WO2020080493A1 - 鋼板及び鋼板の製造方法 - Google Patents
鋼板及び鋼板の製造方法 Download PDFInfo
- Publication number
- WO2020080493A1 WO2020080493A1 PCT/JP2019/040980 JP2019040980W WO2020080493A1 WO 2020080493 A1 WO2020080493 A1 WO 2020080493A1 JP 2019040980 W JP2019040980 W JP 2019040980W WO 2020080493 A1 WO2020080493 A1 WO 2020080493A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- phase
- rolling
- hot
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Definitions
- the present disclosure relates to a steel plate and a manufacturing method thereof.
- Mn has been positively added so far, about 5 mass% of Mn is contained in the steel sheet, and residual austenite (residual ⁇ ) is generated in the steel.
- Patent Document 1 a steel plate (Patent Document 1) to which 2.60% or more and 4.20% or less Mn is added has been proposed. Since the steel sheet also contains more Mn than general high-strength steel, retained austenite is easily generated, elongation is high, and excellent formability is exhibited.
- Non-Patent Document 1 since the steel sheet disclosed in Non-Patent Document 1 has a high Mn content, the weldability may be a problem when it is used for automobile body parts. Therefore, in consideration of usability as automobile parts and the like, it is desired to improve both strength and formability of the steel sheet with a smaller Mn content. Further, since the steel sheet disclosed in Patent Document 1 forms a remarkable band structure, the bendability exhibits remarkable anisotropy. In particular, when the bending ridge line is in the rolling direction, bendability deteriorates. In this way, if the anisotropy of bendability becomes large, it becomes difficult to create a rectangular tubular part, and not only the degree of freedom in designing the part decreases, but also the yield at the time of molding the part decreases.
- bendability when the bending ridge line is in the rolling direction is simply referred to as bendability.
- the austenite phase is 10% or more
- the tempered martensite phase is 10% or more in area%.
- the fresh martensite phase is limited to less than 15%
- the area ratio of the unrecrystallized ferrite phase to the ferrite phase is set to 10 to 50%
- CMn ⁇ / CMn ⁇ which is the ratio of the average Mn concentration CMn ⁇ in the austenite phase to the average Mn concentration CMn ⁇ in the ferrite phase
- the variation in Vickers hardness at the position 1 ⁇ 8 of the thickness from the surface is set to 40 Hv or less.
- the summary of the present disclosure is as follows.
- the chemical composition is% by mass, C: more than 0.15 to less than 0.40%, Si: 0.001 to less than 2.00%, Mn: more than 2.50 to less than 4.20%, sol. Al: 0.001 to less than 1.500%, P: 0.030% or less, S: 0.0050% or less, N: less than 0.050%, O: less than 0.020%, Cr: 0 to 0.50%, Mo: 0-2.00%, W: 0 to 2.00%, Cu: 0 to 2.00%, Ni: 0 to 2.00%, Ti: 0 to 0.300%, Nb: 0 to 0.300%, V: 0-0.300%, B: 0 to 0.010%, Ca: 0 to 0.010%, Mg: 0 to 0.010%, Zr: 0 to 0.010%, REM: 0 to 0.010%, Sb: 0 to 0.050%, Sn: 0 to 0.050%, Bi: 0 to 0.050%, and the balance: iron
- the area ratio of the unrecrystallized ferrite phase to the ferrite phase is 10 to 50%, CMn ⁇ / CMn ⁇ , which is the ratio of the average Mn concentration CMn ⁇ in the austenite phase and the average Mn concentration CMn ⁇ in the ferrite phase, is 1.20 or more, and the variation in Vickers hardness at the 1/8 position of the thickness from the surface is Steel plate that is 40 Hv or less.
- the chemical composition is% by mass, Cr: 0.01 to 0.50%, Ti: 0.005 to 0.300%, Nb: 0.005 to 0.300%, V: 0.005 to 0.300%, and B: 0.0001 to 0.010%
- the steel sheet according to (1) containing one or more selected from the group consisting of: (3) The steel sheet according to (1) or (2), which has a hot-dip galvanized layer on the surface of the steel sheet.
- the steel sheet according to (1) or (2) which has a galvannealed layer on the surface of the steel sheet.
- the chemical composition is% by mass, C: more than 0.15 to less than 0.40%, Si: 0.001 to less than 2.00%, Mn: more than 2.50 to less than 4.20%, sol.
- the chemical composition is% by mass, Cr: 0.01 to 0.50%, Ti: 0.005 to 0.300%, Nb: 0.005 to 0.300%, V: 0.005 to 0.300%, and B: 0.0001 to 0.010%
- C is an extremely important element for increasing the strength of steel and ensuring an austenite phase. In order to obtain a sufficient austenite phase, a C content exceeding 0.15% is required. On the other hand, if C is contained excessively, it becomes difficult to maintain the weldability of the steel sheet, so the upper limit of C content was made less than 0.40%.
- the lower limit of the C content is preferably 0.20% or more, more preferably 0.25% or more. When the C content is 0.20% or more, the generation of the austenite phase can be further promoted.
- the upper limit of the C content is preferably 0.36% or less, more preferably 0.32% or less, and by setting the upper limit of the C content to the above range, the toughness of the steel sheet can be further enhanced. .
- Si is an element effective for strengthening the tempered martensite phase, homogenizing the structure, and improving the formability. Further, Si also has a function of suppressing precipitation of cementite and promoting retention of an austenite phase. To obtain the above effect, a Si content of 0.001% or more is required. On the other hand, if Si is contained excessively, it becomes difficult to maintain the plateability and chemical conversion treatability of the steel sheet, so the upper limit of the Si content is made less than 2.00%.
- the lower limit of the Si content is preferably 0.005% or more, more preferably 0.010% or more, still more preferably 0.10% or more. By setting the lower limit of the Si content to the above range, the elongation characteristics of the steel sheet can be further improved.
- the upper limit of the Si content is preferably 1.90% or less, more preferably 1.80% or less.
- Mn is an element that stabilizes the austenite phase and enhances hardenability. Further, in the steel sheet of the present disclosure, Mn is concentrated in the austenite phase to further stabilize the austenite phase. More than 2.50% Mn is required to stabilize the austenite phase at room temperature.
- the upper limit of the Mn content is set to less than 4.20% in order to secure the weldability and not reduce the bendability when the bending ridge line is in the rolling direction.
- the lower limit of the Mn content is preferably more than 3.00%, more preferably 3.50% or more.
- the upper limit of the Mn content is preferably 4.10% or less, more preferably 4.00% or less.
- Al is a deoxidizer, and it is necessary to contain 0.001% or more. Further, Al expands the temperature range of the two-phase region during annealing, and therefore has the effect of improving the material stability. The larger the Al content, the greater the effect. However, if Al is contained excessively, it becomes difficult to maintain the surface properties, paintability, and weldability.
- the upper limit of Al was set to less than 1.500%. sol.
- the lower limit of the Al content is preferably 0.005% or more, more preferably 0.010% or more, still more preferably 0.020% or more. sol.
- the upper limit of the Al content is preferably 1.200% or less, more preferably 1.000% or less. sol.
- P is an impurity, and if the steel sheet contains P in excess, bendability is impaired. Therefore, the upper limit of the P content is 0.030% or less.
- the upper limit of the P content is preferably 0.025% or less, more preferably 0.020% or less, still more preferably 0.015% or less. Since the steel sheet according to the present embodiment does not require P, the lower limit of P content is 0%.
- the lower limit of the P content may be more than 0% or 0.001% or more, but the smaller the P content is, the more preferable.
- the upper limit of the S content is set to 0.0050% or less.
- the upper limit of the S content is preferably 0.0030% or less, more preferably 0.0020% or less. Since the steel sheet according to this embodiment does not require S, the lower limit of the S content is 0%.
- the lower limit of the S content may be more than 0% or 0.0003% or more, but the lower the S content, the more preferable.
- N is an impurity, and if the steel sheet contains 0.050% or more of N, the toughness decreases. Therefore, the upper limit of the N content is less than 0.050%.
- the upper limit of the N content is preferably 0.010% or less, more preferably 0.006% or less. Since the steel sheet according to the present embodiment does not require N, the lower limit value of N content is 0%.
- the lower limit of the N content may be more than 0% or 0.001% or more, but the smaller the N content is, the more preferable.
- O is an impurity, and if the steel sheet contains 0.020% or more of O, the ductility decreases. Therefore, the upper limit of the O content is set to less than 0.020%.
- the upper limit of the O content is preferably 0.010% or less, more preferably 0.005% or less, and further preferably 0.003% or less. Since the steel sheet according to the present embodiment does not require O, the lower limit value of O content is 0%.
- the lower limit of the O content may be more than 0% or 0.001% or more, but the smaller the O content is, the more preferable.
- the steel sheet of the present embodiment further comprises one or more selected from the group consisting of Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn and Bi. You may contain 2 or more types. However, the steel sheet according to the present embodiment may not contain Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn and Bi, that is, The lower limit of the content may be 0%.
- Cr, Mo, W, Cu, and Ni are not essential elements in the steel sheet according to the present embodiment, so their contents are 0% or more. However, Cr, Mo, W, Cu, and Ni are elements that improve the strength of the steel sheet, and thus may be contained. In order to obtain the strength improving effect of the steel sheet, the steel sheet contains 0.01% or more and 0.04% or more of one or more elements selected from the group consisting of Cr, Mo, W, Cu, and Ni, respectively. Or more or 0.10% or more may be contained.
- the steel sheet contains these elements in an excessive amount, surface scratches during hot rolling are likely to occur, and further, the strength of the hot rolled steel sheet becomes too high, and the cold rolling property may deteriorate. Therefore, in the content of each of one or more elements selected from the group consisting of Cr, Mo, W, Cu, and Ni, the upper limit of the content of Cr is set to 0.50% or less, and Mo The upper limit of the content of each of W, Cu, and Ni is 2.00% or less.
- the upper limit of the content of Cr may be 0.45% or less, 0.40% or less or 0.35% or less, and the upper limit of the content of each of Mo, W, Cu, and Ni is: It may be 1.80% or less, 1.50% or less, 1.20% or less, or 1.00% or less.
- the steel sheet may contain one or more elements selected from the group consisting of Ti, Nb, and V.
- the lower limit of the content of each of one or more elements selected from the group consisting of Ti, Nb, and V is preferably 0.005% or more. , 0.010% or more is more preferable.
- the strength of the hot-rolled steel sheet may increase too much and the cold rolling property may decrease.
- Nb when the Nb content is 0.300% or less, delay in recrystallization of the ferrite phase can be suppressed, and a desired structure can be obtained more stably. Therefore, the upper limit of the content of each of one or more elements selected from the group consisting of Ti, Nb, and V is set to 0.300% or less, preferably 0.250% or less, and more preferably 0. 200% or less.
- B, Ca, Mg, Zr, and REM are not essential elements for the steel sheet of the present disclosure, so their contents are 0% or more.
- B, Ca, Mg, Zr, and REM improve the local ductility and hole expandability of the steel sheet.
- the lower limit of each of one or more elements selected from the group consisting of B, Ca, Mg, Zr, and REM is preferably 0.0001% or more, more preferably 0. 0.001% or more.
- the upper limit of the content of each of these elements is set to 0.010% or less and selected from the group consisting of B, Ca, Mg, Zr, and REM. It is preferable that the total content of one or more elements is 0.030% or less.
- Sb, Sn, and Bi are not essential elements for the steel sheet of the present disclosure, their contents are 0% or more. However, Sb, Sn, and Bi prevent Mn, Si, and / or Al and other easily oxidizable elements in the steel sheet from diffusing on the surface of the steel sheet to form oxides, and improve the surface properties and plating properties of the steel sheet. Increase.
- the lower limit of the content of each of one or more elements selected from the group consisting of Sb, Sn, and Bi is preferably 0.0005% or more, more preferably 0.001. % Or more.
- the upper limit of the content of each of these elements is 0.050% or less, preferably 0.040% or less, more preferably Is 0.030% or less.
- the steel sheet of the present embodiment is Cr: 0.01 to 0.50%, Ti: 0.005 to 0.300%, Nb: 0.005 to 0.300%, V: 0.
- One or two or more elements selected from the group consisting of 0.005 to 0.300% and B: 0.0001 to 0.010% may be contained.
- the balance of the chemical composition of the steel sheet according to this embodiment is iron and impurities.
- the impurities include elements that are inevitably mixed in from the steel raw material, scrap, and / or the steelmaking process, and are allowed as long as they do not impair the characteristics of the steel sheet according to this embodiment.
- the impurities also include elements other than the components described above, and elements contained in the steel sheet at a level at which the action and effect peculiar to the element do not affect the characteristics of the steel sheet according to the embodiment of the present invention. To do.
- the metal structure at the 1/8 position (also referred to as 1/8 t part) of the thickness from the surface of the steel sheet according to the present embodiment has an area ratio of austenite phase: 10% or more, and total of tempered martensite phase and bainite phase: 5% or more, ferrite phase: 35% or more, and fresh martensite phase: less than 15%.
- the fraction of each structure changes depending on the heat treatment conditions and affects the material properties of the steel sheet such as strength, elongation property and bendability.
- the austenite phase is a structure that enhances the elongation characteristics of the steel sheet by transformation-induced plasticity.
- the austenite phase can be transformed into the martensite phase by bulging, drawing, stretch-flanging, or bending accompanied by tensile deformation, which also contributes to the improvement of the strength of the steel sheet.
- the steel sheet according to the present embodiment needs to contain an austenite phase with an area ratio of 10% or more in the metal structure.
- the area ratio of the austenite phase is preferably 15% or more, more preferably 18% or more. When the area ratio of the austenite phase is 15% or more, and further 18% or more, both strength and elongation are compatible with each other, and TS ⁇ EL described later becomes high.
- the upper limit of the area ratio of the austenite phase is not particularly specified, but it is substantially 30% or less.
- the area ratio of the austenite phase is measured by the X-ray diffraction method.
- the fresh martensite phase is a hard phase containing many dislocations in its structure and is an effective phase for obtaining the strength of the steel sheet.
- the area ratio in the metal structure of the fresh martensite phase is set to less than 15%.
- the area ratio of the fresh martensite phase is preferably 10% or less, more preferably 5% or less, even more preferably substantially 0%.
- Total area% of tempered martensite phase and bainite phase in the metal structure of 1/8 t part of steel sheet 5% or more
- the tempered martensite phase and the bainite phase are also hard phases, they have a structure different from that of the fresh martensite phase, and contribute to the improvement of bendability while ensuring the strength of the steel sheet.
- the total area ratio of the tempered martensite phase and the bainite phase in the metal structure must be 5% or more.
- the total area ratio of the tempered martensite phase and the bainite phase is preferably 10% or more, more preferably 15% or more, even more preferably 20% or more.
- the upper limit of the total area ratio of the tempered martensite phase and the bainite phase is not particularly limited, but is substantially 50% or less. In the metal structure of the steel sheet according to the present embodiment, all of the total area ratio of the tempered martensite phase and the bainite phase are often the area ratio of tempered martensite. On the other hand, although the bainite phase may be contained in the metal structure, since the bainite phase has the same characteristics as the tempered martensite phase, even when the bainite phase is contained in the metal structure, the area ratio of the tempered martensite phase is included. And the area ratio of the bainite phase is also measured.
- the ferrite phase is an essential structure for ensuring ductility.
- the area ratio of the ferrite phase in the metal structure is 35% or more.
- the area ratio of the ferrite phase in the metal structure is preferably 40% or more, more preferably 45% or more.
- the upper limit of the area ratio of the ferrite phase in the metal structure is not particularly limited, but is substantially 75% or less. Further, the area ratio of the unrecrystallized ferrite phase to the ferrite phase is 10% or more, preferably 20% or more.
- the upper limit of the area ratio of the unrecrystallized ferrite phase is more preferably 40% or less.
- the balance other than the austenite phase, the fresh martensite phase, the tempered martensite phase (including the bainite phase), and the ferrite phase can be a structure such as pearlite or cementite.
- the steel sheet according to the present embodiment may be composed of only an austenite phase, a fresh martensite phase, a tempered martensite phase, a bainite phase, and a ferrite phase.
- CMn ⁇ / CMn ⁇ ⁇ 1.20 The ratio of the average Mn concentration CMn ⁇ in the austenite phase to the average Mn concentration CMn ⁇ in the ferrite phase (all ferrite phases including unrecrystallized ferrite phase) is 1.20 or more, preferably 1.35 or more. is there.
- CMn ⁇ / CMn ⁇ is within the above range, sufficient Mn distribution that concentrates Mn in a portion that was an austenite phase during heat treatment can be obtained, and a stable austenite phase can be obtained even by short-time annealing, resulting in excellent ductility. Is obtained.
- CMn ⁇ / CMn ⁇ is less than 1.20, the Mn distribution is insufficient and it becomes difficult to obtain an austenite phase by short-time annealing.
- the upper limit of CMn ⁇ / CMn ⁇ is not particularly specified, it is substantially 1.60 or less.
- the variation in Vickers hardness at the position of 1/8 t of the steel plate is 40 Hv or less, preferably 30 Hv or less.
- the area ratio of the austenite phase is calculated as follows. From the center of the steel plate surface (the center point of the steel plate width direction) to the length of 25 mm in the rolling direction, the width of the steel plate in the width direction (direction perpendicular to the rolling direction) of 25 mm, and the thickness up to the thickness of the annealed sample. cut. Then, this test piece is subjected to chemical polishing to reduce the plate thickness by 1 ⁇ 8 to obtain a test piece having a chemically polished surface.
- the “direction perpendicular to the rolling direction” is a direction parallel to the steel plate surface and perpendicular to the rolling direction.
- the surface of the test piece is subjected to X-ray diffraction analysis three times using a Co tube with a measurement range 2 ⁇ of 45 to 105 degrees. Then, the area ratio of the austenite phase is obtained by analyzing the profile of the obtained austenite phase and averaging the respective profiles.
- the area ratio of the ferrite phase, the total of the tempered martensite phase and the bainite phase, and the area ratio of the fresh martensite phase are calculated from the structure observation by a scanning electron microscope (SEM).
- SEM scanning electron microscope
- the L cross section of the steel plate is mirror-polished, and then a microstructure is developed with 3% Nital, and a scanning electron microscope with a magnification of 5000 is used to measure 0.1 mm in length (length in the plate thickness direction) at 1/8 position from the surface.
- S) x lateral 0.3 mm (length in the rolling direction) is observed.
- the ferrite phase (including unrecrystallized ferrite phase) is identified as a gray base structure, and the austenite phase and the fresh martensite phase are identified as white structures.
- the area ratio of the fresh martensite phase is calculated by subtracting the area ratio of the austenite phase measured by the X-ray diffraction method from the total area ratio of the austenite phase and the fresh martensite phase.
- the tempered martensite phase (including the bainite phase) looks white like the fresh martensite phase, but the one with a substructure confirmed within the crystal grains is judged to be the tempered martensite phase (including the bainite phase). It is calculated by
- the L cross section means a plane obtained by cutting the steel plate parallel to the rolling direction and perpendicular to the steel plate surface.
- the L cross section in the present embodiment is a surface cut so as to pass through the center of the steel sheet in the width direction.
- the area ratio of the unrecrystallized ferrite phase is determined by the crystal grains of the ferrite phase as described above, and then backscattered electron diffraction (EBSP) measurement is performed for this region, that is, for the region of the ferrite phase. It is calculated by judging the region where the KAM value is 1 ° or more as the unrecrystallized ferrite phase structure. Therefore, the "area ratio of the unrecrystallized ferrite phase" refers to the ratio of the unrecrystallized ferrite phase to the ferrite phase.
- CMn ⁇ / CMn ⁇ is measured by EBSP, SEM, and electron beam microanalyzer (EPMA).
- EPMA electron beam microanalyzer
- the identified arbitrary austenite phase ( ⁇ phase) and ferrite in a region of 50 ⁇ m in length (length in the plate thickness direction) and 50 ⁇ m in width (length in the rolling direction) at the 1/8 position from the surface.
- the phase ( ⁇ phase) the average value of the Mn concentration measured for each of the 10 grains of each phase is calculated, and the values are taken as CMn ⁇ and CMn ⁇ , and CMn ⁇ / CMn ⁇ is calculated.
- the L-section of the steel sheet is mirror-polished, and then a microstructure is revealed by 3% Nital, and the variation in Vickers hardness at the 1 / 8th position of the thickness from the central portion of the steel sheet surface is measured.
- the load is 100 g
- the Vickers hardness at eight points at 1/8 of the thickness from the surface is measured
- the difference between the maximum and minimum is the variation in Vickers hardness.
- the interval between adjacent indentations is 50 to 70 ⁇ m.
- the Vickers hardness is measured according to JIS2244: 2009.
- the tensile strength (TS) of the steel sheet according to this embodiment is preferably 980 MPa or more, more preferably 1180 MPa or more. This is because when the steel sheet is used as a material for automobiles, the strength is increased to reduce the thickness and contribute to the weight reduction. Further, in order to subject the steel sheet according to the present embodiment to press forming, the elongation (EL) is preferably excellent, for example, the elongation (EL) is 20% or more, preferably 22% or more.
- TS ⁇ EL of the steel sheet according to the present embodiment is preferably 24000 MPa ⁇ % or more, more preferably 26000 MPa ⁇ % or more, still more preferably 28000 MPa ⁇ % or more. Furthermore, the steel sheet according to the present embodiment is also excellent in bendability when the bending ridge line is in the rolling direction.
- the steel sheet of the present disclosure can be used in various applications, and is particularly suitable for use in structural parts of automobiles such as side sills and contributes to weight reduction of automobiles, so industrial contribution is extremely significant.
- the steel sheet according to the present embodiment is produced by smelting steel having the above-described chemical composition by a conventional method and casting it to produce a slab or a steel ingot, which is heated to a finish rolling temperature of 1000 ° C. or lower, after finish rolling.
- the hot-rolled steel sheet was subjected to hot rolling with a cooling time of 0.8 seconds or more, an average cooling rate after cooling of 30 ° C./second or more, and a winding temperature of less than 300 ° C.
- Hot rolling may be performed on a normal continuous hot rolling line.
- the heat treatment of the hot rolled steel sheet after hot rolling can be performed in a batch furnace such as a box annealing furnace (BAF) or a tunnel furnace such as a continuous annealing furnace.
- Cold rolling may also be performed by a normal continuous cold rolling line.
- the productivity is very excellent.
- hot rolling conditions heat treatment conditions for hot rolled steel sheet after hot rolling
- cold rolling conditions cold rolling conditions
- annealing conditions annealing conditions
- cooling conditions It is preferable to carry out within the range shown in.
- the molten steel may be one that has been melted by a normal blast furnace method, and the raw material, like the steel created by the electric furnace method, contains a large amount of scrap. May be included in.
- the slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting.
- the above-mentioned slab or steel ingot is heated and hot rolled to obtain a hot rolled steel sheet.
- the temperature of the steel material subjected to hot rolling is preferably 1100 to 1300 ° C. By setting the temperature of the steel material subjected to hot rolling to 1100 ° C. or higher, the deformation resistance during hot rolling can be further reduced. On the other hand, by setting the temperature of the steel material to be subjected to hot rolling to 1300 ° C. or lower, it is possible to suppress the decrease in yield due to the increase in scale loss.
- the temperature means the surface temperature at the central portion of the surface of the slab or the steel material.
- the time for maintaining the temperature range of 1100 to 1300 ° C. which is the preferable temperature range before hot rolling is not particularly limited, but in order to improve the toughness, it is preferably 30 minutes or longer, and 1 hour or longer. Is more preferable. Further, in order to suppress excessive scale loss, it is preferably 10 hours or less, more preferably 5 hours or less. In the case of direct feed rolling or direct rolling, it may be directly subjected to hot rolling without heat treatment.
- Finish rolling is performed in hot rolling.
- the finish rolling start temperature is set to 1000 ° C. or lower, and the finish rolling is performed at 1000 ° C. or lower. If the finish rolling start temperature is higher than 1000 ° C, coarsening of the structure in the hot rolled state cannot be prevented, and it becomes difficult to control the structure thereafter, and in addition, deterioration of the surface properties of the steel sheet due to grain boundary oxidation occurs. It is also difficult to suppress.
- the finish rolling start temperature is preferably 750 ° C. or higher. When the finish rolling start temperature is 750 ° C. or higher, the deformation resistance during rolling can be reduced and the microstructure can be easily controlled.
- the finish rolling After the finish rolling, let it cool for 0.8 seconds or longer. From the viewpoint of microstructure refinement, it is generally considered to be preferable to quench immediately after finish rolling. However, in a steel sheet containing more than 2.50% Mn, such as the steel sheet according to this embodiment, the recrystallization due to Mn segregation delays the austenite grain size immediately after finish rolling to be non-uniform. Alternatively, ferrite is nonuniformly generated, and a band structure is easily generated during heat treatment of the hot rolled steel sheet and further during annealing of the cold rolled steel sheet. Therefore, by cooling for 0.8 seconds or more after finish rolling, the formation of band structure is suppressed, and the variation in Vickers hardness becomes 40 Hv or less.
- the upper limit of the cooling time is preferably less than 6.0 seconds. When the cooling time is 6.0 seconds or more, the effect of suppressing band structure formation is saturated.
- cooling is performed for 1.2 to 4.0 seconds.
- the cooling time may be 1.5 seconds or longer, 1.8 seconds or longer, 2.0 seconds or longer, 2.2 seconds or longer, or 2.5 seconds or longer.
- the cooling time may be 3.8 seconds or less, 3.5 seconds or less, 3.2 seconds or less, or 3.0 seconds or less.
- the average cooling rate is less than 30 ° C./sec, cementite is nonuniformly generated at the block boundaries of the hot-rolled sheet and the former austenite grain boundaries during the martensitic transformation, so that the Vickers hardness variation is more than 40 Hv. Become.
- the upper limit of the average cooling rate is preferably 500 ° C / sec or less. The higher the average cooling rate is, the more preferable. If it is 500 ° C./second or less, uneven cooling is less likely to occur and cold rolling property is less likely to be deteriorated.
- the obtained hot rolled steel sheet is heat-treated for 1 hour or more in a temperature range where the austenite phase fraction is 20 to 50% in the two-phase region of ferrite / austenite.
- the austenite phase fraction is 20 to 50%, Mn is distributed to the austenite phase, and the austenite phase is formed. It can be stabilized to obtain high ductility.
- the heat treatment is performed at a temperature where the austenite phase fraction is less than 20% or more than 50%, it becomes difficult to stabilize the austenite phase. Even when the heat treatment is performed for less than 1 hour, it is difficult to stabilize the austenite phase.
- the annealed steel sheet can contain the austenite phase in an area ratio of 10% or more, and CMn ⁇ / CMn ⁇ can be increased.
- the temperature range in which the austenite phase fraction is 20 to 50% depends on the composition of the steel sheet and is heated from room temperature at a heating rate of 0.5 ° C./sec in an offline preliminary experiment. It can be determined by measuring the phase fraction.
- the lower limit of the holding time of heat treatment is preferably 3 hours or longer, more preferably 4 hours or longer.
- the austenite phase fraction during heat treatment may be 25% or more or 30% or more, and may be 45% or less or 40% or less.
- the upper limit of the heat treatment holding time is preferably 10 hours or less, more preferably 8 hours or less.
- the heat treatment atmosphere is not particularly limited, and may be, for example, an air atmosphere, an inert atmosphere, or a reducing atmosphere containing H 2 or the like.
- the hot-rolled steel sheet is pickled by a conventional method and then cold-rolled at a reduction rate (cold rolling rate) of 30 to 70% to obtain a cold-rolled steel sheet.
- a reduction rate cold rolling rate
- the rolling reduction of the cold rolling is less than 30%, recrystallization becomes nonuniform, austenite phase is nonuniformly generated, and variations in Vickers hardness of the annealed steel sheet increase. Further, if the rolling reduction is more than 70%, fracture tends to occur during cold rolling.
- the lower limit of the cold rolling reduction is preferably 40% or more.
- the upper limit of the reduction ratio of cold rolling is preferably 60% or less.
- the obtained cold rolled steel sheet is annealed by holding it for 30 seconds or longer, preferably 1 minute or longer in a temperature range where the austenite phase fraction is 20 to 65% in the ferrite / austenite two-phase region.
- Mn distribution has already been completed in the heat treatment of the hot-rolled steel sheet, and Mn is concentrated in the portion that was in the austenite phase during the heat treatment. Therefore, even in the short-time annealing, this portion immediately becomes the austenite phase.
- An easy and stable austenite phase can be obtained, and excellent ductility can be obtained by annealing for a short time.
- the annealing if the heat treatment is performed at a temperature where the austenite phase fraction is less than 20%, the austenite phase is not sufficiently obtained, and if the heat treatment is performed at a temperature higher than 65%, the ferrite phase is not sufficiently generated, and further, , It becomes easy to transform from the austenite phase to the martensite phase. Further, if the annealing time is less than 30 seconds, recrystallization does not proceed sufficiently.
- the upper limit of the annealing time is not particularly specified, but from the viewpoint of productivity, it is preferably less than 15 minutes, more preferably 5 minutes or less.
- the austenite phase fraction during annealing may be 25% or more or 30% or more, and may be 60% or less, 55% or less, 50% or less or 40% or less.
- annealing is performed in a temperature range where the austenite phase fraction is 25 to 40%.
- the annealing atmosphere may be an air atmosphere, an inert atmosphere, or a reducing atmosphere containing H 2 or the like.
- the difference between the temperature in the heat treatment before cold rolling and the temperature in the annealing after cold rolling is preferably 15% or less, more preferably 10% or less, in terms of the difference in austenite phase fraction. Either the temperature in the heat treatment before cold rolling or the temperature in the annealing after cold rolling may be higher.
- the austenite phase fraction in the heat treatment before cold rolling and the austenite phase in the annealing after cold rolling are set. Since it can be close to the fraction, the austenite phase can be generated only in the portion where Mn is concentrated in the annealing after cold rolling.
- the temperature in the heat treatment before cold rolling and the temperature in the annealing after cold rolling are substantially the maximum temperatures in the heat treatment profile.
- the cooling stop temperature When the cooling stop temperature is higher than 530 ° C., it becomes difficult to temper the martensite phase or to generate the bainite phase, and as a result, a fresh martensite phase is likely to be generated in the metal structure, and after the annealing, The bendability of the steel sheet is reduced. Further, when the cooling stop temperature is lower than 100 ° C., strain accompanying martensitic transformation is likely to occur, it becomes difficult to maintain the flatness of the steel sheet, and improvement in efficiency of the continuous annealing line is hindered.
- the average cooling rate after annealing is preferably 2 to 2000 ° C./sec.
- the average cooling rate after annealing is 2 ° C./sec or more, excessive coarsening of the ferrite phase can be further suppressed.
- the average cooling rate is 2000 ° C./sec or less, the steel sheet temperature distribution after the cooling is stopped is likely to be more uniform, and the flatness of the steel sheet can be sufficiently maintained.
- the holding time in the temperature range of 100 to 530 ° C. is preferably 30 seconds or more.
- the holding time in the temperature range of 100 to 530 ° C. is 1000 seconds or less, preferably 300 seconds or less.
- the holding temperature may be different from the cooling stop temperature within the range of 100 to 530 ° C, but the temperature difference between the holding temperature and the cooling stop temperature is preferably within 50 ° C, more preferably substantially. It is 0 ° C.
- the steel plate After holding in the temperature range of 100 to 530 ° C., the steel plate is cooled to preferably 80 ° C. or lower, more preferably room temperature.
- the cooling after the annealing may be performed as it is, preferably to 80 ° C. or lower, and more preferably to room temperature.
- the cooling after the annealing may be performed as it is, preferably to 80 ° C. or lower, and more preferably to room temperature.
- it can be manufactured as follows.
- the cold rolled steel sheet is cooled to a temperature range of 100 to 530 ° C. after the above-mentioned annealing, and a temperature range of 100 to 530 ° C. is set to 10 to 1,000.
- the temperature is raised to a temperature of 430 to 500 ° C., and then the cold rolled steel sheet is immersed in a hot dip galvanizing bath to perform hot dip galvanizing treatment.
- the plating bath conditions may be within the usual range. After the plating treatment, it may be cooled to room temperature.
- an alloyed hot-dip galvanized steel sheet is manufactured by applying an alloyed hot-dip galvanized steel sheet
- the hot-dip galvanizing treatment is performed on the steel sheet
- the steel sheet is cooled to room temperature at a temperature of 450 to 620 ° C.
- the galvanizing alloying treatment is performed at a temperature.
- the alloying treatment conditions may be within the usual range.
- Skin-pass rolling may be performed on the annealed steel plate or the plated steel plate.
- the reduction rate of such skin pass rolling is preferably 0 to less than 5.0% (that is, including the case where skin pass rolling is not performed).
- the reduction ratio when performing skin pass rolling is more than 0% and less than 5.0%.
- the steel sheet according to the present embodiment can be obtained by manufacturing the steel sheet as described above.
- the steel sheet of the present disclosure will be described more specifically with reference to examples.
- the following examples are examples of the steel sheet of the present disclosure and the manufacturing method thereof, and the steel sheet of the present disclosure and the manufacturing method thereof are not limited to the aspects of the following examples.
- the obtained slab was hot-rolled at the finish rolling start temperature, the cooling time, the average cooling rate, and the coiling temperature shown in Table 2 to produce a hot rolled steel sheet having a thickness of 2.6 mm.
- the obtained hot-rolled steel sheet was heat-treated at a temperature and holding time at which the austenite phase fraction shown in Table 2 was obtained, then pickled, and further cold-rolled at the cold-rolling rate shown in Table 2, Cold-rolled steel sheets were manufactured.
- the heat treatment of the hot rolled steel sheet was performed in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
- An example in which the austenite phase fraction and the holding time of the heat treatment are not described means an example in which the heat treatment is not performed after the hot rolling and the cold rolling is performed as it is after the winding.
- the obtained cold-rolled steel sheet was annealed at the temperature and holding time at which the austenite phase fraction shown in Table 3 was obtained.
- the cold rolled steel sheet was annealed in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
- the heat treatment temperature of the hot rolled steel sheet and the annealing temperature of the cold rolled steel sheet were temperature differences corresponding to the austenite phase fraction difference shown in Table 3.
- the average cooling rate after maintaining the annealing temperature was 100 ° C./sec. Examples in which the numerical values of the cooling stop temperature, the holding temperature after the cooling stop, and the holding time are not described are the cooling after annealing, without cooling stop and holding in the temperature range of 100 to 530 ° C. It means an example of cooling down to.
- the annealed cold-rolled steel sheets After the hot dip galvanizing treatment, without cooling to room temperature, they are heated to 500 ° C. at 10 ° C./sec and held at 500 ° C. for 5 sec for alloying treatment. Then, it was cooled to room temperature at an average cooling rate of 10 ° C./sec.
- the thus obtained annealed cold rolled steel sheet was subjected to skin pass rolling with a rolling reduction of 0.5% to produce the steel sheet of each example.
- a JIS No. 5 tensile test piece was sampled from a direction perpendicular to the rolling direction of the steel sheet, and a tensile test and an elongation test were performed to measure the tensile strength (TS) and the elongation (EL).
- the tensile test was carried out by the method specified in JIS-Z2241: 2011 using a JIS No. 5 tensile test piece.
- the elongation test was carried out by the method specified in JIS-Z2241: 2011 using a JIS No. 5 test piece having a parallel portion length of 50 mm.
- Bendability was evaluated by conducting a bending test.
- the specimen was taken from the center of the steel plate surface, and the test piece was pushed into the V block with a V-shaped punch having a tip angle of 90 degrees and a tip R of 2.5 times the plate thickness. After that, the bending ridge line was observed, and the bendability was defined as “good” when the ridge line had no cracks.
- the bendability was defined as “poor” when the ridge had cracks. Further, with respect to a steel plate that was not cracked when it was pushed into the V block with a V-shaped punch of 2.5 times, a tip R was a V-shaped punch of 1.5 times the plate thickness, and another test piece was V-blocked. Pushed into. After that, the bending ridge line was observed, and the bendability was defined as “better” when the ridge line had no cracks.
- Evaluation results Table 4 shows the evaluation results of the steel sheets produced under the conditions shown in Tables 2 and 3.
- a steel plate having a TS of 980 MPa or more, a TS ⁇ EL of 24000 MPa ⁇ % or more, and a “good” Rmin was obtained.
- Example No. 4 the austenite phase fraction of the heat treatment after hot rolling was low, and the desired metallographic structure could not be obtained. Therefore, sufficient strength and elongation characteristics (TS ⁇ EL value) were not obtained.
- Example No. No. 8 had a low austenite phase fraction during annealing, and a desired metallographic structure could not be obtained, so sufficient strength and elongation characteristics (TS ⁇ EL value) could not be obtained.
- Example No. In No. 11 the cold rolling rate was low, variation in Vickers hardness could not be suppressed, and sufficient bendability was not obtained.
- Example No. 12 since the Mn content was insufficient and the desired metallographic structure was not obtained, sufficient strength and elongation characteristics (TS ⁇ EL value) were not obtained.
- Example No. 16 the winding temperature was high, the value of CMn ⁇ / CMn ⁇ was insufficient, and sufficient strength and elongation characteristics (value of TS ⁇ EL) could not be obtained.
- Example No. 18 did not cool after annealing, a desired metallographic structure was not obtained and sufficient bendability was not obtained.
- Example No. No. 19 had a high austenite phase fraction during annealing, a desired metal structure could not be obtained, and sufficient strength and elongation characteristics (TS ⁇ EL value) and sufficient bendability were not obtained.
- Example No. 23 had a low average cooling rate after being allowed to cool after hot rolling, could not suppress variations in Vickers hardness, and could not obtain sufficient bendability.
- Example No. 24 the holding time after cooling after annealing was short, a desired metallographic structure could not be obtained, and sufficient strength and elongation properties (TS ⁇ EL value) and sufficient bendability were not obtained.
- Example No. 25 the cooling stop temperature and the holding temperature after annealing were high, a desired metallographic structure could not be obtained, and sufficient bendability was not obtained.
- Example No. 28 has a high austenite phase fraction in the heat treatment after hot rolling, a desired metallographic structure cannot be obtained, the value of CMn ⁇ / CMn ⁇ becomes insufficient, and sufficient strength and elongation characteristics (TS ⁇ EL value) are obtained. I could't get it.
- Example No. No. 29 has a short holding time in the heat treatment after hot rolling, a desired metallographic structure cannot be obtained, the value of CMn ⁇ / CMn ⁇ becomes insufficient, and sufficient strength and elongation characteristics (value of TS ⁇ EL) are obtained. I could't do it.
- Example No. 31 the holding time in annealing was short, a desired metallographic structure could not be obtained, and sufficient strength and elongation characteristics (value of TS ⁇ EL) could not be obtained.
- Example No. 34 the cooling time after hot rolling was short, variation in Vickers hardness could not be suppressed, and sufficient bendability could not be obtained.
- Example No. No. 35 contained excessive Mn, so that sufficient bendability was not obtained.
- Example No. No. 36 did not undergo heat treatment after hot rolling, and therefore, sufficient strength and elongation characteristics (TS ⁇ EL value) could not be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
C、Si及びsol.Alを含み、さらに質量%でMn:2.50超~4.20%未満を含み、残部が鉄及び不純物であり、表面から厚みの1/8位置における金属組織が、面積率で、オーステナイト相:10%以上、焼き戻しマルテンサイト相とベイナイト相の合計:5%以上、フェライト相:35%以上、及びフレッシュマルテンサイト相:15%未満であり、フェライト相に対する未再結晶のフェライト相の面積率が10~50%であり、オーステナイト相における平均Mn濃度CMnγとフェライト相における平均Mn濃度CMnαとの比であるCMnγ/CMnαが1.20以上であり、表面から厚みの1/8位置におけるビッカース硬さのばらつきが、40Hv以下である鋼板。
Description
本開示は、鋼板及びその製造方法に関係する。
一般に、鋼板を高強度化すると、伸びが低下し、鋼板の成形性が低減しうる。したがって、自動車の車体用部品として高強度鋼板を使用するためには、相反する特性である強度と成形性との両方を高める必要がある。また、鋼板を素材とする自動車の車体用部品の多くには、曲げ加工を必要とするので、車体用部品として使用される高強度鋼板には、優れた曲げ性を有することが要求される。そのため、鋼板の機械的特性として、高い強度と優れた成形性を有しながら、さらに、優れた曲げ性を有することが求められている。
伸び、すなわち、成形性を向上させるために、これまでに、Mnを積極的に添加し、約5質量%のMnを鋼板に含有させて、残留オーステナイト(残留γ)を鋼中に生成させ、その変態誘起塑性を利用した、いわゆる中Mn鋼が提案されている(例えば、非特許文献1)。
また、2.60%以上4.20%以下のMnを添加した鋼板(特許文献1)が提案されている。上記鋼板も一般的な高強度鋼よりも多くのMnを含有するので、残留オーステナイトが生成されやすく、伸びが高く、優れた成形性を示す。
古川敬、松村理、熱処理、日本国、日本熱処理協会、平成9年、第37号巻、第4号、p.204
しかしながら、非特許文献1に開示された鋼板はMn含有量が多いため、自動車の車体用部品に用いる場合等において溶接性が問題となることがある。したがって、自動車部品等としての利用性を考慮すると、より少ないMn含有量で、鋼板の強度と成形性との両方を向上することが望まれる。また、特許文献1に開示された鋼板は顕著なバンド組織を形成するので、曲げ性は著しい異方性を示す。特に曲げ稜線が圧延方向となる場合、曲げ性が悪化する。このように、曲げ性の異方性が大きくなると、角筒状の部品作成が困難となる等、部品設計の自由度が下がるだけでなく、部品成形時の歩留まりが下がる。以下、曲げ稜線が圧延方向となる場合における曲げ性を、単に、曲げ性と呼ぶ。
したがって、優れた伸び特性、優れた曲げ性、及び高強度を有する鋼板が望まれている。
優れた伸び特性、優れた曲げ性、及び高強度を確保するために、本発明者らは、所定の成分を含む鋼板中に、面積%で、オーステナイト相を10%以上、焼き戻しマルテンサイト相とベイナイト相の合計を5%以上、フェライト相を35%以上含ませ、フレッシュマルテンサイト相を15%未満に制限し、フェライト相に対する未再結晶のフェライト相の面積率を10~50%とし、オーステナイト相における平均Mn濃度CMnγとフェライト相における平均Mn濃度CMnαとの比であるCMnγ/CMnαを1.20以上とし、表面から厚みの1/8位置におけるビッカース硬さのばらつきを40Hv以下にすることが有効であると知見した。
本開示の鋼板及びその製造方法は上記知見に基づいてなされたものであり、その要旨は以下のとおりである。
本開示の要旨は、以下のとおりである。
(1)
化学組成が、質量%で、
C:0.15超~0.40%未満、
Si:0.001~2.00%未満、
Mn:2.50超~4.20%未満、
sol.Al:0.001~1.500%未満、
P:0.030%以下、
S:0.0050%以下、
N:0.050%未満、
O:0.020%未満、
Cr:0~0.50%、
Mo:0~2.00%、
W:0~2.00%、
Cu:0~2.00%、
Ni:0~2.00%、
Ti:0~0.300%、
Nb:0~0.300%、
V:0~0.300%、
B:0~0.010%、
Ca:0~0.010%、
Mg:0~0.010%、
Zr:0~0.010%、
REM:0~0.010%、
Sb:0~0.050%、
Sn:0~0.050%、
Bi:0~0.050%、及び
残部:鉄および不純物であり、
表面から厚みの1/8位置における金属組織が、面積率で、オーステナイト相:10%以上、焼き戻しマルテンサイト相とベイナイト相の合計:5%以上、フェライト相:35%以上、及びフレッシュマルテンサイト相:15%未満であり、
前記フェライト相に対する未再結晶のフェライト相の面積率が10~50%であり、
前記オーステナイト相における平均Mn濃度CMnγと前記フェライト相における平均Mn濃度CMnαとの比であるCMnγ/CMnαが1.20以上であり、並びに
表面から厚みの1/8位置におけるビッカース硬さのばらつきが、40Hv以下である
鋼板。
(2)
前記化学組成が、質量%で、
Cr:0.01~0.50%、
Ti:0.005~0.300%、
Nb:0.005~0.300%、
V:0.005~0.300%、及び
B:0.0001~0.010%
からなる群から選択される1種又は2種以上を含有する、(1)に記載の鋼板。
(3)
前記鋼板の表面に溶融亜鉛めっき層を有する、(1)または(2)に記載の鋼板。
(4)
前記鋼板の表面に合金化溶融亜鉛めっき層を有する、(1)または(2)に記載の鋼板。
(5)
化学組成が、質量%で、
C:0.15超~0.40%未満、
Si:0.001~2.00%未満、
Mn:2.50超~4.20%未満、
sol.Al:0.001~1.500%未満、
P:0.030%以下、
S:0.0050%以下、
N:0.050%未満、
O:0.020%未満、
Cr:0~0.50%、
Mo:0~2.00%、
W:0~2.00%、
Cu:0~2.00%、
Ni:0~2.00%、
Ti:0~0.300%、
Nb:0~0.300%、
V:0~0.300%、
B:0~0.010%、
Ca:0~0.010%、
Mg:0~0.010%、
Zr:0~0.010%、
REM:0~0.010%、
Sb:0~0.050%、
Sn:0~0.050%、
Bi:0~0.050%、及び
残部:鉄および不純物である鋼に、仕上圧延温度が1000℃以下、前記仕上圧延後の放冷時間が0.8秒間以上、前記放冷後の平均冷却速度が30℃/秒以上、及び巻取り温度が300℃未満の熱間圧延を施して熱延鋼板とすること、
前記熱延鋼板に、オーステナイト相分率が20~50%となる温度域にて1時間以上の熱処理を行い、その後、酸洗及び冷間圧延を施して冷延鋼板とすること、
前記冷間圧延における冷間圧延率を30~70%とすること、
前記冷延鋼板を、オーステナイト相分率が20~65%となる温度域にて、30秒間以上保持して焼鈍すること、並びに
前記焼鈍の温度保持後に、100~530℃の温度域まで冷却し、100~530℃の温度域で10~1000秒間保持すること、
を含む、鋼板の製造方法。
(6)
前記化学組成が、質量%で、
Cr:0.01~0.50%、
Ti:0.005~0.300%、
Nb:0.005~0.300%、
V:0.005~0.300%、及び
B:0.0001~0.010%
からなる群から選択される1種又は2種以上を含有する、(5)に記載の鋼板の製造方法。
(7)
前記仕上圧延後の放冷時間が1.2~4.0秒である、(5)または(6)に記載の鋼板の製造方法。
(8)
前記焼鈍後に、溶融亜鉛めっき処理を施す、(5)~(7)のいずれか一つに記載の鋼板の製造方法。
(9)
前記溶融亜鉛めっき処理を施した後、450~620℃の温度域で前記溶融亜鉛めっきの合金化処理を施す、(8)に記載の鋼板の製造方法。
(1)
化学組成が、質量%で、
C:0.15超~0.40%未満、
Si:0.001~2.00%未満、
Mn:2.50超~4.20%未満、
sol.Al:0.001~1.500%未満、
P:0.030%以下、
S:0.0050%以下、
N:0.050%未満、
O:0.020%未満、
Cr:0~0.50%、
Mo:0~2.00%、
W:0~2.00%、
Cu:0~2.00%、
Ni:0~2.00%、
Ti:0~0.300%、
Nb:0~0.300%、
V:0~0.300%、
B:0~0.010%、
Ca:0~0.010%、
Mg:0~0.010%、
Zr:0~0.010%、
REM:0~0.010%、
Sb:0~0.050%、
Sn:0~0.050%、
Bi:0~0.050%、及び
残部:鉄および不純物であり、
表面から厚みの1/8位置における金属組織が、面積率で、オーステナイト相:10%以上、焼き戻しマルテンサイト相とベイナイト相の合計:5%以上、フェライト相:35%以上、及びフレッシュマルテンサイト相:15%未満であり、
前記フェライト相に対する未再結晶のフェライト相の面積率が10~50%であり、
前記オーステナイト相における平均Mn濃度CMnγと前記フェライト相における平均Mn濃度CMnαとの比であるCMnγ/CMnαが1.20以上であり、並びに
表面から厚みの1/8位置におけるビッカース硬さのばらつきが、40Hv以下である
鋼板。
(2)
前記化学組成が、質量%で、
Cr:0.01~0.50%、
Ti:0.005~0.300%、
Nb:0.005~0.300%、
V:0.005~0.300%、及び
B:0.0001~0.010%
からなる群から選択される1種又は2種以上を含有する、(1)に記載の鋼板。
(3)
前記鋼板の表面に溶融亜鉛めっき層を有する、(1)または(2)に記載の鋼板。
(4)
前記鋼板の表面に合金化溶融亜鉛めっき層を有する、(1)または(2)に記載の鋼板。
(5)
化学組成が、質量%で、
C:0.15超~0.40%未満、
Si:0.001~2.00%未満、
Mn:2.50超~4.20%未満、
sol.Al:0.001~1.500%未満、
P:0.030%以下、
S:0.0050%以下、
N:0.050%未満、
O:0.020%未満、
Cr:0~0.50%、
Mo:0~2.00%、
W:0~2.00%、
Cu:0~2.00%、
Ni:0~2.00%、
Ti:0~0.300%、
Nb:0~0.300%、
V:0~0.300%、
B:0~0.010%、
Ca:0~0.010%、
Mg:0~0.010%、
Zr:0~0.010%、
REM:0~0.010%、
Sb:0~0.050%、
Sn:0~0.050%、
Bi:0~0.050%、及び
残部:鉄および不純物である鋼に、仕上圧延温度が1000℃以下、前記仕上圧延後の放冷時間が0.8秒間以上、前記放冷後の平均冷却速度が30℃/秒以上、及び巻取り温度が300℃未満の熱間圧延を施して熱延鋼板とすること、
前記熱延鋼板に、オーステナイト相分率が20~50%となる温度域にて1時間以上の熱処理を行い、その後、酸洗及び冷間圧延を施して冷延鋼板とすること、
前記冷間圧延における冷間圧延率を30~70%とすること、
前記冷延鋼板を、オーステナイト相分率が20~65%となる温度域にて、30秒間以上保持して焼鈍すること、並びに
前記焼鈍の温度保持後に、100~530℃の温度域まで冷却し、100~530℃の温度域で10~1000秒間保持すること、
を含む、鋼板の製造方法。
(6)
前記化学組成が、質量%で、
Cr:0.01~0.50%、
Ti:0.005~0.300%、
Nb:0.005~0.300%、
V:0.005~0.300%、及び
B:0.0001~0.010%
からなる群から選択される1種又は2種以上を含有する、(5)に記載の鋼板の製造方法。
(7)
前記仕上圧延後の放冷時間が1.2~4.0秒である、(5)または(6)に記載の鋼板の製造方法。
(8)
前記焼鈍後に、溶融亜鉛めっき処理を施す、(5)~(7)のいずれか一つに記載の鋼板の製造方法。
(9)
前記溶融亜鉛めっき処理を施した後、450~620℃の温度域で前記溶融亜鉛めっきの合金化処理を施す、(8)に記載の鋼板の製造方法。
本開示によれば、優れた伸び特性、優れた曲げ性、及び高強度を有する鋼板を提供することができる。
以下、本開示の鋼板の一実施形態の例を説明する。
1.化学組成
本開示の鋼板の化学組成を上述のように規定した理由を説明する。以下の説明において、各元素の含有量を表す「%」は特に断りがない限り質量%を意味する。鋼板の化学組成において、「~」を用いて表される数値範囲は、「超」又は「未満」が用いられる場合を除き、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本開示の鋼板の化学組成を上述のように規定した理由を説明する。以下の説明において、各元素の含有量を表す「%」は特に断りがない限り質量%を意味する。鋼板の化学組成において、「~」を用いて表される数値範囲は、「超」又は「未満」が用いられる場合を除き、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
(C:0.15超~0.40%未満)
Cは、鋼の強度を高め、オーステナイト相を確保するために、極めて重要な元素である。十分なオーステナイト相を得るためには、0.15%超のC含有量が必要となる。一方、Cを過剰に含有すると鋼板の溶接性を維持することが難しくなるので、C含有量の上限を0.40%未満とした。C含有量の下限値は、好ましくは0.20%以上、より好ましくは0.25%以上である。C含有量を0.20%以上とすると、さらに、オーステナイト相の生成をより促進することができる。C含有量の上限値は、好ましくは0.36%以下、より好ましくは0.32%以下であり、C含有量の上限値を上記範囲にすることによって、鋼板の靭性をより高めることができる。
Cは、鋼の強度を高め、オーステナイト相を確保するために、極めて重要な元素である。十分なオーステナイト相を得るためには、0.15%超のC含有量が必要となる。一方、Cを過剰に含有すると鋼板の溶接性を維持することが難しくなるので、C含有量の上限を0.40%未満とした。C含有量の下限値は、好ましくは0.20%以上、より好ましくは0.25%以上である。C含有量を0.20%以上とすると、さらに、オーステナイト相の生成をより促進することができる。C含有量の上限値は、好ましくは0.36%以下、より好ましくは0.32%以下であり、C含有量の上限値を上記範囲にすることによって、鋼板の靭性をより高めることができる。
(Si:0.001~2.00%未満)
Siは、焼き戻しマルテンサイト相を強化し、組織を均一化し、成形性を改善するのに有効な元素である。また、Siは、セメンタイトの析出を抑制し、オーステナイト相の残留を促進する作用も有する。上記効果を得るために、0.001%以上のSi含有量が必要となる。一方、Siを過剰に含有すると鋼板のめっき性や化成処理性を維持することが難しくなるので、Si含有量の上限値を2.00%未満とする。Si含有量の下限値は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.10%以上である。Si含有量の下限値を上記範囲にすることによって、鋼板の伸び特性をさらに向上することができる。Si含有量の上限値は、好ましくは1.90%以下、より好ましくは1.80%以下である。
Siは、焼き戻しマルテンサイト相を強化し、組織を均一化し、成形性を改善するのに有効な元素である。また、Siは、セメンタイトの析出を抑制し、オーステナイト相の残留を促進する作用も有する。上記効果を得るために、0.001%以上のSi含有量が必要となる。一方、Siを過剰に含有すると鋼板のめっき性や化成処理性を維持することが難しくなるので、Si含有量の上限値を2.00%未満とする。Si含有量の下限値は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.10%以上である。Si含有量の下限値を上記範囲にすることによって、鋼板の伸び特性をさらに向上することができる。Si含有量の上限値は、好ましくは1.90%以下、より好ましくは1.80%以下である。
(Mn:2.50超~4.20%未満)
Mnは、オーステナイト相を安定化させ、焼入れ性を高める元素である。また、本開示の鋼板においては、Mnをオーステナイト相中に濃化させ、オーステナイト相をより安定化させる。室温でオーステナイト相を安定化させるためには、2.50%超のMnが必要である。一方、溶接性を確保しつつ、曲げ稜線が圧延方向となる場合の曲げ性を低減させないために、Mn含有量の上限を4.20%未満とした。Mn含有量の下限値は、好ましくは3.00%超、より好ましくは3.50%以上である。Mn含有量の上限値は、好ましくは4.10%以下、より好ましくは4.00%以下である。Mn含有量の下限値を上記範囲にすることで、安定なオーステナイト相の分率を増やすことができ、Mn含有量の上限値を上記範囲にすることで、曲げ性を十分に発揮させることができる。
Mnは、オーステナイト相を安定化させ、焼入れ性を高める元素である。また、本開示の鋼板においては、Mnをオーステナイト相中に濃化させ、オーステナイト相をより安定化させる。室温でオーステナイト相を安定化させるためには、2.50%超のMnが必要である。一方、溶接性を確保しつつ、曲げ稜線が圧延方向となる場合の曲げ性を低減させないために、Mn含有量の上限を4.20%未満とした。Mn含有量の下限値は、好ましくは3.00%超、より好ましくは3.50%以上である。Mn含有量の上限値は、好ましくは4.10%以下、より好ましくは4.00%以下である。Mn含有量の下限値を上記範囲にすることで、安定なオーステナイト相の分率を増やすことができ、Mn含有量の上限値を上記範囲にすることで、曲げ性を十分に発揮させることができる。
(sol.Al:0.001~1.500%未満)
Alは、脱酸剤であり、0.001%以上含有させる必要がある。また、Alは、焼鈍時の二相域の温度範囲を広げるため、材質安定性を高める作用も有する。Alの含有量が多いほどその効果は大きくなるが、Alを過剰に含有させると、表面性状、塗装性、及び溶接性を維持することが難しくなるので、sol.Alの上限を1.500%未満とした。sol.Al含有量の下限値は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.020%以上である。sol.Al含有量の上限値は、好ましくは1.200%以下、より好ましくは1.000%以下である。sol.Al含有量の下限値及び上限値を上記範囲にすることによって、脱酸効果及び材質安定向上効果と、表面性状、塗装性、及び溶接性とのバランスがより良好になる。
Alは、脱酸剤であり、0.001%以上含有させる必要がある。また、Alは、焼鈍時の二相域の温度範囲を広げるため、材質安定性を高める作用も有する。Alの含有量が多いほどその効果は大きくなるが、Alを過剰に含有させると、表面性状、塗装性、及び溶接性を維持することが難しくなるので、sol.Alの上限を1.500%未満とした。sol.Al含有量の下限値は、好ましくは0.005%以上、より好ましくは0.010%以上、さらに好ましくは0.020%以上である。sol.Al含有量の上限値は、好ましくは1.200%以下、より好ましくは1.000%以下である。sol.Al含有量の下限値及び上限値を上記範囲にすることによって、脱酸効果及び材質安定向上効果と、表面性状、塗装性、及び溶接性とのバランスがより良好になる。
(P:0.030%以下)
Pは不純物であり、鋼板がPを過剰に含有すると曲げ性を損なう。したがって、P含有量の上限を0.030%以下とする。P含有量の上限値は、好ましくは0.025%以下、より好ましくは0.020%以下、さらに好ましくは0.015%以下である。本実施形態に係る鋼板はPを必要としないので、P含有量の下限値は0%である。P含有量の下限値は0%超または0.001%以上でもよいが、P含有量は少ないほど好ましい。
Pは不純物であり、鋼板がPを過剰に含有すると曲げ性を損なう。したがって、P含有量の上限を0.030%以下とする。P含有量の上限値は、好ましくは0.025%以下、より好ましくは0.020%以下、さらに好ましくは0.015%以下である。本実施形態に係る鋼板はPを必要としないので、P含有量の下限値は0%である。P含有量の下限値は0%超または0.001%以上でもよいが、P含有量は少ないほど好ましい。
(S:0.0050%以下)
Sは不純物であり、鋼板がSを過剰に含有すると溶接性を損なう。したがって、S含有量の上限を0.0050%以下とする。S含有量の上限値は、好ましくは0.0030%以下、より好ましくは0.0020%以下である。本実施形態に係る鋼板はSを必要としないので、S含有量の下限値は0%である。S含有量の下限値を0%超または0.0003%以上としてもよいが、S含有量は少ないほど好ましい。
Sは不純物であり、鋼板がSを過剰に含有すると溶接性を損なう。したがって、S含有量の上限を0.0050%以下とする。S含有量の上限値は、好ましくは0.0030%以下、より好ましくは0.0020%以下である。本実施形態に係る鋼板はSを必要としないので、S含有量の下限値は0%である。S含有量の下限値を0%超または0.0003%以上としてもよいが、S含有量は少ないほど好ましい。
(N:0.050%未満)
Nは不純物であり、鋼板が0.050%以上のNを含有すると靭性が低減する。したがって、N含有量の上限を0.050%未満とする。N含有量の上限値は、好ましくは0.010%以下、より好ましくは0.006%以下である。本実施形態に係る鋼板はNを必要としないので、N含有量の下限値は0%である。N含有量の下限値を0%超または0.001%以上としてもよいが、N含有量は少ないほど好ましい。
Nは不純物であり、鋼板が0.050%以上のNを含有すると靭性が低減する。したがって、N含有量の上限を0.050%未満とする。N含有量の上限値は、好ましくは0.010%以下、より好ましくは0.006%以下である。本実施形態に係る鋼板はNを必要としないので、N含有量の下限値は0%である。N含有量の下限値を0%超または0.001%以上としてもよいが、N含有量は少ないほど好ましい。
(O:0.020%未満)
Oは不純物であり、鋼板が0.020%以上のOを含有すると延性が低減する。したがって、O含有量の上限を0.020%未満とする。O含有量の上限値は、好ましくは0.010%以下、より好ましくは0.005%以下、さらに好ましくは0.003%以下である。本実施形態に係る鋼板はOを必要としないので、O含有量の下限値は0%である。O含有量の下限値を0%超または0.001%以上としてもよいが、O含有量は少ないほど好ましい。
Oは不純物であり、鋼板が0.020%以上のOを含有すると延性が低減する。したがって、O含有量の上限を0.020%未満とする。O含有量の上限値は、好ましくは0.010%以下、より好ましくは0.005%以下、さらに好ましくは0.003%以下である。本実施形態に係る鋼板はOを必要としないので、O含有量の下限値は0%である。O含有量の下限値を0%超または0.001%以上としてもよいが、O含有量は少ないほど好ましい。
本実施形態の鋼板は、更に、Cr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、Sn及びBiからなる群から選択される1種又は2種以上を含有してもよい。しかしながら、本実施形態に係る鋼板は、Cr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、Sn及びBiを含有しなくてもよい、すなわち含有量の下限値は0%であってもよい。
(Cr:0~0.50%)
(Mo:0~2.00%)
(W:0~2.00%)
(Cu:0~2.00%)
(Ni:0~2.00%)
Cr、Mo、W、Cu、及びNiはそれぞれ、本実施形態に係る鋼板に必須の元素ではないので、それぞれの含有量は0%以上である。しかしながら、Cr、Mo、W、Cu、及びNiは、鋼板の強度を向上させる元素であるので、含有されてもよい。鋼板の強度向上効果を得るために、鋼板は、Cr、Mo、W、Cu、及びNiからなる群から選択された1種又は2種以上の元素それぞれを0.01%以上、0.04%以上または0.10%以上含有してもよい。しかしながら、鋼板がこれらの元素を過剰に含有させると、熱延時の表面傷が生じやすくなり、さらには、熱延鋼板の強度が高くなりすぎて、冷間圧延性が低下する場合がある。したがって、Cr、Mo、W、Cu、及びNiからなる群から選択された1種又は2種以上の元素それぞれの含有量のうち、Crの含有量の上限値を0.50%以下とし、Mo、W、Cu、及びNiのそれぞれの含有量の上限値を2.00%以下とする。Crの含有量の上限値は、0.45%以下、0.40%以下または0.35%以下であってもよく、Mo、W、Cu、及びNiのそれぞれの含有量の上限値は、1.80%以下、1.50%以下、1.20%以下または1.00%以下であってもよい。
(Mo:0~2.00%)
(W:0~2.00%)
(Cu:0~2.00%)
(Ni:0~2.00%)
Cr、Mo、W、Cu、及びNiはそれぞれ、本実施形態に係る鋼板に必須の元素ではないので、それぞれの含有量は0%以上である。しかしながら、Cr、Mo、W、Cu、及びNiは、鋼板の強度を向上させる元素であるので、含有されてもよい。鋼板の強度向上効果を得るために、鋼板は、Cr、Mo、W、Cu、及びNiからなる群から選択された1種又は2種以上の元素それぞれを0.01%以上、0.04%以上または0.10%以上含有してもよい。しかしながら、鋼板がこれらの元素を過剰に含有させると、熱延時の表面傷が生じやすくなり、さらには、熱延鋼板の強度が高くなりすぎて、冷間圧延性が低下する場合がある。したがって、Cr、Mo、W、Cu、及びNiからなる群から選択された1種又は2種以上の元素それぞれの含有量のうち、Crの含有量の上限値を0.50%以下とし、Mo、W、Cu、及びNiのそれぞれの含有量の上限値を2.00%以下とする。Crの含有量の上限値は、0.45%以下、0.40%以下または0.35%以下であってもよく、Mo、W、Cu、及びNiのそれぞれの含有量の上限値は、1.80%以下、1.50%以下、1.20%以下または1.00%以下であってもよい。
(Ti:0~0.300%)
(Nb:0~0.300%)
(V:0~0.300%)
Ti、Nb、及びVは、本実施形態に係る鋼板に必須の元素ではないので、それぞれの含有量は0%以上である。しかし、Ti、Nb、及びVは、微細な炭化物、窒化物または炭窒化物を生成する元素であるので、鋼板の強度向上に有効である。したがって、鋼板は、Ti、Nb、及びVからなる群から選択される1種または2種以上の元素を含有してもよい。鋼板の強度向上効果を得るためには、Ti、Nb、及びVからなる群から選択される1種または2種以上の元素それぞれの含有量の下限値を0.005%以上とすることが好ましく、0.010%以上とするのがより好ましい。一方で、これらの元素を過剰に含有させると、熱延鋼板の強度が上昇しすぎて、冷間圧延性が低下する場合がある。またNbについては、Nbの含有量を0.300%以下にすると、フェライト相の再結晶化の遅れを抑制することができ、所望の組織をより安定して得ることができる。したがって、Ti、Nb、及びVからなる群から選択される1種または2種以上の元素それぞれの含有量の上限値を0.300%以下とし、好ましくは0.250%以下、より好ましくは0.200%以下とする。
(Nb:0~0.300%)
(V:0~0.300%)
Ti、Nb、及びVは、本実施形態に係る鋼板に必須の元素ではないので、それぞれの含有量は0%以上である。しかし、Ti、Nb、及びVは、微細な炭化物、窒化物または炭窒化物を生成する元素であるので、鋼板の強度向上に有効である。したがって、鋼板は、Ti、Nb、及びVからなる群から選択される1種または2種以上の元素を含有してもよい。鋼板の強度向上効果を得るためには、Ti、Nb、及びVからなる群から選択される1種または2種以上の元素それぞれの含有量の下限値を0.005%以上とすることが好ましく、0.010%以上とするのがより好ましい。一方で、これらの元素を過剰に含有させると、熱延鋼板の強度が上昇しすぎて、冷間圧延性が低下する場合がある。またNbについては、Nbの含有量を0.300%以下にすると、フェライト相の再結晶化の遅れを抑制することができ、所望の組織をより安定して得ることができる。したがって、Ti、Nb、及びVからなる群から選択される1種または2種以上の元素それぞれの含有量の上限値を0.300%以下とし、好ましくは0.250%以下、より好ましくは0.200%以下とする。
(B:0~0.010%)
(Ca:0~0.010%)
(Mg:0~0.010%)
(Zr:0~0.010%)
(REM:0~0.010%)
B、Ca、Mg、Zr、及びREM(希土類金属)は、本開示の鋼板に必須の元素ではないので、それぞれの含有量は0%以上である。しかしながら、B、Ca、Mg、Zr、及びREMは、鋼板の局部延性及び穴広げ性を向上させる。この効果を得るためには、B、Ca、Mg、Zr、及びREMからなる群から選択される1種または2種以上の元素それぞれの下限値を好ましくは0.0001%以上、より好ましくは0.001%以上とする。しかし、過剰量のこれら元素は、鋼板の成形性を劣化させるので、これら元素それぞれの含有量の上限を0.010%以下とし、B、Ca、Mg、Zr、及びREMからなる群から選択される1種または2種以上の元素の含有量の合計を0.030%以下とすることが好ましい。
(Ca:0~0.010%)
(Mg:0~0.010%)
(Zr:0~0.010%)
(REM:0~0.010%)
B、Ca、Mg、Zr、及びREM(希土類金属)は、本開示の鋼板に必須の元素ではないので、それぞれの含有量は0%以上である。しかしながら、B、Ca、Mg、Zr、及びREMは、鋼板の局部延性及び穴広げ性を向上させる。この効果を得るためには、B、Ca、Mg、Zr、及びREMからなる群から選択される1種または2種以上の元素それぞれの下限値を好ましくは0.0001%以上、より好ましくは0.001%以上とする。しかし、過剰量のこれら元素は、鋼板の成形性を劣化させるので、これら元素それぞれの含有量の上限を0.010%以下とし、B、Ca、Mg、Zr、及びREMからなる群から選択される1種または2種以上の元素の含有量の合計を0.030%以下とすることが好ましい。
(Sb:0~0.050%)
(Sn:0~0.050%)
(Bi:0~0.050%)
Sb、Sn、及びBiは、本開示の鋼板に必須の元素ではないので、それぞれの含有量は0%以上である。しかしながら、Sb、Sn、及びBiは、鋼板中のMn、Si、および/又はAl等の易酸化性元素が鋼板表面に拡散され酸化物を形成することを抑え、鋼板の表面性状やめっき性を高める。この効果を得るために、Sb、Sn、及びBiからなる群から選択される1種又は2種以上の元素それぞれの含有量の下限値を好ましくは0.0005%以上、より好ましくは0.001%以上とする。一方、これら元素それぞれの含有量が0.050%を超えると、その効果が飽和するので、これら元素それぞれの含有量の上限値を0.050%以下、好ましくは0.040%以下、より好ましくは0.030%以下とする。
(Sn:0~0.050%)
(Bi:0~0.050%)
Sb、Sn、及びBiは、本開示の鋼板に必須の元素ではないので、それぞれの含有量は0%以上である。しかしながら、Sb、Sn、及びBiは、鋼板中のMn、Si、および/又はAl等の易酸化性元素が鋼板表面に拡散され酸化物を形成することを抑え、鋼板の表面性状やめっき性を高める。この効果を得るために、Sb、Sn、及びBiからなる群から選択される1種又は2種以上の元素それぞれの含有量の下限値を好ましくは0.0005%以上、より好ましくは0.001%以上とする。一方、これら元素それぞれの含有量が0.050%を超えると、その効果が飽和するので、これら元素それぞれの含有量の上限値を0.050%以下、好ましくは0.040%以下、より好ましくは0.030%以下とする。
本実施形態の鋼板は、上記の任意成分のうち、Cr:0.01~0.50%、Ti:0.005~0.300%、Nb:0.005~0.300%、V:0.005~0.300%、及びB:0.0001~0.010%からなる群から選択される元素のうち1種又は2種以上を含んでいてもよい。
なお、本実施形態に係る鋼板の化学組成の残部は、鉄および不純物である。不純物としては、鋼原料、スクラップ、及び/又は製鋼過程から不可避的に混入するものであり、本実施形態に係る鋼板の特性を阻害しない範囲で許容される元素が例示される。また、不純物としては、上で説明した成分以外の元素であって、当該元素特有の作用効果が本発明の実施形態に係る鋼板の特性に影響しないレベルで当該鋼板中に含まれる元素をも包含するものである。
2.金属組織
次に、本実施形態に係る鋼板の金属組織について説明する。
次に、本実施形態に係る鋼板の金属組織について説明する。
本実施形態に係る鋼板の表面から厚みの1/8位置(1/8t部ともいう)における金属組織は、面積率で、オーステナイト相:10%以上、焼き戻しマルテンサイト相とベイナイト相の合計:5%以上、フェライト相:35%以上、及びフレッシュマルテンサイト相:15%未満である。各組織の分率は、熱処理条件によって変化し、強度、伸び特性、曲げ性などの鋼板の材質に影響を与える。
(鋼板の1/8t部の金属組織中のオーステナイト相の面積%:10%以上)
本実施形態に係る鋼板においては、金属組織中のオーステナイト相の量が所定範囲にあることが重要である。オーステナイト相は、変態誘起塑性によって鋼板の伸び特性を高める組織である。オーステナイト相は、引張変形を伴う張出し加工、絞り加工、伸びフランジ加工、または曲げ加工によってマルテンサイト相に変態し得るので、鋼板の強度の向上にも寄与する。これらの効果を得るために、本実施形態に係る鋼板は、金属組織中に、面積率で10%以上のオーステナイト相を含有する必要がある。オーステナイト相の面積率は、好ましくは15%以上、より好ましくは18%以上である。オーステナイト相の面積率が15%以上、さらには18%以上になると、強度と伸びが両立し、後述するTS×ELが高くなる。オーステナイト相の面積率の上限は特に規定しないが、実質的には30%以下である。なお、オーステナイト相の面積率はX線回折法により測定される。
本実施形態に係る鋼板においては、金属組織中のオーステナイト相の量が所定範囲にあることが重要である。オーステナイト相は、変態誘起塑性によって鋼板の伸び特性を高める組織である。オーステナイト相は、引張変形を伴う張出し加工、絞り加工、伸びフランジ加工、または曲げ加工によってマルテンサイト相に変態し得るので、鋼板の強度の向上にも寄与する。これらの効果を得るために、本実施形態に係る鋼板は、金属組織中に、面積率で10%以上のオーステナイト相を含有する必要がある。オーステナイト相の面積率は、好ましくは15%以上、より好ましくは18%以上である。オーステナイト相の面積率が15%以上、さらには18%以上になると、強度と伸びが両立し、後述するTS×ELが高くなる。オーステナイト相の面積率の上限は特に規定しないが、実質的には30%以下である。なお、オーステナイト相の面積率はX線回折法により測定される。
(鋼板の1/8t部の金属組織中のフレッシュマルテンサイト相の面積%:15%未満)
フレッシュマルテンサイト相は、その組織中に転位を多く含む硬質相であり、鋼板の強度を得るために効果的な相である。ただし、曲げ性を著しく劣化させるため、フレッシュマルテンサイト相の金属組織中の面積率を15%未満とする。曲げ性を特に必要とする場合は、フレッシュマルテンサイト相の面積率は10%以下が好ましく、5%以下がより好ましく、実質的に0%がさらに好ましい。
フレッシュマルテンサイト相は、その組織中に転位を多く含む硬質相であり、鋼板の強度を得るために効果的な相である。ただし、曲げ性を著しく劣化させるため、フレッシュマルテンサイト相の金属組織中の面積率を15%未満とする。曲げ性を特に必要とする場合は、フレッシュマルテンサイト相の面積率は10%以下が好ましく、5%以下がより好ましく、実質的に0%がさらに好ましい。
(鋼板の1/8t部の金属組織中の焼き戻しマルテンサイト相とベイナイト相の合計の面積%:5%以上)
焼き戻しマルテンサイト相及びベイナイト相も硬質相であるが、上記フレッシュマルテンサイト相とは異なる組織であり、鋼板の強度を確保しつつ、曲げ性の向上に寄与する。強度と曲げ性との両立のためには、焼き戻しマルテンサイト相とベイナイト相の合計の金属組織中の面積率は5%以上が必要である。鋼板の強度を重視する場合には、焼き戻しマルテンサイト相とベイナイト相の合計の面積率は10%以上が好ましく、15%以上がより好ましく、20%以上がさらに好ましい。焼き戻しマルテンサイト相とベイナイト相の合計の面積率の上限は特に限定されないが、実質的に50%以下である。本実施形態に係る鋼板の金属組織においては、焼き戻しマルテンサイト相とベイナイト相の合計の面積率のうち全てが焼き戻しマルテンサイトの面積率であることが多い。一方、金属組織にベイナイト相が含まれることがあるが、ベイナイト相は焼き戻しマルテンサイト相と同様の特徴を有するため、金属組織にベイナイト相が含まれる場合も、焼き戻しマルテンサイト相の面積率と、ベイナイト相の面積率は併せて測定される。
焼き戻しマルテンサイト相及びベイナイト相も硬質相であるが、上記フレッシュマルテンサイト相とは異なる組織であり、鋼板の強度を確保しつつ、曲げ性の向上に寄与する。強度と曲げ性との両立のためには、焼き戻しマルテンサイト相とベイナイト相の合計の金属組織中の面積率は5%以上が必要である。鋼板の強度を重視する場合には、焼き戻しマルテンサイト相とベイナイト相の合計の面積率は10%以上が好ましく、15%以上がより好ましく、20%以上がさらに好ましい。焼き戻しマルテンサイト相とベイナイト相の合計の面積率の上限は特に限定されないが、実質的に50%以下である。本実施形態に係る鋼板の金属組織においては、焼き戻しマルテンサイト相とベイナイト相の合計の面積率のうち全てが焼き戻しマルテンサイトの面積率であることが多い。一方、金属組織にベイナイト相が含まれることがあるが、ベイナイト相は焼き戻しマルテンサイト相と同様の特徴を有するため、金属組織にベイナイト相が含まれる場合も、焼き戻しマルテンサイト相の面積率と、ベイナイト相の面積率は併せて測定される。
(鋼板の1/8t部の金属組織中のフェライト相の面積率:35%以上)
フェライト相は、延性を確保するうえで必須な組織である。必要な延性を確保するために、金属組織中のフェライト相の面積率は35%以上である。金属組織中のフェライト相の面積率は、好ましくは40%以上、より好ましくは45%以上である。金属組織中のフェライト相の面積率の上限は特に限定されないが、実質的に75%以下である。さらに、フェライト相に対する未再結晶のフェライト相の面積率は10%以上、好ましくは20%以上である。未再結晶のフェライト相の面積率が上記範囲内であることにより、降伏点が高い鋼板を得ることができる。一方、未再結晶のフェライト相が多すぎると延性低下につながるため、未再結晶のフェライト相の面積率の上限は50%以下とする。未再結晶のフェライト相の面積率の上限は、より好ましくは40%以下である。
フェライト相は、延性を確保するうえで必須な組織である。必要な延性を確保するために、金属組織中のフェライト相の面積率は35%以上である。金属組織中のフェライト相の面積率は、好ましくは40%以上、より好ましくは45%以上である。金属組織中のフェライト相の面積率の上限は特に限定されないが、実質的に75%以下である。さらに、フェライト相に対する未再結晶のフェライト相の面積率は10%以上、好ましくは20%以上である。未再結晶のフェライト相の面積率が上記範囲内であることにより、降伏点が高い鋼板を得ることができる。一方、未再結晶のフェライト相が多すぎると延性低下につながるため、未再結晶のフェライト相の面積率の上限は50%以下とする。未再結晶のフェライト相の面積率の上限は、より好ましくは40%以下である。
なお、金属組織中で、オーステナイト相、フレッシュマルテンサイト相、焼き戻しマルテンサイト相(ベイナイト相を含む)、及びフェライト相以外の残部は、パーライト、セメンタイト等の組織であることができる。代替的に、本実施形態に係る鋼板は、オーステナイト相、フレッシュマルテンサイト相、焼き戻しマルテンサイト相、ベイナイト相、及びフェライト相のみからなっていてもよい。
(CMnγ/CMnα≧1.20)
オーステナイト相における平均Mn濃度CMnγとフェライト相(未再結晶のフェライト相を含むすべてのフェライト相)における平均Mn濃度CMnαとの比であるCMnγ/CMnαは1.20以上、好ましくは1.35以上である。CMnγ/CMnαが上記範囲内であることにより、熱処理中にオーステナイト相だった箇所にMnを濃化させるMn分配が十分に得られ、短時間焼鈍でも安定したオーステナイト相が得られて、優れた延性が得られる。一方、CMnγ/CMnαが1.20未満では、Mn分配が十分でなく、オーステナイト相を短時間焼鈍で得ることが困難となる。また、CMnγ/CMnαの上限は特に規定しないが、実質的には1.60以下である。
オーステナイト相における平均Mn濃度CMnγとフェライト相(未再結晶のフェライト相を含むすべてのフェライト相)における平均Mn濃度CMnαとの比であるCMnγ/CMnαは1.20以上、好ましくは1.35以上である。CMnγ/CMnαが上記範囲内であることにより、熱処理中にオーステナイト相だった箇所にMnを濃化させるMn分配が十分に得られ、短時間焼鈍でも安定したオーステナイト相が得られて、優れた延性が得られる。一方、CMnγ/CMnαが1.20未満では、Mn分配が十分でなく、オーステナイト相を短時間焼鈍で得ることが困難となる。また、CMnγ/CMnαの上限は特に規定しないが、実質的には1.60以下である。
(鋼板の1/8t部の位置におけるビッカース硬さのばらつきが40Hv以下)
鋼板の表面から厚みの1/8位置におけるビッカース硬さのばらつきは40Hv以下、好ましくは30Hv以下である。仕上圧延後の冷却条件と熱延鋼板の熱処理条件とを最適化してビッカース硬さのばらつきを抑制することにより、本実施形態に係る鋼板の組織が均一になり、バンド組織の生成が抑制され、曲げ稜線が圧延方向となる場合の曲げ性が向上する。
鋼板の表面から厚みの1/8位置におけるビッカース硬さのばらつきは40Hv以下、好ましくは30Hv以下である。仕上圧延後の冷却条件と熱延鋼板の熱処理条件とを最適化してビッカース硬さのばらつきを抑制することにより、本実施形態に係る鋼板の組織が均一になり、バンド組織の生成が抑制され、曲げ稜線が圧延方向となる場合の曲げ性が向上する。
各測定方法について以下に説明する。
(オーステナイト相の面積率の測定方法)
オーステナイト相の面積率は以下のように算出される。鋼板表面の中央部(鋼板幅方向の中点)から圧延方向の長さ25mm、鋼板の幅方向(圧延方向に直角な方向)に幅25mm、厚さは焼鈍した試料の厚さままで試験片を切り出す。そして、この試験片に化学研磨を施して板厚1/8分を減厚して、化学研磨された表面を有する試験片を得る。なお、「圧延方向に直角な方向」とは、鋼板表面に平行かつ、圧延方向に直角の方向である。次いで、該試験片の表面に対して、Co管球を用い、測定範囲2θを45~105度とするX線回折分析を3回実施する。そして得られたオーステナイト相のプロファイルを解析し、それぞれを平均することで、オーステナイト相の面積率が得られる。
オーステナイト相の面積率は以下のように算出される。鋼板表面の中央部(鋼板幅方向の中点)から圧延方向の長さ25mm、鋼板の幅方向(圧延方向に直角な方向)に幅25mm、厚さは焼鈍した試料の厚さままで試験片を切り出す。そして、この試験片に化学研磨を施して板厚1/8分を減厚して、化学研磨された表面を有する試験片を得る。なお、「圧延方向に直角な方向」とは、鋼板表面に平行かつ、圧延方向に直角の方向である。次いで、該試験片の表面に対して、Co管球を用い、測定範囲2θを45~105度とするX線回折分析を3回実施する。そして得られたオーステナイト相のプロファイルを解析し、それぞれを平均することで、オーステナイト相の面積率が得られる。
(フェライト相、焼き戻しマルテンサイト相とベイナイト相の合計、及びフレッシュマルテンサイト相の面積率の測定方法)
フェライト相、焼き戻しマルテンサイト相とベイナイト相の合計、及びフレッシュマルテンサイト相の面積率は、走査型電子顕微鏡(SEM)による組織観察から算出される。鋼板のL断面に鏡面研磨を行い、次いで3%ナイタールによりミクロ組織を現出させて、倍率5000倍の走査型電子顕微鏡で、表面から1/8位置における縦0.1mm(板厚方向の長さ)×横0.3mm(圧延方向の長さ)の範囲のミクロ組織を観察する。フェライト相(未再結晶のフェライト相を含む)は灰色の下地組織として、オーステナイト相及びフレッシュマルテンサイト相は白色の組織として、判別する。オーステナイト相とフレッシュマルテンサイト相との合計面積率から、X線回折法より測定されたオーステナイト相の面積率を差し引くことによって、フレッシュマルテンサイト相の面積率が算出される。焼き戻しマルテンサイト相(ベイナイト相を含む)は、フレッシュマルテンサイト相と同様に白色にみえるが、結晶粒内に下部組織が確認されたものを焼き戻しマルテンサイト相(ベイナイト相を含む)と判断することにより算出する。なお、L断面とは、圧延方向に平行、かつ、鋼板表面に対して垂直に鋼板を切断した面をいう。本実施形態におけるL断面は、鋼板の幅方向中心を通るように切断した面とする。
フェライト相、焼き戻しマルテンサイト相とベイナイト相の合計、及びフレッシュマルテンサイト相の面積率は、走査型電子顕微鏡(SEM)による組織観察から算出される。鋼板のL断面に鏡面研磨を行い、次いで3%ナイタールによりミクロ組織を現出させて、倍率5000倍の走査型電子顕微鏡で、表面から1/8位置における縦0.1mm(板厚方向の長さ)×横0.3mm(圧延方向の長さ)の範囲のミクロ組織を観察する。フェライト相(未再結晶のフェライト相を含む)は灰色の下地組織として、オーステナイト相及びフレッシュマルテンサイト相は白色の組織として、判別する。オーステナイト相とフレッシュマルテンサイト相との合計面積率から、X線回折法より測定されたオーステナイト相の面積率を差し引くことによって、フレッシュマルテンサイト相の面積率が算出される。焼き戻しマルテンサイト相(ベイナイト相を含む)は、フレッシュマルテンサイト相と同様に白色にみえるが、結晶粒内に下部組織が確認されたものを焼き戻しマルテンサイト相(ベイナイト相を含む)と判断することにより算出する。なお、L断面とは、圧延方向に平行、かつ、鋼板表面に対して垂直に鋼板を切断した面をいう。本実施形態におけるL断面は、鋼板の幅方向中心を通るように切断した面とする。
(未再結晶のフェライト相の面積率の測定方法)
未再結晶のフェライト相の面積率は、上述のようにフェライト相の結晶粒を判別した後、この領域に対して、すなわちフェライト相の領域に対して後方散乱電子回折(EBSP)測定を行い、KAM値で1°以上の領域を未再結晶のフェライト相組織として判断することにより算出する。よって、「未再結晶のフェライト相の面積率」は、フェライト相に対する未再結晶のフェライト相の割合をいう。
未再結晶のフェライト相の面積率は、上述のようにフェライト相の結晶粒を判別した後、この領域に対して、すなわちフェライト相の領域に対して後方散乱電子回折(EBSP)測定を行い、KAM値で1°以上の領域を未再結晶のフェライト相組織として判断することにより算出する。よって、「未再結晶のフェライト相の面積率」は、フェライト相に対する未再結晶のフェライト相の割合をいう。
(CMnγ/CMnαの測定方法)
CMnγ/CMnαは、EBSP、SEM、及び電子線マイクロアナライザ(EPMA)により測定する。上記のように、EBSP及びSEMを用いてオーステナイト相及びフェライト相の領域を同定し、その領域においてEPMAにより、CMnγ(オーステナイト相のMn濃度)及びCMnα(フェライト相のMn濃度)を測定して、CMnγ/CMnαを算出する。より具体的には、表面から1/8位置における縦50μm(板厚方向の長さ)、横50μm(圧延方向の長さ)の領域について、同定された任意のオーステナイト相(γ相)とフェライト相(α相)について、各相10個の粒でそれぞれ測定されたMn濃度の平均値を算出し、その値をCMnγ及びCMnαとし、CMnγ/CMnαを算出する。
CMnγ/CMnαは、EBSP、SEM、及び電子線マイクロアナライザ(EPMA)により測定する。上記のように、EBSP及びSEMを用いてオーステナイト相及びフェライト相の領域を同定し、その領域においてEPMAにより、CMnγ(オーステナイト相のMn濃度)及びCMnα(フェライト相のMn濃度)を測定して、CMnγ/CMnαを算出する。より具体的には、表面から1/8位置における縦50μm(板厚方向の長さ)、横50μm(圧延方向の長さ)の領域について、同定された任意のオーステナイト相(γ相)とフェライト相(α相)について、各相10個の粒でそれぞれ測定されたMn濃度の平均値を算出し、その値をCMnγ及びCMnαとし、CMnγ/CMnαを算出する。
(ビッカース硬さのばらつきの測定方法)
鋼板のL断面に鏡面研磨を行い、次いで3%ナイタールによりミクロ組織を現出させて、鋼板表面の中央部から厚みの1/8位置におけるビッカース硬さのばらつきを測定する。ビッカース硬さのばらつきは、荷重を100gとし、表面から厚みの1/8位置における8点のビッカース硬さを測定し、その最大と最小の差をビッカース硬さのばらつきとする。ただし、8点のビッカース圧痕について、隣接する圧痕の間隔は50~70μmとする。ビッカース硬さの測定は、JIS2244:2009に準拠して行う。
鋼板のL断面に鏡面研磨を行い、次いで3%ナイタールによりミクロ組織を現出させて、鋼板表面の中央部から厚みの1/8位置におけるビッカース硬さのばらつきを測定する。ビッカース硬さのばらつきは、荷重を100gとし、表面から厚みの1/8位置における8点のビッカース硬さを測定し、その最大と最小の差をビッカース硬さのばらつきとする。ただし、8点のビッカース圧痕について、隣接する圧痕の間隔は50~70μmとする。ビッカース硬さの測定は、JIS2244:2009に準拠して行う。
次に、本実施形態に係る鋼板の機械特性について説明する。
(引張強度、伸び)
本実施形態に係る鋼板の引張強度(TS)は、好ましくは980MPa以上、より好ましくは1180MPa以上である。これは、鋼板を自動車の素材として使用する際、高強度化によって板厚を減少させ、軽量化に寄与するためである。また、本実施形態に係る鋼板をプレス成形に供するために、好ましくは伸び(EL)も優れ、例えば、伸び(EL)は20%以上であり、好ましくは22%以上である。本実施形態に係る鋼板のTS×ELは、好ましくは24000MPa・%以上、より好ましくは26000MPa・%以上、さらに好ましくは28000MPa・%以上である。さらに、本実施形態に係る鋼板は曲げ稜線が圧延方向となる場合の曲げ性にも優れる。
本実施形態に係る鋼板の引張強度(TS)は、好ましくは980MPa以上、より好ましくは1180MPa以上である。これは、鋼板を自動車の素材として使用する際、高強度化によって板厚を減少させ、軽量化に寄与するためである。また、本実施形態に係る鋼板をプレス成形に供するために、好ましくは伸び(EL)も優れ、例えば、伸び(EL)は20%以上であり、好ましくは22%以上である。本実施形態に係る鋼板のTS×ELは、好ましくは24000MPa・%以上、より好ましくは26000MPa・%以上、さらに好ましくは28000MPa・%以上である。さらに、本実施形態に係る鋼板は曲げ稜線が圧延方向となる場合の曲げ性にも優れる。
本開示の鋼板は様々な用途に用いることができ、特にサイドシルなどの自動車の構造部品用途に好適に用いられ自動車の軽量化にも寄与するので、産業上の貢献が極めて顕著である。
3.製造方法
本実施形態に係る鋼板の製造方法について説明する。なお、以下において、「~」を用いて表される数値範囲は、「超」又は「未満」が用いられる場合を除き、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本実施形態に係る鋼板の製造方法について説明する。なお、以下において、「~」を用いて表される数値範囲は、「超」又は「未満」が用いられる場合を除き、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
本実施形態に係る鋼板は、上述の化学組成を有する鋼を常法で溶製し、鋳造してスラブまたは鋼塊を作製し、これを加熱して仕上圧延温度が1000℃以下、仕上圧延後の放冷時間が0.8秒間以上、放冷後の平均冷却速度が30℃/秒以上、及び巻取り温度が300℃未満の熱間圧延を施し、得られた熱延鋼板に、フェライト/オーステナイトの二相域で熱処理を行い、酸洗した後、30~70%の冷間圧延率で冷間圧延し、次いでフェライト/オーステナイトの二相域で短時間焼鈍を施し、100~530℃に冷却し、この温度で保持して製造する。
熱間圧延は、通常の連続熱間圧延ラインで行えばよい。熱間圧延後の熱延鋼板への熱処理は、箱焼鈍炉(BAF)等のバッチ炉または連続焼鈍炉等のトンネル炉で行うことができる。冷間圧延も、通常の連続冷間圧延ラインで行えばよい。本開示の方法においては、焼鈍は、連続焼鈍ラインを用いて行うことができるので、生産性に非常に優れている。
本開示の鋼板の金属組織を得るためには、下記の条件、特に、熱延条件、熱間圧延後の熱延鋼板への熱処理条件、冷間圧延条件、焼鈍条件、及び冷却条件を、以下に示す範囲内で行うことが好ましい。
本実施形態に係る鋼板が上述の化学組成を有する限り、溶鋼は、通常の高炉法で溶製されたものであってもよく、電炉法で作成された鋼のように、原材料がスクラップを多量に含むものでもよい。スラブは、通常の連続鋳造プロセスで製造されたものでもよいし、薄スラブ鋳造で製造されたものでもよい。
上述のスラブまたは鋼塊を加熱し、熱間圧延を行って熱延鋼板を得る。熱間圧延に供する鋼材の温度は、1100~1300℃とすることが好ましい。熱間圧延に供する鋼材の温度を1100℃以上にすることにより、熱間圧延時の変形抵抗をより小さくすることができる。一方、熱間圧延に供する鋼材の温度を1300℃以下にすることにより、スケールロス増加による歩留まりの低下を抑制することができる。本願明細書において、温度とは、スラブまたは鋼材表面の中央部における表面温度をいう。
熱間圧延前に上記好ましい温度範囲である1100~1300℃の温度域に保持する時間は特に規定しないが、靭性を向上させるためには、30分間以上とすることが好ましく、1時間以上にすることがさらに好ましい。また、過度のスケールロスを抑制するために10時間以下とすることが好ましく、5時間以下とすることがさらに好ましい。なお、直送圧延または直接圧延を行う場合であって、加熱処理を施さずにそのまま熱間圧延に供してもよい。
(仕上圧延及び巻取り:1000℃以下で仕上圧延、仕上圧延後に0.8秒間以上放冷、放冷後に30℃/秒以上の平均冷却速度で冷却、及び300℃未満で巻取り)
熱間圧延において仕上圧延を行う。仕上圧延開始温度を1000℃以下とし、仕上圧延を1000℃以下で行う。仕上圧延開始温度を1000℃超とすると、熱延状態での組織の粗大化を防ぐことができず、その後の組織制御が困難になることに加え、粒界酸化による鋼板の表面性状の劣化を抑制することも困難となる。仕上圧延開始温度は好ましくは750℃以上である。仕上圧延開始温度が750℃以上であることにより、圧延時の変形抵抗を小さくし、組織制御を容易に行うことができる。
熱間圧延において仕上圧延を行う。仕上圧延開始温度を1000℃以下とし、仕上圧延を1000℃以下で行う。仕上圧延開始温度を1000℃超とすると、熱延状態での組織の粗大化を防ぐことができず、その後の組織制御が困難になることに加え、粒界酸化による鋼板の表面性状の劣化を抑制することも困難となる。仕上圧延開始温度は好ましくは750℃以上である。仕上圧延開始温度が750℃以上であることにより、圧延時の変形抵抗を小さくし、組織制御を容易に行うことができる。
仕上圧延後に0.8秒間以上放冷を行う。一般的に、組織微細化の観点からは、仕上圧延直後に急冷するのがよいとされている。しかし、本実施形態に係る鋼板のような2.50%超のMnを含む鋼板においては、Mn偏析による再結晶の遅延により、仕上圧延直後のオーステナイト粒径が不均一になる。あるいは、フェライトが不均一に生成し、熱延鋼板の熱処理時、さらに、冷延鋼板の焼鈍時にバンド組織が生成しやすくなる。よって、仕上圧延後に0.8秒間以上放冷することによって、バンド組織の形成が抑制され、ビッカース硬さのばらつきが40Hv以下となる。放冷時間の上限は、好ましくは6.0秒間未満である。放冷時間が6.0秒間以上の場合、バンド組織形成抑制の効果が飽和する。
好ましくは、仕上圧延後に1.2~4.0秒の放冷を行う。放冷時間の前記範囲内にすることにより、オーステナイト粒がより均一になり、焼鈍後の鋼板の組織がより均一になり、ビッカース硬さのばらつきが30Hv以下となる。放冷時間は、1.5秒以上、1.8秒以上、2.0秒以上、2.2秒以上又は2.5秒以上であってもよい。また、放冷時間は、3.8秒以下、3.5秒以下、3.2秒以下又は3.0秒以下であってもよい。
上記放冷後に30℃/秒以上の平均冷却速度で冷却を行う。平均冷却速度が30℃/秒未満であると、マルテンサイト変態中において、熱延板のブロック境界および旧オーステナイト粒界において、セメンタイトが不均一に生成するので、ビッカース硬さのばらつきが40Hv超となる。平均冷却速度の上限は、好ましくは500℃/秒以下である。平均冷却速度は大きいほど好ましく、500℃/秒以下であれば、冷却むらが生じにくく、冷間圧延性が低下しにくい。
仕上圧延を行った後、冷却を行い300℃未満の温度で巻取りを行う。300℃以上の温度で巻取ると、熱延鋼板の組織をフルマルテンサイト組織とすることができず、熱延鋼板の熱処理及び冷延鋼板の焼鈍工程において、それぞれ、Mn分配とオーステナイト逆変態とを効率的に起こすことが困難となる。
(熱延鋼板の熱処理:オーステナイト相分率が20~50%となる温度域で1時間以上保持)
得られた熱延鋼板に、フェライト/オーステナイトの二相域でオーステナイト相分率が20~50%となる温度域にて1時間以上の熱処理を行う。鋼板のAc1超Ac3未満の二相域の温度範囲内のうち、オーステナイト相分率が20~50%となる温度範囲内で熱処理を行うことにより、オーステナイト相にMnを分配して、オーステナイト相を安定化させて、高い延性を得ることができる。逆に、オーステナイト相分率が20%未満または50%超の温度で熱処理を行うと、オーステナイト相を安定化させることが困難となる。熱処理を1時間未満で行う場合も、オーステナイト相を安定化させることが困難となる。オーステナイト相分率が20~50%となる温度で1時間以上熱処理を行うことによって、焼鈍後の鋼板が、面積率で、10%以上のオーステナイト相を含み、CMnγ/CMnαを高めることができる。オーステナイト相分率が20~50%となる温度範囲は、鋼板の成分に応じて、オフラインの予備実験で室温から0.5℃/秒の加熱速度で加熱し、加熱中の体積変化から、オーステナイト相分率を測定することで求めることができる。オーステナイト相の安定化を促進するためには、熱処理の保持時間の下限は、好ましくは3時間以上、さらに好ましくは4時間以上である。オーステナイト相の安定化をより促進するために、熱処理時のオーステナイト相分率を25%以上又は30%以上としてもよく、45%以下又は40%以下としてもよい。熱処理の保持時間の上限は、生産性の観点から、好ましくは10時間以内、より好ましくは8時間以内である。また、熱処理の雰囲気は特に限定されず、例えば、大気雰囲気、不活性雰囲気、またはH2等を含む還元雰囲気のいずれであってもよい。
得られた熱延鋼板に、フェライト/オーステナイトの二相域でオーステナイト相分率が20~50%となる温度域にて1時間以上の熱処理を行う。鋼板のAc1超Ac3未満の二相域の温度範囲内のうち、オーステナイト相分率が20~50%となる温度範囲内で熱処理を行うことにより、オーステナイト相にMnを分配して、オーステナイト相を安定化させて、高い延性を得ることができる。逆に、オーステナイト相分率が20%未満または50%超の温度で熱処理を行うと、オーステナイト相を安定化させることが困難となる。熱処理を1時間未満で行う場合も、オーステナイト相を安定化させることが困難となる。オーステナイト相分率が20~50%となる温度で1時間以上熱処理を行うことによって、焼鈍後の鋼板が、面積率で、10%以上のオーステナイト相を含み、CMnγ/CMnαを高めることができる。オーステナイト相分率が20~50%となる温度範囲は、鋼板の成分に応じて、オフラインの予備実験で室温から0.5℃/秒の加熱速度で加熱し、加熱中の体積変化から、オーステナイト相分率を測定することで求めることができる。オーステナイト相の安定化を促進するためには、熱処理の保持時間の下限は、好ましくは3時間以上、さらに好ましくは4時間以上である。オーステナイト相の安定化をより促進するために、熱処理時のオーステナイト相分率を25%以上又は30%以上としてもよく、45%以下又は40%以下としてもよい。熱処理の保持時間の上限は、生産性の観点から、好ましくは10時間以内、より好ましくは8時間以内である。また、熱処理の雰囲気は特に限定されず、例えば、大気雰囲気、不活性雰囲気、またはH2等を含む還元雰囲気のいずれであってもよい。
オーステナイト相分率が20~50%となる温度範囲で熱処理を行った後、冷却を行う。これにより、熱処理で得たMn分配状態を維持することができる。
熱延鋼板は、常法により酸洗を施された後に、30~70%の圧下率(冷間圧延率)で冷間圧延が行われ、冷延鋼板とされる。冷間圧延の圧下率を30%未満とすると、再結晶が不均一になり、オーステナイト相が不均一に生成し、焼鈍後の鋼板のビッカース硬さのばらつきが大きくなる。また、圧下率を70%超とすると、冷間圧延時に破断が生じやすくなる。冷間圧延の圧下率の下限値は好ましくは40%以上である。冷間圧延の圧下率の上限値は好ましくは60%以下である。
冷間圧延の前であって酸洗の前または後に0超~5%程度の軽度の圧延を行って形状を修正すると、平坦確保の点で有利となるので好ましい。また、酸洗前に軽度の圧延を行うことより酸洗性が向上し、表面濃化元素の除去が促進され、化成処理性やめっき処理性を向上させる効果がある。
(冷延鋼板の焼鈍:オーステナイト相分率が20~65%となる温度域で30秒間以上保持)
得られた冷延鋼板を、フェライト/オーステナイトの二相域でオーステナイト相分率が20~65%となる温度域にて、30秒間以上、好ましくは1分間以上、保持して焼鈍を行う。上記熱延鋼板の熱処理ですでにMn分配を完了しており、熱処理中にオーステナイト相だった箇所にはMnが濃化しているので、この箇所は、短時間焼鈍でも、すぐにオーステナイト相になりやすく、安定したオーステナイト相が得られ、短時間の焼鈍処理で優れた延性が得られる。一方、当該焼鈍においてオーステナイト相分率が20%未満の温度で熱処理を行うとオーステナイト相が十分に得られず、65%超の温度で熱処理を行うと、フェライト相が十分に生成されず、さらに、オーステナイト相からマルテンサイト相に変態しやすくなる。また、焼鈍時間が30秒間未満では、再結晶が十分に進行しない。焼鈍時間の上限は特に規定しないが、生産性の観点から、15分間未満であることが好ましく、5分間以下であることがより好ましい。所望の金属組織を得るために、焼鈍時のオーステナイト相分率を25%以上又は30%以上としてもよく、60%以下、55%以下、50%以下又は40%以下としてもよい。好ましくは、オーステナイト相分率が25~40%となる温度域で焼鈍する。また、焼鈍雰囲気は、大気雰囲気、不活性雰囲気、またはH2等を含む還元雰囲気のいずれであってもよい。
得られた冷延鋼板を、フェライト/オーステナイトの二相域でオーステナイト相分率が20~65%となる温度域にて、30秒間以上、好ましくは1分間以上、保持して焼鈍を行う。上記熱延鋼板の熱処理ですでにMn分配を完了しており、熱処理中にオーステナイト相だった箇所にはMnが濃化しているので、この箇所は、短時間焼鈍でも、すぐにオーステナイト相になりやすく、安定したオーステナイト相が得られ、短時間の焼鈍処理で優れた延性が得られる。一方、当該焼鈍においてオーステナイト相分率が20%未満の温度で熱処理を行うとオーステナイト相が十分に得られず、65%超の温度で熱処理を行うと、フェライト相が十分に生成されず、さらに、オーステナイト相からマルテンサイト相に変態しやすくなる。また、焼鈍時間が30秒間未満では、再結晶が十分に進行しない。焼鈍時間の上限は特に規定しないが、生産性の観点から、15分間未満であることが好ましく、5分間以下であることがより好ましい。所望の金属組織を得るために、焼鈍時のオーステナイト相分率を25%以上又は30%以上としてもよく、60%以下、55%以下、50%以下又は40%以下としてもよい。好ましくは、オーステナイト相分率が25~40%となる温度域で焼鈍する。また、焼鈍雰囲気は、大気雰囲気、不活性雰囲気、またはH2等を含む還元雰囲気のいずれであってもよい。
冷間圧延前の熱処理における温度と冷間圧延後の焼鈍における温度との差は、好ましくはオーステナイト相分率の差に換算して15%以下相当、より好ましくは10%以下相当である。冷間圧延前の熱処理における温度と冷間圧延後の焼鈍における温度とはどちらが高くてもよい。冷間圧延前の熱処理における温度と冷間圧延後の焼鈍における温度との差を上記範囲内にすることにより、冷間圧延前の熱処理におけるオーステナイト相分率と冷間圧延後の焼鈍におけるオーステナイト相分率とを近づけることができるので、冷間圧延後の焼鈍において、Mnが濃化した箇所にだけオーステナイト相を生成することができる。冷間圧延前の熱処理における温度及び冷間圧延後の焼鈍における温度とは、熱処理プロファイルにおける実質的な最高温度である。
(焼鈍後の冷却条件:100~530℃の温度域まで冷却し、100~530℃の温度域で10~1000秒間保持)
焼鈍の温度保持後に、冷延鋼板を100~530℃の温度域まで冷却する。
焼鈍の温度保持後に、冷延鋼板を100~530℃の温度域まで冷却する。
冷却停止温度が530℃超の場合、マルテンサイト相を焼き戻したり、あるいは、ベイナイト相を生成することが困難となるので、その結果、金属組織にフレッシュマルテンサイト相が生じやすくなり、焼鈍後の鋼板の曲げ性が低下する。また、冷却停止温度が100℃未満の場合、マルテンサイト変態に伴うひずみが生じやすくなり、鋼板の平坦性を維持することが困難となり、また連続焼鈍ラインの効率の向上が妨げられる。
焼鈍後の平均冷却速度は、2~2000℃/秒であることが好ましい。焼鈍後の平均冷却速度が2℃/秒以上の場合、フェライト相の過剰な粗大化をより抑制することができる。また、平均冷却速度が2000℃/秒以下の場合、冷却停止した後の鋼板温度分布がより均一になりやすく、鋼板の平坦性を十分維持することができる。
100~530℃の温度域まで冷却した後、100~530℃の温度域で、10~1000秒間保持する。100~530℃の温度域における保持時間が10秒間未満の場合、オーステナイト相へのC分配が進行しにくくなり、金属組織にオーステナイト相を安定に生成させることが困難となる。また、マルテンサイト相を焼き戻したり、あるいは、ベイナイト相を生成することが困難となるので、その結果、金属組織にフレッシュマルテンサイト相が生じやすくなり、焼鈍後の鋼板の伸びと曲げ性が低下しやすくなる。100~530℃の温度域における保持時間は、好ましくは30秒以上である。一方、上記保持時間が1000秒間超の場合、上記作用による効果は飽和し、連続焼鈍ラインの生産性の低下を招く。そのため、100~530℃の温度域における保持時間は1000秒以下とし、好ましくは300秒以下である。保持温度は、100~530℃の範囲内であれば冷却停止温度と異なる温度でもよいが、保持温度と冷却停止温度との温度差は、好ましくは50℃以内であり、より好ましくは実質的に0℃である。
上記100~530℃の温度域での保持の後、鋼板を好ましくは80℃以下、より好ましくは室温まで冷却する。
上記焼鈍後の冷却は、鋼板にめっきしない場合には、そのまま好ましくは80℃以下、より好ましくは室温まで行われればよい。また、鋼板にめっきする場合には、以下のようにして製造することができる。
鋼板の表面に溶融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造する場合には、上記焼鈍後に冷延鋼板を100~530℃の温度域まで冷却し、100~530℃の温度域で10~1000秒間保持した後に、430~500℃の温度まで昇温し、次いで冷延鋼板を溶融亜鉛のめっき浴に浸漬して溶融亜鉛めっき処理を行う。めっき浴の条件は通常の範囲内とすればよい。めっき処理後は室温まで冷却すればよい。
鋼板の表面に合金化溶融亜鉛めっきを施して合金化溶融亜鉛めっき鋼板を製造する場合には、鋼板に溶融亜鉛めっき処理を施した後、鋼板を室温まで冷却する前に、450~620℃の温度で溶融亜鉛めっきの合金化処理を行う。合金化処理条件は、通常の範囲内とすればよい。
焼鈍後の鋼板、またはめっき後の鋼板に、スキンパス圧延を行ってもよい。かかるスキンパス圧延の圧下率は、0~5.0%未満(すなわち、スキンパス圧延を行わない場合も含む)であることが好ましい。スキンパス圧延を行う場合の圧下率は0超~5.0%未満である。
以上のように鋼板を製造することによって、本実施形態に係る鋼板を得ることができる。
本開示の鋼板を、例を参照しながらより具体的に説明する。ただし、以下の例は本開示の鋼板及びその製造方法の例であり、本開示の鋼板及びその製造方法は以下の例の態様に限定されるものではない。
1.評価用鋼板の製造
表1に示す化学成分を有する鋼を溶製し、30mm厚のスラブを得た。
表1に示す化学成分を有する鋼を溶製し、30mm厚のスラブを得た。
得られたスラブを表2に示す仕上圧延開始温度、放冷時間、平均冷却速度、及び巻取り温度で熱間圧延し、2.6mm厚の熱延鋼板を製板した。得られた熱延鋼板に、表2に示すオーステナイト相分率となる温度及び保持時間で熱処理を行い、次いで酸洗し、さらに、表2に示す冷間圧延率で冷間圧延を施して、冷延鋼板を製板した。熱延鋼板の熱処理は、窒素98%及び水素2%の還元雰囲気で行った。熱処理のオーステナイト相分率及び保持時間を記載していない例は、熱間圧延後に熱処理を行わず、巻取り後にそのまま冷間圧延を行った例を意味する。
得られた冷延鋼板に、表3に示すオーステナイト相分率となる温度及び保持時間で焼鈍を行った。冷延鋼板の焼鈍は、窒素98%及び水素2%の還元雰囲気で行った。熱延鋼板の熱処理温度と冷延鋼板の焼鈍温度とは、表3に示されるオーステナイト相分率差に相当する温度差であった。焼鈍の温度保持後に、鋼板を、表3に示す冷却停止温度、冷却停止後の保持温度、及び保持時間の条件で冷却した。焼鈍の温度保持後の平均冷却速度は100℃/秒とした。冷却停止温度、冷却停止後の保持温度、及び保持時間の数値を記載していない例は、焼鈍後の冷却で、100~530℃の温度域において冷却停止および保持を行わず、焼鈍後そのまま室温まで冷却した例を意味する。
一部の焼鈍冷延鋼板については、焼鈍を行った後、表3に記載の冷却停止温度、保持温度及び保持時間で冷却・保持し、次いで、460℃に昇温して、冷延鋼板をその温度で10秒保持し、460℃の溶融亜鉛のめっき浴に2秒間浸漬して、溶融亜鉛めっき処理を行った。めっき浴の条件は従来のものと同じである。後述する合金化処理を施さない場合、溶融亜鉛めっき処理後に、平均冷却速度10℃/秒で室温まで冷却した。
一部の焼鈍冷延鋼板については、溶融亜鉛めっき処理を行った後に、室温に冷却せずに、500℃まで10℃/秒で加熱し、500℃で5秒間保持して合金化処理を行い、その後、平均冷却速度10℃/秒で室温まで冷却した。
このようにして得られた焼鈍冷延鋼板に、圧下率が0.5%のスキンパス圧延を施して、各例の鋼板を作製した。
2.評価方法
表2及び表3に示す条件で作製した各例の焼鈍冷延鋼板について、X線回折測定、ミクロ組織観察、引張試験、及び曲げ試験を実施して、フェライト相(α)、オーステナイト相(γ)、焼き戻しマルテンサイト相(T.M)(ベイナイト相を含む)、フレッシュマルテンサイト相(F.M)、及び、フェライト相に対する未再結晶のフェライト相(未再結晶α)の面積率、CMnγ/CMnα、及びビッカース硬さのばらつきΔHvを評価した。各評価の方法は、上記実施形態の記載のとおりである。また、各例の焼鈍冷延鋼板について、以下に記載のとおり、引張強度(TS)、伸び(EL)、TS×EL、及び曲げ性(Rmin)を評価した。
表2及び表3に示す条件で作製した各例の焼鈍冷延鋼板について、X線回折測定、ミクロ組織観察、引張試験、及び曲げ試験を実施して、フェライト相(α)、オーステナイト相(γ)、焼き戻しマルテンサイト相(T.M)(ベイナイト相を含む)、フレッシュマルテンサイト相(F.M)、及び、フェライト相に対する未再結晶のフェライト相(未再結晶α)の面積率、CMnγ/CMnα、及びビッカース硬さのばらつきΔHvを評価した。各評価の方法は、上記実施形態の記載のとおりである。また、各例の焼鈍冷延鋼板について、以下に記載のとおり、引張強度(TS)、伸び(EL)、TS×EL、及び曲げ性(Rmin)を評価した。
(機械的性質の試験方法)
鋼板の圧延方向に直角方向からJIS5号引張試験片を採取し、引張試験及び伸び試験を行って引張強度(TS)及び伸び(EL)を測定した。引張試験は、JIS5号引張試験片を用いたJIS-Z2241:2011に規定される方法で行った。伸び試験は、平行部長さ50mmのJIS5号試験片を用いたJIS-Z2241:2011に規定される方法で行った。
鋼板の圧延方向に直角方向からJIS5号引張試験片を採取し、引張試験及び伸び試験を行って引張強度(TS)及び伸び(EL)を測定した。引張試験は、JIS5号引張試験片を用いたJIS-Z2241:2011に規定される方法で行った。伸び試験は、平行部長さ50mmのJIS5号試験片を用いたJIS-Z2241:2011に規定される方法で行った。
曲げ性(Rmin)は曲げ試験を行って評価した。曲げ試験は、幅15mm(曲げ稜線となる方向)、長さ50mm(圧延直角の方向)、焼鈍した試料の厚さまま(板厚の方向)の試験片を曲げ稜線が圧延方向になるように鋼板表面の中央部から採取し、その試験片を先端角度90度、先端Rが板厚の2.5倍のV型ポンチで、Vブロックに押し込んだ。その後、曲げ稜線を観察し、稜線に割れがない場合を曲げ性が「良好」とした。稜線に割れがある場合を曲げ性が「不良」とした。さらに、2.5倍のV型ポンチで、Vブロックに押し込んだ際に、割れなかった鋼板に関しては、先端Rが板厚の1.5倍のV型ポンチで、別の試験片をVブロックに押し込んだ。その後、曲げ稜線を観察し、稜線に割れがない場合を曲げ性が「より良好」とした。
3.評価結果
表2及び表3に示す条件で作製した鋼板についての評価結果を表4に示す。本発明例では、980MPa以上のTS、24000MPa・%以上のTS×EL、及び「良好」なRminを示す鋼板が得られた。
表2及び表3に示す条件で作製した鋼板についての評価結果を表4に示す。本発明例では、980MPa以上のTS、24000MPa・%以上のTS×EL、及び「良好」なRminを示す鋼板が得られた。
例No.1~3、6、7、9、10、13~15、17、20~22、27、30、32及び33は、所定の製造方法に従って製造されたため、所望の金属組織が得られ、優れた特性(強度及び伸び特性(TS×ELの値)、並びに曲げ性)を有していた。
例No.4は、熱間圧延後の熱処理のオーステナイト相分率が低く、所望の金属組織が得られなかったため、十分な強度及び伸び特性(TS×ELの値)が得られなかった。例No.5は、Pを過剰に含有していたため、十分な曲げ性が得られなかった。例No.8は、焼鈍時のオーステナイト相分率が低く、所望の金属組織が得られなかったため、十分な強度及び伸び特性(TS×ELの値)が得られなかった。例No.11は、冷間圧延率が低く、ビッカース硬さのばらつきを抑制できず、十分な曲げ性が得られなかった。例No.12は、Mn含有量が不足し、所望の金属組織が得られなかったため、十分な強度及び伸び特性(TS×ELの値)が得られなかった。例No.16は、巻取り温度が高く、CMnγ/CMnαの値が不十分となり、十分な強度及び伸び特性(TS×ELの値)が得られなかった。例No.18は、焼鈍後の冷却を行わなかったため、所望の金属組織が得られず、十分な曲げ性が得られなかった。例No.19は、焼鈍時のオーステナイト相分率が高く、所望の金属組織が得られず、十分な強度及び伸び特性(TS×ELの値)、並びに十分な曲げ性が得られなかった。例No.23は、熱間圧延後に放冷した後の平均冷却速度が低く、ビッカース硬さのばらつきを抑制できず、十分な曲げ性が得られなかった。例No.24は、焼鈍後の冷却での保持時間が短く、所望の金属組織が得られず、十分な強度及び伸び特性(TS×ELの値)、並びに十分な曲げ性が得られなかった。例No.25は、焼鈍後の冷却停止温度及び保持温度が高く、所望の金属組織が得られず、十分な曲げ性が得られなかった。例No.26は、C含有量が不足し、所望の金属組織が得られず、十分な強度及び伸び特性(TS×ELの値)が得られなかった。例No.28は、熱間圧延後の熱処理のオーステナイト相分率が高く、所望の金属組織が得られず、CMnγ/CMnαの値が不十分となり、十分な強度及び伸び特性(TS×ELの値)が得られなかった。例No.29は、熱間圧延後の熱処理での保持時間が短く、所望の金属組織が得られず、CMnγ/CMnαの値が不十分となり、十分な強度及び伸び特性(TS×ELの値)が得られなかった。例No.31は、焼鈍での保持時間が短く、所望の金属組織が得られず、十分な強度及び伸び特性(TS×ELの値)が得られなかった。例No.34は、熱間圧延後の放冷時間が短く、ビッカース硬さのばらつきを抑制できず、十分な曲げ性が得られなかった。例No.35は、Mnを過剰に含有していたため、十分な曲げ性が得られなかった。例No.36は、熱間圧延後の熱処理を行わなかったため、十分な強度及び伸び特性(TS×ELの値)が得られなかった。
Claims (9)
- 化学組成が、質量%で、
C:0.15超~0.40%未満、
Si:0.001~2.00%未満、
Mn:2.50超~4.20%未満、
sol.Al:0.001~1.500%未満、
P:0.030%以下、
S:0.0050%以下、
N:0.050%未満、
O:0.020%未満、
Cr:0~0.50%、
Mo:0~2.00%、
W:0~2.00%、
Cu:0~2.00%、
Ni:0~2.00%、
Ti:0~0.300%、
Nb:0~0.300%、
V:0~0.300%、
B:0~0.010%、
Ca:0~0.010%、
Mg:0~0.010%、
Zr:0~0.010%、
REM:0~0.010%、
Sb:0~0.050%、
Sn:0~0.050%、
Bi:0~0.050%、及び
残部:鉄および不純物であり、
表面から厚みの1/8位置における金属組織が、面積率で、オーステナイト相:10%以上、焼き戻しマルテンサイト相とベイナイト相の合計:5%以上、フェライト相:35%以上、及びフレッシュマルテンサイト相:15%未満であり、
前記フェライト相に対する未再結晶のフェライト相の面積率が10~50%であり、
前記オーステナイト相における平均Mn濃度CMnγと前記フェライト相における平均Mn濃度CMnαとの比であるCMnγ/CMnαが1.20以上であり、並びに
表面から厚みの1/8位置におけるビッカース硬さのばらつきが、40Hv以下である
鋼板。 - 前記化学組成が、質量%で、
Cr:0.01~0.50%、
Ti:0.005~0.300%、
Nb:0.005~0.300%、
V:0.005~0.300%、及び
B:0.0001~0.010%
からなる群から選択される1種又は2種以上を含有する、請求項1に記載の鋼板。 - 前記鋼板の表面に溶融亜鉛めっき層を有する、請求項1または2に記載の鋼板。
- 前記鋼板の表面に合金化溶融亜鉛めっき層を有する、請求項1または2に記載の鋼板。
- 化学組成が、質量%で、
C:0.15超~0.40%未満、
Si:0.001~2.00%未満、
Mn:2.50超~4.20%未満、
sol.Al:0.001~1.500%未満、
P:0.030%以下、
S:0.0050%以下、
N:0.050%未満、
O:0.020%未満、
Cr:0~0.50%、
Mo:0~2.00%、
W:0~2.00%、
Cu:0~2.00%、
Ni:0~2.00%、
Ti:0~0.300%、
Nb:0~0.300%、
V:0~0.300%、
B:0~0.010%、
Ca:0~0.010%、
Mg:0~0.010%、
Zr:0~0.010%、
REM:0~0.010%、
Sb:0~0.050%、
Sn:0~0.050%、
Bi:0~0.050%、及び
残部:鉄および不純物である鋼に、仕上圧延温度が1000℃以下、前記仕上圧延後の放冷時間が0.8秒間以上、前記放冷後の平均冷却速度が30℃/秒以上、及び巻取り温度が300℃未満の熱間圧延を施して熱延鋼板とすること、
前記熱延鋼板に、オーステナイト相分率が20~50%となる温度域にて1時間以上の熱処理を行い、その後、酸洗及び冷間圧延を施して冷延鋼板とすること、
前記冷間圧延における冷間圧延率を30~70%とすること、
前記冷延鋼板を、オーステナイト相分率が20~65%となる温度域にて、30秒間以上保持して焼鈍すること、並びに
前記焼鈍の温度保持後に、100~530℃の温度域まで冷却し、100~530℃の温度域で10~1000秒間保持すること、
を含む、鋼板の製造方法。 - 前記化学組成が、質量%で、
Cr:0.01~0.50%、
Ti:0.005~0.300%、
Nb:0.005~0.300%、
V:0.005~0.300%、及び
B:0.0001~0.010%
からなる群から選択される1種又は2種以上を含有する、請求項5に記載の鋼板の製造方法。 - 前記仕上圧延後の放冷時間が1.2~4.0秒である、請求項5または6に記載の鋼板の製造方法。
- 前記焼鈍後に、溶融亜鉛めっき処理を施す、請求項5~7のいずれか一項に記載の鋼板の製造方法。
- 前記溶融亜鉛めっき処理を施した後、450~620℃の温度域で前記溶融亜鉛めっきの合金化処理を施す、請求項8に記載の鋼板の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020512052A JP6760543B1 (ja) | 2018-10-17 | 2019-10-17 | 鋼板及び鋼板の製造方法 |
CN201980041522.7A CN112313351B (zh) | 2018-10-17 | 2019-10-17 | 钢板及钢板的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-195863 | 2018-10-17 | ||
JP2018195863 | 2018-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020080493A1 true WO2020080493A1 (ja) | 2020-04-23 |
Family
ID=70283874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/040980 WO2020080493A1 (ja) | 2018-10-17 | 2019-10-17 | 鋼板及び鋼板の製造方法 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6760543B1 (ja) |
CN (1) | CN112313351B (ja) |
TW (1) | TW202024349A (ja) |
WO (1) | WO2020080493A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024190415A1 (ja) * | 2023-03-10 | 2024-09-19 | 日本製鉄株式会社 | 鋼板 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240124991A (ko) * | 2022-02-24 | 2024-08-19 | 제이에프이 스틸 가부시키가이샤 | 강판 및 그의 제조 방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013118679A1 (ja) * | 2012-02-08 | 2013-08-15 | 新日鐵住金株式会社 | 高強度冷延鋼板及びその製造方法 |
WO2016021198A1 (ja) * | 2014-08-07 | 2016-02-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 |
WO2016158160A1 (ja) * | 2015-03-31 | 2016-10-06 | 株式会社神戸製鋼所 | 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法 |
WO2016199922A1 (ja) * | 2015-06-11 | 2016-12-15 | 新日鐵住金株式会社 | 合金化溶融亜鉛めっき鋼板およびその製造方法 |
WO2017131053A1 (ja) * | 2016-01-29 | 2017-08-03 | Jfeスチール株式会社 | 温間加工用高強度鋼板およびその製造方法 |
WO2017168962A1 (ja) * | 2016-03-31 | 2017-10-05 | Jfeスチール株式会社 | 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5348071B2 (ja) * | 2010-05-31 | 2013-11-20 | Jfeスチール株式会社 | 高強度熱延鋼板およびその製造方法 |
EP2730666B1 (en) * | 2011-07-06 | 2018-06-13 | Nippon Steel & Sumitomo Metal Corporation | Method for producing a cold-rolled steel sheet |
EP3178949B1 (en) * | 2014-08-07 | 2020-01-29 | JFE Steel Corporation | High-strength steel sheet and method for manufacturing same |
JP6179674B2 (ja) * | 2014-10-30 | 2017-08-16 | Jfeスチール株式会社 | 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法 |
-
2019
- 2019-10-17 WO PCT/JP2019/040980 patent/WO2020080493A1/ja active Application Filing
- 2019-10-17 CN CN201980041522.7A patent/CN112313351B/zh active Active
- 2019-10-17 TW TW108137478A patent/TW202024349A/zh unknown
- 2019-10-17 JP JP2020512052A patent/JP6760543B1/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013118679A1 (ja) * | 2012-02-08 | 2013-08-15 | 新日鐵住金株式会社 | 高強度冷延鋼板及びその製造方法 |
WO2016021198A1 (ja) * | 2014-08-07 | 2016-02-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 |
WO2016158160A1 (ja) * | 2015-03-31 | 2016-10-06 | 株式会社神戸製鋼所 | 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法 |
WO2016199922A1 (ja) * | 2015-06-11 | 2016-12-15 | 新日鐵住金株式会社 | 合金化溶融亜鉛めっき鋼板およびその製造方法 |
WO2017131053A1 (ja) * | 2016-01-29 | 2017-08-03 | Jfeスチール株式会社 | 温間加工用高強度鋼板およびその製造方法 |
WO2017168962A1 (ja) * | 2016-03-31 | 2017-10-05 | Jfeスチール株式会社 | 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024190415A1 (ja) * | 2023-03-10 | 2024-09-19 | 日本製鉄株式会社 | 鋼板 |
Also Published As
Publication number | Publication date |
---|---|
TW202024349A (zh) | 2020-07-01 |
JP6760543B1 (ja) | 2020-09-23 |
CN112313351B (zh) | 2022-10-28 |
JPWO2020080493A1 (ja) | 2021-02-15 |
CN112313351A (zh) | 2021-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2772556B1 (en) | Method for producing high-strength steel sheet having superior workability | |
JP4737319B2 (ja) | 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法 | |
EP2757169B1 (en) | High-strength steel sheet having excellent workability and method for producing same | |
US20200087764A1 (en) | High-strength steel sheet | |
JP2017048412A (ja) | 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法 | |
JP2012021225A (ja) | 圧延方向に対して45°の方向の均一伸びが極めて高い高強度冷延鋼板及びその製造方法 | |
CN107849668B (zh) | 具有优良抗时效性能和烘烤硬化性的热浸镀锌钢板和合金化热浸镀锌钢板及其生产方法 | |
JP7036274B2 (ja) | 鋼板 | |
CN111868282B (zh) | 钢板 | |
JP5853884B2 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
JP6760543B1 (ja) | 鋼板及び鋼板の製造方法 | |
JP6744003B1 (ja) | 鋼板 | |
JP2008291314A (ja) | 高強度合金化溶融亜鉛めっき鋼板とその製造方法 | |
JP6683291B2 (ja) | 鋼板及び鋼板の製造方法 | |
JP6683292B2 (ja) | 鋼板及び鋼板の製造方法 | |
JP2011080126A (ja) | 合金化溶融亜鉛めっき鋼板およびその製造方法 | |
WO2017131052A1 (ja) | 温間加工用高強度鋼板およびその製造方法 | |
CN115362280B (zh) | 钢板及其制造方法 | |
JP6947327B2 (ja) | 高強度鋼板、高強度部材及びそれらの製造方法 | |
JP6780804B1 (ja) | 高強度鋼板およびその製造方法 | |
JP5846113B2 (ja) | 耐デント性に優れた高強度薄鋼板およびその製造方法 | |
JPWO2020017607A1 (ja) | 鋼板 | |
JP6687171B1 (ja) | 鋼板 | |
JP2021134389A (ja) | 高強度鋼板およびその製造方法ならびに部材およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020512052 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19874506 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19874506 Country of ref document: EP Kind code of ref document: A1 |