WO2013122234A1 - 溶接管構造高温機器用オーステナイト系ステンレス鋼 - Google Patents

溶接管構造高温機器用オーステナイト系ステンレス鋼 Download PDF

Info

Publication number
WO2013122234A1
WO2013122234A1 PCT/JP2013/053764 JP2013053764W WO2013122234A1 WO 2013122234 A1 WO2013122234 A1 WO 2013122234A1 JP 2013053764 W JP2013053764 W JP 2013053764W WO 2013122234 A1 WO2013122234 A1 WO 2013122234A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
stainless steel
austenitic stainless
weldability
penetration
Prior art date
Application number
PCT/JP2013/053764
Other languages
English (en)
French (fr)
Inventor
松山 宏之
石丸 詠一朗
潮雄 中田
Original Assignee
新日鐵住金ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金ステンレス株式会社 filed Critical 新日鐵住金ステンレス株式会社
Priority to EP13749790.5A priority Critical patent/EP2816133B1/en
Publication of WO2013122234A1 publication Critical patent/WO2013122234A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to an austenitic stainless steel for high-temperature equipment with a welded pipe structure used at high temperatures.
  • a fuel reformer for generating hydrogen gas including a fuel cell is a device that generates hydrogen from a fuel such as city gas, kerosene, and gasoline using a fuel reforming catalyst. Since the catalyst operating temperature for generating hydrogen is as high as about 700 ° C. or higher, the structural material holding the catalyst needs to have excellent oxidation resistance and high temperature strength. The oxidation resistance and high-temperature strength of the structural material holding the catalyst are necessary to ensure long-term durability as a structure. Partial destruction or deformation due to oxidative damage or insufficient strength at high temperatures degrades the performance as a hydrogen gas generator. And the performance fall of a hydrogen gas generator deteriorates the performance of the fuel cell main body which produces electric power, and brings about the performance fall of a system. For this reason, SUS310S (JIS standard), which is an austenitic stainless steel excellent in oxidation resistance and high-temperature strength, is often used particularly in the region where the temperature becomes high.
  • JIS standard JIS standard
  • a fuel reformer has been developed in which an austenitic stainless steel thin plate containing SUS310S is welded into a tubular shape and stacked in layers to form an integral cylindrical structure (Patent Document 1).
  • the fuel reformer having a cylindrical structure has a very complicated structure in which functions are divided by stacked cylinders.
  • austenitic stainless steel with excellent weldability in addition to high temperature characteristics. It is done.
  • excellent weldability means that high temperature cracks are hardly generated during welding.
  • Hot cracks that occur during the welding of austenitic stainless steel are cracks that occur because low melting point compounds such as P, S, Si, and Nb segregate at the austenite grain boundaries and columnar grain boundaries during the solidification process. Is called. Therefore, in an austenitic stainless steel (for example, SUS304 (JIS standard) or SUS316 (JIS standard)), hot cracking is prevented by containing several percent of ferrite in the weld metal.
  • the reason why ferrite is effective is that ferrite has higher solid solubility of S and P, liquid wettability becomes worse and the liquid film is difficult to spread, and the ferrite / austenite interface is solidified with a complex shape and austenite For example, cracks are difficult to propagate because of grain boundaries.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an austenitic stainless steel that is economically excellent and has excellent weldability for producing a complicated tubular structure.
  • the present inventors have studied hot cracking properties during welding by reproducibility of hot cracking with different heat input using stainless steel with various components changed. For this purpose, the inventors have obtained the knowledge that it is important to optimize the amount of penetration by optimizing the material components, and have reached the present invention. Note that the following description is not intended to limit the present invention.
  • the amount of carbon is high, hot cracking is likely to occur during welding of austenitic stainless steel. The reason is that C promotes the segregation of low melting point S in the melting part. Moreover, excess of Si reduces weldability. P and S are segregated at the grain boundaries, respectively, and deteriorate weldability.
  • the inventors are able to control the amount of low melting point elements such as Si, P and S in order to prevent hot cracking during welding, and to reduce welding heat input to prevent hot cracking.
  • the inventors have found that hot cracking tends to occur when the bead width ratio of the front and back surfaces exceeds 0.8 during welding with high heat input.
  • the weldability index is less than 0.015, the amount of penetration increases and hot cracking is likely to occur.
  • the weldability index of the formula (1) is 0.015 or more, the amount of penetration becomes small even at high heat input, and the bead width ratio of the front and back surfaces becomes 0.8 or less. As a result, the occurrence of hot cracks can be reduced.
  • the weldability index is preferably 0.03 or more.
  • the weldability index exceeds 0.093, the penetration at the time of welding with low heat input is lowered and the weldability is lowered.
  • the upper limit of the weldability index is preferably 0.079, and more preferably 0.068. The inventors obtain knowledge related to the test results described above and provide useful means for solving technical problems in welding austenitic stainless steel.
  • the austenitic stainless steel for welded pipe structure of the present invention is, by mass, C: 0.001 to 0.2%, Si: 0.01 to 1.5%, Mn: 0.01 to 1.5%. P ⁇ 0.022%, S ⁇ 0.004%, Cr: 20.0 to 26.0%, Ni: 15.0 to 23.0%, N: 0.001 to 0.07%, Al: 0.003 to 0.05%, Ca: 0.0003 to 0.005%, the balance is made of Fe and inevitable impurities, and Al and Ca satisfy the following formula (1).
  • the tubular structure includes a welded structure, and the welding includes TIG welding.
  • austenitic stainless steel for tubular structures having excellent weldability even if the member has a complicated shape, the welding penetration amount can be stably stabilized, so that high temperature cracking due to increased welding heat input. Therefore, austenitic stainless steel for tubular structures having excellent weldability can be provided at a low cost.
  • the austenitic stainless steel for welded structure pipe of the present invention will be further described.
  • % Means mass%.
  • C is an element effective for stabilizing the austenite structure.
  • the upper limit was made 0.2%.
  • the upper limit value is preferably 0.15%, more preferably 0.1%.
  • the lower limit is set to 0.001% in consideration of the manufacturing cost. For this reason, the lower limit is preferably in the range of 0.002%, and more preferably 0.003%.
  • Si is used as a deoxidizing element and is preferably larger from the viewpoint of oxidation resistance. However, if added excessively, the weldability is remarkably deteriorated, so the upper limit was made 1.5%. For this reason, the upper limit is preferably 1.0% and more preferably 0.8%.
  • the lower limit is set to 0.01% in consideration of manufacturing costs. For this reason, the lower limit value is preferably 0.015%, more preferably 0.02%.
  • Mn is an element necessary for stabilizing the austenite structure, and is an element that fixes S during welding and suppresses a decrease in hot cracking property.
  • the upper limit was made 1.5% or less.
  • the upper limit is preferably 1.3%, and more preferably 1.0%.
  • the lower limit was made 0.01%. For this reason, the lower limit is preferably 0.015%, more preferably 0.02%.
  • P is an element that segregates at the grain boundaries during solidification and lowers the weldability, so the upper limit was made 0.022% or less.
  • the upper limit is preferably 0.020%, more preferably 0.015%.
  • P is an element inevitably contained in steel, but from the viewpoint of weldability, it is desirable that P does not exist.
  • S Since S is an element that segregates at the grain boundaries during solidification and lowers weldability, the upper limit was made 0.004% or less. Preferably, the upper limit is 0.0015%, and more preferably 0.0001%. S is an element inevitably contained in steel, but from the viewpoint of weldability, it is desirable that S does not exist.
  • Cr Cr is an element necessary for ensuring the corrosion resistance, which is a basic characteristic of stainless steel, and the oxidation resistance and strength in a high-temperature environment important in the present invention, so 20.0% or more is necessary.
  • the lower limit is preferably 22.0%, more preferably 23.0%.
  • the upper limit was set to 26.0% in order to reduce the workability, increase the product cost, or deteriorate the manufacturability. For this reason, the upper limit is preferably 25.5%, and more preferably 24.0%.
  • Ni is an element necessary for stabilizing the austenite structure and ensuring the strength at high temperature, so the lower limit was made 15.0%.
  • the lower limit is preferably 16.0%, and more preferably 17.0%.
  • the upper limit was made 23.0%.
  • the upper limit is preferably 21.0%, more preferably 19.0%.
  • N is an element effective for stabilizing the austenite structure.
  • the upper limit was made 0.07%.
  • the upper limit is preferably 0.06%, more preferably 0.05%.
  • the lower limit was made 0.001%.
  • the lower limit is preferably 0.002%, more preferably 0.003%.
  • Al is a deoxidizing element and an element effective for optimizing the amount of penetration during welding.
  • the upper limit was made 0.05%.
  • the upper limit is preferably 0.045%, more preferably 0.035%.
  • the lower limit is set to 0.003% from the viewpoint of manufacturing cost.
  • the lower limit is 0.004%, more preferably 0.005%.
  • Ca is an element necessary for reducing S which lowers weldability and optimizing the amount of penetration during welding.
  • the upper limit is made 0.005% or less.
  • the upper limit is preferably 0.004%, and more preferably 0.003%.
  • the lower limit is 0.0003%.
  • the lower limit is preferably 0.0005%, more preferably 0.0008%.
  • Formula (1) which is a relational expression of the contents of Al and Ca, was derived as a weldability index for optimizing the amount of penetration for suppressing hot cracking. It is the formula which evaluated penetration by the front-back bead width ratio after welding, and calculated
  • Formula (1) Equation (1) shows the relationship between the bead width ratio of the front and back surfaces (bead width of the back surface / surface bead width) and the high temperature cracking property after welding under high heat input and low heat input. It was discovered as a result of investigating the solubility during heating.
  • the inventors have found that hot cracking tends to occur when the bead width ratio of the front and back surfaces exceeds 0.8 during welding with high heat input (for example, 705 J / cm or more). It has been clarified that the specific relationship between the Al and Ca contents in the steel affects the bead width ratio of the front and back surfaces in this case.
  • the “weldability index” represented by the above formula (1) there is a suitable range for the “weldability index” represented by the above formula (1), and within this preferred range, the bead width ratio of the front and back surfaces is 0.8 or less and welding is performed. It was found that the properties were kept good. In this way, the inventors have derived the formula (1).
  • the weldability index is less than 0.015, the amount of penetration increases and hot cracking is likely to occur.
  • the weldability index of the formula (1) is 0.015 or more, the amount of penetration becomes small even at high heat input, and the bead width ratio of the front and back surfaces becomes 0.8 or less. As a result, the occurrence of hot cracks can be reduced.
  • the weldability index is preferably 0.03 or more. On the other hand, if the weldability index exceeds 0.093, the penetration at the time of welding with low heat input is lowered and the weldability is lowered.
  • the austenitic stainless steel of the present invention is characterized in that hot cracking is unlikely to occur even when the welding heat input increases, and conversely, the weldability does not decrease even when the welding heat input decreases.
  • Cu, Mo, Sn, W, Co Cu, Mo, Sn, W, Co may be mixed from raw material scrap.
  • the element is an element effective for improving corrosion resistance, but even if added excessively, the cost increases and the productivity decreases, so the upper limit of the element is Cu: 0.30%, Mo: 0.30%, Sn: 0.05%, W: 0.10%, Co: 0.10%, preferably Cu: 0.25%, Mo: 0.25%, Sn: 0.04%, W: 0.0. 08%, Co: 0.06%, and more preferably, Cu: 0.20%, Mo: 0.20%, Sn: 0.03%, W: 0.05%, Co: 0.05% Good.
  • the lower limit of the component is 0.001% as an inevitable level.
  • Ti, Nb, V, Zr Ti, Nb, V, and Zr combine with C and N to form precipitates. Therefore, it is effective in improving intergranular corrosion resistance because it reduces solid solution C and N in steel.
  • the upper limit of the element is Ti: 0.03%, Nb: 0.03%, V: 0.2%, Zr: 0.03%, preferably Ti: 0.02%, Nb: 0.02%, V: 0.1%, Zr: 0.01%, more preferably Ti: 0.015%, Nb: 0.015%, V: 0.05%, Zr: 0.005%.
  • the lower limit of the elements is 0.001% as an inevitable level.
  • B, Mg: B and Mg are effective elements for improving hot workability, but excessive addition reduces weldability, so B: 0.00001 to 0.001%, Mg: 0.00001 to 0.001%, preferably B: 0.00001 to 0.0008%, Mg: 0.00001 to 0.0006%, more preferably B: 0.00001 to 0.0005%, Mg: 0.001%. It is good to make it 00001-0.0004%.
  • REM includes La, Ce, Y and the like. REM is an element effective for improving workability in the hot state, but excessive addition reduces weldability, so REM: 0.00001 to 0.01%, preferably REM: 0.00001 to 0.00. 005%, more preferably REM: 0.00001 to 0.003%.
  • Austenitic stainless steels having the components shown in Tables 1 and 2 were melted in a vacuum melting furnace, cast into a 50 kg steel ingot, and then cut into blocks. Then, hot rolling, annealing pickling, cold rolling, and annealing pickling were performed on the shaved block to produce a steel plate having a thickness of 0.8 mm and evaluated.
  • Tables 1 and 2 P, S, O and N are contained as impurities. Further, when the numerical value in the table is blank, it indicates that no element is added. Numerical values outside the scope of the present invention in the table are underlined.
  • TIG welding was performed in a ring shape with a diameter of 35 mm on the surface of a 50 mm square test material cut out from the steel plate. Furthermore, TIG welding (tanning) was performed linearly from the diagonal of the test material to the diagonal so as to intersect the ring-shaped weld. Welding TIG welding was performed with an argon gas seal at a welding speed of 50 cm / min.
  • the welding heat input in the TIG welding was 720 J / cm in the ring-shaped TIG welding and 600 J / cm in the subsequent linear TIG welding (tanning). The condition of occurrence of hot cracking during welding was evaluated by increasing the amount of heat input during TIG welding, setting conditions where the amount of penetration was excessive and hot cracking was likely to occur.
  • Oxidation resistance test Using a test piece of 20 mm ⁇ 30 mm, a continuous oxidation test was conducted in the atmosphere at 1000 ° C. for 200 hours, and oxidation resistance was evaluated by an increase in oxidation. Those whose oxidation gain exceeded 5 g / m 2 were rejected.
  • Examples 1 to 27 of the present invention which are compositions within the range of the present invention in the weld cracking evaluation, contained the respective component contents and the weldability index represented by the formula (1) within the preferable range.
  • the front-back bead width ratio in the weld cracking evaluation of the said invention example was 0.8 or less, the amount of penetration did not increase too much, and the crack generation rate was 30% or less.
  • the weld cracking property was excellent.
  • Comparative Examples 11 to 17 in which the amounts of Ti, Nb, V, Zr, B, Mg, and REM are out of the range of the present invention the crack occurrence rate exceeds 30% and the weldability may be inferior. all right.
  • Comparative Examples 9, 10, and 19, where the weldability index deviated from the lower limit of the present invention the bead width on the front and back surfaces exceeded 0.8.
  • FIG. 1 shows the relationship between the additive amount of Al and Ca, which is a feature of the present invention, and the weldability index.
  • a region where solidification cracking at the time of excessive welding heat input by adding appropriate amounts of Al and Ca is shown in a region above the lower limit line of the equation (1) in the figure.
  • region which shows that excessive addition of Al and Ca reduces a meltability is an area
  • the welding workability was favorable, without causing the lack of penetration at the time of low heat input.
  • solidification cracking and insufficient penetration were observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Arc Welding In General (AREA)

Abstract

 質量%で、C:0.001~0.2%、Si:0.01~1.5%、Mn:0.01~1.5%、P:≦0.022%、S:≦0.004%、Cr:20.0~26.0%、Ni:15.0~23.0%、N:0.001~0.07%、Al:0.003~0.05%、Ca:0.0003~0.005%、 さらにAl、Caが下記式(1)を満たす溶接性に優れ、 0.015≦0.29(%Al)+17.92(%Ca)≦0.093 式(1) を満たし、さらに、Cu、Mo、Sn、W、Co、Ti、Nb、V、Zr、B、Mg、REMの1種または2種以上を所定の含有量範囲内で含むことができる高温で使用する溶接管構造高温機器用に溶接性に優れたオーステナイト系ステンレス鋼を提供する。

Description

溶接管構造高温機器用オーステナイト系ステンレス鋼
 本発明は高温で使用する溶接管構造高温機器用のオーステナイト系ステンレス鋼に関する。
 燃料電池をはじめとする水素ガスを生成するための燃料改質器は、都市ガスや、灯油、ガソリンなどの燃料から燃料改質触媒を用いて水素を生成する装置である。水素を生成するための触媒作動温度は約700℃以上と高温であるため、触媒を保持する構造材には優れた耐酸化性と高温強度が必要である。触媒を保持する構造材の耐酸化性と高温強度は、構造物としての長期耐久性を確保するために必要である。酸化損傷や高温での強度不足による部分的な破壊や変形は水素ガス発生装置としての性能を低下させる。そして、水素ガス発生装置の性能低下が発電を行う燃料電池本体の性能を劣化させ、システムの性能低下をもたらす。そのため、特に高温となる部位には耐酸化性と高温強度に優れたオーステナイト系ステンレス鋼であるSUS310S(JIS規格)が多く使われている。
 燃料改質器は、SUS310Sを含むオーステナイト系ステンレス鋼の薄板を管状に溶接したものをそれぞれ何重にも重ねて一体型の筒型構造としたものが開発されている(特許文献1)。筒型構造の燃料改質器は、重ねた筒によって機能が分かれた非常に複雑な構造となっている。前記筒型構造の製造では、管形状への溶接だけではなく、筒同士を周溶接で接合してガスの通路としているため、高温特性に加えて溶接性にも優れたオーステナイト系ステンレス鋼が求められる。ここで溶接性に優れるとは、主に溶接時に高温割れが発生しにくいことをいう。
 オーステナイト系ステンレス鋼の溶接で発生する高温割れは、凝固過程でP、S、Si、Nbなどの低融点化合物がオーステナイト粒界や柱状晶粒界に偏析するために生じる割れであり、凝固割れともいわれる。そのため、オーステナイト系ステンレス鋼(たとえばSUS304(JIS規格)やSUS316(JIS規格))では、溶接金属に数%のフェライトを含有させることにより高温割れを防止している。フェライトが有効な理由は、フェライトのほうがSやPの固溶度が高いこと、液体のぬれ性が悪くなり液膜がひろがりにくくなること、フェライト/オーステナイト界面が複雑な形状のまま凝固してオーステナイト粒界となるので割れが伝播しにくくなることなどが挙げられる。しかし、前記SUS310Sのように成分調整してもフェライトの相形成が不可能であるオーステナイト系ステンレス鋼の場合には、P、S、Siなどの低融点金属生成元素を低減することが有効であることが知られている。
 また、SUS310Sと同等の高温特性を有する高温機器用オーステナイト系ステンレス鋼として、耐酸化性改善のためにSi含有量を多くした材料が開発されている。しかし、Si含有量の増加は上述したように高温割れが発生しやすいため、凝固時に数%のフェライトが含有されるように成分調整が行われている(例えば、特許文献1~4)。
 一方、溶接時の高温割れに対しては、材料面だけではなく施工性の点から溶接時の歪みを低減することも重要である。そのために、溶接入熱を低くすることによって歪みを低減させること及び溶接施工時に素材を確実に拘束することによって残留応力による歪みを抑制して高温割れを抑制することが可能となる。
特開2003-286005号公報 特開2003-160843号公報 特開2003-160841号公報 特開平8-319541号公報
 ところが、上述したように、燃料改質器のような非常に複雑な溶接構造物である場合、全ての溶接部位を拘束することが困難なことが多い。そのため、製造のときに、複数回に分けて溶接することが必要になる。そして、最終溶接部位に歪みが集中して凝固割れが発生するという問題がある。
 溶接構造物において、確実に溶融して接合させることが重要であるが、溶接構造が複雑であると溶接条件のばらつきが生じやすい。溶接入熱が小さく、そのため溶け込み量が少ないと接合不良が発生する可能性がある。一方、確実に溶融接合させるために溶接入熱をあげて溶接すると、溶け込み量が多くなる。上述したように、溶け込み量が多いと残留応力による歪みが大きくなり、高温割れが発生しやすくなるという課題がある。
 本発明はこのような状況に鑑みてなされたもので、経済的に優れ、複雑な管状構造物をつくるための溶接性に優れたオーステナイト系ステンレス鋼を提供することにある。
 本発明者らは上記目的を達成するために、各種成分を変化させたステンレス鋼を用いて溶接入熱を変えた高温割れの再現実験により溶接時の高温割れ性を検討した結果、高温割れ改善のためには材料成分の適正化によって溶け込み量の適正化を図ることが重要であるとの知見を得て、本発明に至った。なお、以下のいかなる記載も本発明を限定する趣旨ではない。
 高C量であるとき、オーステナイト系ステンレス鋼の溶接において、高温割れが発生しやすくなる。その理由は、Cが、溶融部での低融点のSの偏析を助長するからである。また、Siの過剰が溶接性を低下させる。P及びSはそれぞれ粒界に偏析し、溶接性を低下させる。
 発明者らは、溶接時の高温割れを防止するため低融点元素であるSi、P及びS等の量を制御しつつ、かつ、高温割れを防止するための溶接入熱を低減させても適切な溶接による溶け込み量が確保できる溶接条件、成分及び組成の試験・評価をした。
 溶接入熱を変えた試験を行い、高入熱時における溶接後の表裏面のビード幅比、すなわち裏面のビード幅/表面ビード幅と高温割れ性の関係と、低入熱時における溶け込み性を調査した。発明者らは高入熱での溶接時において、表裏面のビード幅比が0.8を越えると高温割れが発生しやすくなることを見出した。表裏面のビード幅比には、鋼中のAlおよびCa含有量の特定の関係が影響することを明らかにした。すなわち、Alは通常脱酸元素として、CaはS低減のために添加されているが、ともに溶接時の溶け込み量適正化のためにも必要な元素であることを知見した。発明者らが解析した結果、下記式(1)で表される「溶接性指標」に好適範囲があり、この好適範囲内にあれば表裏面のビード幅比が0.8以下であって溶接性が良好に保たれることを見出した。
 0.015≦0.29(%Al)+17.92(%Ca)≦0.093  式(1)
 溶接性指標が0.015未満になると溶け込み量が大きくなり、高温割れが発生しやすくなる。これに対し、式(1)の溶接性指標が0.015以上であれば、高入熱時においても溶け込み量が小さくなって表裏面のビード幅比が0.8以下となる。その結果、高温割れの発生を低減することができる。溶接性指標は好ましくは0.03以上である。一方、溶接性指標が0.093を超えると、低入熱での溶接時における溶け込み性が低下して溶接性が低下する。さらに、溶接性指標の上限は、0.079が好適であり、さらに好適には0.068が望ましい。
 発明者らは、上述した試験結果に係る知見を得て、オーステナイト系ステンレス鋼の溶接における技術的課題を解決する有用な手段を提供するものである。
 すなわち本発明の溶接管構造用オーステナイト系ステンレス鋼は、質量%で、C:0.001~0.2%、Si:0.01~1.5%、Mn:0.01~1.5%、P≦0.022%、S≦0.004%、Cr:20.0~26.0%、Ni:15.0~23.0%、N:0.001~0.07%、Al:0.003~0.05%、Ca:0.0003~0.005%、残部がFeおよび不可避不純物よりなり、さらにAl、Caが下記式(1)を満たすことを特徴とする管状構造物用オーステナイト系ステンレス鋼である。
 0.015≦0.29(%Al)+17.92(%Ca)≦0.093  式(1)
 さらに質量%で、Cu:0.001~0.30%、Mo:0.001~0.30%、Sn:0.001~0.05%、W:0.001~0.10%、Co:0.001~0.10%、Ti:0.001~0.03%、Nb:0.001~0.03%、V:0.001~0.2%、Zr:0.001~0.03%、B:0.00001~0.001%、Mg:0.00001~0.001%、REM:0.00001~0.01%の1種または2種以上を含んでも構わない。
 前記管状構造体は、溶接構造体を含み、溶接にはTIG溶接が含まれる。
 本発明の溶接性に優れた管状構造物用オーステナイト系ステンレス鋼によれば、複雑な形状の部材であっても、溶接溶け込み量が適切な安定した溶接ができるので、溶接入熱増大による高温割れを低減することが可能となり、溶接性に優れた管状構造物用オーステナイト系ステンレス鋼を安価に提供することができる。
Al、Ca含有量と溶接割れ性・溶接施工性との関係を示す図である。
 本発明の溶接構造管用オーステナイト系ステンレス鋼についてさらに説明する。%は質量%を意味する。
 C:Cはオーステナイト組織を安定化するのに有効な元素である。しかし、含有量が多くなるとSの偏析による高温割れを助長する。そのため、上限は0.2%とした。さらに、高温割れ発生を抑制する上で、上限値は、好適には0.15%、さらに好適には0.1%にするとよい。一方、下限は製造コストを考え0.001%とした。この理由から、下限は、好適には、0.002%の範囲、さらに好適には、0.003%にするとよい。
 Si:Siは脱酸元素として用いられ、耐酸化性の観点から多いほうが望ましいが、過剰に添加すると溶接性を著しく劣化させるので、上限は1.5%にした。この理由から、好適には、上限1.0%、さらに好適には0.8%とするとよい。下限は製造コストを考え、0.01%とした。この理由から、下限値は、好適には0.015%、さらに好適には0.02%とするとよい。
 Mn:Mnはオーステナイト組織を安定化するのに必要な元素であるとともに、溶接時にSを固定して高温割れ性の低下を抑制する元素である。しかし過剰な添加は耐酸化性を低下させるため上限は1.5%以下とした。対酸化性の面で、好適には、上限は1.3%、さらに好適には1.0%とするとよい。製造コストを上げないためには、下限は0.01%とした。この理由から、下限は、好適には0.015%、さらに好適には0.02%とするとよい。
 P:Pは凝固時に粒界に偏析して溶接性を低下させる元素であるので、上限は0.022%以下にした。好適には上限0.020%、さらに好適には0.015%である。Pは不可避に鋼に含まれる元素であるが、溶接性の見地から、Pが存在しない方が望ましい。
 S:Sも凝固時に粒界に偏析して溶接性を低下させる元素であるので、上限0.004%以下にした。好適には、上限0.0015%、さらに好適には0.0001%である。Sは不可避に鋼に含まれる元素であるが、溶接性の見地から、Sが存在しない方が望ましい。
 Cr:Crはステンレス鋼の基本特性である耐食性、本発明で重要な高温環境での耐酸化性および強度を確保するために必要な元素であることから20.0%以上必要である。この理由から、下限は、好適には22.0%、さらに好適には23.0%とするのがよい。上限は、加工性を低下させたり、製品コストを高めたり、製造性を劣化させるため26.0%とした。その理由から、上限は、好適には25.5%、さらに好適には24.0%とするのがよい。
 Ni:Niはオーステナイト組織を安定化して、高温での強度を確保するのに必要な元素であるため、下限15.0%とした。この理由から、下限は、好適には16.0%、さらに好適には17.0%とするのがよい。しかし、含有量が多くなるとSの偏析による高温割れを助長すること、また加工性を低下させること、製品コストを高めること、及び製造性を劣化させることから、上限は23.0%とした。この理由から、上限は好適には21.0%、さらに好適には19.0%とするのがよい。
 N:Nはオーステナイト組織を安定化するのに有効な元素である。しかし、含有量が多くなると加工性を低下させること及び熱間での製造性を劣化させることから、上限は0.07%とした。この理由から、上限は、好適には0.06%、さらに好適には0.05%とするのがよい。一方、製造コストを考え、下限は0.001%とした。この理由から、下限は、好適には0.002%、さらに好適には0.003%である。
 Al:Alは脱酸元素であるとともに、溶接時の溶け込み量の適正化に有効な元素である。しかし、添加量が多すぎると溶け込み性(溶け込み量又は溶け込み幅、深さ)が低下して溶接性を低下させるために、上限は0.05%とした。この理由から、上限は、好適には0.045%、さらに好適には0.035%である。また、下限は製造コストの面から0.003%とした。好適には、下限は0.004%、さらに好適には0.005%である。
 Ca:Caは溶接性を低下させるSを低減させ、溶接時の溶け込み量の適正化に必要な元素である。しかし添加量が多すぎると逆に溶け込み性が低下して溶接性を低下させるために、上限は0.005%以下とした。この理由から、上限は、好適には0.004%、さらに好適には0.003%とするとよい。
 また、製造コストを考慮すると、下限は0.0003%である。この理由から、下限は、好適には、0.0005%、さらに好適には0.0008%である。
 溶接性指標:高温割れ抑制のための溶け込み量を適正化する溶接性指標として、AlおよびCaの含有量の関係式である式(1)を導いた。
 溶接後の表裏ビード幅比で溶け込み性を評価して、AlおよびCaの含有量との関係求めた式である。
 0.015≦0.29(%Al)+17.92(%Ca)≦0.093  式(1)
 式(1)は、溶接入熱を変えた試験を行い、高入熱時における溶接後の表裏面のビード幅比(裏面のビード幅/表面ビード幅)と高温割れ性の関係と、低入熱時における溶け込み性を調査した結果、見出したものである。まず、発明者らは高入熱(たとえば705J/cm以上)での溶接時において、表裏面のビード幅比が0.8を越えると高温割れが発生しやすくなることを見出した。この場合の表裏面のビード幅比には、鋼中のAlおよびCa含有量の特定の関係が影響することを明らかにした。発明者らが解析した結果、上記式(1)で表される「溶接性指標」に好適範囲があり、この好適範囲内にあれば表裏面のビード幅比が0.8以下であって溶接性が良好に保たれることを見出した。このようにして、発明者らは式(1)を導出したものである。Alは通常脱酸元素として、CaはS低減のために添加されているが、ともに溶接時の溶け込み量適正化のためにも必要な元素であることを知見した。溶接性指標が0.015未満になると溶け込み量が大きくなり、高温割れが発生しやすくなる。これに対し、式(1)の溶接性指標が0.015以上であれば、高入熱時においても溶け込み量が小さくなって表裏面のビード幅比が0.8以下となる。その結果、高温割れの発生を低減することができる。溶接性指標は好ましくは0.03以上である。一方、溶接性指標が0.093を超えると、低入熱での溶接時における溶け込み性が低下して溶接性が低下する。
 前述のとおり、燃料改質器のように非常に複雑な溶接構造物の場合、その複雑な構造ゆえに溶接条件のばらつきが生じやすい。溶接時の入熱が小さく溶け込み量が少ない場合、接合不良が発生する可能性がある。そこで、確実に溶融接合させるために溶接時の入熱をあげて溶接すると溶け込み量が多くなり過ぎやすい。本発明のオーステナイト系ステンレス鋼は、溶接入熱が大きくなった場合でも高温割れが発生しにくく、逆に溶接入熱が小さくなった場合でも溶け込み性が低下しないという特徴を有している。
 以下には、さらに積極的に添加する元素あるいは不純物として混入する可能性のある元素について述べる。
 Cu、Mo、Sn、W、Co:Cu、Mo、Sn、W、Coは原料のスクラップより混入する可能性がある。前記元素は耐食性向上に有効な元素であるが、過剰に添加してもコストアップや製造性の低下となるので、前記元素の上限は、Cu:0.30%、Mo:0.30%、Sn:0.05%、W:0.10%、Co:0.10%、好適には、Cu:0.25%、Mo:0.25%、Sn:0.04%、W:0.08%、Co:0.06%、さらに好適には、Cu:0.20%、Mo:0.20%、Sn:0.03%、W:0.05%、Co:0.05%とするとよい。前記成分の下限は、不可避なレベルとして0.001%とした。
 Ti、Nb、V、Zr:Ti、Nb、V、ZrはC、Nと結合して析出物を形成する。そのため、鋼中の固溶C、Nを低減することから耐粒界腐食性向上に有効である。一方、前記元素の過剰な添加は炭化物の生成による液相フィルムが高温割れを助長して溶接性を低下させるので、前記元素の上限は、Ti:0.03%、Nb:0.03%、V:0.2%、Zr:0.03%、好適には、Ti:0.02%、Nb:0.02%、V:0.1%、Zr:0.01%、さらに好適には、Ti:0.015%、Nb:0.015%、V:0.05%、Zr:0.005%とするとよい。前記元素の下限は、不可避なレベルとしていずれも0.001%とした。
 B、Mg:B、Mgは熱間での加工性改善に有効な元素であるが、過剰な添加は溶接性を低下させるのでB:0.00001~0.001%、Mg:0.00001~0.001%、好適には、B:0.00001~0.0008%、Mg:0.00001~0.0006%、さらに好適にはB:0.00001~0.0005%、Mg:0.00001~0.0004%とするとよい。
 REM:REMには、La、Ce、Yなどがある。REMは熱間での加工性向上に有効な元素であるが、過剰な添加は溶接性を低下させるのでREM:0.00001~0.01%、好適には、REM:0.00001~0.005%、さらに好適にはREM:0.00001~0.003%とするとよい。
 以下、本発明について実施例を挙げて具体的に説明する。なお、以下のいかなる記載も本発明を限定するものではない。
 表1、表2に示す成分のオーステナイト系ステンレス鋼を真空溶解炉で溶製して50kgの鋼塊に鋳込んだ後にブロック状に削りだした。その後、削りだしたブロックに熱間圧延、焼鈍酸洗、冷間圧延、焼鈍酸洗を行い、板厚0.8mmの鋼板を作製して、評価を行った。前記表1及び2のP、S、O及びNは不純物として含有するものである。また前記表中の数値が空欄の場合、元素を添加していないことを示す。前記表中の本発明範囲から外れる数値にアンダーラインを付している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 次に、溶接試験を行う。溶接方法は限定されず、また、溶加材を使用しても、なめ付けであってもよく、限定されるものではないが、本発明ではTIG溶接で試験した。前記鋼板から切り出した50mm角の試験材の表面に直径35mmのリング状にTIG溶接を行った。さらに、リング状溶接部と交差するように、試験材の対角から対角へ、TIG溶接(なめ付け)を直線状に行った。溶接TIG溶接は、溶接速度:50cm/分、アルゴンガスシールにて行った。前記TIG溶接での溶接入熱は、リング状のTIG溶接では720J/cm、その後の直線状のTIG溶接(なめ付け)では600J/cmで行った。TIG溶接での溶接入熱量を大きくし、溶け込み量が多くなり過ぎて高温割れが発生しやすい条件を設定して、溶接時の高温割れの発生状況を評価した。
 溶接割れ性評価(溶接時の高温割れ発生状況の評価)は、直線状のTIG溶接(なめ付け)後の最終凝固部での割れ発生有無を10倍のルーペで表裏面ともに観察した。溶接割れ性評価点は、表裏のどちらかで割れが観察されたものを0.5点、表裏ともに割れが認められたものを1点とした。試験材5枚を用いて行い、割れ発生点数から割れ発生率を求めて、割れ発生率が30%越えたものは溶接性不良で不合格とした。併せて、表裏面のビード幅を定規で測定して求めた裏面ビード幅/表面ビード幅の評価結果も記載した。
 また、溶接施工性評価(溶け込み性)として、溶接入熱が低く溶け込み量が少なくなり過ぎやすい場合の溶け込み性を評価することとした。そのため、直線状のTIG溶接(なめ付け)を溶接入熱480J/cmで行い、表裏面のビード幅を定規で測定して、裏面ビード幅/表面ビード幅<0.5の試験材は溶け込み性不芳で不合格とした。
 (耐酸化試験)
 20mm×30mmの試験片を用いて、大気中、1000℃で200時間の連続酸化試験を行い、酸化増量により耐酸化性を評価した。酸化増量が5g/mを越えるものを不合格とした。
 表1に示すとおり、溶接割れ性評価では本発明範囲の組成である本発明例1~27は、各成分含有量及び式(1)に示される溶接性指数が好適範囲に入っていた。そして、前記本発明例の溶接割れ性評価における表裏ビード幅比は0.8以下であって、溶け込み量が多くなり過ぎず、割れ発生率が30%以下であった。本発明範囲の組成である本発明例1~27では、溶接割れ性が優れることが確認された。一方表2に示すように、それぞれ、P、S、C、Si量が本発明範囲を外れる比較例1~4、式(1)に示される溶接性指標が本発明範囲の下限を外れる比較例9、10、18、それぞれ、Ti、Nb、V、Zr、B、Mg、REM量が本発明範囲より外れる比較例11~17では、割れ発生率が30%を越え、溶接性が劣ることがわかった。特に、溶接性指標が本発明の下限を外れる比較例9、10、19においては、表裏面のビード幅が0.8を越えていた。
 溶接施工性評価として、溶接電流のばらつきによる溶け込み性不良の確認のために溶接入熱を低下させた評価を行った。その結果、本発明範囲の組成である実施例1~26では、溶接施工性評価における表裏ビード幅比が0.5以上の値を示し、溶け込み性に問題がないことが確認された。一方、Al、Ca量がそれぞれ本発明範囲より外れる比較例7、8及び溶接性指標が本発明の上限を外れる比較例7、18では、溶接入熱を下げた場合に、表裏のビード幅比が小さくなり溶け込み性が劣り、溶接施工性が低下することがわかった。
 本発明の特徴であるAl及びCaの添加量と、溶接性指標との関係について示したのが図1である。図1には、Al及びCaを適量添加することによる溶接入熱過剰時の凝固割れを抑制する領域が図の式(1)下限線より上の領域で示されている。逆に、Al及びCaの過剰添加は溶け込み性を低下させることを示す領域が式(1)上限線、Al上限線及びCa上限線より下の領域である。本発明の実施範囲の成分の実施例では、入熱過多時の凝固割れが起こらず溶接割れ性が良好であった。また、本発明例では、入熱少時の溶け込み不足も起こらず溶接施工性が良好であった。一方、本発明範囲外の比較例では、凝固割れや溶け込み不足が認められた。
 さらに、高温での使用を想定した耐酸化試験においては、本発明範囲の組成である実施例1~26では、酸化増量が5g/m以下であった。一方、Mn量が本発明範囲より高い比較例5及びCr量が低い比較例6では酸化増量が5g/mよりも多く、高温用途向けとしては耐酸化性に劣ることがわかった。
 以上述べたように、本発明の溶接性に優れた管状構造物用オーステナイト系ステンレス鋼を提供することで、複雑な形状の管状構造物を製造する際の溶接施工性の大幅な向上が可能となり、産業的価値は大きい。

Claims (5)

  1.  質量%で、
    C:0.001~0.2%、
    Si:0.01~1.5%、
    Mn:0.01~1.5%、
    Cr:20.0~26.0%、
    Ni:15.0~23.0%、
    N:0.001~0.07%、
    Al:0.003~0.05%、
    Ca:0.0003~0.005%、
    残部がFeおよび不可避不純物よりなり、
    不純物としてのP,Sは質量%で
    P:≦0.022%、
    S:≦0.004%に制限し、
    さらにAl、Caが下記式を満たすことを特徴とする管状構造物用オーステナイト系ステンレス鋼。
     0.015≦0.29(%Al)+17.92(%Ca)≦0.093  式(1)
  2.  さらに質量%で、
    Cu:0.001~0.3%、
    Mo:0.001~0.3%、
    Sn:0.001~0.05%、
    W:0.001~0.10%、
    Co:0.001~0.10%、
    Ti:0.001~0.03%、
    Nb:0.001~0.03%、
    V:0.001~0.2%、
    Zr:0.001~0.03%、
    B:0.00001~0.001%、
    Mg:0.00001~0.001%、
    REM:0.00001~0.01%
    の1種または2種以上を含む請求項1に記載の管状構造物用オーステナイト系ステンレス鋼。
  3.  前記管状構造物が溶接構造体であることを特徴とする、請求項1又は2に係る管状構造物用オーステナイト系ステンレス鋼。
  4.  前記溶接構造体がTIG溶接を含む方法によって製造されることを特徴とする、請求項1乃至3のいずれかに係る管状構造物用オーステナイト系ステンレス鋼。
  5.  前記TIG溶接において、溶接面の反対面の溶融部の幅を前記溶接面の溶融部の幅で割った比が少なくとも0.5を超え、かつ、0.8未満となることを特徴とする、請求項1乃至4のいずれかに係る管状構造物用オーステナイト系ステンレス鋼。
PCT/JP2013/053764 2012-02-15 2013-02-15 溶接管構造高温機器用オーステナイト系ステンレス鋼 WO2013122234A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13749790.5A EP2816133B1 (en) 2012-02-15 2013-02-15 Austenitic stainless steel for apparatus for high-temperature use having welded tubular structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012030415A JP5780598B2 (ja) 2012-02-15 2012-02-15 溶接管構造高温機器用オーステナイト系ステンレス鋼
JP2012-030415 2012-02-15

Publications (1)

Publication Number Publication Date
WO2013122234A1 true WO2013122234A1 (ja) 2013-08-22

Family

ID=48984343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053764 WO2013122234A1 (ja) 2012-02-15 2013-02-15 溶接管構造高温機器用オーステナイト系ステンレス鋼

Country Status (3)

Country Link
EP (1) EP2816133B1 (ja)
JP (1) JP5780598B2 (ja)
WO (1) WO2013122234A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109890992A (zh) * 2016-10-03 2019-06-14 日本制铁株式会社 奥氏体系耐热合金及使用其的焊接接头

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017169377A1 (ja) * 2016-03-29 2017-10-05 Jfeスチール株式会社 フェライト系ステンレス鋼板
KR102458203B1 (ko) * 2017-10-03 2022-10-24 닛폰세이테츠 가부시키가이샤 오스테나이트계 스테인리스강
DE102019123174A1 (de) * 2019-08-29 2021-03-04 Mannesmann Stainless Tubes GmbH Austenitische Stahllegierung mit verbesserter Korrosionsbeständigkeit bei Hochtemperaturbeanspruchung
CN111004976B (zh) * 2019-12-30 2020-11-13 钢铁研究总院 一种节镍型气阀合金及其制备方法
CN115896647A (zh) * 2022-11-16 2023-04-04 江苏新华合金有限公司 一种气氛保护退火炉用耐热钢无缝管坯材料的制造工艺方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306548A (ja) * 1993-04-26 1994-11-01 Nippon Steel Corp 熱間加工性に優れた耐硝酸オーステナイト系ステンレス鋼
JPH073404A (ja) * 1993-06-22 1995-01-06 Nkk Corp 清浄度と溶接性に優れたオーステナイト系ステンレス鋼
JPH08319541A (ja) 1995-05-23 1996-12-03 Sumitomo Metal Ind Ltd 溶接性に優れた高温用オーステナイト系ステンレス鋼
JPH11293412A (ja) * 1998-04-08 1999-10-26 Pacific Metals Co Ltd 熱間加工性に優れたオーステナイト系ステンレス鋼
JP2003160843A (ja) 2001-11-22 2003-06-06 Nisshin Steel Co Ltd アルコール系燃料改質器用オーステナイト系ステンレス鋼
JP2003160841A (ja) 2001-11-22 2003-06-06 Nisshin Steel Co Ltd 石油系燃料改質器用オーステナイト系ステンレス鋼
JP2003286005A (ja) 2002-03-28 2003-10-07 Nisshin Steel Co Ltd 燃料改質器
JP2004043903A (ja) * 2002-07-12 2004-02-12 Nisshin Steel Co Ltd 耐赤スケール性に優れたオーステナイト系ステンレス鋼材
WO2006109727A1 (ja) * 2005-04-11 2006-10-19 Sumitomo Metal Industries, Ltd. オーステナイト系ステンレス鋼

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4172716A (en) * 1973-05-04 1979-10-30 Nippon Steel Corporation Stainless steel having excellent pitting corrosion resistance and hot workabilities
JPS5929104B2 (ja) * 1980-05-20 1984-07-18 愛知製鋼株式会社 熱間加工性、耐酸化性のすぐれたオ−ステナイト系耐熱鋼
JPH0762171B2 (ja) * 1989-07-28 1995-07-05 新日本製鐵株式会社 伸線性ならびに冷間圧延性に優れたオーステナイト系ステンレス鋼の製造方法
JP2533968B2 (ja) * 1990-10-05 1996-09-11 新日本製鐵株式会社 ミグ溶接作業性に優れたオ―ステナイト系ステンレス線材
JP3358678B2 (ja) * 1994-03-23 2002-12-24 新日本製鐵株式会社 建材用オーステナイト系ステンレス鋼
JP3239763B2 (ja) * 1996-07-08 2001-12-17 住友金属工業株式会社 耐硫酸腐食性に優れたオーステナイト系ステンレス鋼
JP2001107196A (ja) * 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd 耐溶接割れ性と耐硫酸腐食性に優れたオーステナイト鋼溶接継手およびその溶接材料
JP2005023353A (ja) * 2003-06-30 2005-01-27 Sumitomo Metal Ind Ltd 高温水環境用オーステナイトステンレス鋼
KR20090066000A (ko) * 2007-12-18 2009-06-23 주식회사 포스코 고진공, 고순도 가스 배관용 오스테나이트계 스테인리스강

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306548A (ja) * 1993-04-26 1994-11-01 Nippon Steel Corp 熱間加工性に優れた耐硝酸オーステナイト系ステンレス鋼
JPH073404A (ja) * 1993-06-22 1995-01-06 Nkk Corp 清浄度と溶接性に優れたオーステナイト系ステンレス鋼
JPH08319541A (ja) 1995-05-23 1996-12-03 Sumitomo Metal Ind Ltd 溶接性に優れた高温用オーステナイト系ステンレス鋼
JPH11293412A (ja) * 1998-04-08 1999-10-26 Pacific Metals Co Ltd 熱間加工性に優れたオーステナイト系ステンレス鋼
JP2003160843A (ja) 2001-11-22 2003-06-06 Nisshin Steel Co Ltd アルコール系燃料改質器用オーステナイト系ステンレス鋼
JP2003160841A (ja) 2001-11-22 2003-06-06 Nisshin Steel Co Ltd 石油系燃料改質器用オーステナイト系ステンレス鋼
JP2003286005A (ja) 2002-03-28 2003-10-07 Nisshin Steel Co Ltd 燃料改質器
JP2004043903A (ja) * 2002-07-12 2004-02-12 Nisshin Steel Co Ltd 耐赤スケール性に優れたオーステナイト系ステンレス鋼材
WO2006109727A1 (ja) * 2005-04-11 2006-10-19 Sumitomo Metal Industries, Ltd. オーステナイト系ステンレス鋼

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109890992A (zh) * 2016-10-03 2019-06-14 日本制铁株式会社 奥氏体系耐热合金及使用其的焊接接头

Also Published As

Publication number Publication date
EP2816133A1 (en) 2014-12-24
JP5780598B2 (ja) 2015-09-16
EP2816133A4 (en) 2016-05-04
EP2816133B1 (en) 2020-08-19
JP2013166989A (ja) 2013-08-29

Similar Documents

Publication Publication Date Title
JP6969666B2 (ja) オーステナイト系ステンレス鋼溶接継手
JP6274303B2 (ja) 溶接継手
WO2012018074A1 (ja) フェライト系ステンレス鋼
US20150218683A1 (en) Ferritic stainless steel
WO2013122234A1 (ja) 溶接管構造高温機器用オーステナイト系ステンレス鋼
CN111344427B (zh) 奥氏体系耐热钢焊接金属、焊接接头、奥氏体系耐热钢用焊接材料以及焊接接头的制造方法
WO2019189871A1 (ja) 二相ステンレスクラッド鋼板およびその製造方法
US20190126408A1 (en) Welding Structure Member
WO2019070000A1 (ja) オーステナイト系ステンレス鋼溶接金属および溶接構造物
KR20190122735A (ko) 간극부의 내염해성이 우수한 페라이트계 스테인리스 강관, 관 단부 두께 증가 구조체, 용접 조인트, 및 용접 구조체
JP4784239B2 (ja) ティグ溶接用フェライト系ステンレス鋼溶加棒
EP2857538A1 (en) Ferritic stainless steel
US10400318B2 (en) Ferritic stainless steel
JP6627373B2 (ja) オーステナイト系ステンレス鋼
JP2008231542A (ja) 溶接部加工性および耐すき間腐食性に優れた表面疵の少ないフェライト系ステンレス鋼
JP6477181B2 (ja) オーステナイト系ステンレス鋼
WO2019070002A1 (ja) オーステナイト系耐熱鋼用溶接材料、溶接金属および溶接構造物ならびに溶接金属および溶接構造物の製造方法
CA3019554C (en) Welding structure member
WO2015064077A1 (ja) フェライト-マルテンサイト2相ステンレス鋼およびその製造方法
JP5741454B2 (ja) −196℃におけるシャルピー試験値が母材、溶接継手共に100J以上である靭性と生産性に優れたNi添加鋼板およびその製造方法
JP7423395B2 (ja) オーステナイト系ステンレス鋼溶接継手の製造方法
JPWO2018066573A1 (ja) オーステナイト系耐熱合金およびそれを用いた溶接継手
JP6402581B2 (ja) 溶接継手及び溶接継手の製造方法
JP6354281B2 (ja) フェライト系耐熱鋼管
JP4465066B2 (ja) フェライト・オーステナイト二相系ステンレス鋼用溶接材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013749790

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE