 按常规搡作, 将定子装入机壳及将转子套装于电机轴上,完成该两大部件 的制作;
e、 整机装配: 按常规操作, 完成电机整机装配。 对于外转子电机, 本发明相应地提供一种拥有无槽非晶铁合金径向磁路电机 的制造方法, 包括如下步骤:
a、 准备: 选用非晶铁合金带材卷绕成的中空圆柱状型材作为定子铁芯的坯 料;
b、 定子制作: 在定子铁芯内孔表面加工出与电机轴连结用的键槽、 绕制定 子绕组, 然后通过整形, 形成定子绕组所需要的形状和尺寸; 将定子绕: 组外圆柱面与金属加强套固定; 将定子绕组套于定子铁芯外圆柱面上固 定, 将定子铁芯与电机轴用键连结固装, 并将该电机支承轴装上两只轴 承, 完成定子制作;
c、 转子制作: 将永磁体做成偶数条状体或者做成中空圆柱状, 用钢板卷成 或者直接用钢管作为机壳, 在机壳内壁加工出与要固定的永磁体相适配 的形状; 将永磁体镶嵌入机壳内壁固定, 装配好转子;
d、 按常规操作, 完成电机整机装配。 同现有技术相比较, 本发明拥有无槽非晶铁合金径向磁路的电机及其制造方 法之有益效果在于:
1、 采用非晶铁合金材料作为电机定子的径向磁路材料, 有效地缩小了电机 体积、 降低了损耗和提高了效率;同时该定子又釆用无齿无槽设计,免除了齿槽的 加工难度和节约工时, 极大地降低了加工成本, 消除了电机的齿槽效应和降低了 电磁噪音, 提高了电机的运行性能;
2、 还可同时采用由非晶铁合金材料作为电机转子的径向磁路材料, 更加有 效地缩小了电机体积、 降低了损耗和提高了效率;
3、 涡流损耗小、 高频特性优良、 电磁噪音低、 效率高和功率密度大, 是一 种高效节能电机, 其机电效率可由传统电机的 95%提高至 97%或更高, 收到了意 想不到的效果, 容易取得商业上的成功。
【附图说明】
图 1是本发明 "拥有无槽非晶铁合金径向磁路的电机及其制造方法" 优选实 施例的整体结构正投影纵剖面示意图;
图 2是所述优选实施例转子 3的结构纵剖面示意图;
图 3是所述优选实施例转子铁芯 31与永磁体 32装配的横断面示意图; 图 4是图 3的 A-A剖视图;
图 5是所述优选实施例转子铁芯 31的纵剖面示意图;
图 6是图 5的左视图;
图 7是所述优选实施例定子 2的整体结构横断面示意图;
图 8是图 7的左视纵剖面示意图;
图 9是定子铁芯 21的横断面示意图;
图 10是图 9的左视纵剖面示意图;
图 11是第一绝缘骨架 23结构的纵剖面示意图;
图 12是粘接了两个第一绝缘骨架 23后的定子铁芯 21结构的纵剖面示意图; 图 13是第二绝缘骨架 24结构的纵剖面示意图;
图 14是本发明用于外转子电机的实施例整体结构正投影纵剖面示意图。 各图中各标号名称如下:
1为机壳、 2为定子、 3为转子、 4为端盖、 5为气隙、 6为电机轴、 7为轴承、 8为卡环; 在定子 2的构造中, 21为定子铁芯、 22为定子绕组、 23为第一绝缘 骨架、 231为 (圆简状) 主体、 232为环状径向凸缘、 24为第二绝缘骨架、 25为 金属加强衬套; 在转子 3的构造中, 31为转子铁芯、 32为永磁体、 311为轴向凹 槽、 312为键槽;
在图 14外转子电机整体结构示意图中:2'为定子、 3'为外转子、 5'为气隙、 6'为电机支承轴, 7'为轴承; 在定子 2'的结构中, 2 为定子铁芯、 22'为定子 绕组、 25'为金属加强套; 在转子 3'的结构中, 31 '为机壳、 32'为永磁体、 33' 为右端盖、 34'为左端盖。
【具体实施方式】
下面结合各附图对本发明作进一步详细说明。
根据转子的不同形式, 本发明可以构成内转子电机或者外转子电机。 当本发明实施于内转子电机时,参见图 1,一种拥有无槽非晶铁合金径向磁路 的电机, 包括机壳 1、 端盖 4、 定子 2、 转子 3和电机轴 6;端盖 4装于机壳 1端 部并与机壳 1共同确定电机轴 6的安装位置, 定子 2固装于机壳 1内, 转子 3固 装于电机轴 6上且布置于定子 2内、 与定子 2之间有径向气隙 5, 电机轴 6及其 上转子 3穿过定子 2内容腔, 可转动地装于机壳 1与端盖 4确定的安装位置上 , 如可借助两只轴承 7就可将电机轴 6可转动地装于机壳 1与端盖 4确定的安装位 置上;定子 2包括定子铁芯 21和定子绕组 22; 所述定子铁芯 21是由非晶铁合金 带材卷绕成的圆筒;所述定子绕组 22整体呈圆简形, 固定于定子铁芯 21 内圆柱 面上;定子绕组 22内壁还固定有金属加强衬套 25, 该金属加强衬套 25的轴向长 度与定子绕组 22相同、 其内圆柱面与所述转子 3的外表面之间形成径向气隙 5。
在本发明的第一实施例中, 定子绕组 22直接固定于所述定子铁芯 21内壁, 金属加强衬套 25直接固定于定子绕组 22内壁。
在本发明的第二实施例中, 参见图 1、 图 7至图 13,所述定子铁芯 21内壁装 有第一绝缘骨架 23, 该第一绝缘骨架 23的主体 231是圆筒形, 其一端面有环状 径向凸缘 232,两只相同的第一绝缘骨架 23分别以其未设凸缘的一端从定子铁芯 21 内容腔的两端嵌入互相对接, 并与定子铁芯 21 内壁固定, 所述两只第一绝缘 骨架 23端面的环状径向凸缘 232抵紧在定子铁芯 21内容腔的两端部。 所述定子 绕组 22内腔有圆简形的第二绝缘骨架 24支撑并固定于其中,该第二绝缘骨架 24 的轴向长度与定子绕组 22相同;所述第二绝缘骨架 24的内壁与金属加强衬套 25 外圆柱面固定。
在本发明上述各实施例中, 所述拥有无槽非晶铁合金径向磁路的电机是无刷 直流电机或交流同步电机, 包括直流或交流的电动机和发电机。 也还可以是交流 异步电机。 参见图 1和图 2,本发明所述转子 3包括转子铁芯 31和永磁体 32; 所述转子 铁芯 31 可采用常规材料如硅钢冲片叠压制成; 或者如本发明技术方案, 所述转 子铁芯 31是由非晶铁合金材料制成的空心柱状结构, 其径向外表面与永磁体 32 相适配, 永磁体 32镶嵌或套于转子铁芯 31外表面固定;所述转子铁芯 31的内孔 壁上开有与所述电机轴 6连结用的键槽 312。所述永磁体 32是 4女铁硼高磁能合金, 或者是锶或钡铁氧体。
参见图 2,当永磁体 32是中空圆柱状, 经磁化为圆周面上形成多磁极的永磁 体圆简时, 因转子铁芯 31 的型材坯料外表面是圆柱形、 其外径与该永磁体圆简 内径相适配, 直接将所述永磁体圆简套于转子铁芯 31上固定。
参见图 3至图 6,当永磁体 32是偶数瓦片状断面的条形体或 "V"状断面的条 形实体时, 转子铁芯 31外表面开有相同数量的与各永磁体 32断面形状适配的轴 向凹槽 311, 将各永磁体 32镶嵌入这些轴向凹槽 311中固定。 所述轴向凹槽 311 为燕尾槽, 相应地所述永磁体 32带有燕尾结构。
或者是, 当本发明在交流异步电机上实施时, 本发明所述转子 3包括转子铁 芯 31及其表面的鼠笼, 转子铁芯 31套装于电机轴 6上, 所述鼠笼固装于转子铁 芯 31外表面; 所述转子铁芯 31可釆用常规材料如硅钢冲片叠压制成; 或者如本 发明技术方案, 所述转子铁芯 31是由非晶铁合金材料制成的空心柱状结构,其径 向外表面与所述鼠笼轴向铜条或铝条的形状适配, 该铜条或铝条镶嵌于转子铁芯 31外表面,借助两端部的铜或铝环固装;所述转子铁芯 31的内孔壁上也开有与所 述电机轴 6连结用的键槽 312。
当本发明实施于外转子电机时, 参见图 14,一种拥有无槽非晶铁合金径向磁 路的电机, 包括定子 2'、 外转子 3'和用于安装的电机支承轴 6'; 外转子 3 '布置 于定子 2'外、 包括机壳 31'、 左、 右端盖 34' 、 33'和永磁体 32', 永磁体 32'固 定于机壳 31'内壁上, 左、 右端盖 34' 、 33'固装于机壳 31'左、 右端部, 外转子 3'可转动地安装于电机支承轴 6'上,如可借助两只轴承 7'就可将外转子 3'可转动 地安装于电机支承轴 6'上; 定子 2'固装于电机支承轴 6'上、 包括定子铁芯 21' 和定子绕组 22'; 所述定子铁芯 21'是由非晶铁合金材料制成的空心柱状结构;所 述定子绕组 22'整体呈圆简形, 固定于定子铁芯 21'外圆柱面上, 定子绕组 22' 径向外表面有金属加强套 25', 该金属加强套 25'的外圆柱面与外转子 3'的内表 面之间形成径向气隙 5'。 从定子绕组 22'引出的导电线束可按现有技术方式沿着 电机支承轴 6'上表面沟槽或是轴内通道引出至机壳 31'外。 永磁体 32'呈偶数条 状体镶嵌于机壳 31'内表面, 或呈中空圆柱状直接固定于机壳 31'内表面。 机壳 3 用钢板卷成或者直接用钢管制成。 在本发明的各实施例中, 所述 "固定" 是使用耐温不低于所述电机绝缘等级 耐温水平的胶粘剂粘合固定。 相应地, 本发明还提供一种拥有无槽非晶铁合金径向磁路电机的制造方法, 包括如下步骤:
a、 准备: 选用非晶铁合金带材卷绕成的中空圆柱状型材作为定子铁芯 21和 转子铁芯 31的坯料;
b、 定子 2制作: 先绕制定子绕组 22, 然后通过整形, 形成定子绕组 22所需 要的形状和尺寸; 并选择性地执行如下步骤之一:
bl、 如果定子绕组 22使用第二绝缘骨架 24, 则将第二绝缘骨架 24固定 于定子绕组 22 内圆柱面上; 然后将金属加强衬套 25与第二绝缘骨 架 24内壁固定;
. b2、 如果定子绕组 22不使用第二绝缘骨架 24, 则将定子绕组 22内圆柱 面直接与金属加强衬套 25固定;
另外, 还再选择性地执行如下步骤之一:
b3、 如果定子铁芯 21内有第一绝缘骨架 23 , 则将第一绝缘骨架 23与定 子铁芯 21内壁固定, 并将定子绕组 22外圆柱面与第一绝缘骨架 23 内壁固定, 完成定子制作;
b4、 如果定子铁芯 21 内不用第一绝缘骨架 23 , 则将定子绕组 22直接固 定于定子铁芯 21内壁上, 完成定子制作;
c、 转子 3制作: 在用作转子铁芯 31的非晶铁合金带材卷绕成的中空圆柱状 型材坯料内孔壁上加工出与电机轴 6连结的键槽 312 ,并选择性地执行如 下步骤之一:
cl、 当永磁体 32是中空圆柱状, 经磁化为圆周面上形成多磁极的永磁体 圆简时, 因转子铁芯 31的型材坯料外表面是圆柱形, 则直接将转子 铁芯 31镶嵌入所述永磁体 32圆筒内固定, 装配好转子; c2、 当永磁体 32 是偶数瓦片状断面的条形体或 "V" 状断面的条形实体 时, 转子铁芯 31外表面开出同样数量与各永磁体 32断面形状适配 的轴向凹槽 311 , 将各永磁体 32镶嵌入这些轴向凹槽 311中固定, 装配好转子;
c3、 当转子是鼠笼式结构时, 在转子铁芯 31外表面加工出与所述鼠笼轴 向铜条或铝条的形状适配的轴向沟槽, 该鼠笼的铜条或铝条镶嵌于 转子铁芯 31外表面, 借助两端部的铜或铝环固装焊接; d、 按常规搡作, 将定子 2装入机壳 1及将转子 3套装于电机轴 6上,完成该 两大部件的制作; e、 整机装配: 按常规搡作, 完成电机整机装配。 作为本发明制造方法的另一优选实施例,一种拥有无槽非晶铁合金径向磁路 电机的制造方法, 包括如下步骤:
a、 准备: 选用尺寸分别符合要求的用非晶铁合金带材卷绕成的中空圆柱状 型材作为定子铁芯 21和转子铁芯 31的坯料;
b、 定子 2制作: 先在绕线模上使用自粘性漆包线绕制定子绕组 22, 然后通 过整形模整形并根据自粘性漆包线加温标准加温定型, 得到定子绕组 22 所需要的圆简形状和尺寸; 在整形模中将定子绕组 22内圆柱面与金属加 强衬套 25用胶粘剂粘合固化成型; 再用胶粘剂将定子绕组 22外圆柱面 与定子铁芯 21内圆柱面粘合固化, 然后在温度为 60 - 100摄氏度, 时间 为 2 ~ 3小时条件下烘烤定型完成定子制作;
c、 转子 3制作: 在用作转子铁芯 31的非晶铁合金带材卷绕成的中空圆柱状 型材内壁加工出与电机轴 6连结的键槽 312 ,并选择性地执行如下步骤之 cl、 当永磁体 32是中空圆柱状, 经磁化为圆周面上形成多磁极的永磁体 圆简时, 因转子铁芯 31的型材坯料外表面是圆柱形、 其外径与该永 磁体圆简内径适配, 将转子铁芯 31直接镶嵌入所述永磁体圆筒内粘 接固化, 装配好转子,将其在温度为 60 - 100 摄氏度, 时间为 2 - 3 小时条件下烘烤定型;
c2、 当永磁体 32 是偶数瓦片状断面的条形体或 "V" 状断面的条形实体 时, 转子铁芯 31外表面开出同样数量与永磁体 32断面形状适配的 轴向凹槽 311, 将各永磁体 32镶嵌入这些轴向凹槽 311中固定, 装 配好转子并将转子在温度为 60 - 100摄氏度, 时间为 2 - 3小时条件 下烘烤定型;
c3、 当转子采用鼠笼式结构时, 在转子铁芯 31外表面加工出与所述鼠笼 轴向铜条或铝条的形状适配的轴向沟槽, 该鼠笼的铜条或铝条镶嵌 于转子铁芯 31外表面, 借助两端部的铜或铝环固装焊接, 装配好转 子;
d、 按常规搡作, 将定子 2装入机壳 1及将转子 3套装于电机轴 6上, 完成 该两大部件的制作;
e、 整机装配: 按常规搡作, 完成电机整机装配。 作为本发明制造方法的再一优选实施例,一种拥有无槽非晶铁合金径向磁路 电机的制造方法,包括如下步骤:
a、 准备: 选用巿售的、 尺寸分别符合要求的用非晶铁合金带材卷绕成的中 空圆柱状型材作为定子铁芯 21和转子铁芯 31坯料;
b、 定子 2制作: 先在绕线模上使用自粘性漆包线绕制定子绕组 22, 然后通 过整形模整形并根据自粘性漆包线加温标准加温定型, 得到定子绕组 22 所需要的圆筒形状和尺寸; 再在整形模中将第二绝缘骨架 24用胶粘剂粘
. 接于定子绕 _组 22内圆柱面固化成型,然后在整形模中将金属加强衬套 25 与第二绝缘骨架 24内壁用胶粘剂粘接固化成型, 接着将两只相同的第一 绝缘骨架 23分别以其未设凸缘 232的一端从定子铁芯 21 内容腔两端嵌 入互相对接, 并与定子铁芯 21内壁用胶粘剂粘接固化成型, 所述两第一 绝缘骨架 23端面的环状凸缘 232抵紧在定子铁芯 21 内容腔的两端部; 将按上述步骤制成的定子绕组组件 22, 24, 25用胶粘剂粘接固化于所述定 子铁芯 21内壁两第一绝缘骨架 23上,最后将整个定子 2放在温度为 60 ~ 100摄氏度, 时间为 2 - 3小时条件下烘烤定型完成定子制作;
c、 转子 3制作: 在用作转子铁芯 31的非晶铁合金带材卷绕成的中空圆柱状 型材坯料的内壁加工出与电机轴 6连结的键槽 312,并选择性地执行如下 步骤之一:
c 当永磁体 32是中空圆柱状, 经磁化为圆柱面上形成多磁极的永磁体 圆简时, 因转子铁芯 31的型材坯料外表面是圆柱形、 其外径与该永 磁体圆简内径适配, 转子铁芯 31直接镶嵌入所述永磁体圆简内粘接 固化, 装配好转子,并将转子在温度为 60 ~ 100摄氏度, 时间为 2 ~ 3 小时条件下烘烤定型;
c2、 当永磁体 32 是偶数瓦片状断面的条形体或 "V" 状断面的条形实体 时, 转子铁芯 31外表面开出同样数量与永磁体 32断面形状适配的 轴向凹槽 311,将各永磁体 32镶嵌入这些轴向凹槽 311中粘接固化, 装配好转子,并将转子在温度为 60 ~ 100摄氏度, 时间为 2 - 3小时 条件下烘烤定型;
c3、 当转子釆用鼠笼式结构时, 在转子铁芯 31 外表面加工出与所述鼠 笼轴向铜条或铝条的形状适配的轴向沟槽, 该鼠笼的铜条或铝条镶 嵌于转子铁芯 31 外表面, 借助两端部的铜或铝环固装, 装配好转 子; d、 按常规操作, 将定子 2装入机壳 1及将转子 3套装于电机轴 6上, 完成 该两大部件的制作;
e、 整机装配: 按常规搡作, 完成电机整机装配。 对于外转子电机, 本发明相应地提供一种拥有无槽非晶铁合金径向磁路外转 子电机的制造方法, 包括如下步骤:
a、 准备: 选用非晶铁合金带材卷绕成的中空圆柱状型材作为定子铁芯 21' 的坯料;
b、定子制作: 在定子铁芯 21'内孔表面加工出与电机轴连结用的键槽、 绕制 定子绕组 22' , 然后通过整形, 形成定子绕组 22'所需要的形状和尺寸; 将定子绕组 22'外圆柱面与金属加强套 25'固定; 将定子绕组 22'套于定 子铁芯 21'外圆柱面上固定, 将定子铁芯 21'与电机轴 6'用键连结固装, 并将该电机支承轴 6'装上两只轴承 7' , 完成定子制作;
c、 转子制作: 将永磁体 32'做成偶数条状体或者做成中空圆柱状, 用钢板卷 成或者直接用钢管作为机壳 31', 在机壳 3 内壁加工出与要固定的永磁 体 32'相适配的形状; 将永磁体 32'镶嵌入机壳 31'内壁固定, 装配好转 子;
d、 按常规搡作, 完成电机整机装配。 在本发明各实施例中, 所述定子铁芯 21和转子铁芯 31使用的非晶铁合金材 料采用中国安泰公司生产的纳米铁基非晶铁合金带材卷绕生产的型材和型材坯 料。
在本发明各实施例中, 所述定子 2 中各部件间的粘接以及转子铁芯 31与永 磁体 32 间的粘接所使用的胶粘剂是耐温不低于所述电机绝缘等级耐温水平的胶 粘剂。 本发明各实施例使用了美国汉高公司生产的牌号为 ESP110 的树脂和朗博 万公司生产的高强度、 耐高温 200度, 双组分 3034A和 3034B环氧树脂, 粘接操 作按现有技术有关胶粘剂的要求进行。 , 以上所述实施例仅表达了本发明的优选实施方式, 其描述较为具体和详细, 但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的 普通技术人员来说, 在不脱离本发明构思的前提下,还可以做出若干变形和改进, 这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换 与修饰, 均应属于本发明权利要求的涵盖范围。

Claims

权 利 要 求 书
1. 一种拥有无槽非晶铁合金径向磁路的电机, 包括机壳 (1)、 端盖(4)、 定子
(2)、 转子(3)和电机轴(6);端盖(4)装于机壳 (1)端部并与机壳 (1) 共同确定电机轴 (6) 的安装位置, 定子(2) 固装于机壳 (1) 内, 转子(3) 固装于电机轴( 6 )上且布置于定子( 2 )内、与定子( 2 )之间有径向气隙( 5 ), 电机轴 ( 6 )及其上转子(3)穿过定子( 1 ) 内容腔, 可转动地装于机壳 ( 1 ) 与端盖(4)确定的安装位置上; 定子(2)包括定子铁芯 (21)和定子绕组
(22); 其特征在于:
所述定子铁芯 (21 )是由非晶铁合金带材卷绕成的圆简;所述定子绕组
(22)整体呈圆筒形, 固定于定子铁芯(21) 内圆柱面上;定子绕组( 22) 内 壁还固定有金属加强衬套(25), 该金属加强衬套(25)的轴向长度与定子绕 组(22)相同、 其内圆柱面与所述转子(3)的外表面之间形成径向气隙(5)。
2. 根据杈利要求 1所述的拥有无槽非晶铁合金径向磁路的电机, 其特征在于: 所述转子(3)包括转子铁芯(31)和永磁体(32) ; 所述转子铁芯( 31) 是由非晶铁合金材料制成的空心柱状结构, 其径向外表面与永磁体(32)相 适配, 永磁体( 32 )镶嵌或套于转子铁芯 ( 31 ) 外表面固定。
3. 根据权利要求 2所述的拥有无槽非晶铁合金径向磁路的电机, 其特征在于: 所述转子铁芯 (31 ) 的内孔壁上开有与所述电机轴 (6)连结用的键槽 (312)。
4. 根据权利要求 1所述的拥有无槽非晶铁合金径向磁路的电机, 其特征在于:
所述转子(3)包括转子铁芯(31)及其表面的鼠笼, 转子铁芯(31)套 装于电机轴(6)上, 所述鼠笼固装于转子铁芯(31)外表面, 组装成交流异 步电机; 所述转子铁芯(31)是由非晶铁合金材料制成的空心柱状结构,其径 向外表面与所述鼠笼轴向铜条或铝条的形状适配, 该铜条或铝条镶嵌于转子 铁芯 (31 ) 外表面, 借助两端部的铜或铝环固装。
5. 根据权利要求 4所述的拥有无槽非晶铁合金径向磁路的电机, 其特征在于: 所述转子铁芯 (31 ) 的内孔壁上开有与所述电机轴 (6)连结用的键槽 ( 312)。
6. 根据权利要求 1~5任一项所述的拥有无槽非晶铁合金径向磁路的电机, 其特 征在于:
所述定子铁芯(21)内壁装有第一绝缘骨架(23), 该第一绝缘骨架( 23 ) 的主体(231)是圆筒形, 其一端面有环状径向凸缘( 232 ), 两只相同的第一 绝缘骨架 (23)分别以其未设凸缘的一端从定子铁芯 (21) 内容腔的两端嵌 入互相对接, 并与定子铁芯 ( 21) 内壁固定, 所述两只第一绝缘骨架(23) 端面的环状径向凸缘( 232 )抵紧在定子铁芯 (21) 内容腔的两端部。
7. 根据权利要求 6所述的拥有无槽非晶铁合金径向磁路的电机, 其特征在于: 所述定子绕组 (22) 内腔有圆简形的第二绝缘骨架(24)支撑并固定于 其中, 该第二绝缘骨架(24) 的轴向长度与定子绕组 (22)相同; 所述第二 绝缘骨架 (24) 的内壁与金属加强衬套(25) 外圆柱面固定。
8. 一种拥有无槽非晶铁合金径向磁路的电机, 包括定子(2' ), 外转子(3' )和 用于安装的电机支承轴(6' ); 外转子(3' )布置于定子(2' )外、 包括机壳
( 31' )、 左、 右端盖 (34'、 33' )和永磁体 (32' ), 永磁体 ( 32' ) 固定于机 壳 (31' ) 内壁上, 左、 右端盖(34'、 33' ) 固装于机壳 ( 31' )左、 右端部, 外转子(3' ) 可转动地安装于电机支承轴 (6' )上; 定子(2' ) 固装于电机 支承轴 (6' )上、 包括定子铁芯 (21' )和定子绕组 (22' );其特征在于: 所述定子铁芯 (2 )是由非晶铁合金材料制成的空心柱状结构;所述定 子绕组 (22' )整体呈圆简形, 固定于定子铁芯 (21' ) 外圆柱面上, 定子绕 组 (22' )径向外表面有金属加强套(25' ), 该金属加强套 (25' ) 的外圆柱 面与外转子(3' ) 的内表面之间形成径向气隙 (5' ); 永磁体(32' ) 呈偶数 条状体镶嵌于机壳 Π ) 内表面, 或呈中空圆柱状直接固定于机壳 (3 ) 内表面。
9. 一种拥有无槽非晶铁合金径向磁路电机的制造方法, 包括如下步骤:
a、 准备: 选用非晶铁合金带材卷绕成的中空圆柱状型材作为定子铁芯 (21) 和转子铁芯 (31) 的坯料;
b、定子( 2 )制作:先绕制定子绕组(22),然后通过整形,形成定子绕组( 22 ) 所需要的形状和尺寸; 并选择性地执行如下步骤之一:
bl、 如果定子绕组 (22)使用第二绝缘骨架(24), 则将第二绝缘骨架(24) 固定于定子绕组 (22 ) ^圆柱面上; 然后将金属加强衬套(25 ) 与第 二绝缘骨架 (24)内壁固定;
b2、 如果定子绕组 ( 22)不使用第二绝缘骨架(24), 则将定子绕组(22 ) 内圆柱面直接与金属加强衬套(25) 固定;
另外, 还再选择性地执行如下步骤之一:
b3、 如果定子铁芯( 21 )内有第一绝缘骨架(23), 则将第一绝缘骨架(23) 与定子铁芯 (21 ) 内壁固定, 并将定子绕组 (22 ) 外圆柱面与第一绝 缘骨架(23) 内壁固定, 完成定子制作;
b4、 如果定子铁芯 (21 ) 内不用第一绝缘骨架(23), 则将定子绕组 (22) 直接固定于定子铁芯 (21 ) 内壁上, 完成定子制作;
c、 转子 ( 3 ) 制作: 在用作转子铁芯 (31 ) 的非晶铁合金带材卷绕成的中空 圆柱状型材坯料内孔壁上加工出与电机轴(6)连结的键槽(312), 并选择 性地执行如下步骤之一:
cl、 当永磁体(32)是中空圆柱状, 经磁化为圆周面上形成多磁极的永磁 体圆简时, 因转子铁芯 (31 ) 的型材坯料外表面是圆柱形, 则直接将 转子铁芯 ( 31 )镶嵌入所述永磁体( 32 ) 圆简内固定, 装配好转子; c2、 当永磁体(32)是偶数瓦片状断面的条形体或 "Ψ, 状断面的条形实体 时, 转子铁芯 (31 ) 外表面开出同样数量与各永磁体(32) 断面形状 适配的轴向凹槽( 311 ), 将各永磁体( 32 )镶嵌入这些轴向凹槽( 311 ) 中固定, 装配好转子;
c3、 当转子是鼠笼式结构时, 在转子铁芯 (31 ) 外表面加工出与所述鼠笼 轴向铜条或铝条的形状适配的轴向沟槽, 该鼠笼的铜条或铝条镶嵌于 转子铁芯 (31 ) 外表面, 借助两端部的铜或铝环固装;
d、 按常规操作, 将定子( 2 )装入机壳 ( 1 )及将转子 ( 3 )套装于电机轴 ( 6 )上,完成该两大部件的制作; '
e、 整机装配: 按常规操作, 完成电机整机装配。
10. 一种拥有无槽非晶铁合金径向磁路电机的制造方法, 包括如下步骤:
a、 准备: 选用非晶铁合金带材卷绕成的中空圆柱状型材作为定子铁芯 (21' ) 的坯料; b、 定子制作: 在定子铁芯(21' )内孔表面加工出与电机轴连结用的键槽、 绕 制定子绕组(22' ), 然后通过整形, 形成定子绕组(22' )所需要的形状和 尺寸; 将定子绕组 (22' )外圆柱面与金属加强套(25' ) 固定; 将定子绕 组 (22' )套于定子铁芯 (2 . )外圆柱面上固定, 将定子铁芯 (2 ) 与 电机轴(6' )用键连结固装, 并将该电机支承轴(6' )装上两只轴承(7' ), 完成定子制作;
c、 转子制作: 将永磁体( 32' )做成偶数条状体或者做成中空圆柱状, 用钢板 卷成或者直接用钢管作为机壳 (31' ) , 在机壳 (31' ) 内壁加工出与要固 定的永磁体 ( 32' )相适配的形状; 将永磁体 ( 32' )镶嵌入机壳 ( 31' ) 内壁固定, 装配好转子;
d、 按常规搡作, 完成电机整机装配。
11. 一种拥有无槽非晶铁合金径向磁路电机的制造方法, 包括如下步骤:
a、 准备: 选用尺寸分别符合要求的用非晶铁合金带材卷绕成的中空圆柱状型 材作为定子铁芯 ( 21 )和转子铁芯 ( 31 ) 的坯料;
b、 定子 (2 ) 制作: 先在绕线模上使用自粘性漆包线绕制定子绕组 (22 ), 然 后通过整形模整形并根据自粘性漆包线加温标准加温定型, 得到定子绕组
( 22 )所需要的圆简形状和尺寸; 在整形模中将定子绕组 (22 ) 内圆柱面 与金属加强衬套( 25 )用胶粘剂粘合固化成型;再用胶粘剂将定子绕组( 22 ) 外圆柱面与定子铁芯 (21 ) 内圆柱面粘合固化, 然后在温度为 60 - 100摄 氏度, 时间为 2 - 3小时条件下烘烤定型完成定子制作;
c、 转子( 3 ) 制作: 在用作转子铁芯 (31 ) 的非晶铁合金带材卷绕成的中空 圆柱状型材内壁加工出与电机轴 (6 )连结的键槽 (312 ), 并选择性地执 行如下步骤之一:
cl、 当永磁体(32 )是中空圆柱状, 经磁化为圆周面上形成多磁极的永 磁体圆筒时, 因转子铁芯 (31 ) 的型材坯料外表面是圆柱形、 其外 径与该永磁体圆简内径适配, 将转子铁芯 ( 31 ) 直接镶嵌入所述永 磁体圆简内粘接固化, 装配好转子,将其在温度为 60 ~ 100摄氏度, 时间为 2 - 3小时条件下烘烤定型;
c2、 当永磁体(32 )是偶数瓦片状断面的条形体或 "V" 状断面的条形实 体时, 转子铁芯 (31 ) 外表面开出同样数量与永磁体(32 ) 断面形 状适配的轴向凹槽 (311 ), 将各永磁体(32 )镶嵌入这些轴向凹槽 ( 311 ) 中固定, 装配好转子并将转子在温度为 60 - 100摄氏度, 时 间为 2~ 3小时条件下烘烤定型;
c3、 当转子釆用鼠笼式结构时, 在转子铁芯 (31 ) 外表面加工出与所述 鼠笼轴向铜条或铝条的形状适配的轴向沟槽, 该鼠笼的铜条或铝条 镶嵌于转子铁芯 (31 ) 外表面, 借助两端部的铜或铝环固装, 装配 好转子;
d、 按常规搡作, 将定子 ( 2 )装入机壳 ( 1 )及将转子( 3 )套装于电机轴 ( 6 )上, 完成该两大部件的制作;
e、 整机装配: 按常规操作, 完成电机整机装配。
12. 根据权利要求 11所述的拥有无槽非晶铁合金径向磁路电机的制造方法, 其特 征在于:
所述定子(2)中各部件间的粘接以及转子铁芯( 31 )与永磁体( 32 )间的 粘接所使用的胶粘剂是耐温不低于所述电机绝缘等级耐温水平的胶粘剂。
13. 一种拥有无槽非晶铁合金径向磁路电机的制造方法, 包括如下步骤:
a、 准备: 选用巿售的、 尺寸分别符合要求的用非晶铁合金带材卷绕成的中空 圆柱状型材作为定子铁芯 (21 )和转子铁芯 (31 )坯料;
b、 定子(2)制作: 先在绕线模上使用自粘性漆包线绕制定子绕组 (22 ), 然 后通过整形模整形并根据自粘性漆包线加温标准加温定型, 得到定子绕组
(22)所需要的圆简形状和尺寸; 再在整形模中将第二绝缘骨架(24)用 胶粘剂粘接于定子绕组 (22) 内圆柱面固化成型, 然后在整形模中将金属 加强衬套(25 ) 与第二绝缘骨架(24) 内壁用胶粘剂粘接固化成型, 接着 将两只相同的第一绝缘骨架( 23 )分别以其未设凸缘( 232 )的一端从定子 铁芯 (21 ) 内容腔两端嵌入互相对接, 并与定子铁芯 (21 ) 内壁用胶粘剂 粘接固化成型, 所述两第一绝缘骨架( 23 )端面的环状凸缘( 232 )抵紧在 定子铁芯 (21 ) 内容腔的两端部; 将按上述步骤制成的定子绕组组件
( 22, 24, 25 )用胶粘剂粘接固化于所述定子铁芯 (21 ) 内壁两第一绝缘骨 架(23)上, 最后将整个定子(2)放在温度为 60 ~ 100摄氏度, 时间为 2~ 3小时条件下烘烤定型完成定子制作;
c、 转子( 3 ) 制作: 在用作转子铁芯 (31 ) 的非晶铁合金带材卷绕成的中空 圆柱状型材坯料的内壁加工出与电机轴( 6 )连结的键槽( 312 ), 并选择性 地执行如下步骤之一:
cl、 当永磁体(32 )是中空圆柱状, 经磁 为圆柱面上形成多磁极的永磁 体圆简时, 因转子铁芯 (31 ) 的型材坯料外表面是圆柱形、 其外径与 该永磁体圆简内径适配, 转子铁芯 (31 ) 直接镶嵌入所述永磁体圆简 内粘接固化, 装配好转子,并将转子在温度为 60~ 100摄氏度, 时间为 2~ 3小时条件下洪烤定型;
c2、 当永磁体(32)是偶数瓦片状断面的条形体或 "V" 状断面的条形实体 时, 转子铁芯 (31 ) 外表面开出同样数量与永磁体(32) 断面形状适 配的轴向凹槽 (311 ), 将各永磁体(32)镶嵌入这些轴向凹槽 (311 ) 中粘接固化, 装配好转子,并将转子在温度为 60 ~ 100摄氏度, 时间为 2~ 3小时条件下烘烤定型;
c3、 当转子釆用鼠笼式结构时, 在转子铁芯(31 )外表面加工出与所述鼠 笼轴向铜条或铝条的形状适配的轴向沟槽, 该鼠笼的铜条或铝条镶嵌 于转子铁芯(31 )外表面, 借助两端部的铜或铝环固装, 装配好转子; d、 按常规搡作, 将定子( 2 )装入机壳 ( 1 )及将转子( 3 )套装于电机轴 ( 6 )上, 完成该两大部件的制作;
e、 整机装配: 按常规操作, 完成电机整机装配。
14. 根据权利要求 13所述的拥有无槽非晶铁合金径向磁路电机的制造方法, 其特 征在于:
所述定子 (2)中各部件间的粘接以及转子铁芯(31 )与永磁体(32)间的 粘接所使用的胶粘剂是耐温不低于所述电机绝缘等级耐温水平的胶粘剂。
PCT/CN2010/001969 2010-07-26 2010-12-06 一种拥有径向磁路的无槽非晶铁合金电机及其制造方法 WO2012012925A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013520940A JP5507759B2 (ja) 2010-07-26 2010-12-06 径方向に磁気回路を有するスロットレス非結晶鉄合金電気装置及びその製造方法
EP10855153.2A EP2587630B1 (en) 2010-07-26 2010-12-06 Slotless amorphous ferroalloy motor with radial magnetic circuit and manufacturing method thereof
US13/811,790 US20140319951A1 (en) 2010-07-26 2010-12-06 Slotless amorphous ferroalloy electric machine with radial magnetic circuit and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010237537.1 2010-07-26
CN2010102375371A CN101976895B (zh) 2010-07-26 2010-07-26 拥有无槽非晶铁合金径向磁路的电机及其制造方法

Publications (1)

Publication Number Publication Date
WO2012012925A1 true WO2012012925A1 (zh) 2012-02-02

Family

ID=43576753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001969 WO2012012925A1 (zh) 2010-07-26 2010-12-06 一种拥有径向磁路的无槽非晶铁合金电机及其制造方法

Country Status (5)

Country Link
US (1) US20140319951A1 (zh)
EP (1) EP2587630B1 (zh)
JP (1) JP5507759B2 (zh)
CN (1) CN101976895B (zh)
WO (1) WO2012012925A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450138A (zh) * 2018-12-28 2019-03-08 华人运通控股有限公司 内嵌式磁钢外转子铁芯组件及轮毂电机
CN111478474A (zh) * 2020-06-01 2020-07-31 苏州英磁新能源科技有限公司 一种用于径向筒式永磁同步电机的电机转子及其制备方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332759A (zh) * 2011-09-02 2012-01-25 中国船舶重工集团公司第七0七研究所 铁芯为无槽分割式结构的永磁电机定子及其制造方法
CN102361374B (zh) * 2011-10-28 2013-09-18 安泰科技股份有限公司 电机用护盒式非晶、微晶或纳米晶合金定子铁芯及其制备方法
CN104377928B (zh) * 2013-08-14 2017-12-15 毕严富 笼型感应转子铁心换位调速法
CN103639566B (zh) * 2013-12-17 2016-04-27 江苏大中电机股份有限公司 节能型电机定子绕组与引接电缆焊接方法
CN203660682U (zh) * 2013-12-27 2014-06-18 中山大洋电机制造有限公司 一种电机定子组件及其应用的电机
CN104065181B (zh) * 2014-06-06 2016-05-11 杭州微光电子股份有限公司 一种外转子电机定子部件的整体包封结构
CN104135131A (zh) * 2014-08-23 2014-11-05 刘延杰 绕组独立密封防水电动机
CN105610252B (zh) * 2015-09-25 2018-06-12 深圳市实能高科动力有限公司 非晶铁合金式电机、定子组件、定子铁芯及其制造方法
CN106160372A (zh) * 2016-07-12 2016-11-23 中车株洲电机有限公司 一种电机定子绕组双层整体嵌线方法及电机定子
CN106921228B (zh) * 2017-04-19 2023-05-23 山东大学 一种定子、定子的制造方法及永磁无刷电机
CN107887998B (zh) * 2017-12-05 2024-04-19 广东美的环境电器制造有限公司 直流电机和具有其的流体驱动装置
DE102018113422A1 (de) * 2018-06-06 2019-12-12 Ebm-Papst Mulfingen Gmbh & Co. Kg Motor mit einer Einstrangluftspaltwicklung
TWI694662B (zh) * 2018-07-23 2020-05-21 大陸商昆山廣興電子有限公司 馬達及其轉子
CN110545010B (zh) * 2019-01-20 2024-05-31 深圳市实能高科动力有限公司 无轴承电机和安装有无轴承电机的铁路货车车厢
CN111614210B (zh) * 2020-05-28 2022-04-01 沈阳工业大学 一种低涡流损耗高效屏蔽电泵
CN112436689B (zh) * 2020-12-18 2022-09-13 山东理工大学 自带止退功能的嵌套式驱动电机凸极转子生产方法
CN112600371B (zh) * 2020-12-18 2022-06-21 山东理工大学 锁紧环式模块化双励磁驱动电机转子生产方法
CN113765315B (zh) * 2021-09-14 2023-05-05 首钢智新迁安电磁材料有限公司 一种电机外转子的加工方法
CN113890215A (zh) * 2021-09-14 2022-01-04 武汉理工大学 一种高速非晶合金永磁电机
CN117767677A (zh) * 2023-12-19 2024-03-26 深圳市普乐华科技有限公司 一种大型非晶电机的制造方法
CN117833531B (zh) * 2024-03-05 2024-05-24 浙江大学 一种无槽电机线圈骨架

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286188A (en) * 1978-06-12 1981-08-25 General Electric Company Amorphous metal hysteresis motor
CA1136200A (en) * 1979-08-09 1982-11-23 Vernon B. Honsinger Slotless motor with amorphous metal stator
CN1084543C (zh) * 1998-07-21 2002-05-08 三星电子株式会社 用于超高速驱动的无槽式电动机
CN1874113A (zh) * 2005-05-30 2006-12-06 段开全 非晶材料的新型电动机
CN2891450Y (zh) * 2006-03-23 2007-04-18 上海特波电机有限公司 高出力永磁无刷无槽电动机
CN201742177U (zh) * 2010-07-26 2011-02-09 深圳华任兴科技有限公司 拥有无槽非晶铁合金径向磁路的电机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287446A (en) * 1979-06-27 1981-09-01 Amp Incorporated Stator for stepper motor
JPS58212360A (ja) * 1982-06-01 1983-12-10 Shibaura Eng Works Co Ltd ブラシレスモ−タ
AU4987193A (en) * 1992-09-14 1994-04-12 Cadac Holdings Limited Dynamoelectric machine and stators therefor
AUPM644394A0 (en) * 1994-06-24 1994-07-21 Electro Research International Pty Ltd Bulk metallic glass motor and transformer parts and method of manufacture
KR100937843B1 (ko) * 2007-11-16 2010-01-19 주식회사 에이엠오 실린더형 비정질 합금 백 요크의 제조방법 및 이를 이용한 슬롯레스 모터의 제조방법
JP2009189094A (ja) * 2008-02-04 2009-08-20 Tamagawa Seiki Co Ltd 宇宙用スロットレスモータ構造

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286188A (en) * 1978-06-12 1981-08-25 General Electric Company Amorphous metal hysteresis motor
CA1136200A (en) * 1979-08-09 1982-11-23 Vernon B. Honsinger Slotless motor with amorphous metal stator
CN1084543C (zh) * 1998-07-21 2002-05-08 三星电子株式会社 用于超高速驱动的无槽式电动机
CN1874113A (zh) * 2005-05-30 2006-12-06 段开全 非晶材料的新型电动机
CN2891450Y (zh) * 2006-03-23 2007-04-18 上海特波电机有限公司 高出力永磁无刷无槽电动机
CN201742177U (zh) * 2010-07-26 2011-02-09 深圳华任兴科技有限公司 拥有无槽非晶铁合金径向磁路的电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2587630A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450138A (zh) * 2018-12-28 2019-03-08 华人运通控股有限公司 内嵌式磁钢外转子铁芯组件及轮毂电机
CN111478474A (zh) * 2020-06-01 2020-07-31 苏州英磁新能源科技有限公司 一种用于径向筒式永磁同步电机的电机转子及其制备方法

Also Published As

Publication number Publication date
JP2013532939A (ja) 2013-08-19
EP2587630A4 (en) 2014-05-07
EP2587630A1 (en) 2013-05-01
CN101976895B (zh) 2012-09-05
CN101976895A (zh) 2011-02-16
US20140319951A1 (en) 2014-10-30
JP5507759B2 (ja) 2014-05-28
EP2587630B1 (en) 2016-07-27

Similar Documents

Publication Publication Date Title
WO2012012925A1 (zh) 一种拥有径向磁路的无槽非晶铁合金电机及其制造方法
CN109274240B (zh) 复合型非晶合金轴向磁通电机
CN101980433B (zh) 周向移相轴向分段的楔形定子铁芯外永磁转子同步电机
CN109194082B (zh) 宽弱磁扩速低转子损耗的非晶合金轴向磁通电机
CN203312928U (zh) 非晶铁合金式开关磁阻电机
CN103296792B (zh) 拥有非晶铁合金轴向磁路的盘式电机及其制造方法和定子组件
CN110460175A (zh) 一种轴向磁通集中绕组型混合励磁电机
WO2013123647A1 (zh) 拥有非晶铁合金轴向磁路的盘式电机及其制造方法和定子组件
CN112821608B (zh) 转子冲片、转子铁芯、电机转子及组装方法、电机
US20050200226A1 (en) Method for manufacturing stator of brushless direct current electric motor, and stator of brushless direct current electric motor manufactured by the method
CN101795024B (zh) 一种具有非晶态合金铁心的横向磁场电机
CN101908809B (zh) 基于模块化方式构建定子磁路的外转子无刷直流电机
CN108539946A (zh) 分数槽集中绕组永磁无刷电机及其定子的制造方法
CN101399470A (zh) 电机定子铁芯结构
CN104184291B (zh) 双半极异步起动永磁同步电动机及变极变速法
CN205029444U (zh) 非晶铁合金式电机、定子组件和定子铁芯
CN214900385U (zh) 定子支架及轴向磁场电机
CN113300515A (zh) 切向磁体结构盘式轴向磁场永磁无刷电机结构及其方法
CN201742177U (zh) 拥有无槽非晶铁合金径向磁路的电机
CN201733147U (zh) 一种有限转角力矩电动机
CN102347669A (zh) 一种有限转角力矩电动机及其制作方法
CN101902114A (zh) 基于模块化方式构建磁路的开关磁阻电动机
CN105610252A (zh) 非晶铁合金式电机、定子组件、定子铁芯及其制造方法
CN201846213U (zh) 周向移相轴向分段的楔形定子铁芯外永磁转子同步电机
CN216904479U (zh) 一种ec电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10855153

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010855153

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010855153

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013520940

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13811790

Country of ref document: US