WO2013122237A1 - タイヤトレッド用ゴム組成物 - Google Patents

タイヤトレッド用ゴム組成物 Download PDF

Info

Publication number
WO2013122237A1
WO2013122237A1 PCT/JP2013/053770 JP2013053770W WO2013122237A1 WO 2013122237 A1 WO2013122237 A1 WO 2013122237A1 JP 2013053770 W JP2013053770 W JP 2013053770W WO 2013122237 A1 WO2013122237 A1 WO 2013122237A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
rubber
conjugated diene
group
diene polymer
Prior art date
Application number
PCT/JP2013/053770
Other languages
English (en)
French (fr)
Inventor
裕記 杉浦
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to US14/379,271 priority Critical patent/US9139721B2/en
Priority to CN201380019931.XA priority patent/CN104220510B/zh
Priority to KR1020147025488A priority patent/KR101523627B1/ko
Priority to DE112013000983.8T priority patent/DE112013000983B9/de
Publication of WO2013122237A1 publication Critical patent/WO2013122237A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition for a tire tread, and more particularly to a rubber composition for a tire tread in which low rolling resistance, wet performance, and wear resistance are improved to a conventional level or more.
  • the required performance of pneumatic tires for high-performance vehicles is not only excellent in handling stability and braking performance when driving on wet roads, but also in terms of fuel efficiency as interest in global environmental issues increases. ing.
  • the dynamic viscoelastic properties such as loss tangent (tan ⁇ ) of the tread rubber are improved, heat generation is suppressed, rolling resistance is reduced, and fuel efficiency performance is improved.
  • tan ⁇ loss tangent
  • silica has poor affinity with diene rubber and tends to be poorly dispersed, especially when the particle size of silica is reduced, the dispersibility deteriorates, so the effect of improving low heat build-up and wet performance cannot be obtained sufficiently. It was. Further, the reinforcing property is small as compared with carbon black, and the wear resistance cannot always be sufficiently ensured.
  • Patent Document 1 improves the dispersibility of silica with a rubber composition in which silica is blended with a terminal-modified solution-polymerized styrene butadiene rubber whose terminal is modified with polyorganosiloxane or the like, and the exothermic property (tan ⁇ at 60 ° C.) is improved. It has been proposed to reduce the wet grip property (tan ⁇ at 0 ° C.) and improve the wear resistance.
  • Patent Document 2 discloses a rubber composition in which 80 to 180 parts by weight of a filler containing 50 parts by weight or more of silica and 5 to 60 parts by weight of a resin having a softening point of 100 to 150 ° C. are blended with 100 parts by weight of a styrene butadiene copolymer rubber. Proposing things.
  • An object of the present invention is to provide a rubber composition for a tire tread in which the low rolling resistance and the wet performance are improved to the conventional level or more.
  • the rubber composition for a tire tread of the present invention that achieves the above object is an aromatic composition based on 100 parts by weight of a diene rubber containing 35 to 89% by weight of a modified conjugated diene polymer rubber and 11 to 40% by weight of a butadiene rubber. 3-60 parts by weight of modified terpene resin, 100-150 parts by weight of filler, and 70% by weight or more of silica in the filler, blending amount of aromatic modified terpene resin with respect to blending amount Wbr of butadiene rubber Wte ratio Wte / Wbr is 0.5 to 1.3, and the modified conjugated diene polymer rubber is conjugated diene monomer using an organic active metal compound as an initiator in a hydrocarbon solvent.
  • the terminal modified group includes a functional group that interacts with silica, and the modified conjugated diene polymer rubber has an aromatic vinyl unit content of 38 to 48% by weight, vinyl.
  • the unit content is 20 to 35% by weight, the weight average molecular weight is 600,000 to 1,000,000, and the softening point of the aromatic modified terpene resin is 100 to 150 ° C.
  • the rubber composition for a tire tread of the present invention has at least one functional group having a reactive group at the active end of an active conjugated diene polymer chain obtained by copolymerizing a conjugated diene monomer and an aromatic vinyl monomer. It has a terminal-modified group obtained by reacting various types of compounds, and this terminal-modified group includes a functional group having an interaction with silica, and has an aromatic vinyl unit content of 38 to 48% by weight and a vinyl unit content of 20 Softening point with respect to 100 parts by weight of diene rubber containing 35 to 89% by weight of modified conjugated diene polymer rubber having a weight average molecular weight of 600,000 to 1,000,000, and 11 to 40% by weight of butadiene rubber.
  • the modified conjugated diene polymer rubber forms a fine phase separation form and is capable of reacting with the active end of the active conjugated diene polymer chain.
  • the terminal modified group generated by the reaction with at least one compound having a group contains a functional group that interacts with silica, and the weight average molecular weight is set to 600,000 to 1,000,000 to optimize the concentration of the terminal modified group.
  • the end-modifying group acts efficiently on the silica to further improve the dispersibility of the silica, thereby greatly reducing the low rolling resistance of the pneumatic tire and further improving the wet performance.
  • Silica has a DBP absorption of 185 to 250 ml / 100 g and a ratio of nitrogen adsorption specific surface area (N 2 SA) to CTAB specific surface area (CTAB) (N 2 SA / CTAB) of 0.90 to 1.25. It is preferable that 70% by weight or more of silica is included in the total silica. By blending silica in this way, even if the blending amount of the filler is large, it is possible to achieve both good rolling resistance and wear resistance.
  • Carbon black preferably has a nitrogen adsorption specific surface area of 70 to 165 m 2 / g, and can maintain and maintain both wet performance and rolling resistance without impairing wear resistance.
  • the compound having a functional group capable of reacting with the active end of the active conjugated diene polymer chain described above preferably includes at least one polyorganosiloxane compound selected from the following general formulas (I) to (III).
  • R 1 to R 8 are an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and these may be the same or different from each other.
  • X 1 and X 4 is an aryl group of the active conjugated diene polymer chain groups having a functional group capable of reacting with the active terminal of an alkyl group or having 6 to 12 carbon atoms having 1 to 6 carbon atoms,, X 1 and X 4 may be the same as or different from each other,
  • X 2 is a group having a functional group that reacts with the active end of the active conjugated diene polymer chain,
  • X 3 is a group of 2 to 20 alkylene glycols A group containing repeating units, and a part of X 3 may be a group derived from a group containing repeating units of 2 to 20 alkylene glycol, m is an integer of 3 to 200, and n is 0 to 200 is an integer, and k is an integer from a
  • R 9 to R 16 are an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and these may be the same or different from each other.
  • X 5 to X 8 are groups having a functional group that reacts with the active terminal of the active conjugated diene polymer chain.
  • R 17 to R 19 are an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and these may be the same or different from each other.
  • 9 to X 11 are groups having a functional group that reacts with the active end of the active conjugated diene polymer chain, and S is an integer of 1 to 18.
  • ⁇ Pneumatic tires using this rubber composition in the tread part can improve the low rolling resistance, wet performance and wear resistance to the conventional level or higher.
  • the rubber component is a diene rubber
  • the diene rubber necessarily includes a modified conjugated diene polymer rubber and a butadiene rubber.
  • the modified conjugated diene polymer rubber is a conjugated diene polymer rubber produced by solution polymerization that has functional groups at both ends of a molecular chain. Incorporating the modified conjugated diene polymer rubber increases the affinity with silica and improves dispersibility, further improving the action and effect of silica, thus improving low rolling resistance and wet performance, Increase wear resistance.
  • the skeleton of the modified conjugated diene polymer is composed of a copolymer obtained by copolymerizing a conjugated diene monomer and an aromatic vinyl monomer.
  • the conjugated diene monomer include 1,3-butadiene, isoprene (2-methyl-1,3-butadiene), 2,3-dimethyl-1,3-butadiene, and 2-chloro-1,3-butadiene. 1,3-pentadiene and the like.
  • aromatic vinyl monomer examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-tert -Butylstyrene, divinylbenzene, tert-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl) dimethylaminoethyl ether, N, N-dimethylaminoethylstyrene, vinylpyridine and the like.
  • the terminal of the conjugated diene polymer serving as a skeleton is constituted by an isoprene unit block. Since the terminal is composed of isoprene unit blocks, when the terminal is modified and silica is blended, the affinity between the modified conjugated diene polymer and silica is improved, and low heat build-up, wet performance, wear resistance Good.
  • the conjugated diene monomer unit constituting the polymer contains a conjugated diene other than the isoprene unit, before adding the compound having a functional group capable of reacting with the active end of the active conjugated diene polymer chain, Alternatively, as will be described later, when the compound is reacted in multiple stages, or when the same or different compounds are sequentially reacted, a polymer having an active terminal is contained during the addition of these compounds separately. It is preferable to introduce isoprene unit blocks at the ends of the polymer by adding isoprene to the solution.
  • the conjugated diene polymer is prepared by copolymerizing the above conjugated diene monomer and aromatic vinyl monomer in a hydrocarbon solvent using an organic active metal compound as an initiator.
  • the hydrocarbon solvent may be any commonly used solvent, and examples thereof include cyclohexane, n-hexane, benzene, toluene and the like.
  • an organic alkali metal compound is preferably used.
  • organic monolithium compounds such as n-butyllithium, sec-butyllithium, t-butyllithium, hexyllithium, phenyllithium, stilbenelithium; dilithiomethane
  • Organic polyvalent lithium compounds such as 1,4-dilithiobutane, 1,4-dilithio-2-ethylcyclohexane, 1,3,5-trilithiobenzene
  • organic sodium compounds such as sodium naphthalene
  • organic potassium compounds such as potassium naphthalene Is mentioned.
  • 3,3- (N, N-dimethylamino) -1-propyllithium, 3- (N, N-diethylamino) -1-propyllithium, 3- (N, N-dipropylamino) -1- Propyllithium, 3-morpholino-1-propyllithium, 3-imidazole-1-propyllithium and organolithium compounds in which these are chain-extended with 1 to 10 units of butadiene, isoprene or styrene can also be used.
  • diethyl ether diethylene glycol dimethyl ether, tetrahydrofuran, 2,2-bis (2-oxolanyl) propane, etc. for the purpose of randomly copolymerizing aromatic vinyl monomers with conjugated diene monomers.
  • aprotic polar compounds such as amines such as ethers, triethylamine and tetramethylethylenediamine.
  • At least one compound having a reactive functional group is bonded to the active terminal of an active conjugated diene polymer chain obtained by copolymerizing a conjugated diene monomer and an aromatic vinyl monomer.
  • the compound having a functional group capable of reacting with the active terminal of the active conjugated diene polymer chain may be bonded to at least one active conjugated diene polymer chain, and one or more active conjugates may be bonded to one compound. Diene polymer chains can be bonded.
  • the modified conjugated diene polymer rubber used in the present invention is a modified rubber having modified groups at both ends of the conjugated diene polymer, and optionally other conjugated diene polymers having one or more modified groups. Bonded modified rubbers and mixtures of these modified rubbers can be included.
  • the reaction between the active terminal of the active conjugated diene polymer chain and the compound having a functional group capable of reacting with this active terminal can be reacted in one stage or multiple stages. The same or different compounds can be reacted sequentially.
  • examples of the compound having a functional group capable of reacting with the active terminal of the active conjugated diene polymer chain include tin compounds, silicon compounds, silane compounds, amide compounds and / or imide compounds, isocyanates and / or isothiocyanates.
  • examples of compounds having compounds, ketone compounds, ester compounds, vinyl compounds, oxirane compounds, thiirane compounds, oxetane compounds, polysulfide compounds, polysiloxane compounds, polyorganosiloxane compounds, polyether compounds, polyene compounds, halogen compounds, fullerenes, etc. be able to. Of these, polyorganosiloxane compounds are preferred. These compounds can be bonded to a polymer by combining one type of compound or a plurality of compounds.
  • the compound having a functional group capable of reacting with the active terminal of the active conjugated diene polymer chain include polyglycidyl ethers of polyhydric alcohols such as ethylene glycol diglycidyl ether and glycerin triglycidyl ether, and diglycidylated bisphenol A.
  • Polyepoxy compounds of aromatic compounds having two or more phenol groups such as polyglycidyl ether, 1,4-diglycidylbenzene, 1,3,5-triglycidylbenzene, polyepoxidized liquid polybutadiene, etc.
  • Epoxy group-containing tertiary amines such as' -diglycidyl-diphenylmethylamine, 4,4'-diglycidyl-dibenzylmethylamine, diglycidylaniline, diglycidylorthotoluidine, tetraglycidylmetaxylenediamine, tetraglycidylaminodi Enirumetan, tetraglycidyl -p- phenylenediamine, diglycidyl aminomethyl cyclohexane, diglycidyl amino compounds such as tetraglycidyl-1,3-bis-aminomethyl cyclohexane, and the like.
  • silicon compound examples include tetrachlorosilicon, tetrabromosilicon, methyltrichlorosilicon, butyltrichlorosilicon, dichlorosilicon, bistrichlorosilylsilicon, and the like.
  • tin compound examples include tetrachlorotin, tetrabromotin, methyltrichlorotin, butyltrichlorotin, dichlorotin, bistrichlorosilyltin, and bistrichlorosilyltin.
  • silane compound examples include a silane compound containing at least one selected from an alkoxy group, a phenoxy group, and a halogen.
  • silane compounds include dimethoxydimethylsilane, diphenoxydimethylsilane, diethoxydiethylsilane, triphenoxymethylsilane, triphenoxyvinylsilane, trimethoxyvinylsilane, triethoxyvinylsilane, tri (2-methylbutoxy) ethylsilane, tri (2-methylbutoxy) vinylsilane, triphenoxyphenylsilane, tetraphenoxysilane, tetraethoxysilane, tetramethoxysilane, tetrakis (2-ethylhexyloxy) silane, phenoxydivinylchlorosilane, methoxybiethylchlorosilane, diphenoxymethylchlorosilane, diphenoxy Phenyl
  • the silane compound can have a glycidyl group, an epoxy group, a methacryloxy group, or the like as a functional group other than the above.
  • silane compounds include ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxybutyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -Glycidoxypropyltripropoxysilane, ⁇ -glycidoxypropyltributoxysilane, ⁇ -glycidoxypropyltriphenoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, ⁇ -glycidoxypropylethyldimethoxysilane, ⁇ -Glycidoxypropylethyldiethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane,
  • Examples of the isocyanate compound or isothiocyanate compound include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylmethane diisocyanate, naphthalene diisocyanate, tolidine diisocyanate, triphenylmethane triisocyanate, p-phenylene diisocyanate, tris (isocyanatophenyl) thiophosphate, xylylene diisocyanate, benzene-1,2,4-triisocyanate, naphthalene-1,2,5,7-tetraisocyanate, naphthalene-1 , 3,7-triisocyanate, phenyl isocyanate, hexamethylene diisocyanate, methylcyclohexane diisocyanate, phenyl-1,4-diisothiocyanate, 2,4-tolylene diisocyanate
  • aromatic polyisocyanate compounds such
  • a compound represented by the following general formula (IV) is preferable, and a plurality of active conjugated diene polymer chains can be easily bonded to one molecule of the compound.
  • X 1 and X 2 are a halogen atom or an alkoxy group having 1 to 20 carbon atoms.
  • P and q are each independently an integer of 0 to 3, and represented by Formula (IV).
  • the total number of halogen atoms and alkoxy groups having 1 to 20 carbon atoms in the compound is at least 5.
  • R 1 and R 2 are each a monovalent hydrocarbon group having 1 to 20 carbon atoms, n is 0 And A 1 and A 2 are each independently a single bond or a divalent hydrocarbon having 1 to 20 carbon atoms, A 3 is represented by the formula — (SiX 3 r R 3 2-r ) m-, or -NR 4 -, or -N (-A 4 -SiX 4 S R 5 3-S) -.
  • X 3 is a halogen atom or is .R 3
  • R 5 is an alkoxy group having a carbon number of 1 to 20
  • .R 4 is a monovalent hydrocarbon group having 1 to 20 carbon atoms, hydrogen atoms
  • .A 4 is a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • .r is a divalent hydrocarbon group of a single bond or a C 1-20 is an integer of 0 ⁇ 2
  • m is (It is an integer from 0 to 20.
  • s is an integer from 0 to 3.)
  • Examples of the compound represented by the general formula (IV) include hexachlorodisilane, bis (trichlorosilyl) methane, 1,2-bis (trichlorosilyl) ethane, 1,3-bis (trichlorosilyl) propane, 1,4 -Silicon halide compounds such as bis (trichlorosilyl) butane, 1,5-bis (trichlorosilyl) pentane, 1,6-bis (trichlorosilyl) hexane; hexamethoxydisilane, hexaethoxydisilane, bis (trimethoxysilyl) Methane, bis (triethoxysilyl) methane, bis (trimethoxysilyl) ethane, bis (triethoxysilyl) ethane, bis (trimethoxysilyl) propane, bis (triethoxysilyl) propane, bis (trimethoxysilyl) butane,
  • the polyorganosiloxane compound compounds represented by the following general formulas (I) to (III) are preferable. That is, the compound having a functional group capable of reacting with the active terminal of the active conjugated diene polymer chain may contain at least one selected from these polyorganosiloxane compounds, and a plurality of types may be combined. Moreover, you may combine these polyorganosiloxane compounds and the other compound which has a functional group which can react with an active terminal, for example, the compound represented by Formula (IV) mentioned above.
  • R 1 to R 8 are an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and these may be the same or different from each other.
  • X 1 and X 4 is an aryl group of the active conjugated diene polymer chain groups having a functional group capable of reacting with the active terminal of an alkyl group or having 6 to 12 carbon atoms having 1 to 6 carbon atoms, X 1 and X 4 may be the same as or different from each other,
  • X 2 is a group having a functional group that reacts with the active end of the active conjugated diene polymer chain,
  • X 3 is a group of 2 to 20 alkylene glycols A group containing repeating units, and a part of X 3 may be a group derived from a group containing repeating units of 2 to 20 alkylene glycol, m is an integer of 3 to 200, and n is 0 to 200 is an integer, and k is
  • R 9 to R 16 are an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and these may be the same or different from each other.
  • X 5 to X 8 are groups having a functional group that reacts with the active terminal of the active conjugated diene polymer chain.
  • R 17 to R 19 are an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and these may be the same or different from each other.
  • 9 to X 11 are groups having a functional group that reacts with the active end of the active conjugated diene polymer chain, and S is an integer of 1 to 18.
  • examples of the alkyl group having 1 to 6 carbon atoms constituting R 1 to R 8 , X 1 and X 4 include, for example, methyl group, ethyl group, n- Examples include propyl group, isopropyl group, butyl group, pentyl group, hexyl group, cyclohexyl group and the like.
  • examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a methylphenyl group. Among these alkyl groups and aryl groups, a methyl group is particularly preferable.
  • the group having a functional group that reacts with the active terminal of the polymer chain constituting X 1 , X 2 and X 4 includes an alkoxyl group having 1 to 5 carbon atoms, 2- A hydrocarbon group containing a pyrrolidonyl group and a group having 4 to 12 carbon atoms containing an epoxy group are preferred.
  • Examples of the alkoxyl group having 1 to 5 carbon atoms constituting X 1 , X 2 and X 4 include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a butoxy group. Of these, a methoxy group is preferable.
  • X 1 , X 2 and X 4 are alkoxyl group having 1 to 5 carbon atoms
  • a polyorganosiloxane having an alkoxyl group at the active end of the active conjugated diene polymer chain is reacted, a silicon atom and an alkoxyl
  • the bond with the oxygen atom of the group is cleaved, and the active conjugated diene polymer chain is directly bonded to the silicon atom to form a single bond.
  • Preferred examples of the hydrocarbon group containing a 2-pyrrolidonyl group constituting X 1 , X 2 and X 4 include groups represented by the following general formula (V).
  • j is an integer of 2 to 10. In particular, j is preferably 2.
  • polyorganosiloxane containing a hydrocarbon group in which at least one of X 1 , X 2 and X 4 contains a 2-pyrrolidonyl group is reacted with the active end of the active conjugated diene polymer chain, 2-pyrrolidonyl
  • the carbon-oxygen bond of the carbonyl group constituting the group is cleaved to form a structure in which the polymer chain is bonded to the carbon atom.
  • Preferred examples of the group having 4 to 12 carbon atoms and having an epoxy group constituting X 1 , X 2 and X 4 include groups represented by the following general formula (VI).
  • Z is an alkylene group or alkylarylene group having 1 to 10 carbon atoms
  • Y is a methylene group, sulfur atom or oxygen atom
  • E is a carbon atom having 2 to 10 carbon atoms having an epoxy group. It is a hydrogen group.
  • Y is preferably an oxygen atom, more preferably Y is an oxygen atom and E is a glycidyl group, Z is an alkylene group having 3 carbon atoms, Y is an oxygen atom, and E is a glycidyl group. Those are particularly preferred.
  • the activity of the active conjugated diene polymer chain when a polyorganosiloxane is reacted at the terminal, the carbon-oxygen bond constituting the epoxy ring is cleaved to form a structure in which a polymer chain is bonded to the carbon atom.
  • X 1 and X 4 among the above, a group having 4 to 12 carbon atoms or an alkyl group having 1 to 6 carbon atoms containing an epoxy group is preferable, X 2 is preferably a group having 4 to 12 carbon atoms containing an epoxy group.
  • X 3 is a group containing 2 to 20 alkylene glycol repeating units.
  • the group containing 2 to 20 alkylene glycol repeating units is preferably a group represented by the following general formula (VII).
  • t is an integer of 2 to 20
  • R 1 is an alkylene group or alkylarylene group having 2 to 10 carbon atoms
  • R 3 is a hydrogen atom or a methyl group
  • R 2 is a carbon number 1 to 10 alkoxyl groups or aryloxy groups.
  • t is an integer of 2 to 8
  • R 1 is an alkylene group having 3 carbon atoms
  • R 3 is a hydrogen atom
  • R 2 is a methoxy group
  • R 9 to R 16 are alkyl groups having 1 to 6 carbon atoms or aryl groups having 6 to 12 carbon atoms, and these may be the same or different from each other. You may do it.
  • X 5 to X 8 are groups having a functional group that reacts with the active end of the polymer chain.
  • R 17 to R 19 are alkyl groups having 1 to 6 carbon atoms or aryl groups having 6 to 12 carbon atoms, and these may be the same or different from each other. You may do it.
  • X 9 to X 11 are groups having a functional group that reacts with the active end of the polymer chain. s is an integer of 1 to 18.
  • polyorganosiloxane represented by the general formula (II) and the general formula (III) it reacts with an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, and an active end of a polymer chain.
  • the group having a functional group is the same as that described for the polyorganosiloxane of the general formula (I).
  • generated by the said reaction has a functional group which has an interaction with a silica.
  • the functional group having an interaction with silica may be a functional group included in the structure of the compound described above.
  • the functional group which could be produced by reaction with the said compound and active terminal may be sufficient.
  • the functional group having an interaction with silica is not particularly limited. For example, alkoxysilyl group, hydroxyl group (including organosiloxane structure), aldehyde group, carboxyl group, amino group, imino group, epoxy group Amide group, thiol group, ether group and the like. Of these, a hydroxyl group (including an organosiloxane structure) is preferable.
  • affinity with a silica can be made higher and a dispersibility can be improved significantly.
  • the concentration of the terminal modified group in the modified conjugated diene polymer rubber is determined in relation to the weight average molecular weight (Mw) of the modified conjugated diene polymer rubber.
  • the weight average molecular weight of the modified conjugated diene polymer rubber is 600,000 to 1,000,000, preferably 650,000 to 850,000. For example, 650,000-750,000 and 750,000-850,000.
  • the weight average molecular weight of the modified conjugated diene polymer rubber is less than 600,000, the modified group concentration at the end of the modified conjugated diene polymer rubber is increased, and the dispersibility of silica in the rubber composition is improved.
  • the weight average molecular weight of the modified conjugated diene polymer rubber exceeds 1,000,000, the modified group concentration at the end of the modified conjugated diene polymer rubber will be low, the affinity with silica will be insufficient, and the dispersibility will deteriorate. The effect of reducing the resistance is insufficient, or the wet performance is insufficient. At the same time, the rigidity and strength of the rubber composition are lowered.
  • the weight average molecular weight (Mw) of the modified conjugated diene polymer rubber is measured by gel permeation chromatography (GPC) in terms of standard polystyrene.
  • the modified conjugated diene polymer rubber used in the present invention has an aromatic vinyl unit content of 38 to 48% by weight, preferably 40 to 45% by weight. For example, they are 40 to 41% by weight, 41 to 42% by weight, and 42 to 45% by weight.
  • aromatic vinyl unit content of the modified conjugated diene polymer rubber within such a range, it is possible to achieve both wet performance and wear resistance when making a pneumatic tire.
  • the modified conjugated diene polymer rubber forms a fine phase separation form with respect to the other diene rubber.
  • the modified conjugated diene polymer rubber is localized near the silica particles, and the affinity of the terminal modified group is increased due to the effective action of the terminal modified group on the silica, thereby dispersing the silica.
  • Property can be improved.
  • the aromatic vinyl unit content of the modified conjugated diene polymer rubber is less than 38% by weight, the effect of forming a fine phase separation form with respect to other diene rubbers cannot be sufficiently obtained. Further, the effect of increasing the rigidity and strength of the rubber composition cannot be sufficiently obtained.
  • the aromatic vinyl unit content of the modified conjugated diene polymer rubber exceeds 48% by weight, the glass transition temperature (Tg) of the conjugated diene polymer rubber rises, the balance of viscoelastic properties becomes worse, and heat is generated. It becomes difficult to obtain the effect of reducing the property.
  • Tg glass transition temperature
  • the aromatic vinyl unit content of the modified conjugated diene polymer rubber is measured by infrared spectroscopic analysis (Hampton method).
  • the vinyl unit content of the modified conjugated diene polymer rubber is 20 to 35% by weight, preferably 26 to 34% by weight. For example, it is 26 to 32% by weight and 32 to 34% by weight.
  • the term “vinyl unit” means a conjugated diene unit.
  • the vinyl unit content of the modified conjugated diene polymer rubber is less than 20% by weight, the Tg of the modified conjugated diene polymer rubber becomes low, and the loss of dynamic viscoelastic properties at 0 ° C., which is an index of wet performance.
  • the tangent (tan ⁇ ) decreases.
  • the fine phase separation form of the modified conjugated diene polymer rubber cannot be stabilized.
  • the vinyl unit content of the modified conjugated diene polymer rubber exceeds 35% by weight, the vulcanization rate may decrease, and the strength and rigidity may decrease.
  • the vinyl unit content of the modified conjugated diene polymer rubber is measured by infrared spectroscopic analysis (Hampton method).
  • the modified conjugated diene polymer rubber can improve the molding processability of the rubber composition by oil-extended.
  • the amount of oil extended is not particularly limited, but is preferably 25 parts by weight or less with respect to 100 parts by weight of the modified conjugated diene polymer rubber.
  • the oil extended amount of the modified conjugated diene polymer rubber exceeds 25 parts by weight, the degree of freedom in composition design is reduced when an oil, a softener, a tackifier or the like is added to the rubber composition.
  • the glass transition temperature (Tg) of the modified conjugated diene polymer rubber is not particularly limited, but is preferably ⁇ 30 to ⁇ 15 ° C. By setting the Tg of the modified conjugated diene polymer rubber within such a range, it is possible to ensure steering stability and reduce rolling resistance. Moreover, wet grip performance is securable by making Tg into such a range.
  • the glass transition temperature (Tg) of the modified conjugated diene polymer rubber is measured by a differential scanning calorimetry (DSC) under a temperature increase rate condition of 20 ° C./min, and is defined as the temperature at the midpoint of the transition region. When the modified conjugated diene polymer rubber is an oil-extended product, the glass transition temperature of the modified conjugated diene polymer rubber in a state not containing an oil-extended component (oil) is used.
  • DSC differential scanning calorimetry
  • the content of the modified conjugated diene polymer rubber is 35 to 89% by weight, preferably 40 to 85% by weight, in 100% by weight of the diene rubber.
  • they are 40 to 45% by weight, 45 to 75% by weight, and 75 to 85% by weight.
  • the content of the modified conjugated diene polymer rubber is less than 35% by weight in the diene rubber, the affinity with silica is deteriorated and the dispersibility of silica cannot be improved.
  • the content of the modified conjugated diene polymer rubber exceeds 89% by weight, the glass transition temperature of the rubber composition becomes high, so that the wear resistance is lowered.
  • the rubber composition for a tire tread of the present invention can improve the wear resistance while maintaining low rolling resistance and wet performance at a high level by containing butadiene rubber.
  • the blending amount of butadiene rubber is 11 to 40% by weight, preferably 15 to 35% by weight, in 100% by weight of diene rubber. For example, the content is 15 to 30% by weight and 30 to 35% by weight. If the amount of butadiene rubber is less than 11% by weight, good wear resistance cannot be achieved. Moreover, when the compounding quantity of butadiene rubber exceeds 40 weight%, wet grip performance will deteriorate.
  • the butadiene rubber those usually used in rubber compositions for tires may be used.
  • diene rubbers other than modified conjugated diene polymer rubber (first modified conjugated diene polymer rubber) and butadiene rubber can be blended as a rubber component.
  • diene rubbers include natural rubber, isoprene rubber, solution polymerized styrene butadiene rubber (S-SBR), emulsion polymerized styrene butadiene rubber (E-SBR), butyl rubber, and halogenated butyl rubber. Natural rubber, isoprene rubber, solution polymerized styrene butadiene rubber, and emulsion polymerized styrene butadiene rubber are preferred.
  • the solution-polymerized styrene-butadiene rubber is a solution-polymerized styrene-butadiene rubber that is not terminal-modified, or a terminal-modified solution-polymerized styrene-butadiene rubber other than the modified conjugated diene-based polymer rubber of the present invention (second modified conjugated diene-based polymer rubber). ).
  • Such diene rubbers can be used alone or as a plurality of blends.
  • the content of the other diene rubber is 54% by weight or less, preferably 40% by weight or less, in 100% by weight of the diene rubber. For example, they are 1 to 25% by weight and 25 to 40% by weight.
  • the upper limit of the content of other diene rubbers is not particularly limited, but is, for example, 1% by weight.
  • the rubber composition for a tire tread of the present invention can further improve wet performance, particularly handling stability on a wet road surface while maintaining low rolling resistance by blending an aromatic modified terpene resin.
  • an aromatic modified terpene resin one having a softening point of 100 to 150 ° C., preferably 110 to 140 ° C. may be used. For example, it is good to use what is 110-125 degreeC and 125-140 degreeC. When the softening point of the aromatic modified terpene resin is less than 100 ° C., the effect of improving the wet performance cannot be sufficiently obtained.
  • the softening point of aromatic modified terpene resin exceeds 150 degreeC, the dispersibility with respect to diene type rubber will deteriorate, the grip performance on wet road surface will fall, and rubber strength will fall.
  • the softening point of the aromatic modified terpene resin is measured according to JIS K6220-1 (ring and ball method).
  • the blending amount of the aromatic modified terpene resin is 3 to 60 parts by weight with respect to 100 parts by weight of the diene rubber, and the ratio Wte / Wbr of the blending amount Wte of the aromatic modified terpene resin to the blending amount Wbr of the butadiene rubber is 0.00. 5 to 1.3, preferably 0.8 to 1.1. For example, 0.5 to 0.8, 0.8 to 1.3.
  • the ratio Wte / Wbr is less than 0.5, the glass transition temperature of the rubber composition is lowered, and thus the effect of improving the wet grip performance cannot be sufficiently obtained.
  • the blend amount of the aromatic modified terpene resin is, for example, 3 to 12 parts by weight, 12 to 40 parts by weight, or 40 to 60 parts by weight with respect to 100 parts by weight of the diene rubber.
  • the aromatic modified terpene resin is obtained by polymerizing a terpene and an aromatic compound.
  • terpenes include ⁇ -pinene, ⁇ -pinene, dipentene, limonene and the like.
  • the aromatic compound include styrene, ⁇ -methylstyrene, vinyl toluene, indene and the like.
  • a styrene-modified terpene resin is preferable as the aromatic-modified terpene resin.
  • Such an aromatic modified terpene resin has good compatibility with the diene rubber, so that the tan ⁇ at 0 ° C. of the rubber composition is increased and the wet grip performance is improved.
  • the hydroxyl value of the aromatic modified terpene resin is preferably 30 KOHmg / g or less, more preferably 0 to 25 KOHmg / g.
  • the hydroxyl value of the aromatic modified terpene resin is measured according to JIS K1557-1.
  • a filler containing 70 to 95% by weight of silica is blended in an amount of 100 to 150 parts by weight, for example, 100 to 120 parts by weight, 120 to 130 parts by weight, 130 to 150 parts by weight, based on 100 parts by weight of the diene rubber. .
  • the compounding quantity of a filler into such a range, the low rolling resistance and wet performance of a rubber composition can be balanced at a higher level.
  • the blending amount of the filler is less than 100 parts by weight, the wet performance is lowered.
  • the blending amount of the filler exceeds 150 parts by weight, the heat generation becomes large and the low rolling resistance deteriorates.
  • the content of silica in 100% by weight of the filler is 70% by weight or more, preferably 80 to 100% by weight. For example, it is 80 to 92% by weight and 92 to 100% by weight.
  • the content of silica in the filler in such a range, the low rolling resistance and wet performance of the rubber composition can be balanced at a higher level.
  • the affinity with a silica is made high and a dispersibility is improved by mix
  • specific silica 1 can be used alone as silica, or specific silica 1 can be used together with other silicas.
  • This specific silica 1 has a DBP absorption of 185 to 250 ml / 100 g, and a ratio of nitrogen adsorption specific surface area (N 2 SA) to CTAB specific surface area (CTAB) (N 2 SA / CTAB) of 0.9 to 1. 25 is preferably satisfied.
  • the amount of silica 1 is preferably 70 to 100% by weight based on the total silica.
  • the rubber composition for a tire tread of the present invention increases the blending amount of the filler to 100 to 150 parts by weight by blending only silica 1 or at least two types of silica containing silica 1 and 100 wt. While the silica content is 70% by weight or more, the low rolling resistance and wet performance and the wear resistance can be balanced at a high level.
  • the blending amount of silica 1 is preferably 70% by weight or more, more preferably 80 to 100% by weight in the total silica. For example, they are 70 to 75% by weight, 75 to 83% by weight, and 83 to 100% by weight. When the blending amount of silica 1 is less than 70% by weight, the wear resistance is lowered due to a decrease in strength of the rubber.
  • the DBP absorption amount of silica 1 is preferably 185 to 250 ml / 100 g. For example, they are 185 to 200 ml / 100 g and 200 to 250 ml / 100 g.
  • the DBP absorption is less than 185 ml / 100 g, the abrasion resistance deteriorates because the breaking strength decreases.
  • the DBP absorption exceeds 250 ml / 100 g, heat generation is deteriorated and rolling resistance is deteriorated.
  • the DBP absorption amount of silica is determined in accordance with JIS K6217-4 oil absorption amount A method.
  • the ratio of N 2 SA to CTAB (N 2 SA / CTAB) of silica 1 is preferably 0.90 to 1.25, more preferably 0.95 to 1.20. For example, 0.95 to 1.01 and 1.01 to 1.20.
  • N 2 SA / CTAB characteristic ratio of silica
  • the characteristic ratio of silica (N 2 SA / CTAB) is less than 0.90, the reinforcing property is lowered.
  • the silica characteristic ratio (N 2 SA / CTAB) exceeds 1.25, the dispersibility of the silica is lowered, and the rolling resistance and wet performance are deteriorated.
  • N 2 SA of silica is determined in accordance with JIS K6217-2.
  • the CTAB of silica is determined according to JIS K6217-3.
  • silica usually used in rubber compositions for tire treads, for example, wet method silica, dry method silica, or surface-treated silica can be used.
  • the rubber composition of the present invention it is preferable to blend a silane coupling agent together with silica, so that the dispersibility of silica can be improved and the reinforcing property with the diene rubber can be further increased.
  • the silane coupling agent is preferably added in an amount of 3 to 20% by weight, more preferably 5 to 15% by weight, based on the amount of silica. For example, 5 to 10% by weight and 10 to 15% by weight.
  • the compounding amount of the silane coupling agent is less than 3% by weight of the silica weight, the effect of improving the dispersibility of the silica cannot be sufficiently obtained.
  • the silane coupling agent exceeds 20% by weight, the silane coupling agents are polymerized with each other, and a desired effect cannot be obtained.
  • the silane coupling agent is not particularly limited, but a sulfur-containing silane coupling agent is preferable.
  • a sulfur-containing silane coupling agent is preferable.
  • the carbon black preferably has a nitrogen adsorption specific surface area of 70 to 165 m 2 / g.
  • they are 70 to 77 m 2 / g, 77 to 123 m 2 / g, 123 to 165 m 2 / g.
  • the nitrogen adsorption specific surface area of the carbon black is less than 70 m 2 / g, the abrasion resistance deteriorates due to a decrease in reinforcement.
  • N 2 SA of carbon black is obtained in accordance with JIS K6217-2.
  • the blending amount of carbon black is not particularly limited, and is, for example, 10 to 15 parts by weight, 15 to 20 parts by weight, or 20 to 60 parts by weight with respect to 100 parts by weight of the diene rubber.
  • the rubber composition for a tire tread of the present invention can contain other fillers other than silica.
  • fillers other than silica include carbon black, clay, mica, talc, calcium carbonate, aluminum hydroxide, aluminum oxide, and titanium oxide. Of these, carbon black is preferred. By adding carbon black, the rubber strength can be increased.
  • the tire tread rubber composition generally includes a vulcanization or crosslinking agent, a vulcanization accelerator, an anti-aging agent, a plasticizer, a processing aid, a liquid polymer, a thermosetting resin, and the like.
  • Various compounding agents used can be blended.
  • Such a compounding agent can be kneaded by a general method to form a rubber composition, which can be used for vulcanization or crosslinking.
  • the compounding amounts of these compounding agents can be the conventional general compounding amounts as long as they do not contradict the purpose of the present invention.
  • the rubber composition for a tire tread can be produced by mixing each of the above components using a known rubber kneading machine such as a Banbury mixer, a kneader, or a roll.
  • the rubber composition for a tire tread of the present invention can be suitably used for a pneumatic tire.
  • a pneumatic tire using this rubber composition in the tread portion can improve low rolling resistance, wet performance, and wear resistance to a level higher than the conventional level.
  • the description of the total of the filler is the total of silica and carbon black (parts by weight)
  • the description of the silica ratio in the filler is the description of the content of silica in 100% by weight (wt%)
  • the ratio of silica 1 in silica Indicates the content (wt%) of silica 1 in 100 wt% of the total silica, and the ratio Wte / Wbr of the butadiene rubber blending amount Wbr and the aromatic modified terpene resin blending amount Wte, respectively.
  • the amounts of the common compounding components shown in FIG. 4 mean that they were blended in parts by weight with respect to 100 parts by weight of the diene rubber described in FIGS.
  • 38 types of the obtained rubber compositions for tire treads were press vulcanized at 160 ° C. for 20 minutes in a mold having a predetermined shape to prepare a vulcanized rubber sample, and rolling resistance (60 ° C. tan ⁇ ) and abrasion resistance were measured.
  • Abrasion resistance Lambone wear of the obtained vulcanized rubber sample was measured in accordance with JIS K6264-2 using a lambone wear tester manufactured by Iwamoto Seisakusho under the conditions of a temperature of 20 ° C., a load of 15 N and a slip ratio of 50%. It was measured. The obtained results are shown in FIGS. 1 to 3 with the index of Comparative Example 1 as 100. The larger the index, the more excellent the abrasion resistance, especially when the index is 102 or more.
  • the obtained pneumatic tire is assembled to a wheel with a rim size of 18 x 8 JJ, mounted on a domestic 2.5 liter class test vehicle, and a test course of 2.6 km per lap consisting of a wet road surface under the condition of air pressure 230 kPa.
  • the vehicle was run, and the handling stability at that time was scored by a sensitive evaluation by three expert panelists.
  • the obtained results are shown in FIGS. 1 to 3 with the index of Comparative Example 1 being 100. It means that the wet steering stability on a wet road surface is excellent when the index is larger, particularly when the index is 102 or more. 1 to 3 show the types of raw materials used.
  • Modified S-SBR1 modified conjugated diene polymer rubber comprising a polyorganosiloxane having the structure of the above general formula (I), aromatic vinyl unit content 42% by weight, vinyl unit content 32%, weight average An oil-extended product having a molecular weight (Mw) of 750,000, Tg of ⁇ 25 ° C., 100 parts by weight of a rubber component and 25 parts by weight of oil, and a terminal-modified solution-polymerized styrene butadiene rubber prepared by the following production method.
  • Mw molecular weight
  • a small amount of an anti-aging agent (Irganox 1520, manufactured by BASF) is added to the obtained polymer solution, and 25 parts of Fukkoreramic 30 (manufactured by Nippon Oil Co., Ltd.) is added as an extending oil, and then solidified by a steam stripping method. Rubber was recovered. The obtained solid rubber was dehydrated with a roll and dried in a drier to obtain modified S-SBR1.
  • an anti-aging agent Irganox 1520, manufactured by BASF
  • Fukkoreramic 30 manufactured by Nippon Oil Co., Ltd.
  • Modified S-SBR2 Modified conjugated diene polymer rubber comprising a polyorganosiloxane having the structure of the above general formula (II), aromatic vinyl unit content 42% by weight, vinyl unit content 32%, weight average An oil-extended product having a molecular weight (Mw) of 750,000, Tg of ⁇ 25 ° C., 100 parts by weight of a rubber component and 25 parts by weight of oil, and a terminal-modified solution-polymerized styrene butadiene rubber prepared by the following production method.
  • Mw molecular weight
  • a small amount of an anti-aging agent (Irganox 1520, manufactured by BASF) is added to the obtained polymer solution, and 25 parts of Fukkoreramic 30 (manufactured by Nippon Oil Co., Ltd.) is added as an extending oil, and then solidified by a steam stripping method. Rubber was recovered. The obtained solid rubber was dehydrated with a roll and dried in a drier to obtain modified S-SBR2.
  • an anti-aging agent Irganox 1520, manufactured by BASF
  • Fukkoreramic 30 manufactured by Nippon Oil Co., Ltd.
  • Polyorganosiloxane B a polyorganosiloxane having the structure of the general formula (II), wherein R 9 to R 16 are each a methyl group (—CH 3 ), and X 5 to X 8 are each a formula (VIII).
  • Modified S-SBR3 Modified conjugated diene polymer rubber composed of polyorganosiloxane having the structure of the above general formula (III), aromatic vinyl unit content 41% by weight, vinyl unit content 32%, weight average An oil-extended product having a molecular weight (Mw) of 750,000, Tg of ⁇ 25 ° C., 100 parts by weight of a rubber component and 25 parts by weight of oil, and a terminal-modified solution-polymerized styrene butadiene rubber prepared by the following production method.
  • Mw molecular weight
  • a small amount of an anti-aging agent (Irganox 1520, manufactured by BASF) is added to the obtained polymer solution, and 25 parts of Fukkoreramic 30 (manufactured by Nippon Oil Co., Ltd.) is added as an extending oil, and then solidified by a steam stripping method. Rubber was recovered. The obtained solid rubber was dehydrated with a roll and dried in a dryer to obtain modified S-SBR3.
  • an anti-aging agent Irganox 1520, manufactured by BASF
  • Fukkoreramic 30 manufactured by Nippon Oil Co., Ltd.
  • Modified S-SBR4 terminal modified solution polymerized styrene butadiene rubber, aromatic vinyl unit content 30% by weight, vinyl unit content 61% by weight, weight average molecular weight (Mw) 590,000, Tg ⁇ 25 ° C., Nipol NS530, manufactured by ZEON Corporation
  • -Modified S-SBR5 terminal modified solution polymerized styrene butadiene rubber, aromatic vinyl unit content 16% by weight, vinyl unit content 32%, weight average molecular weight (Mw) 610,000, Tg -60 ° C, Japan ZEON Nipol NS612, non-oil exhibition
  • Modified S-SBR6 Modified conjugated diene polymer rubber composed of polyorganosiloxane having the structure of the general formula (I), aromatic vinyl unit content 34% by weight, vinyl unit content 34%, weight average An oil-extended product having a molecular weight (Mw) of 760,000, Tg of ⁇ 33 ° C., 25 parts by weight of oil per 100 parts by weight of the rubber component, and a terminal-modified solution-polymerized styrene butadiene rubber prepared by the following production method.
  • Mw molecular weight
  • a small amount of an anti-aging agent (Irganox 1520, manufactured by BASF) is added to the obtained polymer solution, and 25 parts of Fukkoreramic 30 (manufactured by Nippon Oil Co., Ltd.) is added as an extending oil, and then solidified by a steam stripping method. Rubber was recovered. The obtained solid rubber was dehydrated with a roll and dried in a drier to obtain modified S-SBR6.
  • an anti-aging agent Irganox 1520, manufactured by BASF
  • Fukkoreramic 30 manufactured by Nippon Oil Co., Ltd.
  • Modified S-SBR7 Modified conjugated diene polymer rubber composed of polyorganosiloxane having the structure of the general formula (I), aromatic vinyl unit content 49% by weight, vinyl unit content 28%, weight average An oil-extended product having a molecular weight (Mw) of 710,000, Tg of ⁇ 17 ° C., 100 parts by weight of a rubber component and 25 parts by weight of oil, and a terminal-modified solution-polymerized styrene butadiene rubber prepared by the following production method.
  • Mw molecular weight
  • a small amount of an anti-aging agent (Irganox 1520, manufactured by BASF) is added to the obtained polymer solution, and 25 parts of Fukkoreramic 30 (manufactured by Nippon Oil Co., Ltd.) is added as an extending oil, and then solidified by a steam stripping method. Rubber was recovered. The obtained solid rubber was dehydrated with a roll and dried in a drier to obtain modified S-SBR7.
  • an anti-aging agent Irganox 1520, manufactured by BASF
  • Fukkoreramic 30 manufactured by Nippon Oil Co., Ltd.
  • Modified S-SBR8 Modified conjugated diene polymer rubber composed of polyorganosiloxane having the structure of the above general formula (I), aromatic vinyl unit content 41% by weight, vinyl unit content 17%, weight average An oil-extended product having a molecular weight (Mw) of 740,000, Tg of ⁇ 37 ° C., 25 parts by weight of oil per 100 parts by weight of a rubber component, and a terminal-modified solution-polymerized styrene butadiene rubber prepared by the following production method.
  • Mw molecular weight
  • a small amount of anti-aging agent (Irganox 1520, manufactured by BASF) is added to the obtained polymer solution, and 25 parts of FUCKOL ERAMIC 30 (manufactured by Nippon Oil Co., Ltd.) is added as an extension oil, followed by steam stripping.
  • the solid rubber was recovered.
  • the obtained solid rubber was dehydrated with a roll and dried in a drier to obtain modified S-SBR8.
  • Modified S-SBR9 Modified conjugated diene polymer rubber comprising polyorganosiloxane having the structure of the general formula (I), aromatic vinyl unit content 39% by weight, vinyl unit content 40%, weight average An oil-extended product having a molecular weight (Mw) of 750,000, Tg of -21 ° C., 100 parts by weight of a rubber component and 25 parts by weight of oil, and a terminal-modified solution-polymerized styrene butadiene rubber prepared by the following production method.
  • Mw molecular weight
  • a small amount of an anti-aging agent (Irganox 1520, manufactured by BASF) is added to the obtained polymer solution, and 25 parts of Fukkoreramic 30 (manufactured by Nippon Oil Co., Ltd.) is added as an extending oil, and then solidified by a steam stripping method. Rubber was recovered. The obtained solid rubber was dehydrated with a roll and dried in a drier to obtain modified S-SBR9.
  • an anti-aging agent Irganox 1520, manufactured by BASF
  • Fukkoreramic 30 manufactured by Nippon Oil Co., Ltd.
  • Modified S-SBR10 terminal modified solution polymerized styrene butadiene rubber, aromatic vinyl unit content 37% by weight, vinyl unit content 43% by weight, weight average molecular weight (Mw) 1.2 million, Tg ⁇ 27 ° C.
  • S-SBR unmodified solution-polymerized styrene butadiene rubber, aromatic vinyl unit content 41% by weight, vinyl unit content 25%, weight average molecular weight (Mw) 1,010,000, Tg -30 ° C, Dow Chemical SLR6430, an oil-extended product containing 37.5 parts by weight of oil with respect to 100 parts by weight of the rubber component
  • BR butadiene rubber
  • Silica-b Rhodia Zeosil 115GR, DBP absorption 160 ml / 100 g, nitrogen adsorption specific surface area (N 2 SA) 115 m 2 / g,
  • Terpene resin 1 aromatic modified terpene resin having a softening point of 125 ° C., YS resin TO-125 manufactured by Yasuhara Chemical Co., Ltd.
  • Terpene resin 2 Aromatic modified terpene resin having a softening point of 85 ° C., YS resin TO-85 manufactured by Yashara Chemical Co., Ltd.
  • Terpene resin 3 Aromatic modified terpene resin having a softening point of 105 ° C., YS resin TO-105 manufactured by Yashara Chemical Co., Ltd.
  • Coupling agent Si69 manufactured by Evonik Degussa ⁇ Oil: Showa Shell Sekiyu Extract 4 S
  • ⁇ Stearic acid NOF beads stearic acid YR Anti-aging agent: Santoflex 6PPD manufactured by Flexis ⁇ Wax: Sunnock manufactured by Ouchi Shinsei Chemical Co., Ltd. ⁇ Zinc flower: Zinc oxide 3 types manufactured by Shodo Chemical Industry Co., Ltd. ⁇ Sulfur: Fine powder sulfur containing Jinhua seal oil manufactured by Tsurumi Chemical Industry Co., Ltd. , Nouchira CZ-G manufactured by Ouchi Shinsei Chemical Co., Ltd. ⁇ Vulcanization accelerator 2: Vulcanization accelerator DPG, Noxeller D manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • the rubber composition of Comparative Example 2 has a modified S-SBR4 having an aromatic vinyl unit content of less than 38% by weight, a vinyl unit content of more than 35% by weight, and a weight average molecular weight of 600,000. Therefore, the low rolling resistance (tan ⁇ at 60 ° C.), the wet performance and the wear resistance cannot be improved.
  • the rubber composition of Comparative Example 3 was blended with unmodified S-SBR instead of the modified conjugated diene polymer rubber, so that the dispersibility of the silica was poor, so that the rolling resistance was deteriorated, and the wear resistance was sufficiently improved. Can not do it.
  • the rubber composition of Comparative Example 4 has a wet performance because the modified S-SBR5 has an aromatic vinyl unit content of less than 38% by weight, a vinyl unit content of more than 35% by weight, and a weight average molecular weight of less than 600,000. Gets worse.
  • the aromatic vinyl unit content of the modified S-SBR6 is less than 38% by weight, the wet performance is deteriorated.
  • the aromatic vinyl unit content of the modified S-SBR7 exceeds 48% by weight, rolling resistance and wear resistance are deteriorated.
  • the rubber composition of Comparative Example 7 cannot improve the wet performance because the vinyl unit content of the modified S-SBR8 is less than 20% by weight.
  • the vinyl unit content of the modified S-SBR9 exceeds 35% by weight, the rolling resistance is deteriorated.
  • the wet performance cannot be improved because the compounding amount of butadiene rubber exceeds 40% by weight.
  • the compounding amount of butadiene rubber is less than 11% by weight, so the wear resistance is deteriorated and sufficient rolling resistance cannot be improved.
  • the rubber composition of Comparative Example 11 has a modified S-SBR1 content of less than 35% by weight, so the rolling resistance deteriorates and the wear resistance cannot be improved.
  • the rubber composition of Comparative Example 12 since the blending amount of the modified S-SBR1 exceeds 89% by weight and the blending amount of the butadiene rubber is less than 11% by weight, the wear resistance is deteriorated and the rolling resistance is sufficiently improved. Not done.
  • the total amount of the filler is less than 100 parts by weight, the wet performance is deteriorated and the wear resistance cannot be sufficiently improved.
  • the silica ratio in 100% by weight of the total filler is less than 70% by weight, so that the rolling resistance is deteriorated and the wet performance cannot be improved.
  • the total compounding amount of the filler exceeds 150 parts by weight, so that the rolling resistance is deteriorated. Since the weight ratio Wte / Wbr of the terpene resin and butadiene rubber is less than 0.5, the rubber composition of Comparative Example 16 cannot improve the wet performance. Since the ratio Wte / Wbr of the rubber composition of Comparative Example 17 exceeds 1.3, rolling resistance and wear resistance are deteriorated.
  • the softening point of the terpene resin 2 is less than 100 ° C., the wet performance is deteriorated. Also, the rolling resistance cannot be improved sufficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

 低転がり抵抗性、ウェット性能及び耐摩耗性を従来レベル以上に向上するようにしたタイヤトレッド用ゴム組成物を提供する。変性共役ジエン系重合体ゴムを35~89重量%、ブタジエンゴムを11~40重量%含むジエン系ゴム100重量部に、芳香族変性テルペン樹脂を3~60重量部、充填剤を100~150重量部配合し、前記充填剤中シリカが70重量%以上、前記ブタジエンゴムの配合量Wbrと芳香族変性テルペン樹脂の配合量Wteの比Wte/Wbrが0.5~1.3、かつ変性共役ジエン系重合体ゴムがシリカとの相互作用を有する官能基を含む末端変性基を有し、この変性共役ジエン系重合体ゴムの芳香族ビニル単位含有量が38~48重量%、ビニル単位含有量が20~35重量%、重量平均分子量が60万~100万であり、前記芳香族変性テルペン樹脂の軟化点が100~150℃である。

Description

タイヤトレッド用ゴム組成物
 本発明は、タイヤトレッド用ゴム組成物に関し、更に詳しくは低転がり抵抗性、ウェット性能及び耐摩耗性を従来レベル以上に向上するようにしたタイヤトレッド用ゴム組成物に関する。
 高性能車両向けの空気入りタイヤに対する要求性能として、湿潤路面走行時の操縦安定性及び制動性能が優れることだけでなく、地球環境問題への関心の高まりに伴い燃費性能についても優れることが求められている。このためトレッド部を構成するゴム組成物にシリカを配合することにより、トレッドゴムの損失正接(tanδ)等の動的粘弾性特性を改質して、発熱を抑え転がり抵抗を低減し燃費性能を高くすると共に、ウェット性能を改良することが行われている。しかしシリカはジエン系ゴムとの親和性が乏しく分散が不良になり易く、特にシリカの粒子径を小さくすると分散性が悪化するので、低発熱性及びウェット性能を改良する効果が十分に得られなかった。またカーボンブラックに比べ補強性が小さく耐摩耗性が必ずしも十分に確保することができなかった。
 このため特許文献1は、末端をポリオルガノシロキサン等で変性した末端変性溶液重合スチレンブタジエンゴムにシリカを配合したゴム組成物によりシリカの分散性を改良して、発熱性(60℃のtanδ)を低減し、ウェットグリップ性(0℃のtanδ)を高くし、耐摩耗性を改良することを提案している。また特許文献2は、スチレンブタジエン共重合ゴム100重量部に、シリカ50重量部以上を含む充填剤80~180重量部、軟化点が100~150℃の樹脂を5~60重量部配合したゴム組成物を提案している。
 しかし、需要者が低転がり抵抗性、ウェット性能及び耐摩耗性の改良を期待する要求レベルは、これらのゴム組成物が達成する性能より高く、低転がり抵抗性、ウェット性能及び耐摩耗性を一層改善することが求められていた。
特開2009-91498号公報 特開2007-321046号公報
 本発明の目的は、低転がり抵抗性及びウェット性能を従来レベル以上に向上するようにしたタイヤトレッド用ゴム組成物を提供することにある。
 上記目的を達成する本発明のタイヤトレッド用ゴム組成物は、変性共役ジエン系重合体ゴムを35~89重量%、ブタジエンゴムを11~40重量%含むジエン系ゴム100重量部に対し、芳香族変性テルペン樹脂を3~60重量部、充填剤を100~150重量部配合すると共に、前記充填剤中シリカを70重量%以上含み、前記ブタジエンゴムの配合量Wbrに対する芳香族変性テルペン樹脂の配合量Wteの比Wte/Wbrが0.5~1.3であり、かつ前記変性共役ジエン系重合体ゴムが、炭化水素溶媒中、有機活性金属化合物を開始剤として用いて共役ジエン系単量体と芳香族ビニル単量体とを共重合させた活性共役ジエン系重合体鎖に、その重合体鎖の活性末端と反応可能な官能基を有する少なくとも1種類の化合物を反応させた末端変性基を有し、該末端変性基がシリカとの相互作用を有する官能基を含むと共に、この変性共役ジエン系重合体ゴムの芳香族ビニル単位含有量が38~48重量%、ビニル単位含有量が20~35重量%、重量平均分子量が60万~100万であり、前記芳香族変性テルペン樹脂の軟化点が100~150℃であることを特徴とする。
 本発明のタイヤトレッド用ゴム組成物は、共役ジエン系単量体と芳香族ビニル単量体とを共重合させた活性共役ジエン系重合体鎖の活性末端に反応可能な官能基を有する少なくとも1種類の化合物を反応させた末端変性基を有し、この末端変性基がシリカとの相互作用を有する官能基を含み、芳香族ビニル単位含有量が38~48重量%、ビニル単位含有量が20~35重量%、重量平均分子量が60万~100万である変性共役ジエン系重合体ゴムを35~89重量%、ブタジエンゴムを11~40重量%含むジエン系ゴム100重量部に対し、軟化点が100~150℃である芳香族変性テルペン樹脂を3~60重量部配合しかつブタジエンゴムの配合量Wbrに対する芳香族変性テルペン樹脂の配合量Wteの比Wte/Wbrを0.5~1.3、シリカを70重量%以上含む充填剤を100~150重量部配合することにより、ジエン系ゴムとシリカとの親和性を高くしシリカの分散性を向上することにより発熱性を小さくして転がり抵抗を低減すると共に、ウェット性能を改良することができる。特に芳香族ビニル単位含有量を38~48重量%にすることにより変性共役ジエン系重合体ゴムが微細な相分離形態を形成すると共に、活性共役ジエン系重合体鎖の活性末端と反応可能な官能基を有する少なくとも1種類の化合物との反応により生じる末端変性基がシリカと相互作用する官能基を含有し、重量平均分子量を60万~100万にすることによりその末端変性基の濃度を適正化したので、末端変性基がシリカに効率的に作用しシリカの分散性を一層良好にして空気入りタイヤの低転がり抵抗性を大幅に低減しウェット性能を一層向上することができる。またジエン系ゴム中にブタジエンゴムを11~40重量%含むことにより、優れた低転がり抵抗性及びウェット性能を維持しながら耐摩耗性を向上することができる。更に芳香族変性テルペン樹脂の軟化点を100~150℃にしたので、優れた低転がり抵抗性を維持しながら、ウェット性能を一層改良することができる。
 シリカとしては、DBP吸収量が185~250ml/100g、かつ窒素吸着比表面積(N2SA)とCTAB比表面積(CTAB)の比(N2SA/CTAB)が0.90~1.25を満たすシリカを全シリカ中70重量%以上含むことが好ましい。このようにシリカを配合することにより、充填剤の配合量が多量であっても、良好な転がり抵抗性と耐摩耗性を両立することができる。
 カーボンブラックとしては、窒素吸着比表面積が70~165m2/gであることが好ましく耐摩耗性を損なわずにウェット性能と転がり抵抗を両立、維持することができる。
 上述した活性共役ジエン系重合体鎖の活性末端と反応可能な官能基を有する化合物としては、下記一般式(I)~(III)から選ばれる少なくとも1種類のポリオルガノシロキサン化合物を含むとよい。
Figure JPOXMLDOC01-appb-C000004

(上記式(I)において、R1~R8は、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、これらは互いに同一であっても相違してもよい。X1およびX4は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基、または炭素数1~6のアルキル基もしくは炭素数6~12のアリール基であり、X1およびX4は互いに同一であっても相違してもよい。X2は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基である。X3は、2~20のアルキレングリコールの繰返し単位を含有する基であり、X3の一部は2~20のアルキレングリコールの繰返し単位を含有する基から導かれる基であってもよい。mは3~200の整数、nは0~200の整数、kは0~200の整数である。)
Figure JPOXMLDOC01-appb-C000005

(上記式(II)において、R9~R16は、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、これらは互いに同一であっても相違してもよい。X5~X8は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基である。)
Figure JPOXMLDOC01-appb-C000006

(上記式(III)において、R17~R19は、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、これらは互いに同一であっても相違してもよい。X9~X11は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基である。Sは1~18の整数である。)
 このゴム組成物をトレッド部に使用した空気入りタイヤは、低転がり抵抗性、ウェット性能及び耐摩耗性を従来レベル以上に向上することができる。
本発明の実施例、比較例の各組成物の配合、評価を示す図である。 本発明の実施例、比較例の各組成物の配合、評価を示す図である。 本発明の実施例、比較例の各組成物の配合、評価を示す図である。 本発明の実施例、比較例の各組成物に用いられる共通配合成分を示す図である。
 本発明のタイヤトレッド用ゴム組成物において、ゴム成分はジエン系ゴムであり、そのジエン系ゴムは変性共役ジエン系重合体ゴム及びブタジエンゴムを必ず含むようにする。変性共役ジエン系重合体ゴムは、分子鎖の両末端に官能基を有するようにした溶液重合で製造した共役ジエン系重合体ゴムである。変性共役ジエン系重合体ゴムを配合することによりシリカとの親和性を高くし分散性を改善するため、シリカの作用効果を一層向上するので、低転がり抵抗性及びウェット性能を改良すると共に、耐摩耗性を高くする。
 本発明において、変性共役ジエン系重合体の骨格は、共役ジエン系単量体と芳香族ビニル単量体とを共重合して得られた共重合体により構成される。共役ジエン系単量体としては、例えば1,3-ブタジエン、イソプレン(2-メチル-1,3-ブタジエン)、2,3-ジメチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、1,3-ペンタジエンなどが例示される。また芳香族ビニル単量体としては、例えばスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-tert-ブチルスチレン、ジビニルベンゼン、tert-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、ビニルピリジンなどが挙げられる。
 骨格となる共役ジエン系重合体は、その末端がイソプレン単位ブロックによって構成されることが好ましい。末端がイソプレン単位ブロックにより構成されることにより、その末端を変性し、シリカを配合したときに、変性共役ジエン系重合体とシリカとの親和性が良好となり、低発熱性、ウェット性能、耐摩耗性が良好になる。したがって、重合体を構成する共役ジエン単量体単位がイソプレン単位以外の共役ジエンを含む場合には、活性共役ジエン系重合体鎖の活性末端と反応可能な官能基を有する化合物を添加する前、あるいは、後述するように、当該化合物を多段に反応させる場合、或いは、同一或いは異なる化合物を逐次的に反応させる場合は、これら化合物を分けて添加する間に、活性末端を有する重合体を含有する溶液に、イソプレンを添加することにより、その重合体末端にイソプレン単位ブロックを導入することが好ましい。
 本発明において、共役ジエン系重合体は、上述した共役ジエン系単量体及び芳香族ビニル単量体を、炭化水素溶媒中で有機活性金属化合物を開始剤として共重合して調製する。炭化水素溶媒としては、通常使用される溶媒であればよく、例えばシクロヘキサン、n-ヘキサン、ベンゼン、トルエン等が例示される。
 使用する有機活性金属触媒としては、有機アルカリ金属化合物が好ましく使用され、例えばn-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、ヘキシルリチウム、フェニルリチウム、スチルベンリチウムなどの有機モノリチウム化合物;ジリチオメタン、1,4-ジリチオブタン、1,4-ジリチオ-2-エチルシクロヘキサン、1,3,5-トリリチオベンゼンなどの有機多価リチウム化合物;ナトリウムナフタレンなどの有機ナトリウム化合物;カリウムナフタレンなどの有機カリウム化合物が挙げられる。また、3,3-(N,N-ジエメチルアミノ)-1-プロピルリチウム、3-(N,N-ジエチルアミノ)-1-プロピルリチウム、3-(N,N-ジプロピルアミノ)-1-プロピルリチウム、3-モルホリノ-1-プロピルリチウム、3-イミダゾール-1-プロピルリチウム及びこれらをブタジエン、イソプレン又はスチレン1~10ユニットにより鎖延長した有機リチウム化合物なども使用することができる。
 また、重合反応において、芳香族ビニル単量体を共役ジエン系単量体とランダムに共重合する目的で、ジエチルエーテル、ジエチレングリコールジメチルエーテル、テトラハイドロフラン、2,2-ビス(2-オキソラニル)プロパン等のエーテル類、トリエチルアミン、テトラメチルエチレンジアミン等のアミン類等の非プロトン性極性化合物を添加することも実施可能である。
 本発明において、共役ジエン系単量体及び芳香族ビニル単量体を共重合して得られた活性共役ジエン系重合体鎖の活性末端に、反応可能な官能基を有する化合物を少なくとも1種結合させることにより、末端変性基を生成する。ここで、活性共役ジエン系重合体鎖の活性末端に反応可能な官能基を有する化合物は、少なくとも一つの活性共役ジエン系重合体鎖と結合すればよく、一つの化合物に一つ以上の活性共役ジエン系重合体鎖が結合することができる。すなわち、本発明で使用する変性共役ジエン系重合体ゴムは、共役ジエン系重合体の両末端に変性基を有した変性ゴム、任意にその変性基が1以上の他の共役ジエン系重合体と結合した変性ゴム及びこれら複数の変性ゴムの混合物を含むことができる。また、活性共役ジエン系重合体鎖の活性末端とこの活性末端に反応可能な官能基を有する化合物との反応は、一段或いは多段に反応させることができる。また同一或いは異なる化合物を、逐次的に反応させることができる。
 本発明において、活性共役ジエン系重合体鎖の活性末端と反応可能な官能基を有する化合物としては、例えばスズ化合物、ケイ素化合物、シラン化合物、アミド化合物および/またはイミド化合物、イソシアネートおよび/またはイソチオシアネート化合物、ケトン化合物、エステル化合物、ビニル化合物、オキシラン化合物、チイラン化合物、オキセタン化合物、ポリスルフィド化合物、ポリシロキサン化合物、ポリオルガノシロキサン化合物、ポリエーテル化合物、ポリエン化合物、ハロゲン化合物、フラーレン類などを有する化合物を挙げることができる。なかでもポリオルガノシロキサン化合物が好ましい。これら化合物は一種類の化合物、或いは複数の化合物を組み合わせて、重合体に結合させることができる。
 活性共役ジエン系重合体鎖の活性末端と反応可能な官能基を有する化合物として、具体的には、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル等の多価アルコールのポリグリシジルエーテル、ジグリシジル化ビスフェノールA等の2個以上のフェノール基を有する芳香族化合物のポリグリシジルエーテル、1,4-ジグリシジルベンゼン、1,3,5-トリグリシジルベンゼン、ポリエポキシ化液状ポリブタジエン等のポリエポキシ化合物、4,4’-ジグリシジル-ジフェニルメチルアミン、4,4’-ジグリシジル-ジベンジルメチルアミン等のエポキシ基含有3級アミン、ジグリシジルアニリン、ジグリシジルオルソトルイジン、テトラグリシジルメタキシレンジアミン、テトラグリシジルアミノジフェニルメタン、テトラグリシジル-p-フェニレンジアミン、ジグリシジルアミノメチルシクロヘキサン、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン等のジグリシジルアミノ化合物等が例示される。
 ケイ素化合物としては、例えばテトラクロルケイ素、テトラブロムケイ素、メチルトリクロルケイ素、ブチルトリクロルケイ素、ジクロルケイ素、ビストリクロルシリルケイ素等が例示される。
 スズ化合物としては、例えばテトラクロルスズ、テトラブロムスズ、メチルトリクロルスズ、ブチルトリクロルスズ、ジクロルスズ、ビストリクロルシリルスズ、ビストリクロルシリルスズ等が例示される。
 シラン化合物としては、アルコキシ基、フェノキシ基、ハロゲンから選ばれる少なくとも一つを含むシラン化合物が例示される。このようなシラン化合物としては、例えばジメトキシジメチルシラン、ジフェノキシジメチルシラン、ジエトキシジエチルシラン、トリフェノキシメチルシラン、トリフェノキシビニルシラン、トリメトキシビニルシラン、トリエトキシビニルシラン、トリ(2-メチルブトキシ)エチルシラン、トリ(2-メチルブトキシ)ビニルシラン、トリフェノキシフェニルシラン、テトラフェノキシシラン、テトラエトキシシラン、テトラメトキシシラン、テトラキス(2-エチルヘキシルオキシ)シラン、フェノキシジビニルクロロシラン、メトキシビエチルクロロシラン、ジフェノキシメチルクロロシラン、ジフェノキシフェニルヨードシラン、ジエトキシメチルクロロシラン、ジメトキシメチルクロロシラン、トリメトキシクロロシラン、トリエトキシクロロシラン、トリフェノキシクロロシラン、トリス(2-エチルヘキシルオキシ)クロロシラン、フェノキシメチルジクロロシラン、メトキシエチルジクロロシラン、エトキシメチルジクロロシラン、フェノキシフェニルジヨードシラン、ジフェノキシジクロロシラン、ジメトキシジクロロシラン、ビス(2-メチルブトキシ)ジブロモシラン、ビス(2-メチルブトキシ)ジクロロシラン、ジエトキシジクロロシラン、メトキシトリクロロシラン、エトキシトリクロロシラン、フェノキシトリクロロシラン、(2-エチルヘキシルオキシ)トリクロロシラン、(2-メチルブトキシ)トリクロロシラン等が例示される。
 また、シラン化合物は、上記以外の官能基として、グリシジル基、エポキシ基、メタクリロキシ基等を有することができる。このようなシラン化合物としては、例えばγ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシブチルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリプロポキシシラン、γ-グリシドキシプロピルトリブトキシシラン、γ-グリシドキシプロピルトリフェノキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルエチルジメトキシシラン、γ-グリシドキシプロピルエチルジエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジプロポキシシラン、γ-グリシドキシプロピルメチルジブトキシシラン、γ-グリシドキシプロピルメチルジフェノキシシラン、γ-グリシドキシプロピルジメチルメトキシシラン、γ-グリシドキシプロピルジエチルエトキシシラン、γ-グリシドキシプロピルジメチルエトキシシラン、γ-グリシドキシプロピルジメチルフェノキシシラン、γ-グリシドキシプロピルジエチルメトキシシラン、γ-グリシドキシプロピルメチルジイソプロペンオキシシラン、ビス(γ-グリシドキシプロピル)ジメトキシシラン、ビス(γ-グリシドキシプロピル)ジエトキシシラン、ビス(γ-グリシドキシプロピル)ジプロポキシシラン、ビス(γ-グリシドキシプロピル)ジブトキシシラン、ビス(γ-グリシドキシプロピル)ジフェノキシシラン、ビス(γ-グリシドキシプロピル)メチルメトキシシラン、ビス(γ-グリシドキシプロピル)メチルエトキシシラン、ビス(γ-グリシドキシプロピル)メチルプロポキシシラン、ビス(γ-グリシドキシプロピル)メチルブトキシシラン、ビス(γ-グリシドキシプロピル)メチルフェノキシシラン、トリス(γ-グリシドキシプロピル)メトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシメチルトリメトキシシラン、γ-メタクリロキシエチルトリエトキシシラン、ビス(γ-メタクリロキシプロピル)ジメトキシシラン、トリス(γ-メタクリロキシプロピル)メトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-トリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-トリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-トリプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-トリブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-トリフェノキシシラン、β-(3,4-エポキシシクロヘキシル)プロピル-トリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル- メチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-エチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-エチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-メチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-メチルジプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-メチルジブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-メチルジフェノキシシラン、β-3,4-エポキシシクロヘキシル)エチル-ジメチルメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-ジエチルエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-ジメチルエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-ジメチルプロポキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-ジメチルブトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-ジメチルフェノキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-ジエチルメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチル-メチルジイソプロペンオキシシラン等が例示される。
 イソシアネート化合物またはイソチオシアネート化合物としては、例えば2,4-トリレンジイソシアナート、2,6-トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ナフタレンジイソシアナート、トリジンジイソシアナート、トリフェニルメタントリイソシアナート、p-フェニレンジイソシアナート、トリス(イソシアナートフェニル)チオホスフェート、キシリレンジイソシアナート、ベンゼン-1,2,4-トリイソシアナート、ナフタレン-1,2,5,7-テトライソシアナート、ナフタレン-1,3,7-トリイソシアナート、フェニルイソシアナート、ヘキサメチレンジイソシアナート、メチルシクロヘキサンジイソシアナート、フェニル-1,4-ジイソチオシアナート、2,4-トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ナフタレンジイソシアナートなどの芳香族ポリイソシアナート化合物等が例示される。
 さらに、4-ジメチルアミノベンゾフェノン、4-ジエチルアミノベンゾフェノン、4-ジ-t-ブチルアミノベンゾフェノン、4-ジフェニルアミノベンゾフェノン、4,4'-ビス(ジメチルアミノ)ベンゾフェノン、4,4'-ビス(ジエチルアミノ)ベンゾフェノン、4,4'-ビス(ジ-t-ブチルアミノ)ベンゾフェノン、4,4’-ビス(ジフェニルアミノ)ベンゾフェノン、4,4’-ビス(ジビニルアミノ)ベンゾフェノン、4-ジメチルアミノアセトフェノン、4-ジエチルアミノアセトフェノン、1,3-ビス(ジフェニルアミノ)-2-プロパノン、1,7-ビス-(メチルエチルアミノ)-4-ヘプタノン等のN-置換アミノケトン類、及び対応するN-置換アミノチオケトン類;4-ジエチルアミノベンズアルデヒド、4-ジビニルアミノベンズアルデヒド等のN-置換アミノアルデヒド、及び対応するN-置換アミノチオアルデヒド類;N-メチル-β-プロピオラクタム、N-t-ブチル-β-プロピオラクタム、N-フェニル-β-プロピオラクタム、N-メトキシフェニル-β-プロピオラクタム、N-ナフチル-β-プロピオラクタム、N-メチル-2-ピロリドン、N-t-ブチル-2-ピロリドン、N-フェニル-ピロリドン、N-メトキシフェニル-2-ピロリドン、N-ビニル-2-ピロリドン、N-ベンジル-2-ピロリドン、N-ナフチル-2-ピロリドン、N-メチル-5-メチル-2-ピロリドン、N-メチル-3,3’-ジメチル-2-ピロリドン、N-t-ブチル-3,3’-ジメチル-2-ピロリドン、N-フェニル-3,3’-ジメチル-2-ピロリドン、N-メチル-2-ピペリドン、N-t-ブチル-2-ピペリドン、N-フェニル-ピペリドン、N-メトキシフェニル-2-ピペリドン、N-ビニル-2-ピペリドン、N-ベンジル-2-ピペリドン、N-ナフチル-2-ピペリドン、N-メチル-3,3’-ジメチル-2-ピペリドン、N-フェニル-3,3’-ジメチル-2-ピペリドン、N-メチル-ε-カプロラクタム、N-フェニル-ε-カプロラクタム、N-メトキシフェニル-ε-カプロラクタム、N-ビニル-ε-カプロラクタム、N-ベンジル-ε-カプロラクタム、N-ナフチル-ε-カプロラクタム、N-メチル-ω-ラウリロラクタム、N-フェニル-ω-ラウリロラクタム、N-t-ブチル-ラウリロラクタム、N-ビニル-ω-ラウリロラクタム、N-ベンジル-ω-ラウリロラクタム等のN-置換ラクタム類およびこれらの対応するチオラクタム類;,3-ジメチル-2-イミダゾリジノン、1,3-ジエチル-2-イミダゾリジノン、1,3-ジプロピル-2-イミダゾリジノン、1-メチル-3-エチル-2-イミダゾリジノン、1-メチル-3-プロピル-2-イミダゾリジノン、1-メチル-3-チル-2-イミダゾリジノン、1-メチル-3-2- エトキシエチル)-2-イミダゾリジノン、1,3-ジメチル-3,4,5,6-テトラヒドロピリミジノン等のN-置換エチレン尿素類および対応するN-置換チオエチレン尿素類等;4,4’-ビス(ジメチルアミノ)-ベンゾフェノン、4,4’-ビス(ジエチルアミノ)-ベンゾフェノン、4,4’-ビス(ジブチルアミノ)-ベンゾフェノン、4、4’-ジアミノベンゾフェノン、4-ジメチルアミノベンゾフェノン等及びこれらの対応のチオベンゾフェノン等のような一方あるいは両方のベンゼン環に少なくとも1つのアミノ基、アルキルアミノ基あるいはジアルキルアミノ基を有するベンゾフェノン及びチオベンゾフェノン;等が例示される。
 ハロゲン及び/又はアルコキシ基を含むケイ素化合物としては、下記一般式(IV)で表される化合物が好ましく、この化合物一分子に複数の活性共役ジエン系重合体鎖の結合が容易になる。
Figure JPOXMLDOC01-appb-C000007

(式(IV)において、X1及びX2はハロゲン原子又は炭素数1~20のアルコキシ基である。p及びqは、それぞれ独立に0~3の整数であり、式(IV)で表わされる化合物におけるハロゲン原子及び炭素数1~20のアルコキシ基の数の合計は5以上である。R1及びR2は、それぞれ炭素数1~20の1価の炭化水素基である。nは、0~20の整数であり、A1及びA2は、それぞれ独立に、単結合又は炭素数1~20の2価の炭化水素である。A3は、式-(SiX3 r3 2-r)m-、又は-NR4-、又は-N(-A4-SiX4 S5 3-S)-で表わされる2価の基である。なお、X3,X4は、ハロゲン原子または炭素数1~20のアルコキシ基である。R3,R5は、炭素数1~20の1価の炭化水素基である。R4は、水素原子または炭素数1~20の1価の炭化水素基である。A4は、単結合または炭素数1~20の2価の炭化水素基である。rは0~2の整数であり、mは0~20の整数である。sは、0~3の整数である。)
 一般式(IV)で表される化合物としては、例えば、ヘキサクロロジシラン、ビス(トリクロロシリル)メタン、1,2-ビス(トリクロロシリル)エタン、1,3-ビス(トリクロロシリル)プロパン、1,4-ビス(トリクロロシリル)ブタン、1,5-ビス(トリクロロシリル)ペンタン、1,6-ビス(トリクロロシリル)ヘキサン等のハロゲン化ケイ素化合物;ヘキサメトキシジシラン、ヘキサエトキシジシラン、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリメトキシシリル)エタン、ビス(トリエトキシシリル)エタン、ビス(トリメトキシシリル)プロパン、ビス(トリエトキシシリル)プロパン、ビス(トリメトキシシリル)ブタン、ビス(トリエトキシシリル)ブタン、ビス(トリメトキシシリル)ヘプタン、ビス(トリエトキシシリル)ヘプタン、ビス(トリメトキシシリル)ヘキサン、ビス(トリエトキシシリル)ヘキサン、ビス(トリメトキシシリル)ベンゼン、ビス(トリエトキシシリル)ベンゼン、ビス(トリメトキシシリル)シクロヘキサン、ビス(トリエトキシシリル)シクロヘキサン、ビス(トリエトキシシリル)ベンゼン、ビス(トリメトキシシリル)オクタン、ビス(トリエトキシシリル)オクタン、ビス(トリメトキシシリル)ノナン、ビス(トリエトキシシリル)ノナン、ビス(トリメトキシシリル)エチレン、ビス(トリエトキシシリル)エチレン、ビス(トリメトキシシリルエチル)ベンゼン、ビス(トリエトキシシリルエチル)ベンゼン、ビス(3-トリメトキシシリルプロピル)エタン、ビス(3-トリエトキシシリルプロピル)エタン等のアルコキシシラン化合物;ビス(3-トリメトキシシリルプロピル)メチルアミン、ビス(3-トリエトキシシリルプロピル)メチルアミン、ビス(3-トリメトキシシリルプロピル)エチルアミン、ビス(3-トリエトキシシリルプロピル)エチルアミン、ビス(3-トリメトキシシリルプロピル)プロピルアミン、ビス(3-トリエトキシシリルプロピル)プロピルアミン、ビス(3-トリメトキシシリルプロピル)ブチルアミン、ビス(3-トリエトキシシリルプロピル)ブチルアミン、ビス(3-トリメトキシシリルプロピル)フェニルアミン、ビス(3-トリエトキシシリルプロピル)フェニルアミン、ビス(3-トリメトキシシリルプロピル)ベンジルアミン、ビス(3-トリエトキシシリルプロピル)ベンジルアミン、ビス(トリメトキシシリルメチル)メチルアミン、ビス(トリエトキシシリルメチル)メチルアミン、ビス(2-トリメトキシシリルエチル)メチルアミン、ビス(2-トリエトキシシリルエチル)メチルアミン、ビス(トリエトキシシリルメチル)プロピルアミン、ビス(2-トリエトキシシリルエチル)プロピルアミン等のアミノ基を含むアルコキシシラン化合物;トリス(トリメトキシシリルメチル)アミン、トリス(2-トリエトキシシリルエチル)アミン、トリス(3-トリメトキシシリルプロピル)アミン、トリス(3-トリエトキシシリルプロピル)アミン等のアミノ基を含むアルコキシシラン化合物;等を例示することができる。
 ポリオルガノシロキサン化合物としては、下記一般式(I)~(III)で表される化合物が好ましい。すなわち、活性共役ジエン系重合体鎖の活性末端と反応可能な官能基を有する化合物は、これらのポリオルガノシロキサン化合物から選ばれる少なくとも1種類を含むとよく、複数の種類を組み合わせてもよい。またこれらのポリオルガノシロキサン化合物と、活性末端と反応可能な官能基を有する他の化合物、例えば上述した式(IV)で表される化合物とを組み合わせてもよい。
一般式(I)
Figure JPOXMLDOC01-appb-C000008

(上記式(I)において、R1~R8は、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、これらは互いに同一であっても相違してもよい。X1およびX4は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基、または炭素数1~6のアルキル基もしくは炭素数6~12のアリール基であり、X1およびX4は互いに同一であっても相違してもよい。X2は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基である。X3は、2~20のアルキレングリコールの繰返し単位を含有する基であり、X3の一部は2~20のアルキレングリコールの繰返し単位を含有する基から導かれる基であってもよい。mは3~200の整数、nは0~200の整数、kは0~200の整数である。)
一般式(II)
Figure JPOXMLDOC01-appb-C000009

(上記式(II)において、R9~R16は、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、これらは互いに同一であっても相違してもよい。X5~X8は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基である。)
一般式(III):
Figure JPOXMLDOC01-appb-C000010

(上記式(III)において、R17~R19は、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、これらは互いに同一であっても相違してもよい。X9~X11は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基である。Sは1~18の整数である。)
 上記一般式(I)で表されるポリオルガノシロキサンにおいて、R1~R8、X1およびX4を構成する炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基などが挙げられる。炭素数6~12のアリール基としては、例えば、フェニル基、メチルフェニル基などが挙げられる。これらのアルキル基およびアリール基の中では、メチル基が特に好ましい。
 一般式(I)のポリオルガノシロキサンにおいて、X1、X2およびX4を構成する重合体鎖の活性末端と反応する官能基を有する基としては、炭素数1~5のアルコキシル基、2-ピロリドニル基を含有する炭化水素基、およびエポキシ基を含有する炭素数4~12の基が好ましい。
 X1、X2およびX4を構成する炭素数1~5のアルコキシル基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基などが挙げられる。なかでも、メトキシ基が好ましい。X1、X2およびX4の少なくとも一つが炭素数1~5のアルコキシル基の場合、活性共役ジエン系重合体鎖の活性末端にアルコキシル基を有するポリオルガノシロキサンを反応させると、ケイ素原子とアルコキシル基の酸素原子との結合が開裂して、そのケイ素原子に活性共役ジエン系重合体鎖が直接結合して単結合を形成する。
 X1、X2およびX4を構成する2-ピロリドニル基を含有する炭化水素基としては、下記一般式(V)で表される基が好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000011

(式(V)中、jは2~10の整数である。特にjは2であることが好ましい。)
 このようにX1,X2及びX4の少なくとも一つが2-ピロリドニル基を含有する炭化水素基を含むポリオルガノシロキサンを、活性共役ジエン系重合体鎖の活性末端に反応させると、2-ピロリドニル基を構成するカルボニル基の炭素-酸素結合が開裂して、その炭素原子に重合体鎖が結合した構造を形成する。
 X1、X2およびX4を構成するエポキシ基を有する炭素数4~12の基としては、下記一般式(VI)で表される基が好ましく挙げられる。
一般式(VI): ZYE
 上記式(VI)中、Zは炭素数1~10のアルキレン基またはアルキルアリーレン基であり、Yはメチレン基、硫黄原子または酸素原子であり、Eはエポキシ基を有する炭素数2~10の炭化水素基である。これらの中でも、Yが酸素原子であるものが好ましく、Yが酸素原子かつEがグリシジル基であるものがより好ましく、Zが炭素数3のアルキレン基、Yが酸素原子かつEがグリシジル基であるものが特に好ましい。
 一般式(I)で表されるポリオルガノシロキサンにおいて、X1、X2およびX4の少なくとも一つがエポキシ基を含有する炭素数4~12の基の場合、活性共役ジエン系重合体鎖の活性末端にポリオルガノシロキサンを反応させると、エポキシ環を構成する炭素-酸素結合が開裂して、その炭素原子に重合体鎖が結合した構造を形成する。
 一般式(I)で表されるポリオルガノシロキサンにおいて、X1およびX4としては、上記の中でも、エポキシ基を含有する炭素数4~12の基または炭素数1~6のアルキル基が好ましく、また、X2としては、エポキシ基を含有する炭素数4~12の基が好ましい。
 一般式(I)で表されるポリオルガノシロキサンにおいて、X3は、2~20のアルキレングリコールの繰返し単位を含有する基である。2~20のアルキレングリコールの繰返し単位を含有する基としては、下記一般式(VII)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000012

 式(VII)中、tは2~20の整数であり、R1は炭素数2~10のアルキレン基またはアルキルアリーレン基であり、R3は水素原子またはメチル基であり、R2は炭素数1~10のアルコキシル基またはアリーロキシ基である。これらの中でも、tが2~8の整数であり、R1が炭素数3のアルキレン基であり、R3が水素原子であり、かつR2がメトキシ基であるものが好ましい。
 上記一般式(II)で表されるポリオルガノシロキサンにおいて、R9~R16は炭素数1~6のアルキル基または炭素数6~12のアリール基であり、これらは互いに同一であっても相違していてもよい。X5~X8は、重合体鎖の活性末端と反応する官能基を有する基である。
 上記一般式(III)で表されるポリオルガノシロキサンにおいて、R17~R19は炭素数1~6のアルキル基または炭素数6~12のアリール基であり、これらは互いに同一であっても相違していてもよい。X9~X11は、重合体鎖の活性末端と反応する官能基を有する基である。sは1~18の整数である。
 上記一般式(II)および上記一般式(III)で表されるポリオルガノシロキサンにおいて、炭素数1~6のアルキル基、炭素数6~12のアリール基、ならびに重合体鎖の活性末端と反応する官能基を有する基は、一般式(I)のポリオルガノシロキサンについて説明したものと同様である。
 さらに、上記反応により生成した末端変性基は、シリカとの相互作用を有する官能基を有する。このシリカとの相互作用を有する官能基は、上述した化合物の構造に含まれた官能基でよい。また、上記化合物と活性末端との反応により生じ得た官能基でもよい。シリカとの相互作用を有する官能基としては、特に制限されるものではないが、例えばアルコキシシリル基、ヒドロキシル基(オルガノシロキサン構造を含む)、アルデヒド基、カルボキシル基、アミノ基、イミノ基、エポキシ基、アミド基、チオール基、エーテル基等が例示される。なかでもヒドロキシル基(オルガノシロキサン構造を含む)が好ましい。このように末端変性基がシリカとの相互作用を有する官能基を含むことにより、シリカとの親和性をより高くし、分散性を大幅に改良することができる。
 本発明では、変性共役ジエン系重合体ゴムにおける末端変性基の濃度は、変性共役ジエン系重合体ゴムの重量平均分子量(Mw)との関係で決められる。変性共役ジエン系重合体ゴムの重量平均分子量は60万~100万、好ましくは65~85万である。例えば、65万~75万、75万~85万である。変性共役ジエン系重合体ゴムの重量平均分子量が60万未満であると、変性共役ジエン系重合体ゴム末端の変性基濃度が高くなり、ゴム組成物中のシリカの分散性は良化するが、重合体自身の分子量が低いために、強度、剛性を改良する効果が十分に得られず、耐摩耗性が不足したり、粘弾性特性の改良幅が小さくなったりしてしまうことがある。また変性共役ジエン系重合体ゴムの重量平均分子量が100万を超えると、変性共役ジエン系重合体ゴム末端の変性基濃度が低くなりシリカとの親和性が不足し、分散性が悪化するため転がり抵抗を低減する効果が不足したり、ウェット性能が不足したりする。また同時にゴム組成物の剛性及び強度が低下する。なお変性共役ジエン系重合体ゴムの重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により標準ポリスチレン換算により測定するものとする。
 本発明で使用する変性共役ジエン系重合体ゴムは、芳香族ビニル単位含有量が38~48重量%、好ましくは40~45重量%である。例えば、40~41重量%、41~42重量%、42~45重量%である。変性共役ジエン系重合体ゴムの芳香族ビニル単位含有量をこのような範囲内にすることにより、空気入りタイヤにしたときのウェット性能及び耐摩耗性を両立することができる。また変性共役ジエン系重合体ゴム以外の他のジエン系ゴムを配合するとき、変性共役ジエン系重合体ゴムが他のジエン系ゴムに対して微細な相分離形態を形成する。このため、変性共役ジエン系重合体ゴムがシリカ粒子の近くに局在化するようになり、その末端変性基がシリカに対して効率的に作用することにより親和性を一層高くし、シリカの分散性を良好にすることができる。変性共役ジエン系重合体ゴムの芳香族ビニル単位含有量が38重量%未満であると、他のジエン系ゴムに対して微細な相分離形態を形成する作用が十分に得られない。またゴム組成物の剛性及び強度を高くする効果が十分に得られない。また変性共役ジエン系重合体ゴムの芳香族ビニル単位含有量が48重量%を超えると、共役ジエン系重合体ゴムのガラス転移温度(Tg)が上昇し、粘弾性特性のバランスが悪くなり、発熱性を低減する効果が得られにくくなる。なお変性共役ジエン系重合体ゴムの芳香族ビニル単位含有量は赤外分光分析(ハンプトン法)により測定するものとする。
 本発明では、変性共役ジエン系重合体ゴムのビニル単位含有量は20~35重量%、好ましくは26~34重量%にする。例えば、26~32重量%、32~34重量%にする。なお、本明細書において、単にビニル単位という場合は、共役ジエン単位を意味する。変性共役ジエン系重合体ゴムのビニル単位含有量を20~35重量%にすることにより、変性共役ジエン系重合体ゴムのガラス転移温度(Tg)を適正化することができる。また、他のジエン系ゴムに対して形成された変性共役ジエン系重合体ゴムの微細な相分離形態を安定化することができる。変性共役ジエン系重合体ゴムのビニル単位含有量が20重量%未満であると、変性共役ジエン系重合体ゴムのTgが低くなり、ウェット性能の指標である0℃における動的粘弾性特性の損失正接(tanδ)が低下してしまう。また、変性共役ジエン系重合体ゴムの微細な相分離形態を安定化することができない。また変性共役ジエン系重合体ゴムのビニル単位含有量が35重量%を超えると加硫速度が低下したり、強度や剛性が低下したりする可能性がある。なお変性共役ジエン系重合体ゴムのビニル単位含有量は赤外分光分析(ハンプトン法)により測定するものとする。
 変性共役ジエン系重合体ゴムは、油展することによりゴム組成物の成形加工性を良好にすることができる。油展量は特に制限されるものではないが、変性共役ジエン系重合体ゴム100重量部に対し、好ましくは25重量部以下にするとよい。変性共役ジエン系重合体ゴムの油展量が25重量部を超えると、ゴム組成物にオイル、軟化剤、粘着性付与剤等を配合するとき組成設計の自由度が小さくなる。
 また、変性共役ジエン系重合体ゴムのガラス転移温度(Tg)は、特に限定されるものではないが、好ましくは-30~-15℃にするとよい。変性共役ジエン系重合体ゴムのTgをこのような範囲内にすることにより、操縦安定性を確保すると共に、転がり抵抗を低減することができる。またTgをこのような範囲内にすることでウェットグリップ性能を確保することができる。変性共役ジエン系重合体ゴムのガラス転移温度(Tg)は、示差走査熱量測定(DSC)により20℃/分の昇温速度条件によりサーモグラムを測定し、転移域の中点の温度とする。また、変性共役ジエン系重合体ゴムが油展品であるときは、油展成分(オイル)を含まない状態における変性共役ジエン系重合体ゴムのガラス転移温度とする。
 本発明において、変性共役ジエン系重合体ゴムの含有量は、ジエン系ゴム100重量%中、35~89重量%、好ましくは40~85重量%である。例えば、40~45重量%、45~75重量%、75~85重量%である。変性共役ジエン系重合体ゴムの含有量がジエン系ゴム中の35重量%未満であると、シリカとの親和性が悪化し、シリカの分散性を良好にすることができない。また、変性共役ジエン系重合体ゴムの含有量が89重量%を超えると、ゴム組成物のガラス転移温度が高くなるために耐摩耗性が低下する。
 本発明のタイヤトレッド用ゴム組成物は、ブタジエンゴムを含有することにより低転がり抵抗性及びウェット性能を高いレベルで維持しながら耐摩耗性を改良することができる。ブタジエンゴムの配合量は、ジエン系ゴム100重量%中11~40重量%、好ましくは15~35重量%にする。例えば、15~30重量%、30~35重量%にする。ブタジエンゴムの配合量が11重量%未満であると、良好な耐摩耗性にすることができない。またブタジエンゴムの配合量が40重量%を超えると、ウェットグリップ性能が悪化する。ブタジエンゴムとしては、タイヤ用ゴム組成物に通常用いられるものを使用するとよい。
 本発明において、ゴム成分として変性共役ジエン系重合体ゴム(第1の変性共役ジエン系重合体ゴム)及びブタジエンゴム、以外の他のジエン系ゴムを配合することができる。他のジエン系ゴムとしては、例えば天然ゴム、イソプレンゴム、溶液重合スチレンブタジエンゴム(S-SBR)、乳化重合スチレンブタジエンゴム(E-SBR)、ブチルゴム、ハロゲン化ブチルゴム等を例示することができる。好ましくは天然ゴム、イソプレンゴム、溶液重合スチレンブタジエンゴム、乳化重合スチレンブタジエンゴムがよい。ここで溶液重合スチレンブタジエンゴムは、末端変性されていない溶液重合スチレンブタジエンゴム、本発明の変性共役ジエン系重合体ゴム以外の末端変性溶液重合スチレンブタジエンゴム(第2の変性共役ジエン系重合体ゴム)から選ばれるものとする。このようなジエン系ゴムは、単独又は複数のブレンドとして使用することができる。他のジエン系ゴムの含有量は、ジエン系ゴム100重量%中54重量%以下、好ましくは40重量%以下にするとよい。例えば、1~25重量%、25~40重量%である。他のジエン系ゴムの含有量の上限値は特に制限されないが、例えば1重量%である。
 本発明のタイヤトレッド用ゴム組成物は、芳香族変性テルペン樹脂を配合することにより低転がり抵抗性を維持しながらウェット性能、特に湿潤路面における操縦安定性を一層向上することができる。芳香族変性テルペン樹脂としては、軟化点が100~150℃、好ましくは110~140℃であるものを使用するとよい。例えば、110~125℃、125~140℃であるものを使用するとよい。芳香族変性テルペン樹脂の軟化点が100℃未満であると、ウェット性能を改良する効果が十分に得られない。また、芳香族変性テルペン樹脂の軟化点が150℃を超えると、ジエン系ゴムに対する分散性が悪化し、ウェット路面でのグリップ性能が低下すると共に、ゴム強度が低下する。なお、芳香族変性テルペン樹脂の軟化点はJIS K6220-1(環球法)に準拠し測定したものとする。
 芳香族変性テルペン樹脂の配合量は、ジエン系ゴム100重量部に対し3~60重量部にし、かつブタジエンゴムの配合量Wbrに対する芳香族変性テルペン樹脂の配合量Wteの比Wte/Wbrを0.5~1.3、好ましくは0.8~1.1にする。例えば0.5~0.8、0.8~1.3にする。比Wte/Wbrが0.5未満であると、ゴム組成物のガラス転移温度が低くなるため、ウェットグリップ性能を改良する効果が十分に得られない。比Wte/Wbrが1.3を超えると、低転がり抵抗性や耐摩耗性が悪化するだけでなく、ゴム組成物の粘着性が増大し、成形ロールに密着するなど成形加工性及び取り扱い性が悪化する。なお、芳香族変性テルペン樹脂の配合量は、ジエン系ゴム100重量部に対し、例えば3~12重量部、12~40重量部、40~60重量部にする。
 芳香族変性テルペン樹脂は、テルペンと芳香族化合物とを重合することにより得られる。テルペンとしては、例えばα-ピネン、β-ピネン、ジペンテン、リモネンなどが例示される。芳香族化合物としては、例えばスチレン、α-メチルスチレン、ビニルトルエン、インデンなどが例示される。なかでも芳香族変性テルペン樹脂としてスチレン変性テルペン樹脂が好ましい。このような芳香族変性テルペン樹脂は、ジエン系ゴムとの相溶性が良好であるため、ゴム組成物の0℃のtanδを高くし、ウェットグリップ性能が向上する。
 芳香族変性テルペン樹脂の水酸基価は、好ましくは30KOHmg/g以下、より好ましくは0~25KOHmg/gにする。芳香族変性テルペン樹脂の水酸基価を30KOHmg/g以下にすることにより、0℃のtanδが増加し、ウェットグリップ性能が向上する。なお、芳香族変性テルペン樹脂の水酸基価は、JIS K1557-1に準拠して測定するものとする。
 本発明において、シリカを70~95重量%含む充填剤をジエン系ゴム100重量部に対し100~150重量部、例えば、100~120重量部、120~130重量部、130~150重量部配合する。充填剤の配合量をこのような範囲にすることにより、ゴム組成物の低転がり抵抗性及びウェット性能をより高いレベルでバランスさせることができる。充填剤の配合量が100重量部未満であると、ウェット性能が低下する。充填剤の配合量が150重量部を超えると、発熱性が大きくなり低転がり抵抗性が悪化する。
 また充填剤100重量%中のシリカの含有量は70重量%以上、好ましくは80~100重量%にする。例えば、80~92重量%、92~100重量%にする。充填剤中のシリカの含有量をこのような範囲にすることにより、ゴム組成物の低転がり抵抗、ウェット性能をより高いレベルでバランスさせることができる。また、本発明では変性共役ジエン系重合体ゴムを配合することにより、シリカとの親和性を高くし分散性を改善するため、シリカ配合の効果を一層向上する。
 本発明において、シリカとして特定のシリカ1を単独で、又は特定のシリカ1を他のシリカと共に使用することができる。この特定のシリカ1は、DBP吸収量が185~250ml/100g、かつ窒素吸着比表面積(N2SA)とCTAB比表面積(CTAB)の比(N2SA/CTAB)が0.9~1.25を満たすことが好ましい。またシリカ1の配合量は、全シリカ中70~100重量%が好ましい。
 本発明のタイヤトレッド用ゴム組成物は、シリカ1のみ若しくはシリカ1を含む少なくとも2種類のシリカを配合することにより、充填剤の配合量を100~150重量部と多くし、かつ充填剤100重量%中シリカを70重量%以上にしながら、低転がり抵抗性及びウェット性能と、耐摩耗性とを高いレベルでバランスさせることができる。
 シリカ1の配合量は、全シリカ中好ましくは70重量%以上、より好ましくは80~100重量%にする。例えば、70~75重量%、75~83重量%、83~100重量%である。シリカ1の配合量が70重量%未満であると、ゴムの強度低下により耐摩耗性が低下する。
 シリカ1のDBP吸収量は、好ましくは185~250ml/100gである。例えば、185~200ml/100g、200~250ml/100gである。DBP吸収量が185ml/100g未満であると、破断強度が低下するため耐摩耗性が悪化する。DBP吸収量が250ml/100gを超えると、発熱が悪化し転がり抵抗が悪化する。シリカのDBP吸収量は、JIS K6217-4吸油量A法に準拠して求めるものとする。
 またシリカ1のN2SAとCTABの比(N2SA/CTAB)は好ましくは0.90~1.25、より好ましくは0.95~1.20にする。例えば、0.95~1.01、1.01~1.20にする。シリカの特性比(N2SA/CTAB)が0.90未満であると、補強性が低下する。またシリカの特性比(N2SA/CTAB)が1.25を超えるとシリカの分散性が低下し、転がり抵抗及びウェット性能が悪化する。ここでシリカのN2SAはJIS K6217-2に準拠して求めるものとする。またシリカのCTABはJIS K6217-3に準拠して求めるものとする。
 シリカとしては、タイヤトレッド用ゴム組成物に通常使用されるシリカ、例えば湿式法シリカ、乾式法シリカあるいは表面処理シリカなどを使用することができる。
 本発明のゴム組成物において、シリカと共にシランカップリング剤を配合することが好ましく、シリカの分散性を向上しジエン系ゴムとの補強性をより高くすることができる。シランカップリング剤は、シリカ配合量に対して好ましくは3~20重量%、より好ましくは5~15重量%配合するとよい。例えば5~10重量%、10~15重量%である。シランカップリング剤の配合量がシリカ重量の3重量%未満の場合、シリカの分散性を向上する効果が十分に得られない。また、シランカップリング剤が20重量%を超えると、シランカップリング剤同士が重合してしまい、所望の効果を得ることができなくなる。
 シランカップリング剤としては、特に制限されるものではないが、硫黄含有シランカップリング剤が好ましく、例えばビス-(3-トリエトキシシリルプロピル)テトラサルファイド、ビス(3-トリエトキシシリルプロピル)ジサルファイド、3-トリメトキシシリルプロピルベンゾチアゾールテトラサルファイド、γ-メルカプトプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン等を例示することができる。
 カーボンブラックとしては、窒素吸着比表面積が70~165m2/gであることが好ましい。例えば、70~77m2/g、77~123m2/g、123~165m2/gである。カーボンブラックの窒素吸着比表面積が70m2/g未満であると、補強性低下によりたい耐摩耗性が悪化する。また165m2/gを超えると、ゴムの発熱悪化により転がり抵抗が悪化する。ここでカーボンブラックのN2SAはJIS K6217-2に準拠して求めるものとする。カーボンブラックの配合量は特に制限されず、ジエン系ゴム100重量部に対し、例えば、10~15重量部、15~20重量部、20~60重量部である。
 本発明のタイヤトレッド用ゴム組成物は、シリカ以外の他の充填剤を配合することができる。シリカ以外の他の充填剤としては、例えばカーボンブラック、クレー、マイカ、タルク、炭酸カルシウム、水酸化アルミニウム、酸化アルミニウム、酸化チタン等が例示される。なかでもカーボンブラックが好ましい。カーボンブラックを配合することによりゴム強度を高くすることができる。
 タイヤトレッド用ゴム組成物には、加硫又は架橋剤、加硫促進剤、老化防止剤、可塑剤、加工助剤、液状ポリマー、熱硬化性樹脂などのタイヤトレッド用ゴム組成物に一般的に使用される各種配合剤を配合することができる。このような配合剤は一般的な方法で混練してゴム組成物とし、加硫又は架橋するのに使用することができる。これらの配合剤の配合量は本発明の目的に反しない限り、従来の一般的な配合量とすることができる。タイヤトレッド用ゴム組成物は、公知のゴム用混練機械、例えば、バンバリーミキサー、ニーダー、ロール等を使用して、上記各成分を混合することによって製造することができる。
 本発明のタイヤトレッド用ゴム組成物は、空気入りタイヤに好適に使用することができる。このゴム組成物をトレッド部に使用した空気入りタイヤは、低転がり抵抗性、ウェット性能及び耐摩耗性を従来レベル以上に向上することができる。
 以下、実施例によって本発明を更に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
 図1~3に示す配合からなる38種類のタイヤトレッド用ゴム組成物(実施例1~20、比較例1~18)を、硫黄、加硫促進剤を除く成分を図4に示す共通配合成分と共に、1.8Lの密閉型ミキサーで160℃、5分間混練し放出したマスターバッチに、硫黄、加硫促進剤を加えてオープンロールで混練することにより調製した。なお図1~3において、油展オイルを含むSBRについて、括弧内に各ゴム成分の正味の配合量を記載した。充填剤の合計の記載はシリカ及びカーボンブラックの合計(重量部)、充填剤中シリカ比率の記載は、充填剤100重量%中のシリカの含有量(重量%)、シリカ中シリカ1比率の記載は全シリカ100重量%中のシリカ1の含有量(重量%)、ブタジエンゴム配合量Wbrと芳香族変性テルペン樹脂配合量Wteの比Wte/Wbrをそれぞれ示した。また図4に示した共通配合成分の量は、図1~3に記載されたジエン系ゴム100重量部に対する重量部で配合したことを意味する。
 得られた38種類のタイヤトレッド用ゴム組成物を所定形状の金型中で、160℃、20分間プレス加硫して加硫ゴムサンプルを作製し、下記に示す方法で転がり抵抗(60℃のtanδ)及び耐摩耗性を測定した。
   転がり抵抗:tanδ(60℃)
 得られた加硫ゴムサンプルの転がり抵抗を、転がり抵抗の指標であることが知られている損失正接tanδ(60℃)により評価した。tanδ(60℃)は、東洋精機製作所社製粘弾性スペクトロメーターを用いて、初期歪み10%、振幅±2%、周波数20Hz、温度60℃の条件下で測定した。得られた結果は比較例1を100とする指数として、図1~3に示した。この指数が小さいほど、特に指数が98以下であると、tanδ(60℃)が小さく低発熱であり、空気入りタイヤにしたとき転がり抵抗が小さく燃費性能が優れることを意味する。
   耐摩耗性
 得られた加硫ゴムサンプルのランボーン摩耗を、JIS K6264-2に準拠して、岩本製作所社製ランボーン摩耗試験機を使用し、温度20℃、荷重15N、スリップ率50%の条件で測定した。得られた結果は、比較例1を100とする指数として、図1~3に示した。この指数が大きいほど、特に指数が102以上であると、耐摩耗性が優れることを意味する。
 次に、タイヤサイズが245/50R18の空気入りタイヤを、上述した38種類のタイヤトレッド用ゴム組成物をトレッド部に使用して4本ずつ製作した。得られた38種類の空気入りタイヤのウェット性能を下記に示す方法により評価した。
   ウェット性能
 得られた空気入りタイヤをリムサイズ18×8JJのホイールに組付け、国産2.5リットルクラスの試験車両に装着し、空気圧230kPaの条件で湿潤路面からなる1周2.6kmのテストコースを実車走行させ、そのときの操縦安定性を専門パネラー3名による感応評価により採点した。得られた結果は比較例1を100とする指数として、図1~3に示した。この指数が大きいほど、特に指数が102以上であると、湿潤路面におけるウェット操縦安定性が優れていることを意味する。
 なお、図1~3において使用した原材料の種類を示す。
・変性S-SBR1:前記一般式(I)の構造を有するポリオルガノシロキサンからなる変性共役ジエン系重合体ゴム、芳香族ビニル単位含有量が42重量%、ビニル単位含有量が32%、重量平均分子量(Mw)が75万、Tgが-25℃、ゴム成分100重量部に対しオイル分25重量部を含む油展品、以下の製造方法により調製した末端変性溶液重合スチレンブタジエンゴム。
  〔変性S-SBR1の製造方法〕
 窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4533g、スチレン338.9g(3.254mol)、ブタジエン468.0g(8.652mol)、イソプレン20.0g(0.294mol)およびN,N,N′,N′-テトラメチルエチレンジアミン0.189mL(1.271mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウム5.061mL(7.945mmol)を添加した。重合転化率がほぼ100%に到達した後、さらにイソプレン12.0gを添加して5分間反応させた後、1,6-ビス(トリクロロシリル)ヘキサンの40wt%トルエン溶液0.281g(0.318mmol)を添加し、30分間反応させた。さらに、下記に示すポリオルガノシロキサンAの40wt%キシレン溶液18.3g(0.318mmol)を添加し、30分間反応させた。メタノール0.5mLを添加して30分間攪拌した。得られたポリマー溶液に老化防止剤(イルガノックス1520、BASF社製)を少量添加し、伸展油としてフッコールエラミック30(新日本石油社製)を25部添加した後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、変性S-SBR1を得た。
 ポリオルガノシロキサンA; 前記一般式(I)の構造を有するポリオルガノシロキサンであって、m=80、n=0、k=120、X1,X4,R1~R3,R5~R8がそれぞれメチル基(-CH3)、X2が下記式(VIII)で表される炭化水素基であるポリオルガノシロキサン
Figure JPOXMLDOC01-appb-C000013
・変性S-SBR2:前記一般式(II)の構造を有するポリオルガノシロキサンからなる変性共役ジエン系重合体ゴム、芳香族ビニル単位含有量が42重量%、ビニル単位含有量が32%、重量平均分子量(Mw)が75万、Tgが-25℃、ゴム成分100重量部に対しオイル分25重量部を含む油展品、以下の製造方法により調製した末端変性溶液重合スチレンブタジエンゴム。
  〔変性S-SBR2の製造方法〕
 窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4550g、スチレン341.1g(3.275mol)、ブタジエン459.9g(8.502mol)、イソプレン20.0g(0.294mol)およびN,N,N′,N′―テトラメチルエチレンジアミン0.190mL(1.277mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウム5.062mL(7.946mmol)を添加した。重合転化率がほぼ100%に到達した後、さらにイソプレン12.0gを添加して5分間反応させた後、1,6-ビス(トリクロロシリル)ヘキサンの40wt%トルエン溶液0.283g(0.320mmol)を添加し、30分間反応させた。さらに下記に示すポリオルガノシロキサンBの40wt%キシレン溶液19.0g(0.330mmol)を添加し、30分間反応させた。メタノール0.5mLを添加して30分間攪拌した。得られたポリマー溶液に老化防止剤(イルガノックス1520、BASF社製)を少量添加し、伸展油としてフッコールエラミック30(新日本石油社製)を25部添加した後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、変性S-SBR2を得た。
 ポリオルガノシロキサンB; 前記一般式(II)の構造を有するポリオルガノシロキサンであって、R9~R16がそれぞれメチル基(-CH3)、X5~X8がそれぞれ前記式(VIII)で表される炭化水素基であるポリオルガノシロキサン
・変性S-SBR3:前記一般式(III)の構造を有するポリオルガノシロキサンからなる変性共役ジエン系重合体ゴム、芳香族ビニル単位含有量が41重量%、ビニル単位含有量が32%、重量平均分子量(Mw)が75万、Tgが-25℃、ゴム成分100重量部に対しオイル分25重量部を含む油展品、以下の製造方法により調製した末端変性溶液重合スチレンブタジエンゴム。
  〔変性S-SBR3の製造方法〕
 窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4542g、スチレン339.2g(3.257mol)、ブタジエン462.8g(8.556mol)、イソプレン20.0g(0.294mol)およびN,N,N′,N′―テトラメチルエチレンジアミン0.188mL(1.264mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウム5.059mL(7.942mmol)を添加した。重合転化率がほぼ100%に到達した後、さらにイソプレン12.0gを添加して5分間反応させた後、1,6-ビス(トリクロロシリル)ヘキサンの40wt%トルエン溶液0.283g(0.320mmol)を添加し、30分間反応させた。さらに下記に示すポリオルガノシロキサンCの40wt%キシレン溶液19.2g(0.333mmol)を添加し、30分間反応させた。メタノール0.5mLを添加して30分間攪拌した。得られたポリマー溶液に老化防止剤(イルガノックス1520、BASF社製)を少量添加し、伸展油としてフッコールエラミック30(新日本石油社製)を25部添加した後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、変性S-SBR3を得た。
 ポリオルガノシロキサンC; 前記一般式(III)の構造を有するポリオルガノシロキサンであって、s=2、R17~R19がそれぞれメチル基(-CH3)、X9~X11がそれぞれ前記式(VIII)で表される炭化水素基であるポリオルガノシロキサン
・変性S-SBR4:末端変性溶液重合スチレンブタジエンゴム、芳香族ビニル単位含有量が30重量%、ビニル単位含有量が61重量%、重量平均分子量(Mw)が59万、Tgが-25℃、日本ゼオン社製Nipol NS530、ゴム成分100重量部に対しオイル分20重量部を含む油展品
・変性S-SBR5:末端変性溶液重合スチレンブタジエンゴム、芳香族ビニル単位含有量が16重量%、ビニル単位含有量が32%、重量平均分子量(Mw)が61万、Tgが-60℃、日本ゼオン社製Nipol NS612、非油展品
・変性S-SBR6:前記一般式(I)の構造を有するポリオルガノシロキサンからなる変性共役ジエン系重合体ゴム、芳香族ビニル単位含有量が34重量%、ビニル単位含有量が34%、重量平均分子量(Mw)が76万、Tgが-33℃、ゴム成分100重量部に対しオイル分25重量部を含む油展品、以下の製造方法により調製した末端変性溶液重合スチレンブタジエンゴム。
  〔変性S-SBR6の製造方法〕
 窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4541g、スチレン277.6g(2.665mol)、ブタジエン523.1g(9.671mol)、イソプレン20.0g(0.294mol)およびN,N,N′,N′―テトラメチルエチレンジアミン0.175mL(1.178mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウム4.984mL(7.824mmol)を添加した。重合転化率がほぼ100%に到達した後、さらにイソプレン12.0gを添加して5分間反応させた後、1,6-ビス(トリクロロシリル)ヘキサンの40wt%トルエン溶液0.273g(0.327mmol)を添加し、30分間反応させた。さらに、上述したポリオルガノシロキサンAの40wt%キシレン溶液18.1g(0.314mmol)を添加し、30分間反応させた。メタノール0.5mLを添加して30分間攪拌した。得られたポリマー溶液に老化防止剤(イルガノックス1520、BASF社製)を少量添加し、伸展油としてフッコールエラミック30(新日本石油社製)を25部添加した後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、変性S-SBR6を得た。
・変性S-SBR7:前記一般式(I)の構造を有するポリオルガノシロキサンからなる変性共役ジエン系重合体ゴム、芳香族ビニル単位含有量が49重量%、ビニル単位含有量が28%、重量平均分子量(Mw)が71万、Tgが-17℃、ゴム成分100重量部に対しオイル分25重量部を含む油展品、以下の製造方法により調製した末端変性溶液重合スチレンブタジエンゴム。
  〔変性S-SBR7の製造方法〕
 窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4536g、スチレン401.0g(3.850mol)、ブタジエン392.0g(7.247mol)、イソプレン20.0g(0.294mol)およびN,N,N′,N′―テトラメチルエチレンジアミン0.201mL(1.352mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウム5.141mL(8.071mmol)を添加した。重合転化率がほぼ100%に到達した後、さらにイソプレン12.0gを添加して5分間反応させた後、1,6-ビス(トリクロロシリル)ヘキサンの40wt%トルエン溶液0.279g(0.320mmol)を添加し、30分間反応させた。さらに、上述したポリオルガノシロキサンAの40wt%キシレン溶液18.6g(0.323mmol)を添加し、30分間反応させた。メタノール0.5mLを添加して30分間攪拌した。得られたポリマー溶液に老化防止剤(イルガノックス1520、BASF社製)を少量添加し、伸展油としてフッコールエラミック30(新日本石油社製)を25部添加した後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、変性S-SBR7を得た。
・変性S-SBR8:前記一般式(I)の構造を有するポリオルガノシロキサンからなる変性共役ジエン系重合体ゴム、芳香族ビニル単位含有量が41重量%、ビニル単位含有量が17%、重量平均分子量(Mw)が74万、Tgが-37℃、ゴム成分100重量部に対しオイル分25重量部を含む油展品、以下の製造方法により調製した末端変性溶液重合スチレンブタジエンゴム。
  〔変性S-SBR8の製造方法〕
 窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4542g、スチレン339.2g(3.257mol)、ブタジエン462.8g(8.556mol)、イソプレン20.0g(0.294mol)およびN,N,N′,N′―テトラメチルエチレンジアミン0.0376mL(0.253mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウム5.059mL(7.942mmol)を添加した。重合転化率がほぼ100%に到達した後、さらにイソプレン12.0gを添加して5分間反応させた後、1,6-ビス(トリクロロシリル)ヘキサンの40wt%トルエン溶液0.280g(0.331mmol)を添加し、30分間反応させた。さらに、上述したポリオルガノシロキサンAの40wt%キシレン溶液18.8g(0.326mmol)を添加し、30分間反応させた。メタノール0.5mLを添加して30分間攪拌した。得られたポリマー溶液に老化防止剤(イルガノックス1520、BASF社製)を少量添加し、伸展油としてフッコールエラミック30(新日本石油株式化社製)を25部添加した後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、変性S-SBR8を得た。
・変性S-SBR9:前記一般式(I)の構造を有するポリオルガノシロキサンからなる変性共役ジエン系重合体ゴム、芳香族ビニル単位含有量が39重量%、ビニル単位含有量が40%、重量平均分子量(Mw)が75万、Tgが-21℃、ゴム成分100重量部に対しオイル分25重量部を含む油展品、以下の製造方法により調製した末端変性溶液重合スチレンブタジエンゴム。
  〔変性S-SBR9の製造方法〕
 窒素置換された内容量10Lのオートクレーブ反応器に、シクロヘキサン4543g、スチレン319.8g(3.071mol)、ブタジエン480.1g(8.876mol)、イソプレン20.0g(0.294mol)およびN,N,N′,N′―テトラメチルエチレンジアミン0.217mL(1.462mmol)を仕込み、攪拌を開始した。反応容器内の内容物の温度を50℃にした後、n-ブチルリチウム5.141mL(8.0714mmol)を添加した。重合転化率がほぼ100%に到達した後、さらにイソプレン12.0gを添加して5分間反応させた後、1,6-ビス(トリクロロシリル)ヘキサンの40wt%トルエン溶液0.279g(0.320mmol)を添加し、30分間反応させた。さらに、上述したポリオルガノシロキサンAの40wt%キシレン溶液18.6g(0.323mmol)を添加し、30分間反応させた。メタノール0.5mLを添加して30分間攪拌した。得られたポリマー溶液に老化防止剤(イルガノックス1520、BASF社製)を少量添加し、伸展油としてフッコールエラミック30(新日本石油社製)を25部添加した後、スチームストリッピング法により固体状のゴムを回収した。得られた固体ゴムをロールにより脱水し、乾燥機中で乾燥を行い、変性S-SBR9を得た。
・変性S-SBR10:末端変性溶液重合スチレンブタジエンゴム、芳香族ビニル単位含有量が37重量%、ビニル単位含有量が43重量%、重量平均分子量(Mw)が120万、Tgが-27℃、旭化成ケミカルズ社製タフデン E581、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
・S-SBR:未変性の溶液重合スチレンブタジエンゴム、芳香族ビニル単位含有量が41重量%、ビニル単位含有量が25%、重量平均分子量(Mw)が101万、Tgが-30℃、Dow Chemical社製SLR6430、ゴム成分100重量部に対しオイル分37.5重量部を含む油展品
・BR:ブタジエンゴム、日本ゼオン社製Nipol BR1220
・シリカ-a(シリカ1):ローディア社製Zeosil 1165MP、DBP吸収量が200ml/100g、窒素吸着比表面積(N2SA)が160m2/g、CTAB比表面積(CTAB)が159m2/g、N2SA/CTABが1.01
・シリカ-b:ローディア社製Zeosil 115GR、DBP吸収量が160ml/100g、窒素吸着比表面積(N2SA)が115m2/g、CTAB比表面積(CTAB)が110m2/g、N2SA/CTABが1.06
・CB1:カーボンブラック、東海カーボン社製シースト7HM、N2SA=123m2/g
・CB2:カーボンブラック、東海カーボン社製シーストKHA、N2SA=77m2/g
・テルペン樹脂1:軟化点が125℃の芳香族変性テルペン樹脂、ヤスハラケミカル社製YSレジンTO-125
・テルペン樹脂2:軟化点が85℃の芳香族変性テルペン樹脂、ヤスハラケミカル社製YSレジンTO-85
・テルペン樹脂3:軟化点が105℃の芳香族変性テルペン樹脂、ヤスハラケミカル社製YSレジンTO-105
・カップリング剤:エボニックデグサ社製Si69
・オイル:昭和シェル石油社製エキストラクト 4号S
 また、図4の共通配合において使用した原材料の種類を下記に示す。
・ステアリン酸:日油社製ビーズステアリン酸YR
・老化防止剤:フレキシス社製サントフレックス6PPD
・ワックス:大内新興化学工業社製サンノック
・亜鉛華:正同化学工業社製酸化亜鉛3種
・硫黄:鶴見化学工業社製金華印油入微粉硫黄
・加硫促進剤1:加硫促進剤CBS、大内新興化学工業社製ノクセラーCZ-G
・加硫促進剤2:加硫促進剤DPG、大内新興化学工業社製ノクセラーD
 図1から明らかなように実施例1~20のタイヤトレッド用ゴム組成物は、低転がり抵抗性(60℃のtanδ)、ウェット性能及び耐摩耗性が向上することが確認された。
 図2から明らかなように比較例2のゴム組成物は、変性S-SBR4の芳香族ビニル単位含有量が38重量%未満、ビニル単位含有量が35重量%を超え、重量平均分子量が60万未満であるので、低転がり抵抗性(60℃のtanδ)、ウェット性能及び耐摩耗性を改良することができない。比較例3のゴム組成物は、変性共役ジエン系重合体ゴムの代わりに未変性のS-SBRを配合したので、シリカの分散性が劣るため転がり抵抗が悪化、また耐摩耗性を十分に改良することができない。比較例4のゴム組成物は、変性S-SBR5の芳香族ビニル単位含有量が38重量%未満、ビニル単位含有量が35重量%を超え、重量平均分子量が60万未満であるので、ウェット性能が悪化する。比較例5のゴム組成物は、変性S-SBR6の芳香族ビニル単位含有量が38重量%未満であるので、ウェット性能が悪化する。比較例6のゴム組成物は、変性S-SBR7の芳香族ビニル単位含有量が48重量%を超えるので、転がり抵抗と耐摩耗性が悪化する。
 比較例7のゴム組成物は、変性S-SBR8のビニル単位含有量が20重量%未満であるので、ウェット性能を改良することができない。比較例8のゴム組成物は、変性S-SBR9のビニル単位含有量が35重量%を超えるので、転がり抵抗が悪化する。比較例9のゴム組成物は、ブタジエンゴムの配合量が40重量%を超えるので、ウェット性能を改良することができない。比較例10のゴム組成物は、ブタジエンゴムの配合量が11重量%未満であるので、耐摩耗性が悪化し、十分な転がり抵抗の改善を得られない。
 図3から明らかなように、比較例11のゴム組成物は、変性S-SBR1の配合量が35重量%未満であるので、転がり抵抗が悪化し、耐摩耗性を改良できない。比較例12のゴム組成物は、変性S-SBR1の配合量が89重量%を超え、ブタジエンゴムの配合量が11重量%未満であるので、耐摩耗性が悪化し、転がり抵抗も十分に改良できていない。比較例13のゴム組成物は、充填剤の合計の配合量が100重量部未満であるので、ウェット性能が悪化し、耐摩耗性を十分に改良することができない。比較例14のゴム組成物は、全充填剤100重量%中のシリカ比率が70重量%未満であるので、転がり抵抗が悪化し、ウェット性能を改良することができない。比較例15のゴム組成物は、充填剤の合計の配合量が150重量部を超えるので、転がり抵抗が悪化する。比較例16のゴム組成物は、テルペン樹脂とブタジエンゴムの重量比Wte/Wbrが0.5未満であるので、ウェット性能を改良することができない。比較例17のゴム組成物は、比Wte/Wbrが1.3を超えるので、転がり抵抗及び耐摩耗性が悪化する。比較例18のゴム組成物は、テルペン樹脂2の軟化点が100℃未満であるので、ウェット性能が悪化する。また転がり抵抗を十分に改良することができない。

Claims (6)

  1.  変性共役ジエン系重合体ゴムを35~89重量%、ブタジエンゴムを11~40重量%含むジエン系ゴム100重量部に対し、
     芳香族変性テルペン樹脂を3~60重量部、
     充填剤を100~150重量部配合すると共に、
     前記充填剤中シリカを70重量%以上含み、
     前記ブタジエンゴムの配合量Wbrに対する芳香族変性テルペン樹脂の配合量Wteの比Wte/Wbrが0.5~1.3であり、かつ
     前記変性共役ジエン系重合体ゴムが、炭化水素溶媒中、有機活性金属化合物を開始剤として用いて共役ジエン系単量体と芳香族ビニル単量体とを共重合させた活性共役ジエン系重合体鎖に、その重合体鎖の活性末端と反応可能な官能基を有する少なくとも1種類の化合物を反応させた末端変性基を有し、該末端変性基がシリカとの相互作用を有する官能基を含むと共に、
     この変性共役ジエン系重合体ゴムの芳香族ビニル単位含有量が38~48重量%、ビニル単位含有量が20~35重量%、重量平均分子量が60万~100万であり、
     前記芳香族変性テルペン樹脂の軟化点が100~150℃である
    ことを特徴とするタイヤトレッド用ゴム組成物。
  2.  前記シリカ中の70重量%以上が、DBP吸収量が185~250ml/100g、かつ窒素吸着比表面積(N2SA)とCTAB比表面積(CTAB)の比(N2SA/CTAB)が0.90~1.25を満たすことを特徴とする請求項1に記載のタイヤトレッド用ゴム組成物。
  3.  前記活性共役ジエン系重合体鎖の活性末端と反応可能な官能基を有する化合物が、下記一般式(I)~(III)から選ばれる少なくとも1種類のポリオルガノシロキサン化合物を含むことを特徴とする請求項1又は2に記載のタイヤトレッド用ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001

    (上記式(I)において、R1~R8は、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、これらは互いに同一であっても相違してもよい。X1およびX4は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基、または炭素数1~6のアルキル基もしくは炭素数6~12のアリール基であり、X1およびX4は互いに同一であっても相違してもよい。X2は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基である。X3は、2~20のアルキレングリコールの繰返し単位を含有する基であり、X3の一部は2~20のアルキレングリコールの繰返し単位を含有する基から導かれる基であってもよい。mは3~200の整数、nは0~200の整数、kは0~200の整数である。)
    Figure JPOXMLDOC01-appb-C000002

    (上記式(II)において、R9~R16は、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、これらは互いに同一であっても相違してもよい。X5~X8は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基である。)
    Figure JPOXMLDOC01-appb-C000003

    (上記式(III)において、R17~R19は、炭素数1~6のアルキル基または炭素数6~12のアリール基であり、これらは互いに同一であっても相違してもよい。X9~X11は、活性共役ジエン系重合体鎖の活性末端と反応する官能基を有する基である。Sは1~18の整数である。)
  4.  窒素吸着比表面積が70~165m2/gのカーボンブラックを含むことを特徴とする請求項1~3のいずれかに記載のタイヤトレッド用ゴム組成物。
  5.  さらに、前記変性共役ジエン系重合体ゴムである第1の変性共役ジエン系重合体ゴム以外に、第2の変性共役ジエン系重合体ゴムを、前記ジエン系ゴム中54重量%以下含むことを特徴とする請求項1~4のいずれかに記載のタイヤトレッド用ゴム組成物。
  6.  請求項1~5のいずれかに記載のタイヤトレッド用ゴム組成物を使用した空気入りタイヤ。
PCT/JP2013/053770 2012-02-15 2013-02-15 タイヤトレッド用ゴム組成物 WO2013122237A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/379,271 US9139721B2 (en) 2012-02-15 2013-02-15 Rubber composition for tire treads
CN201380019931.XA CN104220510B (zh) 2012-02-15 2013-02-15 轮胎胎面用橡胶组合物
KR1020147025488A KR101523627B1 (ko) 2012-02-15 2013-02-15 타이어 트레드용 고무 조성물
DE112013000983.8T DE112013000983B9 (de) 2012-02-15 2013-02-15 Kautschukzusammensetzung zur Verwendung in Reifenlaufflächen, vulkanisiertes Produkt und dessen Verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-031133 2012-02-15
JP2012031133A JP5316660B2 (ja) 2012-02-15 2012-02-15 タイヤトレッド用ゴム組成物

Publications (1)

Publication Number Publication Date
WO2013122237A1 true WO2013122237A1 (ja) 2013-08-22

Family

ID=48984346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053770 WO2013122237A1 (ja) 2012-02-15 2013-02-15 タイヤトレッド用ゴム組成物

Country Status (6)

Country Link
US (1) US9139721B2 (ja)
JP (1) JP5316660B2 (ja)
KR (1) KR101523627B1 (ja)
CN (1) CN104220510B (ja)
DE (1) DE112013000983B9 (ja)
WO (1) WO2013122237A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2974884A1 (en) * 2014-07-14 2016-01-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and pneumatic tire
US9284439B2 (en) 2012-04-24 2016-03-15 The Yokohama Rubber Co., Ltd. Tire rubber composite and pneumatic tire
US9416258B2 (en) 2012-04-16 2016-08-16 The Yokohama Rubber Co., Ltd. Rubber composition for tire, and pneumatic tire
US10450454B2 (en) * 2014-08-27 2019-10-22 The Yokohama Rubber Co., Ltd. Rubber composition for tire and pneumatic tire
US10669408B2 (en) 2016-05-10 2020-06-02 The Yokohama Rubber Co., Ltd. Rubber composition and pneumatic tire using same
US11359075B2 (en) 2017-01-12 2022-06-14 The Yokohama Rubber Co., Ltd. Rubber composition for a tire tread and pneumatic tire using the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6467820B2 (ja) * 2014-08-27 2019-02-13 横浜ゴム株式会社 タイヤトレッド用ゴム組成物および空気入りタイヤ
EP3237972A1 (en) 2014-12-23 2017-11-01 Bridgestone Americas Tire Operations, LLC Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes
CN107207793B (zh) * 2014-12-26 2020-04-21 米其林集团总公司 用于具有官能化橡胶的轮胎胎面的方法
WO2016106416A1 (en) * 2014-12-26 2016-06-30 Compagnie Generale Des Etablissements Michelin Epoxidized rubber compositions
PL3059256T3 (pl) 2015-02-18 2018-03-30 Trinseo Europe Gmbh Sfunkcjonalizowana mieszanka polimerowa do wytwarzania opon
EP3377538B1 (en) * 2015-11-16 2021-03-17 Bridgestone Corporation Functional initiator for anionic polymerization
WO2017095381A1 (en) * 2015-11-30 2017-06-08 Compagnie Generale Des Etablissements Michelin Peroxide cured tread
WO2017105960A1 (en) 2015-12-17 2017-06-22 Bridgestone Americas Tire Operations, Llc Additive manufacturing cartridges and processes for producing cured polymeric products by additive manufacturing
CN108602331B (zh) * 2015-12-31 2022-06-10 科腾化学品有限责任公司 树脂填充的橡胶组合物和用其制备的轮胎橡胶组合物
JP6172307B1 (ja) * 2016-02-04 2017-08-02 横浜ゴム株式会社 タイヤ用ゴム組成物
US20170232795A1 (en) * 2016-02-15 2017-08-17 The Goodyear Tire & Rubber Company Tire with tread for low temperature performance and wet traction
JP6249034B2 (ja) * 2016-03-25 2017-12-20 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
ES2895416T3 (es) 2016-08-17 2022-02-21 Continental Reifen Deutschland Gmbh Combinación de caucho, mezcla de cauchos reticulable con azufre y neumático de vehículo
JP6788730B2 (ja) * 2016-08-17 2020-11-25 コンチネンタル・ライフェン・ドイチュラント・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ゴムブレンド、硫黄架橋性ゴム混合物、および車両用タイヤ
US11292895B2 (en) 2016-08-17 2022-04-05 Continental Reifen Deutschland Gmbh Rubber blend, sulfur-crosslinkable rubber mixture, and vehicle tire
US11008446B2 (en) 2016-08-17 2021-05-18 Continental Reifen Deutschland Gmbh Rubber blend, sulfur-crosslinkable rubber mixture, and vehicle tire
JP6777454B2 (ja) * 2016-08-17 2020-10-28 旭化成株式会社 変性共役ジエン系重合体組成物、トレッド用ゴム組成物、及びタイヤ
US11261312B2 (en) 2016-08-17 2022-03-01 Continental Reifen Deutschland Gmbh Rubber blend, sulfur-crosslinkable rubber mixture, and vehicle tire
CN109963724B (zh) * 2016-09-21 2021-10-01 科腾化学品有限责任公司 胎面强化添加剂
JP7208795B2 (ja) * 2016-11-14 2023-01-19 ダウ・東レ株式会社 共変性シリコーン
MX2019009453A (es) 2017-02-13 2019-11-05 Cooper Tire & Rubber Co Compuesto de rodadura de neumaticos de guayule.
JP6420021B1 (ja) * 2017-03-10 2018-11-07 大塚化学株式会社 反応生成物及びゴム組成物
US20200223258A1 (en) * 2017-07-21 2020-07-16 The Yokohama Rubber Co., Ltd Pneumatic tire
JP7243033B2 (ja) * 2018-04-11 2023-03-22 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP6687069B2 (ja) * 2018-08-20 2020-04-22 横浜ゴム株式会社 空気入りタイヤ
US10947368B2 (en) 2019-03-04 2021-03-16 The Goodyear Tire & Rubber Company Pneumatic tire
US11440350B2 (en) 2020-05-13 2022-09-13 The Goodyear Tire & Rubber Company Pneumatic tire
WO2024034665A1 (ja) * 2022-08-10 2024-02-15 横浜ゴム株式会社 ゴム組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021637A1 (ja) * 2003-09-01 2005-03-10 Zeon Corporation 共役ジエン系ゴム組成物、その製造方法およびゴム架橋物
JP2009263587A (ja) * 2008-04-28 2009-11-12 Bridgestone Corp タイヤ
JP2011122057A (ja) * 2009-12-10 2011-06-23 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2012073841A1 (ja) * 2010-12-03 2012-06-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
WO2012073837A1 (ja) * 2010-12-03 2012-06-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
WO2012073838A1 (ja) * 2010-12-03 2012-06-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3685572B2 (ja) 1996-12-17 2005-08-17 住友ゴム工業株式会社 タイヤトレッド用ゴム組成物
JP2007321046A (ja) 2006-05-31 2007-12-13 Yokohama Rubber Co Ltd:The ゴム組成物及び空気入りタイヤ
JP5245346B2 (ja) 2007-10-10 2013-07-24 日本ゼオン株式会社 共役ジエン重合体組成物の製造方法
JP4294070B2 (ja) * 2007-12-10 2009-07-08 横浜ゴム株式会社 タイヤ用ゴム組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021637A1 (ja) * 2003-09-01 2005-03-10 Zeon Corporation 共役ジエン系ゴム組成物、その製造方法およびゴム架橋物
JP2009263587A (ja) * 2008-04-28 2009-11-12 Bridgestone Corp タイヤ
JP2011122057A (ja) * 2009-12-10 2011-06-23 Yokohama Rubber Co Ltd:The タイヤ用ゴム組成物
WO2012073841A1 (ja) * 2010-12-03 2012-06-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
WO2012073837A1 (ja) * 2010-12-03 2012-06-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物
WO2012073838A1 (ja) * 2010-12-03 2012-06-07 横浜ゴム株式会社 タイヤトレッド用ゴム組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9416258B2 (en) 2012-04-16 2016-08-16 The Yokohama Rubber Co., Ltd. Rubber composition for tire, and pneumatic tire
US9284439B2 (en) 2012-04-24 2016-03-15 The Yokohama Rubber Co., Ltd. Tire rubber composite and pneumatic tire
EP2974884A1 (en) * 2014-07-14 2016-01-20 Sumitomo Rubber Industries, Ltd. Rubber composition for tire and pneumatic tire
US10450454B2 (en) * 2014-08-27 2019-10-22 The Yokohama Rubber Co., Ltd. Rubber composition for tire and pneumatic tire
US10669408B2 (en) 2016-05-10 2020-06-02 The Yokohama Rubber Co., Ltd. Rubber composition and pneumatic tire using same
US11359075B2 (en) 2017-01-12 2022-06-14 The Yokohama Rubber Co., Ltd. Rubber composition for a tire tread and pneumatic tire using the same

Also Published As

Publication number Publication date
CN104220510A (zh) 2014-12-17
JP2013166864A (ja) 2013-08-29
US9139721B2 (en) 2015-09-22
KR101523627B1 (ko) 2015-05-28
DE112013000983B4 (de) 2016-03-10
KR20140117693A (ko) 2014-10-07
DE112013000983B9 (de) 2016-06-30
CN104220510B (zh) 2016-04-13
JP5316660B2 (ja) 2013-10-16
US20150031791A1 (en) 2015-01-29
DE112013000983T5 (de) 2014-12-04

Similar Documents

Publication Publication Date Title
WO2013122237A1 (ja) タイヤトレッド用ゴム組成物
JP5376027B2 (ja) タイヤ用ゴム組成物
JP5447667B2 (ja) タイヤトレッド用ゴム組成物
JP5429255B2 (ja) タイヤトレッド用ゴム組成物及びこれを用いる空気入りタイヤ
US9416252B2 (en) Rubber composition for tire tread
WO2012073838A1 (ja) タイヤトレッド用ゴム組成物
JP6019946B2 (ja) タイヤトレッド用ゴム組成物
JP5776356B2 (ja) タイヤトレッド用ゴム組成物
CN110643094A (zh) 充气轮胎
WO2016039005A1 (ja) 空気入りタイヤ
JP5691456B2 (ja) タイヤトレッド用ゴム組成物
JP2013166865A (ja) タイヤトレッド用ゴム組成物
JP5838760B2 (ja) タイヤトレッド用ゴム組成物
TWI716512B (zh) 末端改質的共軛二烯-乙烯基芳香烴共聚物及其合成方法、橡膠組合物及輪胎
KR20210125427A (ko) 공액 디엔계 중합체 및 그의 제조 방법, 그리고 고무 조성물
US20240132706A1 (en) Rubber composition for tires and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748703

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14379271

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013000983

Country of ref document: DE

Ref document number: 1120130009838

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20147025488

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13748703

Country of ref document: EP

Kind code of ref document: A1