WO2013118679A1 - 高強度冷延鋼板及びその製造方法 - Google Patents

高強度冷延鋼板及びその製造方法 Download PDF

Info

Publication number
WO2013118679A1
WO2013118679A1 PCT/JP2013/052468 JP2013052468W WO2013118679A1 WO 2013118679 A1 WO2013118679 A1 WO 2013118679A1 JP 2013052468 W JP2013052468 W JP 2013052468W WO 2013118679 A1 WO2013118679 A1 WO 2013118679A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
rolled steel
cold
limited
Prior art date
Application number
PCT/JP2013/052468
Other languages
English (en)
French (fr)
Inventor
東 昌史
貴行 野崎
千智 若林
佐藤 浩一
裕之 川田
藤田 展弘
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to PL13747093T priority Critical patent/PL2813595T3/pl
Priority to EP13747093.6A priority patent/EP2813595B1/en
Priority to KR1020147021641A priority patent/KR101622063B1/ko
Priority to BR112014019206A priority patent/BR112014019206A8/pt
Priority to CN201380008324.3A priority patent/CN104105807B/zh
Priority to US14/376,678 priority patent/US10544474B2/en
Priority to MX2014009471A priority patent/MX2014009471A/es
Priority to JP2013531804A priority patent/JP5454746B2/ja
Priority to ES13747093T priority patent/ES2768598T3/es
Publication of WO2013118679A1 publication Critical patent/WO2013118679A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/565Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet having excellent bendability and a method for producing the same.
  • This high-strength cold-rolled steel sheet includes those having a film, galvanizing or the like formed on the surface.
  • Non-Patent Document 1 As factors governing the bendability of high-strength steel sheets, it is known that (a) the difficulty of necking and (b) the difficulty of occurrence of cracks (voids) inside the steel sheet are important (for example, Non-Patent Document 1). For example, in a steel sheet having low elongation, necking is likely to occur during bending, and the deformation is localized, so that bending workability deteriorates. In addition, steel made of ferrite and martensite has inferior bendability due to martensite cracking and void formation at the interface. As a result, increasing the strength leads to deterioration of elongation, so the bendability is poor. In addition, since the increase in strength may be accompanied by an increase in the martensite volume fraction, the increase in strength tends to cause deterioration in bendability.
  • Patent Document 1 discloses that the component composition is, by mass%, C: more than 0.02% to 0.20%, Si: 0.01 to 2.0%, Mn: 0.1 to 3.0%, P: 0.003 to 0.10%, S: 0.020% or less, Al: 0.001 to 1.0%, N: 0.0004 to 0.015%, A steel sheet containing Ti: 0.03 to 0.2% and the balance being Fe and impurities has been proposed.
  • the metal structure of this steel sheet contains ferrite in an area ratio of 30 to 95%, and the remaining second phase is composed of one or more of martensite, bainite, pearlite, cementite and retained austenite, and contains martensite.
  • this steel sheet contains Ti carbonitride precipitates having a particle size of 2 to 30 nm with an average interparticle distance of 30 to 300 nm and crystallized TiN particles with a particle size of 3 ⁇ m or more with an average interparticle distance of 50 to 500 ⁇ m. To do. According to such a steel plate, good bendability can be obtained, but since precipitation strengthening is used, it is not easy to ensure a high balance between strength and elongation.
  • Patent Document 2 as a steel sheet having excellent bendability, C: 0.03 to 0.11%, Si: 0.005 to 0.5%, Mn: 2.0 to 4.0 as mass%. %, P: 0.1% or less, S: 0.01% or less, sol. Al: 0.01 to 1.0%, N: 0.01% or less, and further Ti or 0.51% or less and Nb: 0.50% or less of Ti + (Nb / 2)
  • a steel sheet is described that has a composition that contains ⁇ 0.03, the balance being Fe and impurities, and a tensile strength of 540 MPa or more.
  • the average interval in the plate width direction of the Mn concentrated portion expanded in the rolling direction at a t / 20 depth position (t: plate thickness of the steel plate) from the surface is 300 ⁇ m or less, and the area ratio of ferrite is 60 %,
  • the average particle diameter of ferrite is 1.0 to 6.0 ⁇ m, and precipitates with a particle diameter of 1 to 10 nm are contained in ferrite at 100 pieces / ⁇ m 2 or more. According to such a steel plate, good bendability can be obtained, but since the main phase is ferrite and the retained austenite volume fraction is limited to less than 3%, it is applied to a high strength steel plate of 700 MPa or more. Is not easy.
  • Patent Document 3 as a steel sheet having both ductility and bendability, C: 0.08 to 0.25%, Si: 0.7% or less, Mn: 1.0 to 2. 6%, Al: 1.5% or less, P: 0.03% or less, S: 0.02% or less, and N: 0.01% or less, and the relationship between Si and Al is 1.0
  • a steel sheet is described which satisfies% ⁇ Si + Al ⁇ 1.8% and has a component composition comprising the balance Fe and impurities.
  • This steel sheet has TS ⁇ 590 (TS: tensile strength (MPa)), TS ⁇ El ⁇ 17500 (El: total elongation (%)), and ⁇ ⁇ 1.5 ⁇ t ( ⁇ : critical bending radius (mm), t: plate thickness (mm)).
  • TS tensile strength
  • El total elongation
  • 1.5 ⁇ t
  • critical bending radius
  • t plate thickness
  • Patent Document 4 as a steel sheet having good ductility and bendability, C: 0.08 to 0.20%, Si: 1.0% or less, Mn: 1.8 to 3. 0%, P: 0.1% or less, S: 0.01% or less, sol.
  • a steel sheet containing Al: 0.005 to 0.5%, N: 0.01% or less and Ti: 0.02 to 0.2% and having a component composition consisting of the remainder Fe and impurities is described.
  • This steel sheet is, by volume, composed of ferrite: 10% or more, bainite: 20-70%, retained austenite: 3-20%, and martensite: 0-20%, and the average grain size of the ferrite is 10 ⁇ m or less.
  • the bainite has an average particle size of 10 ⁇ m or less
  • the retained austenite has an average particle size of 3 ⁇ m or less
  • the martensite has an average particle size of 3 ⁇ m or less.
  • the steel sheet has a tensile strength (TS) of 780 MPa or more, a product of the tensile strength (TS) and total elongation (El) (TS ⁇ El value) of 14000 MPa ⁇ % or more, and a minimum bending radius in a bending test of 1 It has mechanical properties of 5 t or less (t: plate thickness), and the plate thickness is 2.0 mm or more. According to the technique described in Document 4, it is possible to ensure good ductility and bendability, but it is not easy to achieve both strength and bendability at a high level.
  • Patent Document 5 as a steel sheet having excellent bendability, C: 0.03-0.12%, Si: 0.02-0.50%, Mn: 2.0-4.0%, P: 0.1% or less, S: 0.01% or less, sol. Al: 0.01 to 1.0% and N: 0.01% or less, and Ti: 0.50% or less and Nb: 0.50% or less of Ti + (Nb / 2)
  • a steel sheet containing a composition satisfying ⁇ 0.03 and having the balance of Fe and impurities and having a tensile strength of 540 MPa or more is described.
  • This steel sheet has a structure in which the area ratio of ferrite is 60% or more and the average grain size of ferrite is 1.0 to 6.0 ⁇ m.
  • the alloyed hot-dip galvanized layer contains, by mass%, Fe: 8 to 15% and Al: 0.08 to 0.50%, with the balance being Zn and impurities.
  • the addition amount of C is limited to a low range of 0.12% or less, it can be applied to a steel plate of 780 MPa or less, but it is not easy to apply to a further high strength steel plate. Further, since the area ratio of retained austenite is less than 3%, it is not easy to obtain excellent ductility.
  • Patent Document 6 as a steel sheet having excellent workability, C: 0.03 to 0.17%, Si: 0.01 to 0.75%, Mn: 1.5 to 2.5% in mass% , P: 0.080% or less, S: 0.010% or less, sol.
  • a steel sheet containing Al: 0.01 to 1.20%, Cr: 0.3 to 1.3%, the balance being Fe and inevitable impurities is described.
  • This steel sheet is composed of 30 to 70% ferrite by volume, less than 3% retained austenite, and the remaining martensite, and has a structure in which 20% or more of the martensite is tempered martensite.
  • the volume ratio of retained austenite is limited to less than 3%, it has a problem that it has excellent bendability but low uniform elongation. As a result, also in bending, when a thick plate is bent, there is a concern that cracks due to necking may occur on the surface of the steel plate.
  • Patent Document 7 as a steel sheet excellent in bending workability, in wt%, C: 0.12 to 0.30%, Si: 1.2% or less, Mn: 1 to 3%, P: 0.020 % Or less, S: 0.010% or less, sol.
  • a steel sheet containing Al: 0.01 to 0.06%, the balance being Fe and inevitable impurities is described.
  • This steel sheet has a soft layer of C: 0.1 wt% or less on the surface layer on one side and 3-15 vol% on both sides, and the balance consists of a composite structure of residual austenite with less than 10 vol% and a low-temperature transformation phase or further ferrite. .
  • the decarburization annealing must be performed twice in total after hot rolling and after cold rolling, resulting in poor productivity.
  • the present invention provides a high-strength cold-rolled steel sheet having excellent bendability and a method for producing the same.
  • the gist of the present invention is as follows.
  • the first aspect of the present invention is, in mass%, C: 0.075 to 0.300%, Si: 0.30 to 2.50%, Mn: 1.30 to 3.50%, P : 0.001 to 0.050%, S: 0.0001 to 0.0100%, Al: 0.001 to 1.500%, and N: 0.0001 to 0.0100%, and Ti is 0.00.
  • Nb is limited to 0.150% or less
  • V is limited to 0.150% or less
  • Cr is limited to 2.00% or less
  • Ni is limited to 2.00% or less
  • Cu is limited to 2.00% or less
  • Mo is limited to 1.00% or less
  • W is limited to 1.00% or less
  • at least one of Ca, Ce, Mg, Zr, Hf, and REM The total content of which is limited to 0.5000% or less, and the balance is composed of iron and inevitable impurities.
  • the surface microstructure in the steel sheet surface layer contains 3 to 10% retained austenite and 90% or less ferrite in volume fraction, and the internal microstructure at the t / 4 depth position from the surface where the sheet thickness is t, It contains 3-30% residual austenite in volume fraction, and the ratio Hvs / Hvb between the hardness Hvs of the steel sheet surface layer and the hardness Hvb at the t / 4 depth position is more than 0.75 to 0.90, It is a high-strength cold-rolled steel sheet having a maximum tensile strength of 700 MPa or more.
  • the surface layer microstructure further has a volume fraction of 10 to 87% ferrite, 10 to 50% tempered martensite, and 15%. You may contain the fresh martensite restrict
  • the internal microstructure In the high-strength cold-rolled steel sheet according to the above (1) or (2), the internal microstructure further has a volume fraction of 10 to 87% ferrite and 10 to 50% tempered martensite. And fresh martensite limited to 15% or less.
  • a film containing at least one of a phosphorus oxide and a composite oxide containing phosphorus is formed on at least one side. May be.
  • an electrogalvanized layer may be formed on at least one side.
  • a film containing at least one of a phosphorus oxide and a composite oxide containing phosphorus may be formed on the electrogalvanized layer.
  • a hot-dip galvanized layer may be formed on at least one side.
  • a film containing at least one of a phosphorus oxide and a composite oxide containing phosphorus may be formed on the hot-dip galvanized layer.
  • an alloyed hot-dip galvanized layer may be formed on at least one side.
  • a film containing at least one of phosphorous oxide and phosphorus-containing composite oxide may be formed on the alloyed hot-dip galvanized layer.
  • the second aspect of the present invention is, in mass%, C: 0.075 to 0.300%, Si: 0.30 to 2.50%, Mn: 1.30 to 3.50%, P : 0.001 to 0.050%, S: 0.0001 to 0.0100%, Al: 0.001 to 1.500%, and N: 0.0001 to 0.0100%, and Ti is 0.00.
  • Nb is limited to 0.150% or less
  • V is limited to 0.150% or less
  • Cr is limited to 2.00% or less
  • Ni is limited to 2.00% or less
  • Cu is limited to 2.00% or less
  • Mo is limited to 1.00% or less
  • W is limited to 1.00% or less
  • a method of manufacturing a cold-rolled steel sheet (12) In the cold-rolled steel sheet manufacturing method according to (11) above, a film containing at least one of a phosphorus oxide and a complex oxide containing phosphorus is formed on at least one surface of the high-strength cold-rolled steel sheet. Also good. (13) In the cold rolled steel sheet manufacturing method according to (11) above, an electrogalvanized layer may be formed on at least one surface of the high strength cold rolled steel sheet. (14) In the cold-rolled steel sheet manufacturing method according to (13), a film containing at least one of a phosphorus oxide and a composite oxide containing phosphorus may be formed on the electrogalvanized layer.
  • a hot-dip galvanized layer may be formed on at least one surface of the high-strength cold-rolled steel sheet.
  • the rolled steel sheet may be formed by dipping in a galvanizing bath and cooling in a state of being heated or cooled to a temperature range of (zinc plating bath temperature ⁇ 40) ° C. to (zinc plating bath temperature + 50) ° C.
  • a coating containing at least one of a phosphorus oxide and a composite oxide containing phosphorus may be formed on the hot-dip galvanized layer.
  • an alloyed hot-dip galvanized layer may be formed on at least one surface of the high-strength cold-rolled steel sheet,
  • the high-strength cold-rolled steel sheet is immersed in a galvanizing bath while being heated or cooled to a temperature range of (zinc plating bath temperature ⁇ 40) ° C. to (zinc plating bath temperature +50) ° C. at a temperature of 460 ° C. or higher. You may form by cooling after giving an alloying process.
  • a film including at least one of a phosphorus oxide and a composite oxide containing phosphorus is formed on the alloyed hot-dip galvanized layer. Good.
  • the inventors of the present invention have provided a high-strength cold-rolled steel sheet having a maximum tensile strength of 700 MPa or more that can obtain excellent bendability by preventing cracks in the steel sheet generated in the deformed portion by bending and necking of the steel sheet surface.
  • the present inventors have a predetermined component composition, and after controlling the microstructure to a predetermined structure, the steel plate surface layer can be softened by performing a decarburization process, and the maximum tensile strength is increased. It was clarified that even a high strength cold-rolled steel sheet of 700 MPa or more can obtain excellent bendability as if it were a low-strength steel sheet.
  • the ratio “(surface hardness) / (t / 4 depth position hardness)” of the hardness of the steel sheet surface layer and the hardness at the t / 4 depth position is achieved by setting the ratio “(surface hardness) / (t / 4 depth position hardness)” of the hardness of the steel sheet surface layer and the hardness at the t / 4 depth position to more than 0.75 to 0.90. can get.
  • the microstructure in the surface layer portion of the steel sheet contains 3-10% residual austenite and 90% or less ferrite in volume fraction, and the internal microstructure at the t / 4 depth position of the steel sheet is By containing 3 to 30% of retained austenite as a fraction, cracking due to necking can be suppressed, and further improvement in bendability can be obtained.
  • the steel sheet of the present invention has not only a necking suppression effect during bending but also a necking suppression effect during a tensile test and press working due to the inclusion of retained austenite, and therefore has good elongation.
  • a steel sheet excellent in bendability is a steel sheet having a bending radius R of 1.0 mm or less and causing no cracking or necking in a 90-degree V bending test based on JIS Z 2248 (2006), or It means that the bending radius R is 0.5 mm or less and no cracking occurs.
  • C: 0.075-0.300% C is contained in order to increase the strength of the base steel sheet.
  • the C content is preferably 0.280% or less, and more preferably 0.260% or less.
  • the C content is less than 0.075%, the strength is lowered, and the maximum tensile strength of 700 MPa or more cannot be ensured.
  • the C content is preferably 0.090% or more, and more preferably 0.100% or more.
  • Si: 0.30-2.50% Si is the most important element because it promotes the decarburization reaction and softens the steel sheet surface layer. If the Si content exceeds 2.50%, the base steel sheet becomes brittle and the ductility deteriorates, so the upper limit is made 2.50%. From the viewpoint of ensuring ductility, the Si content is preferably 2.20% or less, and more preferably 2.00% or less. On the other hand, if the Si content is less than 0.30%, a large amount of coarse iron-based carbides are formed, the residual austenite structure fraction of the internal microstructure cannot be made 3 to 30%, and the elongation decreases. End up.
  • the lower limit value of Si is preferably 0.50% or more, and more preferably 0.70% or more.
  • Si is an element necessary for suppressing the coarsening of iron-based carbides in the base steel sheet and increasing the strength and formability.
  • the lower limit value of Si is preferably 1% or more, and more preferably 1.2% or more.
  • Mn: 1.30 to 3.50% Mn is contained to increase the strength of the base steel sheet. However, if the Mn content exceeds 3.50%, a coarse Mn-concentrated portion is generated at the center of the thickness of the base steel sheet, and brittleness is likely to occur, and troubles such as cracking of the cast slab are likely to occur. . Further, when the Mn content exceeds 3.50%, the weldability is also deteriorated. Therefore, the Mn content is 3.50% or less. From the viewpoint of weldability, the Mn content is preferably 3.20% or less, and more preferably 3.00% or less.
  • the Mn content is set to 1.30% or more.
  • the Mn content is preferably 1.50% or more, and more preferably 1.70% or more.
  • P 0.001 to 0.050%
  • P tends to segregate in the central part of the thickness of the base steel sheet, and causes the weld to become brittle. If the P content exceeds 0.050%, the welded portion is significantly embrittled, so the P content is 0.050% or less.
  • the lower limit of the content of P is not particularly defined, the effect of the present invention is exhibited. However, since the content of P is less than 0.001% is accompanied by a significant increase in production cost, 0.001 % Is the lower limit.
  • S 0.0001 to 0.0100% S adversely affects weldability and manufacturability during casting and hot rolling. For this reason, the upper limit of the S content is set to 0.0100% or less. Further, since S is combined with Mn to form coarse MnS to lower the ductility and stretch flangeability, it is preferably 0.0050% or less, and more preferably 0.0025% or less. The lower limit of the content of S is not particularly defined, and the effect of the present invention is exhibited. However, if the content of S is less than 0.0001%, a significant increase in production cost is caused, so 0.0001% Is the lower limit.
  • Al: 0.001-1.500% Al is an important element because it promotes the decarburization reaction and softens the surface layer of the steel sheet.
  • the Al content exceeds 1.500%, weldability deteriorates, so the upper limit of the Al content is 1.500%.
  • the Al content is preferably 1.200% or less, and more preferably 0.900% or less.
  • Al is an element effective as a deoxidizing material, but if the Al content is less than 0.001%, the effect as the deoxidizing material cannot be obtained sufficiently, so the lower limit of the Al content is 0. 0.001% or more. In order to obtain a sufficient deoxidation effect, the Al content is preferably 0.003% or more.
  • N 0.0001 to 0.0100% N forms coarse nitrides and degrades ductility and stretch flangeability, so it is necessary to suppress the addition amount. If the N content exceeds 0.0100%, this tendency becomes remarkable, so the upper limit of the N content is set to 0.0100% or less. N is preferably set to 0.0080% or less because it causes blowholes during welding. The lower limit of the content of N is not particularly defined, and the effect of the present invention is exhibited. However, if the content of N is less than 0.0001%, a significant increase in manufacturing cost is caused, so 0.0001% Is the lower limit.
  • the base steel sheet of the high-strength cold-rolled steel sheet according to the present embodiment is based on a composition containing the above elements, the balance being iron and inevitable impurities, and other components may not be included.
  • the steel sheet may further contain Ti, Nb, V, Cr, Ni, Cu, Mo, W, Ca, Ce, Mg, Zr, Hf, and REM in the following content ranges as necessary. Good.
  • the lower limit of these elements is 0%, in order to acquire a desired effect, it is good also as the lower limit shown below, respectively.
  • the content of unavoidable impurities is permissible as long as the effect of the present invention is not significantly deteriorated, but is preferably reduced as much as possible.
  • Ti 0.005 to 0.150%
  • Ti is an element that contributes to increasing the strength of the base steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization.
  • the Ti content is preferably 0.150% or less.
  • the Ti content is more preferably 0.120% or less, and further preferably 0.100% or less.
  • the lower limit of the Ti content is not particularly defined, and the effects of the present invention are exhibited.
  • the Ti content is preferably 0.005% or more.
  • the Ti content is more preferably 0.010% or more, and further preferably 0.015% or more.
  • Nb 0.005 to 0.150%
  • Nb is an element that contributes to an increase in the strength of the base steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization.
  • the Nb content is preferably 0.150% or less.
  • the Nb content is more preferably 0.120% or less, and further preferably 0.100% or less.
  • the lower limit of the Nb content is not particularly defined, and the effects of the present invention are exhibited.
  • the Nb content is preferably 0.005% or more.
  • the Nb content is more preferably 0.010% or more, and further preferably 0.015% or more.
  • V 0.005-0.150%
  • V is an element that contributes to increasing the strength of the base steel sheet by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and dislocation strengthening by suppressing recrystallization.
  • the V content is preferably 0.150% or less.
  • the lower limit of the content of V is not particularly limited, and the effect of the present invention is exhibited.
  • the content of V is preferably 0.005% or more.
  • Cr: 0.01-2.00% Cr is an element that suppresses phase transformation at high temperature and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the Cr content exceeds 2.00%, hot workability is impaired and productivity is lowered. Therefore, the Cr content is preferably 2.00% or less. Although the lower limit of the Cr content is not particularly defined, the effect of the present invention is exhibited. However, in order to sufficiently obtain the effect of increasing the strength by Cr, the Cr content may be 0.01% or more. preferable.
  • Ni 0.01-2.00%
  • Ni is an element that suppresses phase transformation at high temperature and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the Ni content exceeds 2.00%, weldability is impaired, so the Ni content is preferably 2.00% or less.
  • the lower limit of the Ni content is not particularly defined, and the effects of the present invention are exhibited. However, in order to sufficiently obtain the effect of increasing the strength by Ni, the Ni content should be 0.01% or more. preferable.
  • Cu: 0.01-2.00% is an element that increases the strength by being present in the steel as fine particles, and can be added instead of a part of C and / or Mn. If the Cu content exceeds 2.00%, weldability is impaired, so the Cu content is preferably 2.00% or less. The lower limit of the Cu content is not particularly defined, and the effect of the present invention is exhibited. However, in order to sufficiently obtain the effect of increasing the strength by Cu, the Cu content should be 0.01% or more. preferable.
  • Mo 0.01-1.00%
  • Mo is an element that suppresses phase transformation at high temperatures and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the Mo content exceeds 1.00%, hot workability is impaired and productivity is lowered. For this reason, the Mo content is preferably 1.00% or less.
  • the lower limit of the content of Mo is not particularly defined, and the effect of the present invention is exhibited. However, in order to sufficiently obtain the effect of increasing the strength by Mo, the content of Mo is 0.01% or more. preferable.
  • W 0.01-1.00%
  • W is an element that suppresses phase transformation at high temperatures and is effective for increasing the strength, and may be added instead of a part of C and / or Mn. If the W content exceeds 1.00%, hot workability is impaired and productivity is lowered. Therefore, the W content is preferably 1.00% or less.
  • the lower limit of the W content is not particularly defined, and the effects of the present invention are exhibited. However, in order to sufficiently obtain the effect of increasing the strength by W, the W content may be 0.01% or more. preferable.
  • a total of 0.0001 to 0.5000% of at least one of Ca, Ce, Mg, Zr, Hf, and REM Ca, Ce, Mg, Zr, Hf, and REM are effective elements for improving formability, and one or more of them can be added. However, if the total content of at least one of Ca, Ce, Mg, Zr, Hf, and REM exceeds 0.5000%, the ductility may be impaired. For this reason, the total content of each element is preferably 0.5000% or less.
  • the lower limit of the content of at least one of Ca, Ce, Mg, Zr, Hf, and REM is not particularly defined, and the effect of the present invention is exhibited. However, the effect of improving the formability of the base steel sheet is sufficiently obtained.
  • the total content of each element is preferably 0.0001% or more. From the viewpoint of moldability, the total content of one or more of Ca, Ce, Mg, Zr, Hf, and REM is more preferably 0.0005% or more, and 0.0010% or more. Is more preferable.
  • REM is an abbreviation for Rare Earth Metal and refers to an element belonging to the lanthanoid series. REM and Ce are often added by misch metal, and may contain a lanthanoid series element in combination with La and Ce. Even if these lanthanoid series elements other than La and Ce are included as inevitable impurities, the effect of the present invention is exhibited. Even if the metal La or Ce is added, the effect of the present invention is exhibited.
  • the internal microstructure means a microstructure at a t / 4 depth position, where t is the thickness of the base steel plate.
  • the surface layer microstructure described later means a microstructure on the surface of the base steel plate, strictly speaking, in a plane parallel to the plate surface of the base steel plate and 20 ⁇ m deep from the surface.
  • the internal microstructure of the steel sheet contains 3-30% residual austenite by volume fraction in the range of t / 8 to 3t / 8 depth centered on the t / 4 depth position. Residual austenite is effective in suppressing necking that occurs during bending by greatly improving ductility. On the other hand, retained austenite becomes a starting point of fracture and deteriorates bendability. For this reason, it is preferable that the retained austenite contained in the microstructure of the base steel sheet is 3 to 20% in terms of volume fraction.
  • the lower limit of retained austenite in the internal microstructure is preferably 5% or 8% or more.
  • the structural fraction of retained austenite in the surface layer portion of the steel sheet is limited to 3 to 10%, and the structural fraction of ferrite is limited to 90% or less. If the retained austenite fraction in the surface layer is less than 3%, for example, in the 90-degree V bending test, if the bending radius is 1.0 mm or less, necking occurs in the surface layer portion and the bendability deteriorates. For this reason, it is necessary to make the retained austenite fraction of the steel sheet surface layer 3% or more.
  • the retained austenite fraction of the surface layer portion is set to 10% or less, preferably 8% or less, more preferably 5.8% or less.
  • the hardness ratio between the steel sheet surface layer and the steel sheet interior (t / 4 depth position) described later is more than 0.75 to 0 .90 or less, and excellent bendability can be achieved. If the ferrite fraction of the surface microstructure exceeds 90%, it becomes difficult to secure a predetermined retained austenite microstructure fraction, and excellent bendability cannot be secured. And
  • the surface microstructure and the internal microstructure of the high-strength cold-rolled steel sheet according to this embodiment may each include one or more of tempered martensite, ferrite, pearlite, and cementite in addition to the residual austenite. If it is the range demonstrated below, the objective of this invention can be achieved.
  • the volume fraction is 10 to 87 in the range of t / 8 to 3t / 8 with the t / 4 depth position as the center.
  • Tempered martensite greatly improves the tensile strength. For this reason, tempered martensite may be contained in the structure of the base steel sheet in a volume fraction of 50% or less. Tempered martensite is martensite in which iron-based carbides such as ⁇ , ⁇ , and ⁇ are precipitated by holding martensite at 200 to 500 ° C, and causes cracking compared to fresh martensite. It ’s hard to be. From the viewpoint of tensile strength, the volume fraction of tempered martensite is preferably 1% or more, and more preferably 10% or more. On the other hand, if the volume fraction of tempered martensite contained in the microstructure of the base steel plate exceeds 50%, it is not preferable because the yield stress is excessively increased and the shape freezeability is deteriorated.
  • Ferrite 10-87% Ferrite is effective in improving ductility. For this reason, the ferrite may be contained in the structure of the base steel sheet in a volume fraction of 10% or more. Moreover, since ferrite is a soft structure, the upper limit may be 87% in volume fraction in order to ensure sufficient strength.
  • Total of bainitic ferrite and bainite 10-50%
  • Bainitic ferrite and bainite are structures with an excellent balance between strength and ductility, and are structures having intermediate strengths between soft ferrite and hard martensite, tempered martensite, and retained austenite. It also contributes to improving the balance of sex. Therefore, the total volume may include 10 to 50%.
  • the volume fraction of pearlite contained in the base steel sheet structure is preferably 5% or less, more preferably 3% or less.
  • the volume fraction of coarse cementite contained in the base steel sheet structure is preferably 10% or less, and more preferably 5% or less.
  • Coarse cementite means cementite having a nominal particle size of 2 ⁇ m or more. Cementite is fragile compared to iron, and the interfacial strength between iron and cementite is also small. Therefore, it becomes a starting point of crack formation and void formation during bending, and deteriorates bendability. For this reason, it is necessary to reduce the volume ratio of coarse cementite.
  • fine iron-based carbides contained in the bainite structure or tempered martensite may be contained because the bendability is not deteriorated.
  • the volume fraction of each tissue as described above can be measured by the following method, for example.
  • the volume fraction of retained austenite is calculated by performing X-ray diffraction using the plane parallel to the plate surface of the base steel sheet and the t / 4 depth position as the observation plane, and calculating the area fraction. Can be considered.
  • the volume fractions of ferrite, pearlite, bainite, cementite, tempered martensite and fresh martensite were collected by taking a sample with the thickness cross section parallel to the rolling direction of the base steel sheet as the observation surface, and polishing the observation surface.
  • the volume fraction of retained austenite in the surface layer is calculated by performing X-ray diffraction using a plane parallel to the plate surface of the base steel sheet and a depth of 20 ⁇ m from the surface as the observation plane, and calculating the area fraction. It can be regarded as a fraction.
  • the volume fractions of ferrite, pearlite, bainite, cementite, tempered martensite and fresh martensite were collected by taking a sample with the thickness cross section parallel to the rolling direction of the base steel sheet as the observation surface, and polishing the observation surface.
  • the area fraction is measured by observing with a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope), and can be regarded as the volume fraction.
  • the present inventors have found that excellent bendability can be obtained by applying a decarburizing treatment to a steel sheet having the above component composition and structure to soften the steel sheet surface layer. That is, when the ratio “Hvs / Hvb” of the hardness Hvs of the surface layer of the steel sheet to the hardness Hvb at the t / 4 depth position of the base steel sheet is more than 0.75 to 0.90, excellent bendability is obtained. It is done.
  • the reason why the hardness ratio exceeds 0.75 is that if the hardness ratio is 0.75 or less, the steel sheet is too soft and it is difficult to ensure a maximum tensile strength of 700 MPa or more. Preferably it is 0.8 or more.
  • it exceeds 0.90 since it contains a large amount of retained austenite, it is possible to suppress necking at the time of bending deformation, but micro cracks may occur and the bendability is poor.
  • the “hardness” used here is the hardness of 10 points each at a load of 10 g indentation using a Vickers hardness tester at the position of t / 4 in the sheet thickness section parallel to the rolling direction of the steel sheet surface layer and the steel sheet. The average value is taken as the hardness of each.
  • the present inventors investigated the relationship between bendability and steel sheet properties as a preliminary test, and found that the average was within the range of t / 8 to 3t / 8 depth positions.
  • the hardness does not depend on the position, and the steel sheet structure differs at the center of the plate thickness (t / 2 depth position) due to Mn center segregation.
  • the average hardness is between t / 8 and 3t / 8 depth positions. I also found it different. From this, the hardness at the t / 4 depth position that can represent the hardness of the steel plate base material is defined as the hardness (Hvb) of the base material.
  • the hardness of the steel sheet surface layer decreases and the softened area expands in the sheet thickness direction. It was found that the thickness and the degree of softening of the softened layer can be represented by measuring the hardness at a certain depth position. From this, the hardness at the position of 20 ⁇ m from the surface of the steel sheet is measured, and if it is a plated steel sheet, the hardness at the position of 20 ⁇ m from the plating layer / base metal interface is measured to obtain the hardness (Hvs) of the steel sheet surface layer.
  • the measurement position was set to 20 ⁇ m from the surface for the following reason.
  • the steel sheet hardness was Hv 100 to 400
  • the indentation size was about 8 to 13 ⁇ m, and when the measurement position was too close to the steel sheet surface, accurate hardness measurement was difficult.
  • the measurement position was set to a position of 20 ⁇ m from the surface. In measuring the hardness of the steel sheet surface layer, in order to prevent sagging of the surface of the steel sheet during polishing, it is preferable to perform polishing and hardness measurement after applying a plate to the steel sheet and embedding resin.
  • the high-strength cold-rolled steel sheet of the present invention may be any of a cold-rolled steel sheet, a hot-dip galvanized steel sheet, an alloyed hot-dip galvanized steel sheet, and an electrogalvanized steel sheet as long as the hardness of the steel sheet surface layer satisfies the above range.
  • the galvanized layer is not particularly limited.
  • an alloyed galvanized layer containing less than 7% by mass of Fe and the balance consisting of Zn, Al and unavoidable impurities is used.
  • a material containing 7 to 15% by mass of Fe and the balance of Zn, Al and inevitable impurities can be used. Also.
  • the galvanized layer contains at least one of Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Li, Ti, Be, Bi, Sr, I, Cs, and REM, or It may be mixed. Even if the alloyed galvanized layer contains or mixes at least one of the above-mentioned elements, the effects of the present invention are not impaired, and depending on the content, the corrosion resistance and workability are preferably improved. There is also.
  • the high-strength cold-rolled steel sheet of the present invention has a film containing at least one of a phosphorus oxide and a complex oxide containing phosphorus on the surface of the cold-rolled steel sheet or the surface of the galvanized steel sheet. May be.
  • the film containing at least one of phosphorus oxide and phosphorus-containing composite oxide can function as a lubricant when processing the steel sheet, and can protect the surface of the steel sheet and the alloyed galvanized layer.
  • Step plate manufacturing method Next, a method for producing the above-described high-strength cold-rolled steel sheet will be described in detail.
  • a slab having the above-described component composition is cast.
  • a slab produced by a continuous casting slab, a thin slab caster or the like can be used.
  • a process such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting may be used.
  • the slab heating temperature is to secure a finish rolling temperature equal to or higher than the Ar3 transformation point, and the decrease in the slab heating temperature leads to an excessive increase in rolling load, making rolling difficult. Since there is a concern of causing a shape defect of the base steel plate after rolling, it is necessary to set the temperature to 1050 ° C. or higher.
  • the upper limit of the slab heating temperature is not particularly defined, and the effect of the present invention is exhibited. However, since it is not economically preferable to make the heating temperature excessively high, the upper limit of the slab heating temperature is 1350 ° C. or less. It is desirable.
  • Hot rolling needs to be completed at a finish rolling temperature not lower than the Ar3 transformation point temperature. If the finish rolling temperature is lower than the Ar3 transformation point, it becomes a two-phase rolling of ferrite and austenite, and the hot-rolled sheet structure becomes a heterogeneous mixed grain structure, even if it undergoes a cold rolling process and a continuous annealing process. Is not eliminated, and the steel sheet is inferior in ductility and bendability.
  • the upper limit of the finish rolling temperature is not particularly defined, and the effect of the present invention is exhibited. However, when the finish rolling temperature is excessively high, the slab heating temperature must be excessively high in order to secure the temperature. I must. For this reason, the upper limit temperature of the finish rolling temperature is desirably 1100 ° C. or lower.
  • Ar3 901-325 ⁇ C + 33 ⁇ Si-92 ⁇ (Mn + Ni / 2 + Cr / 2 + Cu / 2 + Mo / 2) + 52 ⁇ Al
  • the hot rolling coiling temperature is set to 750 ° C. or lower in order to prevent the thickness of the oxide formed on the surface of the hot-rolled steel sheet from increasing excessively and deteriorating the pickling property.
  • the winding temperature is preferably 720 ° C. or lower, and more preferably 700 ° C. or lower.
  • the coiling temperature is preferably 400 ° C. or higher.
  • the winding temperature is preferably 420 ° C. or higher.
  • pickling removes oxides on the surface of the hot-rolled steel sheet, and is therefore important for improving the plateability of the base steel sheet. Moreover, pickling may be performed once or may be performed in a plurality of times.
  • the hot-rolled steel sheet after pickling is cold-rolled for the purpose of plate thickness adjustment and shape correction.
  • the rolling reduction is preferably in the range of 30 to 80%. If the rolling reduction is less than 30%, it is difficult to keep the shape flat, and the ductility of the final product may be deteriorated.
  • the rolling reduction in cold rolling is preferably 35% or more, and more preferably 40% or more. On the other hand, when the rolling reduction ratio exceeds 80%, the cold rolling load becomes too large and cold rolling becomes difficult. Therefore, the rolling reduction is preferably 80% or less.
  • the effect of the present invention is exhibited without particularly defining the number of rolling passes and the rolling reduction for each rolling pass.
  • the obtained cold-rolled steel sheet is passed through an annealing line and annealed in a temperature range of (Ac1 transformation point + 40) ° C. to (Ac3 transformation point + 50) ° C.
  • the decarburization treatment means that the atmosphere in the furnace during annealing is in the following range to diffuse C contained in the steel sheet surface layer into the atmosphere, lower the C concentration of the steel sheet surface layer, and reduce the fraction of hard structure It is a process to reduce.
  • decarburization is performed by setting the atmosphere in the furnace during annealing to a log (water pressure / hydrogen partial pressure) in the range of ⁇ 3.0 to 0.0.
  • a log water pressure / hydrogen partial pressure
  • the logarithm of the ratio of the moisture pressure of the atmospheric gas to the hydrogen partial pressure is -3.0 to 0.0.
  • decarburization from the surface layer of the cold-rolled steel sheet by annealing can be appropriately promoted.
  • the logarithm of the ratio of the moisture pressure and the hydrogen partial pressure is less than ⁇ 3.0, decarburization from the surface layer of the cold-rolled steel sheet by annealing is insufficient.
  • the logarithm of the ratio of moisture pressure to hydrogen partial pressure is preferably ⁇ 2.5 or more.
  • the logarithm of the ratio between the moisture pressure and the hydrogen partial pressure is more than 0.0, decarburization from the surface layer of the cold-rolled steel sheet by annealing is excessively promoted, and the strength of the steel sheet may be insufficient.
  • the logarithm of the ratio between the moisture pressure and the hydrogen partial pressure is preferably ⁇ 0.3 or less.
  • the atmosphere at the time of annealing contains nitrogen, water vapor
  • the temperature range during annealing is (Ac1 transformation point + 40) ° C. to (Ac3 transformation point + 50) ° C. because austenite is formed during annealing, and this austenite is martensite, bainite or retained austenite. This is to increase the strength of the steel sheet.
  • the annealing temperature is less than (Ac1 transformation point + 40) ° C., the volume fraction of austenite formed during annealing is small, and it is difficult to ensure a strength of 700 MPa or more. For this reason, the lower limit of the annealing temperature is set to (Ac1 transformation point + 40) ° C.
  • the annealing temperature is set to (Ac3 transformation point +50) ° C. or lower. It is desirable. However, although it is an effect excluding economical efficiency, excellent bendability can be obtained.
  • Ac1 and Ac3 transformation points are calculated by the following formula using the content (mass%) of each element.
  • Ac1 723-10.7 ⁇ Mn ⁇ 16.9 ⁇ Ni + 29.1 ⁇ Si + 16.9 ⁇ Cr + 6.38 ⁇ W
  • Ac3 910 ⁇ 203 ⁇ (C) 0.5 ⁇ 15.2 ⁇ Ni + 44.7 ⁇ Si + 104 ⁇ V + 31.5 ⁇ Mo-30 ⁇ Mn-11 ⁇ Cr ⁇ 20 ⁇ Cu + 700 ⁇ P + 400 ⁇ Al + 400 ⁇ Ti
  • the residence time in the above-described annealing temperature and atmosphere is 20 seconds to 600 seconds. If the residence time is less than 20 seconds, the hard tissue fraction becomes too small and it is difficult to ensure a high strength of 700 MPa or more. That is, austenite is formed by dissolution of carbides, but it takes some time for dissolution. When annealing is performed for less than 20 seconds, a sufficient amount of austenite cannot be secured due to insufficient time for the carbide to dissolve. As a result, it is difficult to ensure a strength of 700 MPa or more. Therefore, the lower limit of the annealing temperature time was set to 20 seconds. On the other hand, staying longer than 600 seconds is not preferable because not only the effect is saturated but also productivity is deteriorated. For this reason, the upper limit of the annealing temperature was set to 600 seconds.
  • the average cooling rate in the temperature range of 700 ° C. to 500 ° C. is set to 0.5 ° C./second or more and 500 ° C./second or less, and the cooling is stopped in the temperature range of 100 to 330 ° C.
  • the average cooling rate in the above temperature range is less than 0.5 ° C./second, the residence time in this temperature range is long, and a large amount of ferrite and pearlite is generated. For this reason, it becomes difficult to ensure the strength of 700 MPa or more.
  • a cooling rate exceeding 500 ° C./second not only an excessive facility investment is required, but there is a concern that the temperature variation in the plate increases.
  • the cooling stop temperature is set to 330 ° C. or lower, preferably 300 ° C. or lower, more preferably 250 ° C. or lower. Thereby, martensite is formed at the time of cooling, and the intensity
  • the variation in the cooling stop temperature and the variation in the material will be increased.
  • the lower limit of the cooling stop temperature is preferably set to 100 ° C. or higher.
  • the temperature is desirably 130 ° C. or higher, and more desirably 160 ° C. or higher.
  • temper martensite formed during cooling or promote bainite transformation to achieve both high strength and bendability.
  • Tempering is a treatment for precipitating iron carbide or recovering dislocations by holding martensite in a temperature range of 350 to 500 ° C. By performing tempering, the characteristics of martensite can be greatly improved, and the bendability can be greatly improved.
  • the reason why the holding time is set to 10 to 1000 seconds is to cause precipitation of a sufficient amount of carbide and recovery of dislocations. If the holding time is less than 10 seconds, the tempering effect that is the effect of the present invention cannot be obtained. On the other hand, the reason for setting it to 1000 seconds or less is not preferable because excessive retention reduces productivity. In addition, bainite transformation may occur during holding, which often contributes to stabilization of retained austenite.
  • the holding said by this invention means that a steel plate stays for said time in said temperature range. Therefore, it does not mean only the case where it is kept isothermal in this temperature range, but includes gradual heating and gradual cooling in this temperature range.
  • Plating is performed by heating to °C or cooling and immersing in hot dip galvanizing bath.
  • the plating bath immersion plate temperature is preferably in a temperature range from a temperature 40 ° C. lower than the hot dip galvanizing bath temperature to a temperature 50 ° C. higher than the hot dip galvanizing bath temperature.
  • the bath immersion plate temperature is lower than (hot dip galvanizing bath temperature -40) ° C, the heat removal at the time of immersion in the plating bath is large, and some of the molten zinc may solidify and deteriorate the plating appearance.
  • the lower limit is (hot dip galvanizing bath temperature ⁇ 40) ° C.
  • the plate temperature before immersion is lower than (hot dip galvanizing bath temperature ⁇ 40) ° C.
  • reheating is performed before immersion in the plating bath and the plate temperature is set to (hot dip galvanizing bath temperature ⁇ 40) ° C. or higher. It may be immersed in.
  • the plating bath immersion temperature exceeds (hot dip galvanizing bath temperature + 50) ° C., operational problems accompanying the rise of the plating bath temperature are induced.
  • the plating bath may contain Mg, Mn, Si, Cr, etc. in addition to pure zinc and Fe, Al.
  • alloying the plating layer when alloying the plating layer, it is performed at 460 ° C. or higher.
  • the alloying treatment temperature is less than 460 ° C., the progress of alloying is slow and the productivity is poor. If it exceeds 600 ° C., carbide precipitates in the austenite and austenite is decomposed, so that it is difficult to ensure a strength of 700 MPa or more and good bendability, so this is the upper limit.
  • the galvanization of the surface of the cold rolled steel sheet is not limited to the one performed by hot dip galvanization described above, and may be performed by electroplating. In that case, it may be carried out according to a conventional method.
  • a film containing at least one of phosphorus oxide and complex oxide containing phosphorus is applied to the surface of the cold-rolled steel sheet of the present invention or the surface of the plated layer of the galvanized steel sheet. It doesn't matter.
  • skin pass rolling can be performed after the above-described annealing.
  • the rolling reduction is preferably in the range of 0.1 to 1.5%. If it is less than 0.1%, the effect is small and control is difficult, so this is the lower limit. Since productivity will fall remarkably when it exceeds 1.5%, this is made an upper limit.
  • the skin pass may be performed inline or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps.
  • Plating bath temperature 50 ⁇ 2 ° C., current density: 60 A / dm 2 , plating solution flow rate: 1 m / sec.
  • the evaluation of bendability is based on JIS Z 2248 (2006).
  • the obtained steel sheet was cut out in a direction perpendicular to the rolling direction, the end face was mechanically ground, and a 35 mm ⁇ 100 mm test piece was prepared.
  • the 90-degree V bending test was performed using a 90 ° die and punch with R of 0.5 to 6 mm.
  • the surface of the sample after the bending test was observed with a magnifying glass, and the minimum bending radius without cracks was defined as the critical bending radius.
  • a steel plate having a limit bending radius of 1 mm or less and no necking or a steel plate having a limit bending radius of 0.5 mm or less was defined as a steel plate having excellent bendability.
  • the column of the steel sheet type indicates the form of the steel sheet, and indicates CR: cold-rolled steel sheet, GI: hot-dip galvanized steel sheet, GA: hot-dip galvanized steel sheet, and EG: electrogalvanized steel sheet.
  • + P was added to the steel sheet on which the phosphorous oxide-based inorganic film was formed.
  • Those satisfying the conditions of the present invention have both a maximum tensile strength of 700 MPa or more and good bendability.
  • the balance (TS ⁇ El) between the strength (TS) and the total elongation (El) was also as good as 18000 (MPa ⁇ %) or more.
  • the present invention provides a high-strength cold-rolled steel sheet excellent in bendability having a maximum tensile strength of 700 MPa or more suitable for automobile structural members, reinforcing members, and suspension members at low cost. It can be expected to make a significant contribution to the weight reduction, and the industrial effect is extremely high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

 この高強度冷延鋼板は、質量%で、C:0.075~0.300%、Si:0.30~2.50%、Mn:1.30~3.50%、P:0.001~0.050%、S:0.0001~0.0100%、Al:0.001~1.500%、及び N:0.0001~0.0100%を含有する成分組成を有し、表層ミクロ組織が、体積分率で、3~10%の残留オーステナイト及び90%以下のフェライトを含有し、板厚をtとして前記表面からt/4深さ位置における内部ミクロ組織が、体積分率で3~20%の残留オーステナイトを含有し、鋼板表層の硬度Hvsと鋼板の1/4厚の硬度Hvbとの比Hvs/Hvbが0.75超~0.90であり、引張最大強度が700MPa以上である。

Description

高強度冷延鋼板及びその製造方法
 本発明は、曲げ性に優れた高強度冷延鋼板及びその製造方法に関する。この高強度冷延鋼板は、皮膜や亜鉛めっき等が表面に形成されたものを含む。 本願は、2012年2月8日に、日本に出願された特願2012-025268号に基づき優先権を主張し、その内容をここに援用する。
 近年、自動車などに用いられるめっき鋼板の高強度化に対する要求が高まってきている。この要求に応じるため、引張最大応力700MPa以上の高強度鋼板が用いられるようになってきている。このような高強度鋼板を用いて自動車の車両や部材を形成する方法としては、プレス加工などの曲げ加工が挙げられる。通常、曲げ性は、鋼板の強度を高くするほど悪くなる。このため、高強度鋼板に曲げ加工を行うと、変形部の鋼板内部に亀裂(クラック)が発生したり、鋼板表面でネッキングが発生したりという問題があった。
 高強度鋼板の曲げ性を支配する因子としては、(a)ネッキングの起こり難さ、(b)鋼板内部での割れ(ボイド)の発生し難さ、が重要であることが知られている(例えば、非特許文献1)。例えば、伸びが低い鋼板では、曲げ加工中にネッキングが起こりやすく、変形が局在化することで、曲げ加工性が劣化する。また、フェライト及びマルテンサイトよりなる鋼では、マルテンサイトの割れや界面でのボイド形成が原因で、曲げ性が劣位である。この結果、高強度化は伸びの劣化を齎すので曲げ性が悪い。加えて、高強度化は、マルテンサイト体積分率の増加を伴う場合があるので、高強度化は曲げ性の劣化を引き起こしやすい。
 鋼板の曲げ性を向上させる技術として、特許文献1には、成分組成が、質量%で、C:0.02%超~0.20%、Si:0.01~2.0%、Mn:0.1~3.0%、P:0.003~0.10%、S:0.020%以下、Al:0.001~1.0%、N:0.0004~0.015%、Ti:0.03~0.2%を含有し、残部がFeおよび不純物である鋼板が提案されている。この鋼板の金属組織は、フェライトを面積率で30~95%含有し、残部の第2相がマルテンサイト、ベイナイト、パーライト、セメンタイトおよび残留オーステナイトのうちの1種以上からなり、かつマルテンサイトを含有するときのマルテンサイトの面積率は0~50%である。また、この鋼板は、粒径2~30nmのTi系炭窒化析出物を平均粒子間距離30~300nmで含有し、かつ粒径3μm以上の晶出系TiNを平均粒子間距離50~500μmで含有する。
 このような鋼板によれば、良好な曲げ性を得ることが出来るが、析出強化を利用しているため、強度と伸びとのバランスを高レベルで確保することは容易ではない。
 また、特許文献2には、曲げ性に優れる鋼板として、質量%で、C:0.03~0.11%、Si:0.005~0.5%、Mn:2.0~4.0%、P:0.1%以下、S:0.01%以下、sol.Al:0.01~1.0%、N:0.01%以下を含有し、さらに、Ti:0.50%以下およびNb:0.50%以下の1種または2種をTi+(Nb/2)≧0.03を満足する範囲で含有し、残部がFeおよび不純物である成分組成を有し、引張強度が540MPa以上である鋼板が記載されている。この鋼板では、表面からt/20深さ位置(t:鋼板の板厚)における圧延方向に展伸したMn濃化部の板幅方向の平均間隔が300μm以下であり、フェライトの面積率が60%以上であり、フェライトの平均粒径が1.0~6.0μmであり、フェライト中に粒径1~10nmの析出物を100個/μm以上含有する。このような鋼板によれば、良好な曲げ性を得ることが出来るが、主相をフェライトとし、残留オーステナイト体積分率を3%未満と制限しているため、700MPa以上の高強度鋼板への適用は容易ではない。
 また、特許文献3には、延性と曲げ性を両立させた鋼板として、質量%で、C:0.08~0.25%、Si:0.7%以下、Mn:1.0~2.6%、Al:1.5%以下、P:0.03%以下、S:0.02%以下およびN:0.01%以下を含有し、かつ、SiとAlとの関係が1.0%≦Si+Al≦1.8%を満足し、残部Feおよび不純物からなる成分組成を有する鋼板が記載されている。この鋼板は、TS≧590(TS:引張強度(MPa))、TS×El≧17500(El:全伸び(%))、およびρ≦1.5×t(ρ:限界曲げ半径(mm)、t:板厚(mm))を満たす機械特性を有する。しかしながら、高レベルで延性と曲げ性とを両立させることは容易ではなく、また、900MPa以上の高強度鋼板への適用も容易ではなかった。
 特許文献4には、良好な延性と曲げ性とを具備する鋼板として、質量%で、C:0.08~0.20%、Si:1.0%以下、Mn:1.8~3.0%、P:0.1%以下、S:0.01%以下、sol.Al:0.005~0.5%、N:0.01%以下およびTi:0.02~0.2%を含有し、残部Feおよび不純物からなる成分組成を有する鋼板が記載されている。この鋼板は、体積%で、フェライト:10%以上、ベイナイト:20~70%、残留オーステナイト:3~20%およびマルテンサイト:0~20%からなるとともに、前記フェライトの平均粒径が10μm以下、前記ベイナイトの平均粒径が10μm以下、前記残留オーステナイトの平均粒径が3μm以下および前記マルテンサイトの平均粒径が3μm以下である組織を有する。また、この鋼板は、引張強度(TS)が780MPa以上、引張強度(TS)と全伸び(El)との積(TS×El値)が14000MPa・%以上、かつ曲げ試験における最小曲げ半径が1.5t以下(t:板厚)である機械特性を有し、板厚が2.0mm以上である。この文献4に記載の技術によれば、良好な延性と曲げ性とを確保することが出来るが、高レベルで強度と曲げ性との両立を図ることは容易ではない。
 特許文献5には、曲げ性に優れる鋼板として、質量%で、C:0.03~0.12%、Si:0.02~0.50%、Mn:2.0~4.0%、P:0.1%以下、S:0.01%以下、sol.Al:0.01~1.0%およびN:0.01%以下を含有し、さらに、Ti:0.50%以下およびNb:0.50%以下の1種または2種をTi+(Nb/2)≧0.03を満足する範囲で含有し、残部がFeおよび不純物からなる成分組成を有する、引張強度が540MPa以上の鋼板が記載されている。この鋼板は、フェライトの面積率が60%以上であり、フェライトの平均粒径が1.0~6.0μmである組織を有する。また、合金化溶融亜鉛めっき層は、質量%で、Fe:8~15%およびAl:0.08~0.50%を含有し、残部がZnおよび不純物からなる。しかしながら、Cの添加量を0.12%以下と低い範囲に限定しているため、780MPa以下の鋼板には適用できるものの、更なる高強度鋼板への適用は容易ではない。また、残留オーステナイトの面積率を3%未満としているため、優れた延性を得ることも容易ではない。
 特許文献6には、加工性に優れた鋼板として、質量%で、C:0.03~0.17%、Si:0.01~0.75%、Mn:1.5~2.5%、P:0.080%以下、S:0.010%以下、sol.Al:0.01~1.20%、Cr:0.3~1.3%を含有し、残部がFeおよび不可避不純物からなる鋼板が記載されている。この鋼板は、体積率で30~70%のフェライト、3%未満の残留オーステナイト、および残部のマルテンサイトからなり、マルテンサイトのうちの20%以上が焼戻しマルテンサイトである組織を有する。しかしながら、残留オーステナイトの体積率を3%未満と制限しているため、曲げ性に優れるものの均一伸びが低いという課題を有していた。その結果、曲げ加工においても、厚い板を曲げ加工する場合、鋼板表面にネッキングに起因した割れが生じる懸念がある。
 特許文献7には、曲げ加工性に優れた鋼板として、wt%で、C:0.12~0.30%、Si:1.2%以下、Mn:1~3%、P:0.020%以下、S:0.010%以下、sol.Al:0.01~0.06%を含有し、残部がFeおよび不可避不純物よりなる鋼板が記載されている。この鋼板は、表層部にC:0.1wt%以下の軟質層を片面で3~15vol%両面に有し、残部が10vol%未満の残留オーステナイトと低温変態相あるいはさらにフェライトとの複合組織からなる。しかしながら、鋼板表層の軟質層を形成するために、熱間圧延後と冷間圧延後に合計2回の脱炭焼鈍を行わねばならず製造性に劣るという課題を有していた。
日本国特開2007-16319号公報 日本国特開2009-215616号公報 日本国特開2009-270126号公報 日本国特開2010-59452号公報 日本国特開2010-65269号公報 日本国特開2010-70843号公報 日本国特開平5-195149号公報
長谷川ら:CAMP-ISIJ Vol.20(2007)p437
 以上のように、従来の技術では、特に高強度冷延鋼板に曲げ加工を行った場合に、十分な曲げ性が得られないため、より一層曲げ性を向上させることが要求されている。このような現状に鑑み、本発明は、優れた曲げ性を有する高強度冷延鋼板およびその製造方法を提供する。
 本発明の要旨は以下の通りである。
(1)本発明の第一の態様は、質量%で、C:0.075~0.300%、Si:0.30~2.50%、Mn:1.30~3.50%、P:0.001~0.050%、S:0.0001~0.0100%、Al:0.001~1.500%、及びN:0.0001~0.0100%であり、Tiが0.150%以下に制限され、Nbが0.150%以下に制限され、Vが0.150%以下に制限され、Crが2.00%以下に制限され、Niが2.00%以下に制限され、Cuが2.00%以下に制限され、Moが1.00%以下に制限され、Wが1.00%以下に制限され、Ca、Ce、Mg、Zr、Hf、及びREMの少なくとも1種の合計が0.5000%以下に制限され、残部が鉄および不可避的不純物からなる成分組成を有し、鋼板表層における表層ミクロ組織が、体積分率で、3~10%の残留オーステナイト及び90%以下のフェライトを含有し、板厚をtとして前記表面からt/4深さ位置における内部ミクロ組織が、体積分率で3~30%の残留オーステナイトを含有し、前記鋼板表層の硬度Hvsと前記t/4深さ位置における硬度Hvbとの比Hvs/Hvbが0.75超~0.90であり、引張最大強度が700MPa以上である高強度冷延鋼板である。
(2)上記(1)に記載の高強度冷延鋼板では、前記表層ミクロ組織が、さらに、体積分率で、10~87%のフェライト、10~50%の焼き戻しマルテンサイト、及び15%以下に制限されたフレッシュマルテンサイトを含有してもよい。
(3)上記(1)又は(2)に記載の高強度冷延鋼板では、前記内部ミクロ組織が、更に、体積分率で、10~87%のフェライト、10~50%の焼き戻しマルテンサイト、及び15%以下に制限されたフレッシュマルテンサイトを含有してもよい。
(4)上記(1)~(3)のいずれか一項に記載の高強度冷延鋼板では、少なくとも片面に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜が形成されてもよい。
(5)上記(1)~(3)のいずれか一項に記載の高強度冷延鋼板では、少なくとも片面に、電気亜鉛めっき層が形成されてもよい。
(6)上記(5)に記載の高強度冷延鋼板では、前記電気亜鉛めっき層の上に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜が形成されてもよい。
(7)上記(1)~(3)のいずれか一項に記載の高強度冷延鋼板では、少なくとも片面に、溶融亜鉛めっき層が形成されてもよい。
(8)上記(7)に記載の高強度冷延鋼板では、前記溶融亜鉛めっき層の上に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜が形成されてもよい。
(9)上記(1)~(3)のいずれか一項に記載の高強度冷延鋼板では、少なくとも片面に、合金化溶融亜鉛めっき層が形成されてもよい。
(10)上記(9)に記載の高強度冷延鋼板では、前記合金化溶融亜鉛めっき層の上に、リン酸化物およびリン含む複合酸化物の少なくとも1種を含む皮膜が形成されてもよい。
(11)本発明の第二の態様は、質量%で、C:0.075~0.300%、Si:0.30~2.50%、Mn:1.30~3.50%、P:0.001~0.050%、S:0.0001~0.0100%、Al:0.001~1.500%、及びN:0.0001~0.0100%であり、Tiが0.150%以下に制限され、Nbが0.150%以下に制限され、Vが0.150%以下に制限され、Crが2.00%以下に制限され、Niが2.00%以下に制限され、Cuが2.00%以下に制限され、Moが1.00%以下に制限され、Wが1.00%以下に制限され、Ca、Ce、Mg、Zr、Hf、及びREMの少なくとも1種の合計が0.5000%以下に制限され、残部が鉄および不可避的不純物からなる成分組成を有し、1050℃以上の状態とされたスラブに対し、仕上げ圧延温度をAr3変態点以上に設定された熱間圧延を行い、その後750℃以下の温度域にて巻き取ることにより熱延鋼板を得る熱間圧延工程と、前記熱延鋼板に対し、30~80%の圧下率で冷間圧延を行うことにより冷延鋼板を得る冷間圧延工程と、前記冷延鋼板に対し、(Ac1変態点+40)℃~(Ac3変態点+50)℃の温度域で、かつlog(水分圧/水素分圧)が-3.0~0.0の雰囲気で20秒~600秒焼鈍を行い、ついで、700~500℃間を0.5~500℃/秒の冷却速度として、100~330℃に冷却した後、350~500℃で10~1000秒間の保持を行うことにより高強度冷延鋼板を得る熱処理工程と、を備える冷延鋼板製造方法である。
(12)上記(11)に記載の冷延鋼板製造方法では、前記高強度冷延鋼板の少なくとも片面には、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜を形成してもよい。
(13)上記(11)に記載の冷延鋼板製造方法では、前記高強度冷延鋼板の少なくとも片面に、電気亜鉛めっき層を形成してもよい。
(14)上記(13)に記載の冷延鋼板製造方法では、前記電気亜鉛めっき層の上に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜を形成してもよい。
(15)上記(11)に記載の冷延鋼板製造方法では、前記高強度冷延鋼板の少なくとも片面に、溶融亜鉛めっき層を形成してもよく、前記溶融亜鉛めっき層は、前記高強度冷延鋼板を、(亜鉛めっき浴温度―40)℃~(亜鉛めっき浴温度+50)℃の温度範囲に加熱又は冷却した状態で、亜鉛めっき浴に浸漬し、冷却することにより形成されてもよい。
(16)上記(15)に記載の冷延鋼板製造方法では、前記溶融亜鉛めっき層の上に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜を形成してもよい。
(17)上記(11)に記載の冷延鋼板製造方法では、前記高強度冷延鋼板の少なくとも片面に、合金化溶融亜鉛めっき層を形成してもよく、前記合金化溶融亜鉛めっき層は、前記高強度冷延鋼板を、(亜鉛めっき浴温度―40)℃~(亜鉛めっき浴温度+50)℃の温度範囲に加熱又は冷却した状態で、亜鉛めっき浴に浸漬し、460℃以上の温度で合金化処理を施した後、冷却することにより形成してもよい。
(18)上記(17)に記載の冷延鋼板製造方法では、前記合金化溶融亜鉛めっき層の上に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜を形成してもよい。
 本発明によれば、優れた曲げ性を有する引張最大強度700MPa以上の高強度冷延鋼板およびその製造方法を提供できる。
 本発明者らは、曲げ加工を行うことにより変形部に発生する鋼板内部の亀裂、鋼板表面のネッキングを防止することにより、優れた曲げ性の得られる引張最大強度700MPa以上の高強度冷延鋼板を得るために鋭意検討を重ねた。
 その結果、本発明者らは、所定の成分組成を有し、ミクロ組織を所定の組織へと制御した上で、脱炭処理を施すことで鋼板表層を軟化することが出来、引張最大強度が700MPa以上の高強度冷延鋼板であっても、あたかも、低強度の鋼板であるかのような優れた曲げ性を得ることが出来ることを明らかにした。この効果は、鋼板表層の硬度とt/4深さ位置の硬度の比「(表層の硬度)/(t/4深さ位置の硬度)」を0.75超~0.90とすることで得られる。
 加えて、鋼板の表層部におけるミクロ組織が、体積分率で3~10%の残留オーステナイト及び90%以下のフェライトを含有し、且つ、鋼板のt/4深さ位置における内部ミクロ組織が、体積分率で3~30%の残留オーステナイトを含有することで、ネッキング起因の割れも抑制でき、更なる曲げ性の向上が得られる。特に、曲げ加工は、表層ほど歪が大きくなることから、表層と鋼板内部の硬さを表記範囲内にすることで大きな曲げ性の改善効果が得られる。
 また、本発明の鋼板は、残留オーステナイトの含有により、曲げ加工時のネッキング抑制効果だけでなく、引張試験やプレス加工時のネッキング抑制効果も得られるため、伸びも良好である。
 以下、本発明の一実施形態に係る高強度冷延鋼板について説明する。
 以下の説明において、曲げ性に優れた鋼板とは、JIS Z 2248(2006年)に基づく90度V曲げ試験にて、曲げ半径Rが1.0mm以下で割れ及びネッキングが発生しないもの、又は、曲げ半径Rが0.5mm以下で割れが発生しないものを意味する。
(鋼の成分組成)
 まず、本実施形態に係る冷延鋼板または亜鉛めっき鋼板を構成する鋼の成分組成について説明する。以下の説明における%は、質量%を表す。
「C:0.075~0.300%」
 Cは、母材鋼板の強度を高めるために含有される。しかし、Cの含有量が0.300%を超えると伸び性が及び溶接性が不十分となり、高い曲げ性を確保することが困難となる。Cの含有量は0.280%以下であることが好ましく、0.260%以下であることがより好ましい。一方、Cの含有量が0.075%未満であると強度が低下し、700MPa以上の引張最大強度を確保することが出来ない。強度を高めるため、Cの含有量は0.090%以上であることが好ましく、0.100%以上であることがより好ましい。
「Si:0.30~2.50%」
 Siは、脱炭反応を促進させ、鋼板表層の軟化を招くことから最も重要な元素である。Siの含有量が2.50%を超えると母材鋼板が脆化し、延性が劣化するため、上限を2.50%とする。延性確保の観点から、Siの含有量は2.20%以下であることが好ましく、2.00%以下であることがより好ましい。一方、Siの含有量が0.30%未満では粗大な鉄系炭化物が多量に生成し、内部ミクロ組織の残留オーステナイト組織分率を3~30%とすることが出来ず、伸びが低下してしまう。この観点から、Siの下限値は0.50%以上であることが好ましく、0.70%以上がより好ましい。加えて、Siは、母材鋼板における鉄系炭化物の粗大化を抑制し、強度と成形性を高めるために必要な元素である。また、固溶強化元素として、鋼板の高強度化に寄与するため添加する必要がある。この観点から、Siの下限値は1%以上であることが好ましく、1.2%以上がより好ましい。
「Mn:1.30~3.50%」
 Mnは、母材鋼板の強度を高めるために含有される。しかし、Mnの含有量が3.50%を超えると母材鋼板の板厚中央部に粗大なMn濃化部が生じ、脆化が起こりやすくなり、鋳造したスラブが割れるなどのトラブルが起こりやすい。また、Mnの含有量が3.50%を超えると溶接性も劣化する。したがって、Mnの含有量は、3.50%以下とする。溶接性の観点から、Mnの含有量は3.20%以下であることが好ましく、3.00%以下であることがより好ましい。一方、Mnの含有量が1.30%未満であると、焼鈍後の冷却中に軟質な組織が多量に形成されるため、700MPa以上の引張最大強度を確保することが難しくなる。このことから、Mnの含有量を1.30%以上とする。Mnの含有量は、さらに強度を高めるために、1.50%以上であることが好ましく、1.70%以上であることがより好ましい。
「P:0.001~0.050%」
 Pは母材鋼板の板厚中央部に偏析する傾向があり、溶接部を脆化させる。Pの含有量が0.050%を超えると溶接部が大幅に脆化するため、Pの含有量を0.050%以下とする。Pの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Pの含有量を0.001%未満とすることは製造コストの大幅な増加を伴うことから、0.001%を下限値とする。
「S:0.0001~0.0100%」
 Sは、溶接性ならびに鋳造時および熱延時の製造性に悪影響を及ぼす。このことから、Sの含有量の上限値を0.0100%以下とする。また、SはMnと結びついて粗大なMnSを形成して延性や伸びフランジ性を低下させるため、0.0050%以下とすることが好ましく、0.0025%以下とすることがより好ましい。Sの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Sの含有量を0.0001%未満とすることは製造コストの大幅な増加を伴うため、0.0001%を下限値とする。
「Al:0.001~1.500%」
 Alは、脱炭反応を促進させ、鋼板表層の軟化を招くことから重要な元素である。Alの含有量が1.500%を超えると溶接性が悪化するため、Alの含有量の上限を1.500%とする。この観点から、Alの含有量は1.200%以下とすることが好ましく、0.900%以下とすることがより好ましい。また、Alは脱酸材としても有効な元素であるが、Alの含有量が0.001%未満では脱酸材としての効果が十分に得られないことから、Alの含有量の下限を0.001%以上とする。脱酸の効果を十分に得るにはAl量は0.003%以上とすることが好ましい。
「N:0.0001~0.0100%」
 Nは、粗大な窒化物を形成し、延性および伸びフランジ性を劣化させることから、添加量を抑える必要がある。Nの含有量が0.0100%を超えると、この傾向が顕著となることから、N含有量の上限値を0.0100%以下とする。また、Nは、溶接時のブローホール発生の原因になることから、好ましくは0.0080%以下とする。Nの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Nの含有量を0.0001%未満にすると、製造コストの大幅な増加を招くことから、0.0001%を下限値とする。
 本実施形態に係る高強度冷延鋼板の母材鋼板は、以上の元素を含有し、残部が鉄及び不可避的不純物よりなる組成を基本とし、他の成分は入らなくてもよい。しかし、鋼板は更に、必要に応じて、Ti、Nb、V、Cr、Ni、Cu、Mo、W、Ca、Ce、Mg、Zr、Hf、REMを、下記の含有量範囲で含んでいてもよい。尚、これらの元素の下限値は、0%であるが、所望の効果を得るために、それぞれ下記に示す下限値としてもよい。尚、不可避的不純物の含有量は、本発明の効果を著しく劣化させない程度であれば許容されるが、可及的に低減させることが好ましい。
「Ti:0.005~0.150%」
 Tiは、析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、母材鋼板の強度上昇に寄与する元素である。しかし、Tiの含有量が0.150%を超えると、炭窒化物の析出が多くなり成形性が劣化するため、Tiの含有量は0.150%以下であることが好ましい。成形性の観点から、Tiの含有量は0.120%以下であることがより好ましく、0.100%以下であることがさらに好ましい。Tiの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Tiによる強度上昇効果を十分に得るにはTiの含有量は0.005%以上であることが好ましい。母材鋼板の高強度化には、Tiの含有量は0.010%以上であることがより好ましく、0.015%以上であることがさらに好ましい。
「Nb:0.005~0.150%」
 Nbは、析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、母材鋼板の強度上昇に寄与する元素である。しかし、Nbの含有量が0.150%を超えると、炭窒化物の析出が多くなり成形性が劣化するため、Nbの含有量は0.150%以下であることが好ましい。成形性の観点から、Nbの含有量は0.120%以下であることがより好ましく、0.100%以下であることがさらに好ましい。Nbの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Nbによる強度上昇効果を十分に得るにはNbの含有量は0.005%以上であることが好ましい。母材鋼板の高強度化には、Nbの含有量は0.010%以上であることがより好ましく、0.015%以上であることがさらに好ましい。
「V:0.005~0.150%」
 Vは、析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、母材鋼板の強度上昇に寄与する元素である。しかし、Vの含有量が0.150%を超えると、炭窒化物の析出が多くなり成形性が劣化するため、Vの含有量は0.150%以下であることが好ましい。Vの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Vによる強度上昇効果を十分に得るにはVの含有量は0.005%以上であることが好ましい。
「Cr:0.01~2.00%」
 Crは高温での相変態を抑制し、高強度化に有効な元素であり、Cおよび/またはMnの一部に代えて添加してもよい。Crの含有量が2.00%を超えると、熱間での加工性が損なわれ、生産性が低下することから、Crの含有量は2.00%以下であることが好ましい。Crの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Crによる高強度化の効果を十分に得るには、Crの含有量は0.01%以上であることが好ましい。
「Ni:0.01~2.00%」
 Niは高温での相変態を抑制し、高強度化に有効な元素であり、Cおよび/またはMnの一部に代えて添加してもよい。Niの含有量が2.00%を超えると、溶接性が損なわれることから、Niの含有量は2.00%以下であることが好ましい。Niの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Niによる高強度化の効果を十分に得るには、Niの含有量は0.01%以上であることが好ましい。
「Cu:0.01~2.00%」
 Cuは微細な粒子として鋼中に存在することで強度を高める元素であり、Cおよび/またはMnの一部に替えて添加することができる。Cuの含有量が2.00%を超えると、溶接性が損なわれることから、Cuの含有量は2.00%以下であることが好ましい。Cuの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Cuによる高強度化の効果を十分に得るには、Cuの含有量は0.01%以上であることが好ましい。
「Mo:0.01~1.00%」
 Moは高温での相変態を抑制し、高強度化に有効な元素であり、Cおよび/またはMnの一部に代えて添加してもよい。Moの含有量が1.00%を超えると、熱間での加工性が損なわれ、生産性が低下する。このことから、Moの含有量は1.00%以下であることが好ましい。Moの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Moによる高強度化の効果を十分に得るには、Moの含有量は0.01%以上であることが好ましい。
「W:0.01~1.00%」
 Wは高温での相変態を抑制し、高強度化に有効な元素であり、Cおよび/またはMnの一部に代えて添加してもよい。Wの含有量が1.00%を超えると、熱間での加工性が損なわれ、生産性が低下することから、Wの含有量は1.00%以下であることが好ましい。Wの含有量の下限は、特に定めることなく本発明の効果は発揮されるが、Wによる高強度化の効果を十分に得るには、Wの含有量は0.01%以上であることが好ましい。
「Ca、Ce、Mg、Zr、Hf、及びREMの少なくとも1種を合計で0.0001~0.5000%」
 Ca、Ce、Mg、Zr、Hf、REMは、成形性の改善に有効な元素であり、1種又は2種以上を添加することができる。しかし、Ca、Ce、Mg、Zr、Hf、REMの少なくとも1種の含有量の合計が0.5000%を超えると、却って延性を損なう恐れがある。このため、各元素の含有量の合計は0.5000%以下であることが好ましい。Ca、Ce、Mg、Zr、Hf、REMの少なくとも1種の含有量の下限は、特に定めることなく本発明の効果は発揮されるが、母材鋼板の成形性を改善する効果を十分に得るには、各元素の含有量の合計が0.0001%以上であることが好ましい。成形性の観点から、Ca、Ce、Mg、Zr、Hf、REMの1種または2種以上の含有量の合計が0.0005%以上であることがより好ましく、0.0010%以上であることがさらに好ましい。
 なお、REMとは、Rare Earth Metalの略であり、ランタノイド系列に属する元素をさす。REMやCeはミッシュメタルにて添加されることが多く、LaやCeの他にランタノイド系列の元素を複合で含有する場合がある。不可避不純物として、これらLaやCe以外のランタノイド系列の元素を含んだとしても本発明の効果は発揮される。また、金属LaやCeを添加したとしても本発明の効果は発揮される。
(内部ミクロ組織)
 次に、内部ミクロ組織について説明する。ここで、内部ミクロ組織とは、母材鋼板の板厚をtとして、t/4深さ位置におけるミクロ組織を意味する。尚、後述する表層ミクロ組織とは、母材鋼板の表面、厳密には、母材鋼板の板面に平行かつ表面から20μm深さの面におけるミクロ組織を意味する。
「内部ミクロ組織の残留オーステナイト:3~30%」
 鋼板の内部ミクロ組織は、t/4深さ位置を中心としたt/8~3t/8深さの範囲において、体積分率で3~30%の残留オーステナイトを含有する。残留オーステナイトは、延性を大きく向上させることで、曲げ加工時に発生するネッキング抑制に効果がある。一方で、残留オーステナイトは、破壊の起点となって曲げ性を劣化させる。このため、母材鋼板のミクロ組織に含まれる残留オーステナイトを体積分率で3~20%とすることが好ましい。内部ミクロ組織の残留オーステナイトの下限は5%もしくは8%以上が好ましい。
「表層ミクロ組織の残留オーステナイト:3~10%」
「表層ミクロ組織のフェライト:90%以下」
 更に優れた曲げ性を具備するためには、鋼板表層部における残留オーステナイトの組織分率を3~10%に制限し、且つ、フェライトの組織分率を90%以下に制限する。表層における残留オーステナイト分率が3%未満では、例えば、90度V曲げ試験において、曲げ半径1.0mm以下では、表層部にネッキングが生じ、曲げ性を劣化させる。このため、鋼板表層の残留オーステナイト分率を3%以上にする必要がある。一方で、残留オーステナイトは、曲げ成形中にマルテンサイトへと変態し、割れの起点となることから、脱炭処理を行うことで鋼板表層のオーステナイト分率を低下させる必要がある。フレッシュマルテンサイトの分率を15%以下に低下させたとしても、残留オーステナイトがマルテンサイトに変態することにより生じたマルテンサイトを起点とした曲げ性劣化は避けがたい。このことから、表層部の残留オーステナイト分率は、10%以下とし、好ましくは8%以下、より好ましくは5.8%以下とする。
 鋼板の内部ミクロ組織と表層部ミクロ組織の残留オーステナイト分率を上記範囲とすることで、後述する鋼板表層部と鋼板内部(t/4深さ位置)との硬度比を0.75超~0.90以下とすることが可能となり、優れた曲げ性を具備することが出来る。

 尚、表層ミクロ組織のフェライトの組織分率を90%超とする場合には、所定の残留オーステナイト組織分率を確保することが困難となり、優れた曲げ性を確保出来ないため、90%を上限とする。
 更に、本実施形態に係る高強度冷延鋼板の表層ミクロ組織及び内部ミクロ組織はそれぞれ、上記残留オーステナイトに加え、焼き戻しマルテンサイト、フェライト、パーライト、セメンタイトの1種以上を含んでもよい。以下に説明する範囲であれば、本発明の目的を達成することができる。
 本実施形態に係る高強度冷延鋼板では、上述の残留オーステナイトの他に、t/4深さ位置を中心としたt/8~3t/8深さの範囲において、体積分率で10~87%のフェライトと、1~50%、より好ましくは10~50%の焼戻しマルテンサイトとを含むことができ、さらに、フレッシュマルテンサイトを15%以下に制限するミクロ組織とすることができる。本発明の鋼板(亜鉛めっき鋼板の場合は母材鋼板)のミクロ組織がこのようなミクロ組織を有するものであれば、700MPa以上の強度と優れた曲げ性を有する高強度冷延鋼板となる。
 さらに、ベイニティックフェライト、ベイナイト、パーライトの1種以上を含んでもよい。以下に説明する範囲であれば、本発明の目的を達成することができる。
「焼戻しマルテンサイト:10~50%」
 焼戻しマルテンサイトは、引張強度を大きく向上させる。このため、焼戻しマルテンサイトは、母材鋼板の組織に体積分率で50%以下含まれていてもよい。焼き戻しマルテンサイトとは、マルテンサイトを200~500℃で保持することで、θ、ε、η等の鉄基炭化物を析出させたマルテンサイトであり、フレッシュマルテンサイトに比べ、割れの発生の原因となり難い。引張強度の観点から、焼戻しマルテンサイトの体積分率は1%以上とすることが好ましく、10%以上とすることがより好ましい。一方、母材鋼板のミクロ組織に含まれる焼戻しマルテンサイトの体積分率が50%を超えると、降伏応力が過度に高まり、形状凍結性が劣化することが懸念されるため好ましくない。
「フェライト:10~87%」
 フェライトは、延性の向上に有効である。このため、フェライトは、母材鋼板の組織に体積分率で10%以上含まれていても良い。また、フェライトは軟質な組織であるため、十分な強度を確保するために体積分率で87%を上限としてもよい。
「フレッシュマルテンサイト:15%以下」
 フレッシュマルテンサイトは、引張強度を大きく向上させるが、一方で破壊の起点となって曲げ性を大きく劣化させるため、母材鋼板の組織に体積分率で15%以下に制限することが好ましい。曲げ性を高めるにはフレッシュマルテンサイトの体積分率を10%以下とすることがより好ましく、5%以下とすることが更に好ましい。
 フレッシュマルテンサイトとは、鉄基炭化物を含まないマルテンサイトであり、非常に硬くて脆い。この結果、曲げ加工を行った場合、割れの起点となり曲げ性を大幅に劣化させてしまう。このことから、体積率は出来るだけ小さくすることが望ましい。
「ベイニティックフェライトおよびベイナイトの合計:10~50%」
 ベイニティックフェライトおよびベイナイトは、強度と延性のバランスに優れた組織であり、また、軟質なフェライトと硬質なマルテンサイト、焼戻しマルテンサイトおよび残留オーステナイトの中間の強度を有する組織であり、強度と曲げ性のバランス向上にも寄与する。このため体積分率で、合計10~50%含んでいてもよい。
「パーライト:5%以下」
 パーライトが多くなると、延性が劣化する。このことから、母材鋼板の組織に含まれるパーライトの体積分率は、5%以下であることが好ましく、3%以下であることがより好ましい。
「その他」
 その他の組織として、粗大なセメンタイトなど上記以外の組織が含まれていてもよい。しかし、母材鋼板の組織中に粗大なセメンタイトが多くなると、曲げ性が劣化する。このことから、母材鋼板の組織に含まれる粗大なセメンタイトの体積分率は、10%以下であることが好ましく、5%以下であることがより好ましい。粗大なセメンタイトとは、公称粒径で2μm以上のセメンタイトを意味する。セメンタイトは、鉄に比べてもろく、鉄とセメンタイトの界面強度も小さいことから、曲げ成形中に割れやボイド形成の起点となり、曲げ性を劣化させる。このことから、粗大なセメンタイトの体積率は小さくする必要がある。一方、ベイナイト組織や焼き戻しマルテンサイト中に含まれる微細な鉄基炭化物は、曲げ性を劣化させないことから含有しても良い。
 以上のような各組織の体積分率は、例えば、以下に示す方法により測定できる。
(内部ミクロ組織)
 残留オーステナイトの体積分率は、母材鋼板の板面に平行かつt/4深さ位置の面を観察面としてX線回折を行い、面積分率を算出し、それを持って体積分率と見なすことができる。また、フェライト、パーライト、ベイナイト、セメンタイト、焼戻しマルテンサイトおよびフレッシュマルテンサイトの体積分率は、母材鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨、ナイタールエッチングし、t/4深さ位置を中心としたt/8~3t/8深さの範囲を電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)で観察して面積分率を測定し、それを持って体積分率と見なすことができる。
 なお、各組織の体積分率の測定位置を、表面からt/4深さ位置を中心としたt/8~3t/8深さの範囲としたのは、鋼板表層は脱炭が原因で鋼板組織がt/8~3t/8深さの範囲の鋼板組織と異なっており、板厚中心もMn偏析が原因でマルテンサイトを多く含む組織となり、他の位置と鋼板組織が大きく異なるためである。
(表層ミクロ組織)
 一方、表層における残留オーステナイトの体積分率は、母材鋼板の板面に平行かつ表面から20μm深さの面を観察面としてX線回折を行い、面積分率を算出し、それを持って体積分率と見なすことができる。また、フェライト、パーライト、ベイナイト、セメンタイト、焼戻しマルテンサイトおよびフレッシュマルテンサイトの体積分率は、母材鋼板の圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨、ナイタールエッチングし、電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)で観察して面積分率を測定し、それを持って体積分率と見なすことができる。
(鋼板の硬度比)
 次に、鋼板表層の硬度と前記母材鋼板のt/4深さ位置の硬度との比を規定した理由について説明する。
 本発明者らは、前記のような成分組成と組織を有する鋼板に、脱炭処理を施して鋼板表層を軟化することにより、優れた曲げ性を得ることができることを見出した。すなわち、鋼板の表層の硬度Hvsと母材鋼板のt/4深さ位置の硬度Hvbの比「Hvs/Hvb」を、0.75超~0.90とすることで、優れた曲げ性が得られる。 この硬度比を0.75超としたのは、硬度比が0.75以下とすると鋼板が軟化しすぎてしまい700MPa以上の引張最大強度を確保することが難しくなるためである。好ましくは0.8以上である。一方、0.90超では、残留オーステナイトを多量に含むため、曲げ変形時のネッキング抑制は可能なものの、微小な割れが生じる場合があり、曲げ性に劣る。
 なお、ここで用いられる「硬度」は、鋼板表層と鋼板の圧延方向に平行な板厚断面におけるt/4の位置とで、ビッカース硬度試験機を用いて押込み荷重10g重でそれぞれ10点ずつ硬度を測定し、その平均値をそれぞれの硬度としている。
 本発明者らは、硬度と曲げ性の関係を調査するにあたって、予備試験として、曲げ性と鋼板特性の関係を調査したところ、t/8~3t/8深さ位置の範囲であれば、平均硬度は位置に依らないこと、及び、板厚中心(t/2深さ位置)では、Mnの中心偏析が原因で鋼板組織が異なり、t/8~3t/8深さ位置とは、平均硬度も異なることを見出した。このことから、鋼板母材の硬度を代表可能なt/4深さ位置での硬さを母材の硬さ(Hvb)としている。
 一方、脱炭条件と鋼板表層の硬さの関係を調査したところ、脱炭が進めば進むほど、鋼板表層の硬度は低下するとともに軟化した領域が板厚方向に広がっていくこと、鋼板表面からある深さ位置での硬度を測定することで、軟化層の厚みや軟化度合いを代表できることを見出した。このことから、鋼板表面から20μm位置の硬度を測定し、めっき鋼板であれば、めっき層/地鉄界面から20μm位置の硬度を測定し、鋼板表層の硬度(Hvs)としている。
 ここで測定位置を表面から20μmとしたのは、次の理由による。
 軟化位置では、鋼板硬度がHv100~400であり、圧痕サイズが8~13μm程度となり、測定位置が鋼板表面に近すぎる場合は、正確な硬度測定が難しかった。一方、測定位置が鋼板表面から離れすぎると、軟化層が含まれないことから、曲げ性と鋼板表層の硬度の間の関係を正確に求めることが出来なかった。このことから、測定位置を表面から20μm位置とした。
 なお、鋼板表層の硬度測定にあたっては、研磨時の鋼板表面のダレを防止するため、鋼板に当て板を行い樹脂埋め込みした後、研磨、硬度測定を行うとよい。
(鋼板の形態)
 本発明の高強度冷延鋼板は、鋼板表層の硬さが上記範囲を満たす限り、冷延鋼板、溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板並びに電気亜鉛めっき鋼板のいずれであってもよい。
 亜鉛めっき層としては、特に限定されず、例えば、溶融亜鉛めっき層としては、Feを7質量%未満含有し、残部がZn、Alおよび不可避的不純物からなるものなどが、合金化溶融亜鉛めっき層としては、Feを7~15質量%含有し、残部がZn、Alおよび不可避的不純物からなるものなどが使用できる。
 また。亜鉛めっき層は、Pb、Sb、Si、Sn、Mg、Mn、Ni、Cr、Co、Ca、Cu、Li、Ti、Be、Bi、Sr、I、Cs、REMの少なくとも1種を含有、あるいは混入するものであってもよい。合金化亜鉛めっき層が、上記の元素の少なくとも1種を含有、あるいは混入するものであっても、本発明の効果は損なわれず、その含有量によっては耐食性や加工性が改善される等好ましい場合もある。
 さらに、本発明の高強度冷延鋼板は、冷延鋼板の表面あるいは亜鉛めっき鋼板のめっき層の表面に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜を有するものであってもよい。
 リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜は、鋼板を加工する際に潤滑剤として機能させることができ、鋼板の表面や合金化亜鉛めっき層を保護することができる。
(鋼板の製造方法)
 次に、上述の高強度冷延鋼板を製造する方法について詳細に説明する。
 鋼板を製造するには、まず、上述した成分組成を有するスラブを鋳造する。熱間圧延に供するスラブは、連続鋳造スラブや薄スラブキャスターなどで製造したものを用いることができる。さらに、鋳造後に直ちに熱間圧延を行う連続鋳造-直接圧延(CC-DR)のようなプロセスを用いてもよい。
 スラブの熱間圧延において、スラブ加熱温度は、Ar3変態点以上の仕上げ圧延温度を確保するため、また、スラブ加熱温度の低下は、過度の圧延荷重の増加を招き、圧延が困難となったり、圧延後の母材鋼板の形状不良を招いたりする懸念があるため、1050℃以上にする必要がある。スラブ加熱温度の上限は特に定めることなく、本発明の効果は発揮されるが、加熱温度を過度に高温にすることは、経済上好ましくないことから、スラブ加熱温度の上限は1350℃以下とすることが望ましい。
 熱間圧延は、Ar3変態点温度以上の仕上げ圧延温度で完了する必要がある。仕上げ圧延温度がAr3変態点を下回ると、フェライト及びオーステナイトの二相域圧延となり、熱延板組織が不均質な混粒組織となり、冷間圧延工程及び連続焼鈍工程を経たとしても不均質な組織は解消されず、延性や曲げ性に劣る鋼板となる。
 一方、仕上げ圧延温度の上限は特に定めることなく、本発明の効果は発揮されるが、仕上げ圧延温度を過度に高温とした場合、その温度を確保するためにスラブ加熱温度を過度に高温にしなければならない。このことから、仕上げ圧延温度の上限温度は、1100℃以下とすることが望ましい。
 なお、Ar3変態点は、各元素の含有量(質量%)を用いた次の式により計算する。
Ar3=901-325×C+33×Si-92×(Mn+Ni/2+
      Cr/2+Cu/2+Mo/2)+52×Al
 熱間圧延の巻き取り温度は、熱延鋼板の表面に形成される酸化物の厚さが過度に増大して、酸洗性が劣化することを防止するため、750℃以下とする。酸洗性をより一層高めるために、巻き取り温度は720℃以下であることが好ましく、700℃以下であることがさらに好ましい。
 一方、巻き取り温度が400℃未満となると熱延鋼板の強度が過度に高まり、冷間圧延が困難となるため、巻き取り温度は400℃以上とすることが望ましい。冷間圧延の負荷を軽減するため、巻き取り温度は420℃以上とすることが好ましい。ただし、400℃未満で巻き取ったとしても、その後、箱型炉にて焼鈍を行い、熱延板の軟化処理を行うことで、冷間圧延が可能となることから、400℃未満で巻き取っても構わない。
 次に、このようにして製造した熱延鋼板に、酸洗を行うことが好ましい。酸洗は、熱延鋼板の表面の酸化物を除去するものであることから、母材鋼板のめっき性向上のために重要である。また、酸洗は、一回でも良いし、複数回に分けて行っても良い。
 酸洗後の熱延鋼板は、板厚の調整や形状矯正を目的として冷間圧延される。冷間圧延は、板厚精度が高く優れた形状を有する母材鋼板を得るために、圧下率を30~80%の範囲とすることが好ましい。圧下率が30%未満であると、形状を平坦に保つことが困難であり、最終製品の延性が劣悪となる恐れがある。冷間圧延における圧下率は35%以上であることが好ましく、40%以上であることがより好ましい。一方、圧下率が80%を超える圧下率では、冷延荷重が大きくなりすぎて冷延が困難となる。このことから、圧下率は80%以下であることが好ましい。ただし、冷延率80%を超えて冷間圧延を行ったとしても本発明の効果である優れた曲げ性を得ることはできる。
 なお、冷間圧延工程において、圧延パスの回数、各圧延パス毎の圧下率については特に規定することなく本発明の効果は発揮される。
 次に、熱処理工程として、得られた冷延鋼板を焼鈍ラインを通板させて、(Ac1変態点+40)℃~(Ac3変態点+50)℃の温度域で焼鈍を行う。曲げ性に優れた鋼板を得るためには、焼鈍中に表層の脱炭処理を行い、鋼板表層を軟化させる必要がある。脱炭処理とは、焼鈍の際の炉内雰囲気を下記範囲にすることで、鋼板表層に含まれるCを大気中へと拡散させ、鋼板表層のC濃度を低下させ、硬質組織の分率を低下させる処理である。
 本発明では、焼鈍の際の炉内雰囲気をlog(水分圧/水素分圧)が-3.0~0.0の範囲として、脱炭を行う。雰囲気ガスの水分圧と水素分圧の比の対数を-3.0~0.0とすることで、焼鈍を行うことによる冷延鋼板表層からの脱炭を適度に促進できる。
 水分圧と水素分圧の比の対数が-3.0未満であると、焼鈍を行うことによる冷延鋼板表層からの脱炭が不十分となる。脱炭を促進するために、水分圧と水素分圧の比の対数は、-2.5以上であることが好ましい。一方、水分圧と水素分圧の比の対数が0.0超であると、焼鈍を行うことによる冷延鋼板表層からの脱炭が過度に促進されて、鋼板の強度が不十分となる恐れがある。鋼板の強度を確保するために、水分圧と水素分圧の比の対数は、-0.3以下であることが好ましい。また、焼鈍を行う際の雰囲気は、窒素と水蒸気と水素とを含み、窒素を主体とするものであることが好ましく、窒素と水蒸気と水素の他に、酸素が含まれていてもよい。
 また、焼鈍の際の温度域を(Ac1変態点+40)℃~(Ac3変態点+50)℃とするのは、焼鈍中にオーステナイトを形成させ、このオーステナイトをマルテンサイト、ベイナイトあるいは残留オーステナイトとすることで鋼板の高強度化を図るためである。
 焼鈍温度が(Ac1変態点+40)℃未満では、焼鈍時に形成したオーステナイトの体積率が小さく、700MPa以上の強度を確保することが難しい。このことから、焼鈍温度の下限を(Ac1変態点+40)℃とする。
 一方で、焼鈍温度が過度に高温になりすぎると、経済的に好ましくないばかりでなく、ロールや製造設備の劣化が顕著となるので、焼鈍温度は、(Ac3変態点+50)℃以下とすることが望ましい。ただし、経済性を除く効果であるが、優れた曲げ性を得ることができる。
 なお、Ac1及びAc3変態点は、各元素の含有量(質量%)を用いた次の式により計算する。
Ac1=723-10.7×Mn-16.9×Ni+29.1×Si
      +16.9×Cr+6.38×W
Ac3=910-203×(C)0.5-15.2×Ni+44.7×Si
      +104×V+31.5×Mo-30×Mn-11×Cr
      -20×Cu+700×P+400×Al+400×Ti
 本発明において、上記の焼鈍温度および雰囲気での滞留時間は、20秒~600秒とする。上記の滞留時間が20秒未満であると、硬質組織分率が少なくなりすぎてしまい700MPa以上の高強度を確保することが難しい。即ち、オーステナイトは、炭化物が溶解することで形成するものの、溶解にはある程度の時間を要する。20秒未満の焼鈍では、炭化物が溶解する時間が不足し、十分な量のオーステナイトを確保することが出来ない。その結果、700MPa以上の強度を確保することが難しい。そのことから、焼鈍温度時間の下限を20秒とした。一方で、600秒超の滞在は、その効果が飽和するばかりでなく、生産性の劣化を招くことから好ましくない。このことから、焼鈍温度の上限は、600秒とした。
 焼鈍後の冷却では、700℃~500℃の温度範囲での平均冷却速度を0.5℃/秒以上500℃/秒以下として冷却し、100~330℃の温度範囲で冷却を停止する。
 上記温度範囲での平均冷却速度が0.5℃/秒未満であると、この温度範囲での滞在時間が長時間となってフェライトやパーライトが多量に生成される。このため、700MPa以上の強度を確保することが難しくなる。一方、500℃/秒を上回る冷却速度では、過度の設備投資を必要とするばかりでなく、板内の温度バラツキの増大等を招く懸念がある。
 また、冷却停止温度を、330℃以下、好ましくは300℃以下、より好ましくは250℃以下に設定する。これにより、冷却時にマルテンサイトを形成させ、700MPa以上の強度を確保する。冷却停止温度は、低ければ低いほどマルテンサイト体積率は増加し、その後の保持にて焼き戻されて、焼戻しマルテンサイトが増加するが、過度に冷却停止温度を下げることは、経済的に好ましくないばかりでなく、冷却停止温度のバラツキや、ひいては材質バラツキを増加させることとなる。このことから、冷却停止温度の下限は、100℃以上とすることが望ましい。望ましくは、130℃以上であり、更に望ましくは、160℃以上である。
 冷却を停止した後、加熱を行って350~500℃の温度範囲に調整し、この温度範囲で10~1000秒間の保持を行う。
 保持の温度範囲を350~500℃とするのは、冷却中に形成したマルテンサイトを焼き戻す、あるいは、ベイナイト変態を促進させ、高強度と曲げ性の両立を図るためである。焼き戻しとは、マルテンサイトを350~500℃の温度域で保持を行うことで、鉄系炭化物を析出させたり、転位の回復を行う処理である。焼き戻しを行うことで、マルテンサイトの特性を大きく向上出来、曲げ性を大きく向上させることが出来る。
 しかしながら、350℃未満の温度域での保持では、炭化物の析出や転位の回復に長時間を要することから、曲げ性の改善が図れない。一方では、500℃超での保持は、粒界への粗大炭化物の形成を招くとともに、粗大炭化物は脆いことから、曲げ成形時の亀裂形成を促進する。あるいは、ベイナイト変態も進みがたく、冷却過程でフレッシュマルテンサイトが形成し、曲げ性を劣化させる。このことから、500℃以下で保持を行う必要がある。
 また、保持時間を10~1000秒保持としたのは、十分な量の炭化物の析出や転位の回復を起こさせるためである。保持時間が、10秒未満では、本発明の効果である焼き戻しの効果を得ることが出来ない。一方、1000秒以下としたのは、過度の保持は生産性を低下させることから好ましくない。また、保持中にベイナイト変態が起こる場合があり、残留オーステナイトの安定化に寄与する場合が多い。
 なお、本発明で言う保持とは、鋼板が上記の温度域で上記の時間の間滞在することを意味する。したがって、この温度域で等温で保持する場合のみを意味するのではなく、この温度域での徐加熱や徐冷を含む。
 980MPa以上の高強度と優れた曲げ性の両立を図るためには、脱炭による表層軟化とMs点以下の冷却並びに保持の両方を実施する必要がある。これは、表層軟化による亀裂形成の抑制と母材の特性向上による亀裂伝播促進を図るためである。表層軟化を行った場合、曲げ成形時の表面での亀裂形成の抑制が可能であるものの、表層(表面直下)での鋼板内部の亀裂形成の抑制は不可能である。即ち、曲げ成形時に最大の歪となる表層を軟化させたとしても、表層近くも大きな歪を受け、場合によっては鋼板内部からの亀裂形成が起こる。特に、硬質組織と軟質組織の界面、あるいは、硬質組織そのものの破壊が亀裂形成の原因となる。このことから、鋼板を一旦Ms点以下に冷却し保持を行い、硬質組織をフレッシュマルテンサイトから焼き戻しマルテンサイトへとすることで、母材からの亀裂形成を抑制する必要がある。一方で、母材組織をフェライト、焼き戻しマルテンサイト、残留オーステナイト、ベイナイトからなる組織としたとしても、高強度と優れた曲げ性の両立のためには課題があり、表層を軟化させることによる亀裂形成の遅延を併用する必要がある。このことから、脱炭による表層軟化とMs点以下の冷却並びに保持の両方を実施する必要がある。
 溶融亜鉛めっき鋼板の製造にあたっては、脱炭処理と100~330℃までの冷却と350~500℃での保持を行った後、(亜鉛めっき浴温度―40)℃~(亜鉛めっき浴温度+50)℃に加熱、あるいは、冷却を行い溶融亜鉛めっき浴へ浸漬させ、めっきを行う。
 めっき浴浸漬板温度は、溶融亜鉛めっき浴温度より40℃低い温度から溶融亜鉛めっき浴温度より50℃高い温度までの温度範囲とすることが望ましい。浴浸漬板温度が(溶融亜鉛めっき浴温度-40)℃を下回ると、めっき浴浸漬進入時の抜熱が大きく、溶融亜鉛の一部が凝固してしまいめっき外観を劣化させる場合があることから、下限を(溶融亜鉛めっき浴温度-40)℃とする。
 ただし、浸漬前の板温度が(溶融亜鉛めっき浴温度-40)℃を下回っても、めっき浴浸漬前に再加熱を行い、板温度を(溶融亜鉛めっき浴温度-40)℃以上としてめっき浴に浸漬させても良い。また、めっき浴浸漬温度が(溶融亜鉛めっき浴温度+50)℃を超えると、めっき浴温度上昇に伴う操業上の問題を誘発する。また、めっき浴は、純亜鉛とFe、Alに加え、Mg、Mn、Si、Crなどを含有しても構わない。
 また、めっき層の合金化を行う場合には、460℃以上で行う。合金化処理温度が460℃未満であると合金化の進行が遅く、生産性が悪い。600℃を超えると、オーステナイト中に炭化物が析出してしまい、オーステナイトが分解するため、700MPa以上の強度と良好な曲げ性の確保が難しくなるので、これが上限である。
 冷延鋼板の表面の亜鉛めっきは、上述の溶融亜鉛めっきで行ったものに限らず、電気めっきで行っても構わない。その場合には常法に従って行えばよい。
 また、表面の潤滑などを目的に、本発明の冷延鋼板の表面や亜鉛めっき鋼板のめっき層の表面に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜を付与しても構わない。
 なお、前述の焼鈍後等にスキンパス圧延を行うこともできる。その際の圧下率は、0.1~1.5%の範囲が好ましい。0.1%未満では効果が小さく、制御も困難であることから、これが下限となる。1.5%を超えると生産性が著しく低下するのでこれを上限とする。スキンパスは、インラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。
 本発明を、実施例を用いてさらに詳しく説明する。
 実験例1~85として、表1、表2に示す成分組成を有するスラブを1230℃に加熱し、表3~6に示す製造条件に基づき熱間圧延、冷間圧延、及び熱処理を行い、板厚1.2mmの冷延鋼板を製造した。幾つかの実験例においては、表5、表6に示すめっき条件に基づきめっき処理を施した。
 表1、2は、実験例1~85で用いたスラブの鋼種A~Y、a~dの成分組成を示す。表3、4には、スラブ特性、熱間圧延条件、冷間圧延条件を示す。表5、6には、熱処理条件、及びめっき条件を示す。
 尚、表1~6において、本発明の範囲から逸している数値に下線を付与している。また、表5、6において、合金化温度の列におけるハイフンは合金化処理を施していないことを意味する。
 溶融亜鉛めっき鋼板(GI)及び合金化溶融亜鉛めっき鋼板(GA)の製造にあたっては、表5、6に示す熱処理条件に基づき冷却、保持を施した鋼板を、亜鉛めっき浴に浸漬し、その後室温まで冷却した。めっき浴中のめっき浴中の有効Al濃度は、0.07~0.17mass%の範囲とした。一部の鋼板については、亜鉛めっき浴に浸漬後、各条件にて合金化処理を行い、室温まで冷却した。その際の目付け量としては、両面とも約35g/m2とした。最後に、得られた鋼板について0.4%の圧下率でスキンパス圧延を行った。
 実験例13、61、79に係る冷延鋼板は、脱脂後、電気亜鉛めっきを施すことにより電気亜鉛めっき鋼板(EG)とした。めっき条件は、50℃、8重量%の硫酸溶液中で電流密度を15A/dmとして、約12秒間電解酸洗した後、実験例13についてはZnめっき浴、実験例61についてはZn-Niめっき浴、および実験例79についてはZn-Coめっき浴で、付着量が30g/mおよび60g/mとなるように、めっきを施した。めっき浴温度:50±2℃、電流密度:60A/dm、めっき液の流速:1m/秒とした。
 また、実験例1の冷延鋼板(CR)、実験例54、71の溶融亜鉛めっき鋼板(GI)、及び実験例15の合金化溶融亜鉛めっき鋼板(GA)の表面には、リン酸および過酸化水素をリン酸/H重量比=0.1~10の範囲で含有するpH1~7の水溶液を塗布し、水洗せずに400℃の温度で焼付乾燥して、P量に換算して10~500mg/mの付着量で、リン酸化物系無機皮膜を形成させた。
 曲げ性の評価は、JIS Z 2248(2006年)に基づき、得られた鋼板を圧延方向に垂直な方向に鋼板を切り出し、端面を機械研削し、35mm×100mmの試験片を作製し、先端のRが0.5~6mmの90°のダイとパンチを用いて90度V曲げ試験を行うことにより実施した。曲げ試験後のサンプル表面をルーペで観察し、割れがない、最小曲げ半径を限界曲げ半径と定義した。限界曲げ半径が1mm以下で、ネッキングも発生しない鋼板、又は、限界曲げ半径が0.5mm以下である鋼板を曲げ性に優れる鋼板と定義した。
 また、得られた鋼板から試料を作成して、先述の方法で鋼板の表層(すなわち、母材鋼板の板面に平行かつ表面から20μm深さの面)及びt/4深さ位置における鋼板組織を測定した。その結果を表7、8に示す。表7、8において、Fはフェライト、γRは残留オーステナイト、TMは焼き戻しマルテンサイト、Mはフレッシュマルテンサイト、Bはベイナイト、Pはパーライトを意味する。尚、炭化物は、フェライトの面積率にカウントしている。
 更に、表9、10に、鋼板の表層硬さ(Hvs)、t/4深さ位置の硬さ(Hvb)、硬さ比(Hvs/Hvb)、TS、EL、TS×EL、最小曲げ半径、めっき中Fe(ハイフンは、合金化処理を施していないことを示す)、及び鋼板種を示す。
 尚、表7~10において、本発明の範囲から逸している数値に下線を付与している。TSは、引張り試験をJIS Z 2241(2011年)に準拠して測定した。
 表9、10で、鋼板種の欄は、鋼板の形態を示し、CR:冷延鋼板、GI:溶融亜鉛めっき鋼板、GA:溶融亜鉛めっき鋼板、EG:電気亜鉛めっき鋼板をそれぞれ示す。また、リン酸化物系無機皮膜を形成した鋼板には+Pを追記した。
 本発明の条件を満たすものは、700MPa以上の引張最大強度と良好な曲げ性を両立している。強度(TS)と全伸び(El)とのバランス(TS×El)も18000(MPa・%)以上と良好であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 本発明は、自動車用の構造用部材、補強用部材、足廻り用部材に好適な、引張最大強度700MPa以上を有する曲げ性に優れた高強度冷延鋼板を安価に提供するものであり、自動車の軽量化に大きく貢献することが期待でき、産業上の効果は極めて高い。

Claims (18)

  1.  質量%で、
     C:0.075~0.300%、
     Si:0.30~2.50%、
     Mn:1.30~3.50%、
     P:0.001~0.050%、
     S:0.0001~0.0100%、
     Al:0.001~1.500%、及び
     N:0.0001~0.0100%
    であり、
     Tiが0.150%以下に制限され、
     Nbが0.150%以下に制限され、
     Vが0.150%以下に制限され、
     Crが2.00%以下に制限され、
     Niが2.00%以下に制限され、
     Cuが2.00%以下に制限され、
     Moが1.00%以下に制限され、
     Wが1.00%以下に制限され、
     Ca、Ce、Mg、Zr、Hf、及びREMの少なくとも1種の合計が0.5000%以下に制限され、
    残部が鉄および不可避的不純物からなる成分組成を有し、
     鋼板表層における表層ミクロ組織が、体積分率で、3~10%の残留オーステナイト及び90%以下のフェライトを含有し、
     板厚をtとして前記表面からt/4深さ位置における内部ミクロ組織が、体積分率で3~30%の残留オーステナイトを含有し、
     前記鋼板表層の硬度Hvsと前記t/4深さ位置における硬度Hvbとの比Hvs/Hvbが0.75超~0.90であり、
     引張最大強度が700MPa以上である
    ことを特徴とする高強度冷延鋼板。
  2.  前記表層ミクロ組織が、さらに、体積分率で、10~87%のフェライト、10~50%の焼き戻しマルテンサイト、及び15%以下に制限されたフレッシュマルテンサイトを含有する
    ことを特徴とする請求項1に記載の高強度冷延鋼板。
  3.  前記内部ミクロ組織が、更に、体積分率で、10~87%のフェライト、10~50%の焼き戻しマルテンサイト、及び15%以下に制限されたフレッシュマルテンサイトを含有する
    ことを特徴とする請求項1に記載の高強度冷延鋼板。
  4.  少なくとも片面に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜が形成されている
    ことを特徴とする、請求項1~3のいずれか一項に記載の高強度冷延鋼板。
  5.  少なくとも片面に、電気亜鉛めっき層が形成されている
    ことを特徴とする、請求項1~3のいずれか一項に記載の強度冷延鋼板。
  6.  前記電気亜鉛めっき層の上に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜が形成されている
    ことを特徴とする、請求項5に記載の高強度冷延鋼板。
  7.  少なくとも片面に、溶融亜鉛めっき層が形成されている
    ことを特徴とする、請求項1~3のいずれか一項に記載の高強度冷延鋼板。
  8.  前記溶融亜鉛めっき層の上に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜が形成されている
    ことを特徴とする請求項7に記載の高強度冷延鋼板。
  9.  少なくとも片面に、合金化溶融亜鉛めっき層が形成されている
    ことを特徴とする請求項1~3のいずれか一項に記載の高強度冷延鋼板。
  10.  前記合金化溶融亜鉛めっき層の上に、リン酸化物およびリン含む複合酸化物の少なくとも1種を含む皮膜が形成されている
    ことを特徴とする請求項9に記載の高強度冷延鋼板。
  11.  質量%で、C:0.075~0.300%、Si:0.30~2.50%、Mn:1.30~3.50%、P:0.001~0.050%、S:0.0001~0.0100%、Al:0.001~1.500%、及びN:0.0001~0.0100%であり、Tiが0.150%以下に制限され、Nbが0.150%以下に制限され、Vが0.150%以下に制限され、Crが2.00%以下に制限され、Niが2.00%以下に制限され、Cuが2.00%以下に制限され、Moが1.00%以下に制限され、Wが1.00%以下に制限され、Ca、Ce、Mg、Zr、Hf、及びREMの少なくとも1種の合計が0.5000%以下に制限され、残部が鉄および不可避的不純物からなる成分組成を有し、1050℃以上の状態とされたスラブに対し、仕上げ圧延温度をAr3変態点以上に設定された熱間圧延を行い、その後750℃以下の温度域にて巻き取ることにより熱延鋼板を得る熱間圧延工程と、
     前記熱延鋼板に対し、30~80%の圧下率で冷間圧延を行うことにより冷延鋼板を得る冷間圧延工程と、
     前記冷延鋼板に対し、Ac1変態点+40℃~Ac3変態点+50℃の温度域で、かつlog(水分圧/水素分圧)が-3.0~0.0の雰囲気で20秒~600秒焼鈍を行い、ついで、700~500℃間を0.5~500℃/秒の冷却速度として、100~330℃に冷却した後、350~500℃で10~1000秒間の保持を行うことにより高強度冷延鋼板を得る熱処理工程と、
    を備えることを特徴とする冷延鋼板製造方法。
  12.  前記高強度冷延鋼板の少なくとも片面に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜を形成する皮膜形成工程
    を更に備えることを特徴とする、請求項11に記載の冷延鋼板製造方法。
  13.  前記高強度冷延鋼板の少なくとも片面に、電気亜鉛めっき層を形成する電気亜鉛めっき工程
    を更に備えることを特徴とする、請求項11に記載の冷延鋼板製造方法。
  14.  前記電気亜鉛めっき層の上に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜を形成する皮膜形成工程
    を更に備えることを特徴とする、請求項13に記載の冷延鋼板製造方法。
  15.  前記高強度冷延鋼板の少なくとも片面に、溶融亜鉛めっき層を形成する溶融亜鉛めっき工程
    を更に備え、
     前記溶融亜鉛めっき工程では、
     前記高強度冷延鋼板を、亜鉛めっき浴温度―40℃~亜鉛めっき浴温度+50℃の温度範囲に加熱又は冷却した状態で、亜鉛めっき浴に浸漬し、冷却する
    ことを特徴とする請求項11に記載の冷延鋼板製造方法。
  16.  前記溶融亜鉛めっき層の上に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜を形成する皮膜形成工程
    を更に備えることを特徴とする、請求項15に記載の冷延鋼板製造方法。
  17.  前記高強度冷延鋼板の少なくとも片面に、合金化溶融亜鉛めっき層を形成する合金化溶融亜鉛めっき工程
    を更に備え、
     前記合金化溶融亜鉛めっき工程では、
     前記高強度冷延鋼板を、亜鉛めっき浴温度―40℃~亜鉛めっき浴温度+50℃の温度範囲に加熱又は冷却した状態で、亜鉛めっき浴に浸漬し、460℃以上の温度で合金化処理を施した後、冷却する
    ことを特徴とする請求項11に記載の冷延鋼板製造方法。
  18.  前記合金化溶融亜鉛めっき層の上に、リン酸化物およびリンを含む複合酸化物の少なくとも1種を含む皮膜を形成する工程
    を更に備えることを特徴とする、請求項17に記載の冷延鋼板製造方法。
PCT/JP2013/052468 2012-02-08 2013-02-04 高強度冷延鋼板及びその製造方法 WO2013118679A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PL13747093T PL2813595T3 (pl) 2012-02-08 2013-02-04 Blacha stalowa cienka walcowana na zimno o dużej wytrzymałości oraz sposób jej wytwarzania
EP13747093.6A EP2813595B1 (en) 2012-02-08 2013-02-04 High-strength cold-rolled steel sheet and process for manufacturing same
KR1020147021641A KR101622063B1 (ko) 2012-02-08 2013-02-04 고강도 냉연 강판 및 그 제조 방법
BR112014019206A BR112014019206A8 (pt) 2012-02-08 2013-02-04 Chapa de aço laminada a frio e processo de produção da mesma
CN201380008324.3A CN104105807B (zh) 2012-02-08 2013-02-04 高强度冷轧钢板及其制造方法
US14/376,678 US10544474B2 (en) 2012-02-08 2013-02-04 High-strength cold-rolled steel sheet and method for producing the same
MX2014009471A MX2014009471A (es) 2012-02-08 2013-02-04 Plancha de acero laminada en frio de alta resistencia y proceso para fabricar la misma.
JP2013531804A JP5454746B2 (ja) 2012-02-08 2013-02-04 高強度冷延鋼板及びその製造方法
ES13747093T ES2768598T3 (es) 2012-02-08 2013-02-04 Chapa de acero laminado en frío de alta resistencia y método para la producción de la misma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012025268 2012-02-08
JP2012-025268 2012-02-08

Publications (1)

Publication Number Publication Date
WO2013118679A1 true WO2013118679A1 (ja) 2013-08-15

Family

ID=48947443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052468 WO2013118679A1 (ja) 2012-02-08 2013-02-04 高強度冷延鋼板及びその製造方法

Country Status (11)

Country Link
US (1) US10544474B2 (ja)
EP (1) EP2813595B1 (ja)
JP (1) JP5454746B2 (ja)
KR (1) KR101622063B1 (ja)
CN (1) CN104105807B (ja)
BR (1) BR112014019206A8 (ja)
ES (1) ES2768598T3 (ja)
MX (1) MX2014009471A (ja)
PL (1) PL2813595T3 (ja)
TW (1) TWI468534B (ja)
WO (1) WO2013118679A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161023A (ja) * 2014-02-28 2015-09-07 新日鐵住金株式会社 冷延鋼板
WO2016194272A1 (ja) * 2015-05-29 2016-12-08 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板及びこれらの製造方法
JP2016223003A (ja) * 2015-05-28 2016-12-28 チャイナ スティール コーポレーションChina Steel Corporation 高強度鋼板の焼きなましプロセス
JP2017002384A (ja) * 2015-06-15 2017-01-05 新日鐵住金株式会社 耐スポット溶接部破断特性に優れた鋼板及びその製造方法
JP2017048412A (ja) * 2015-08-31 2017-03-09 新日鐵住金株式会社 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法
US20170305114A1 (en) * 2014-11-05 2017-10-26 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet
US20180274069A1 (en) * 2015-09-25 2018-09-27 Nippon Steel & Sumitomo Metal Corporation Steel sheet
JP2019504196A (ja) * 2015-12-15 2019-02-14 ポスコPosco 表面品質及びスポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2019505693A (ja) * 2015-12-21 2019-02-28 アルセロールミタル 改善された延性及び成形加工性を有するコーティングされた高強度鋼板を製造するための方法並びに得られたコーティングされた鋼板
JP2019505690A (ja) * 2015-12-21 2019-02-28 アルセロールミタル 改善された延性及び成形加工性を有する高強度鋼板を製造するための方法並びに得られた鋼板
US10507629B2 (en) 2014-11-05 2019-12-17 Nippon Steel Corporation Hot-dip galvanized steel sheet
WO2020080493A1 (ja) * 2018-10-17 2020-04-23 日本製鉄株式会社 鋼板及び鋼板の製造方法
CN114635090A (zh) * 2017-06-02 2022-06-17 安赛乐米塔尔公司 用于制造压制硬化部件的钢板、具有高强度和碰撞延性的组合的压制硬化部件及其制造方法
CN115698365A (zh) * 2020-07-20 2023-02-03 安赛乐米塔尔公司 经热处理的冷轧钢板及其制造方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101561008B1 (ko) 2014-12-19 2015-10-16 주식회사 포스코 구멍확장능이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
KR101657822B1 (ko) * 2014-12-24 2016-09-20 주식회사 포스코 연신특성이 우수한 용융아연도금강판, 합금화 용융아연도금강판 및 그 제조방법
WO2016171237A1 (ja) 2015-04-22 2016-10-27 新日鐵住金株式会社 めっき鋼板
CN104862612A (zh) * 2015-05-26 2015-08-26 宝山钢铁股份有限公司 一种460MPa级耐低温正火钢、钢管及其制造方法
CN107636184A (zh) 2015-06-11 2018-01-26 新日铁住金株式会社 合金化热浸镀锌钢板及其制造方法
CN105177441A (zh) * 2015-08-31 2015-12-23 铜陵市大明玛钢有限责任公司 用于液晶屏幕框架的冷轧钢板制作工艺
KR102157279B1 (ko) * 2016-03-11 2020-09-17 닛폰세이테츠 가부시키가이샤 티탄재 및 그 제조 방법
EP3436613B1 (en) * 2016-03-30 2020-05-27 Tata Steel Limited A hot rolled high strength steel (hrhss) product with tensile strength of 1000 -1200 mpa and total elongation of 16%-17%
CN109477180A (zh) * 2016-07-19 2019-03-15 新日铁住金株式会社 高频淬火用钢
CN106244923B (zh) * 2016-08-30 2018-07-06 宝山钢铁股份有限公司 一种磷化性能和成形性能优良的冷轧高强度钢板及其制造方法
CN107201482B (zh) * 2017-04-19 2019-01-25 马鞍山市鑫龙特钢有限公司 一种风电用齿轮钢及其制备方法
WO2018220412A1 (fr) 2017-06-01 2018-12-06 Arcelormittal Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
CN107716902A (zh) * 2017-10-25 2018-02-23 安徽恒利增材制造科技有限公司 一种柱塞泵转子用双金属的铸造方法
KR102437795B1 (ko) 2018-03-30 2022-08-29 제이에프이 스틸 가부시키가이샤 고강도 강판 및 그 제조 방법
WO2019188640A1 (ja) 2018-03-30 2019-10-03 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN111378894B (zh) * 2018-12-28 2021-10-19 宝山钢铁股份有限公司 一种表层铁素体内层铁素体加珠光体的梯度钢铁材料及制造方法
CN111378895B (zh) * 2018-12-28 2021-10-19 宝山钢铁股份有限公司 一种表层高塑性内层高强度的梯度钢铁材料及制造方法
CN109402355B (zh) * 2018-12-29 2020-12-15 首钢集团有限公司 一种600MPa级热轧TRIP型双相钢及其制备方法
CN109554616B (zh) * 2018-12-29 2021-01-15 首钢集团有限公司 一种700MPa级热轧TRIP辅助型双相钢及其制备方法
US20220090248A1 (en) * 2019-02-06 2022-03-24 Nippon Steel Corporation Hot dip galvanized steel sheet and method for producing same
WO2020196326A1 (ja) * 2019-03-22 2020-10-01 日本製鉄株式会社 高強度鋼板及びその製造方法
WO2020196311A1 (ja) * 2019-03-22 2020-10-01 日本製鉄株式会社 高強度鋼板及びその製造方法
CN113355590A (zh) * 2020-03-06 2021-09-07 宝山钢铁股份有限公司 一种三层复合组织高强钢板及其制造方法
CN112375973B (zh) * 2020-10-26 2022-12-20 佛山科学技术学院 一种用于建筑幕墙工程的高强钢结构件及其热处理工艺
KR102457022B1 (ko) * 2020-12-21 2022-10-21 주식회사 포스코 폭방향을 따라 우수한 점 용접성이 균등하게 구현되는 고강도 용융아연도금 강판 및 그 제조방법
KR102457021B1 (ko) * 2020-12-21 2022-10-21 주식회사 포스코 표면품질과 점 용접성이 우수한 고강도 용융아연도금 강판 및 그 제조방법
KR102457020B1 (ko) * 2020-12-21 2022-10-21 주식회사 포스코 표면품질과 점 용접성이 우수한 고강도 용융아연도금 강판 및 그 제조방법
KR102457023B1 (ko) * 2020-12-21 2022-10-21 주식회사 포스코 표면품질과 점 용접성이 우수한 고강도 용융아연도금 강판 및 그 제조방법
WO2022136689A1 (en) * 2020-12-23 2022-06-30 Voestalpine Stahl Gmbh A zinc or zinc-alloy coated strip or steel with improved zinc adhesion
CN112981277B (zh) * 2021-02-02 2022-04-01 北京科技大学 一种超高强度中碳纳米贝氏体钢的制备方法
WO2023118350A1 (en) * 2021-12-24 2023-06-29 Tata Steel Nederland Technology B.V. High strength steel strip or sheet excellent in ductility and bendability, manufacturing method thereof, car or truck component

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175839A (ja) * 1988-12-28 1990-07-09 Kawasaki Steel Corp 溶接性、加工性に優れた高強度冷延鋼板およびその製造方法
JPH05195149A (ja) 1992-01-21 1993-08-03 Nkk Corp 曲げ加工性及び衝撃特性の優れた超高強度冷延鋼板
JP2007016319A (ja) 2006-08-11 2007-01-25 Sumitomo Metal Ind Ltd 高張力溶融亜鉛めっき鋼板とその製造方法
JP2009215616A (ja) 2008-03-11 2009-09-24 Sumitomo Metal Ind Ltd 溶融亜鉛めっき鋼板およびその製造方法
JP2009270126A (ja) 2008-04-08 2009-11-19 Sumitomo Metal Ind Ltd 冷延鋼板および溶融めっき鋼板ならびに該鋼板の製造方法
JP2010059452A (ja) 2008-09-02 2010-03-18 Sumitomo Metal Ind Ltd 冷延鋼板およびその製造方法
JP2010065269A (ja) 2008-09-10 2010-03-25 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2010070843A (ja) 2008-08-19 2010-04-02 Jfe Steel Corp 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011111675A (ja) * 2009-11-30 2011-06-09 Nippon Steel Corp 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法
JP2011179030A (ja) * 2010-02-26 2011-09-15 Jfe Steel Corp 曲げ性に優れた超高強度冷延鋼板
JP2011231367A (ja) * 2010-04-27 2011-11-17 Sumitomo Metal Ind Ltd 溶融亜鉛めっき鋼板およびその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525431A (en) * 1989-12-12 1996-06-11 Nippon Steel Corporation Zinc-base galvanized sheet steel excellent in press-formability, phosphatability, etc. and process for producing the same
JP3872621B2 (ja) 1999-11-05 2007-01-24 新日本製鐵株式会社 自動車車体用亜鉛系メッキ鋼板
JPWO2004001084A1 (ja) 2002-06-25 2005-10-20 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
JP4528137B2 (ja) * 2004-03-19 2010-08-18 新日本製鐵株式会社 穴拡げ性に優れた高強度高延性薄鋼板の製造方法
JP4445365B2 (ja) 2004-10-06 2010-04-07 新日本製鐵株式会社 伸びと穴拡げ性に優れた高強度薄鋼板の製造方法
JP4589880B2 (ja) * 2006-02-08 2010-12-01 新日本製鐵株式会社 成形性と穴拡げ性に優れた高強度溶融亜鉛めっき鋼板と高強度合金化溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法並びに高強度合金化溶融亜鉛めっき鋼板の製造方法
JP4772927B2 (ja) * 2009-05-27 2011-09-14 新日本製鐵株式会社 疲労特性と伸び及び衝突特性に優れた高強度鋼板、溶融めっき鋼板、合金化溶融めっき鋼板およびそれらの製造方法
MX360965B (es) * 2009-11-30 2018-11-23 Nippon Steel & Sumitomo Metal Corp Placa de acero de alta resistencia con resistencia a la tracción final de 900 mpa o mas, excelente en resistencia a la fragilizacion por hidrógeno y método de producción de la misma.
US8951366B2 (en) * 2010-01-26 2015-02-10 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet and method of manufacturing thereof
WO2012015831A1 (en) * 2010-07-26 2012-02-02 Sapphire Energy, Inc. Process for the recovery of oleaginous compounds from biomass
JP5273324B1 (ja) 2011-07-29 2013-08-28 新日鐵住金株式会社 曲げ性に優れた高強度亜鉛めっき鋼板およびその製造方法
CA2850195C (en) * 2011-09-30 2016-10-25 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dip galvanized steel sheet excellent in impact resistance property and manufacturing method thereof, and high-strength alloyed hot-dip galvanized steel sheet and manufacturing method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02175839A (ja) * 1988-12-28 1990-07-09 Kawasaki Steel Corp 溶接性、加工性に優れた高強度冷延鋼板およびその製造方法
JPH05195149A (ja) 1992-01-21 1993-08-03 Nkk Corp 曲げ加工性及び衝撃特性の優れた超高強度冷延鋼板
JP2007016319A (ja) 2006-08-11 2007-01-25 Sumitomo Metal Ind Ltd 高張力溶融亜鉛めっき鋼板とその製造方法
JP2009215616A (ja) 2008-03-11 2009-09-24 Sumitomo Metal Ind Ltd 溶融亜鉛めっき鋼板およびその製造方法
JP2009270126A (ja) 2008-04-08 2009-11-19 Sumitomo Metal Ind Ltd 冷延鋼板および溶融めっき鋼板ならびに該鋼板の製造方法
JP2010070843A (ja) 2008-08-19 2010-04-02 Jfe Steel Corp 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010059452A (ja) 2008-09-02 2010-03-18 Sumitomo Metal Ind Ltd 冷延鋼板およびその製造方法
JP2010065269A (ja) 2008-09-10 2010-03-25 Sumitomo Metal Ind Ltd 合金化溶融亜鉛めっき鋼板およびその製造方法
JP2011111675A (ja) * 2009-11-30 2011-06-09 Nippon Steel Corp 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法
JP2011179030A (ja) * 2010-02-26 2011-09-15 Jfe Steel Corp 曲げ性に優れた超高強度冷延鋼板
JP2011231367A (ja) * 2010-04-27 2011-11-17 Sumitomo Metal Ind Ltd 溶融亜鉛めっき鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASEGAWA ET AL., CAMP-ISIJ, vol. 20, 2007, pages 43 7

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161023A (ja) * 2014-02-28 2015-09-07 新日鐵住金株式会社 冷延鋼板
US10507629B2 (en) 2014-11-05 2019-12-17 Nippon Steel Corporation Hot-dip galvanized steel sheet
US10822683B2 (en) * 2014-11-05 2020-11-03 Nippon Steel Corporation Hot-dip galvanized steel sheet
US20170305114A1 (en) * 2014-11-05 2017-10-26 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet
US20170314115A1 (en) * 2014-11-05 2017-11-02 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet
US10822684B2 (en) * 2014-11-05 2020-11-03 Nippon Steel Corporation Hot-dip galvanized steel sheet
JP2016223003A (ja) * 2015-05-28 2016-12-28 チャイナ スティール コーポレーションChina Steel Corporation 高強度鋼板の焼きなましプロセス
WO2016194272A1 (ja) * 2015-05-29 2016-12-08 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板及びこれらの製造方法
JPWO2016194272A1 (ja) * 2015-05-29 2017-06-15 Jfeスチール株式会社 高強度冷延鋼板、高強度めっき鋼板及びこれらの製造方法
JP2017002384A (ja) * 2015-06-15 2017-01-05 新日鐵住金株式会社 耐スポット溶接部破断特性に優れた鋼板及びその製造方法
JP2017048412A (ja) * 2015-08-31 2017-03-09 新日鐵住金株式会社 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法
US20180274069A1 (en) * 2015-09-25 2018-09-27 Nippon Steel & Sumitomo Metal Corporation Steel sheet
US11180835B2 (en) * 2015-09-25 2021-11-23 Nippon Steel Corporation Steel sheet
US10900097B2 (en) 2015-12-15 2021-01-26 Posco High-strength hot-dip galvanized steel sheet having excellent surface quality and spot weldability
JP2019504196A (ja) * 2015-12-15 2019-02-14 ポスコPosco 表面品質及びスポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2019505693A (ja) * 2015-12-21 2019-02-28 アルセロールミタル 改善された延性及び成形加工性を有するコーティングされた高強度鋼板を製造するための方法並びに得られたコーティングされた鋼板
US11827948B2 (en) 2015-12-21 2023-11-28 Arcelormittal Method for producing a high strength coated steel sheet having improved ductility and formability, and obtained coated steel sheet
JP2019505690A (ja) * 2015-12-21 2019-02-28 アルセロールミタル 改善された延性及び成形加工性を有する高強度鋼板を製造するための方法並びに得られた鋼板
CN114635090A (zh) * 2017-06-02 2022-06-17 安赛乐米塔尔公司 用于制造压制硬化部件的钢板、具有高强度和碰撞延性的组合的压制硬化部件及其制造方法
CN114635090B (zh) * 2017-06-02 2023-12-22 安赛乐米塔尔公司 用于制造压制硬化部件的钢板、具有高强度和碰撞延性的组合的压制硬化部件及其制造方法
JP6760543B1 (ja) * 2018-10-17 2020-09-23 日本製鉄株式会社 鋼板及び鋼板の製造方法
WO2020080493A1 (ja) * 2018-10-17 2020-04-23 日本製鉄株式会社 鋼板及び鋼板の製造方法
CN115698365B (zh) * 2020-07-20 2024-03-26 安赛乐米塔尔公司 经热处理的冷轧钢板及其制造方法
CN115698365A (zh) * 2020-07-20 2023-02-03 安赛乐米塔尔公司 经热处理的冷轧钢板及其制造方法

Also Published As

Publication number Publication date
US10544474B2 (en) 2020-01-28
JP5454746B2 (ja) 2014-03-26
TWI468534B (zh) 2015-01-11
EP2813595A1 (en) 2014-12-17
EP2813595A4 (en) 2016-03-23
MX2014009471A (es) 2014-09-25
KR101622063B1 (ko) 2016-05-17
KR20140117477A (ko) 2014-10-07
BR112014019206A8 (pt) 2017-07-11
JPWO2013118679A1 (ja) 2015-05-11
PL2813595T3 (pl) 2020-07-13
EP2813595B1 (en) 2020-01-01
CN104105807B (zh) 2017-05-31
CN104105807A (zh) 2014-10-15
TW201343934A (zh) 2013-11-01
BR112014019206A2 (ja) 2017-06-20
ES2768598T3 (es) 2020-06-23
US20140377582A1 (en) 2014-12-25

Similar Documents

Publication Publication Date Title
JP5454746B2 (ja) 高強度冷延鋼板及びその製造方法
JP5780171B2 (ja) 曲げ性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP5273324B1 (ja) 曲げ性に優れた高強度亜鉛めっき鋼板およびその製造方法
JP5857909B2 (ja) 鋼板およびその製造方法
KR101313957B1 (ko) 피로 특성과 연신 및 충돌 특성이 우수한 고강도 강판, 용융 도금 강판, 합금화 용융 도금 강판 및 그들의 제조 방법
CN107709598B (zh) 高强度冷轧钢板、高强度热浸镀锌钢板、以及高强度合金化热浸镀锌钢板
KR101485236B1 (ko) 가공성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법
JP6503584B2 (ja) 熱延鋼板の製造方法、冷延フルハード鋼板の製造方法および熱処理板の製造方法
US20170298482A1 (en) High-strength steel sheet and method for manufacturing same
JP2017048412A (ja) 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法
JPWO2013018722A1 (ja) 成形性に優れた高強度鋼板、高強度亜鉛めっき鋼板及びそれらの製造方法
US11230744B2 (en) Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet
KR101996119B1 (ko) 열연 강판 및 그 제조 방법
CN108779536B (zh) 钢板、镀覆钢板和它们的制造方法
JP6610113B2 (ja) 高強度合金化溶融亜鉛めっき鋼板と該鋼板用熱延鋼板及びそれらの製造方法
JP4855442B2 (ja) 低降伏比型合金化溶融亜鉛メッキ高強度鋼板の製造方法
JP6384623B2 (ja) 高強度鋼板およびその製造方法
JP5397141B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
KR101639914B1 (ko) 인산염처리성이 우수한 고강도 냉연강판 및 그 제조방법
JP6947327B2 (ja) 高強度鋼板、高強度部材及びそれらの製造方法
JP6541504B2 (ja) 製造安定性に優れた高強度高延性鋼板、及びその製造方法、並びに高強度高延性鋼板の製造に用いられる冷延原板
CN114945690B (zh) 钢板及其制造方法
JP5953694B2 (ja) めっき密着性と成形性に優れた高強度溶融亜鉛めっき鋼板とその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013531804

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747093

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201404561

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 20147021641

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14376678

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/009471

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013747093

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014019206

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014019206

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140804