WO2017131053A1 - 温間加工用高強度鋼板およびその製造方法 - Google Patents

温間加工用高強度鋼板およびその製造方法 Download PDF

Info

Publication number
WO2017131053A1
WO2017131053A1 PCT/JP2017/002614 JP2017002614W WO2017131053A1 WO 2017131053 A1 WO2017131053 A1 WO 2017131053A1 JP 2017002614 W JP2017002614 W JP 2017002614W WO 2017131053 A1 WO2017131053 A1 WO 2017131053A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
warm working
annealing
warm
Prior art date
Application number
PCT/JP2017/002614
Other languages
English (en)
French (fr)
Inventor
長谷川 寛
船川 義正
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201780008401.3A priority Critical patent/CN109072371B/zh
Priority to JP2017527825A priority patent/JP6252710B2/ja
Priority to US16/073,905 priority patent/US11414720B2/en
Priority to EP17744283.7A priority patent/EP3409805B1/en
Publication of WO2017131053A1 publication Critical patent/WO2017131053A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength steel sheet for warm working excellent in warm workability and a yield ratio after warm working, and a method for producing the same.
  • steel sheets used for automotive parts are required to have high strength.
  • increasing the strength of a material such as a steel plate generally leads to a decrease in workability, and therefore development of a steel plate excellent in both strength and workability is required.
  • Patent Document 1 discloses a technique related to a TRIP steel sheet that uses retained austenite to increase impact absorption energy and elongation (hereinafter referred to as EL).
  • Non-Patent Document 1 discloses a technique for obtaining high strength with a low C content by securing a high workability by heating to an austenite single phase and then ensuring high workability.
  • Patent Document 2 discloses a retained austenite-containing steel sheet that achieves both excellent elongation and strength even when the heating temperature is lowered to 300 ° C.
  • Patent Document 1 the steel sheet described in Patent Document 1 is excellent in impact energy absorption in the case of high strain deformation of 10% or more, and cannot be applied to parts that are not deformed from the viewpoint of securing passenger space such as side collision parts.
  • the amount of C in the retained austenite is high, and the yield ratio is lowered due to the high C amount of martensite generated after processing.
  • Non-Patent Document 1 has a problem that crystal grains become coarse due to high-temperature heating, and the yield ratio becomes poor due to residual fresh martensite. Moreover, since the installation for heating a steel plate at high temperature is required and the running cost is also high, reduction in heating temperature is desired.
  • the steel sheet described in Patent Document 2 has a problem in the yield ratio after processing because the C content in the retained austenite is still as high as 0.5% by mass or more, and the warming temperature is not sufficiently lowered.
  • An object of the present invention is to provide a high-strength steel sheet for warm working having excellent warm workability and a high yield ratio after warm working, and a method for producing the same.
  • C 0.05 to 0.20%, Si: 3.0% or less, Mn: 3.5 to 8.0%, P: 0.100% or less, S: 0.02% or less, Al: 0.01 to 3.0%, N: 0.010% or less, and Nb: 0.005 to 0.20%, Ti: 0.005 to 0.20%, Mo: 0.005 to 1.0%, V: contains one or more selected from 0.005 to 1.0%, the balance is composed of Fe and inevitable impurities, and the structure has an area ratio of 10 to 60% Residual austenite, 10 to 80% ferrite, 10 to 50% martensite, 0 to 5% bainite, and the amount of C in the retained austenite is less than 0.40 mass%, and residual austenite, martensite and ferrite
  • the average crystal grain size is 2.0 ⁇ m or less respectively, and the crystal grain Nb, Ti, Mo, high strength and excellent temperature workability and warm working After the high yield ratio by having a carbide containing at least one selected from V can be realized.
  • the high strength means that the tensile strength at room temperature (hereinafter also referred to as TS) is 1180 MPa or more, the Vickers hardness HV at room temperature after warm working is 400 or more, and the high yield ratio means after warm working.
  • the yield ratio at room temperature is 60% or more, and the excellent warm workability is that EL at 150 ° C. is 27% or more.
  • the steel sheet includes a cold-rolled steel sheet and a hot-rolled steel sheet, and further includes these hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets. In the case of a steel sheet, when distinction is necessary in the description, it is called differently.
  • the gist of the present invention is as follows.
  • C 0.05 to 0.20%, Si: 3.0% or less, Mn: 3.5 to 8.0%, P: 0.100% or less, S: 0.02 %: Al: 0.01 to 3.0%, N: 0.010% or less, and Nb: 0.005 to 0.20%, Ti: 0.005 to 0.20%, Mo: 0 0.005 to 1.0%, V: containing at least one component selected from 0.005 to 1.0%, with the balance being composed of Fe and inevitable impurities, with an area ratio of 10 to 60% Residual austenite, 10 to 80% ferrite, 10 to 50% martensite, 0 to 5% bainite, and the amount of C in the residual austenite is less than 0.40% by mass, and the residual austenite, martensite and Each ferrite has an average crystal grain size of 2.0 ⁇ m or less and crystals Nb the field, Ti, Mo, having a steel sheet structure having a carbide containing at least one selected from V, high-strength steel sheet for
  • a hot rolling step in which a steel having the composition described in [1] or [3] is hot-rolled into a hot-rolled steel plate, a pickling step in which the hot-rolled steel plate is pickled, An annealing heating step of heating the pickled steel plate at a temperature range of 300 to 500 ° C. at an average heating rate of 10 ° C./s or more, further heating to over 680 ° C. to 720 ° C.
  • a method for producing a high-strength steel sheet for warm working comprising: an annealing holding step for holding for 1 to 30 s; and an annealing cooling step for cooling from the Ms point to room temperature at an average cooling rate of more than 10 ° C / s.
  • Component composition C 0.05 to 0.20% C is an element effective for generating martensite and retained austenite and increasing HV after warm working and EL during warm working (EL at 150 ° C. corresponding to warm working). . If it is less than 0.05%, such an effect cannot be sufficiently obtained. On the other hand, if the amount of C exceeds 0.20%, the amount of C in the retained austenite increases and the yield ratio after warm working decreases. Therefore, the C content is 0.05 to 0.20%.
  • the amount of C is preferably 0.10 or more on the lower limit side.
  • the upper limit side is preferably 0.20% or less.
  • Si 3.0% or less Si is an element effective for increasing the HV after solid solution strengthening of steel and TS and warm working. In order to obtain such an effect, the Si amount is preferably 0.01% by mass or more. On the other hand, if the Si content exceeds 3.0%, the yield ratio after warm working decreases. Therefore, the Si content is 3.0% or less, preferably 2.5% or less, more preferably 2.0% or less.
  • Mn 3.5 to 8.0%
  • Mn is an element that is effective in generating martensite and retained austenite to increase HV after warm working and warm EL. Moreover, it is an element effective in reducing the amount of C in retained austenite. If it is less than 3.5%, such an effect cannot be sufficiently obtained, and bainite which is not preferable in the present invention is likely to be generated. On the other hand, if it exceeds 8.0%, the yield ratio after warm working decreases. Therefore, the amount of Mn is 3.5 to 8.0%, preferably 3.5 to 7.0%. Further, the lower limit of the Mn content is preferably more than 3.5%. More preferably, it is more than 4.0%. More preferably, it is 4.5% or more.
  • P 0.100% or less
  • P is brittle steel and deteriorates warm workability. Therefore, the amount is desirably reduced as much as possible.
  • the amount of P can be allowed to be 0.100%. Preferably, it is 0.02% or less.
  • the lower limit is not particularly defined, but if it is less than 0.001%, the production efficiency is lowered, so 0.001% or more is preferable.
  • the amount of S is preferably reduced as much as possible.
  • the amount of S can be tolerated to 0.02%.
  • it is 0.005% or less.
  • the lower limit is not particularly specified, but if it is less than 0.0005%, the production efficiency is lowered, so 0.0005% or more is preferable.
  • Al 0.01 to 3.0%
  • Al is an element effective in promoting the formation of ferrite and obtaining ferrite. If the Al content exceeds 3.0%, the yield ratio after warm working decreases. Therefore, the Al content is 3.0% or less, preferably 1.5% or less, more preferably 1.0% or less. On the other hand, from the viewpoint of deoxidation in the steel making process, the Al content is 0.01% or more, preferably 0.02% or more.
  • N 0.010% or less N hardens martensite and causes a decrease in the yield ratio after warm working. Therefore, the amount is preferably reduced as much as possible.
  • the N amount is allowed to be 0.010%. it can. Preferably, it is 0.007% or less.
  • the lower limit is not particularly specified, but if it is less than 0.0005%, the production efficiency is lowered, so 0.0005% or more is preferable.
  • Nb 0.005 to 0.20%
  • Ti 0.005 to 0.20%
  • Mo 0.005 to 1.0%
  • V 0.005 to 1.0%
  • Nb , Ti, Mo, and V form a microstructure and fine grain boundary carbide, and improve the yield ratio after warm working. That is, while increasing the Mn to the level of the present invention, the interface movement speed is lowered, and the grain boundary carbide is formed by suppressing the grain growth at the time of annealing by the pinning effect of the fine grain boundary carbides, and the grain boundary is formed.
  • the yield ratio after the warm working is significantly improved by arranging the fine grain boundary carbides.
  • the content of each of at least one selected from Nb, Ti, Mo, and V is Nb: 0.005 to 0.20%, Ti: 0.005 to 0.20%, Mo: 0.005 to 1 0.0%, V: 0.005 to 1.0%.
  • the Ti content is preferably 0.010% or more.
  • the Nb amount is preferably 0.010% or more.
  • the amount of Mo is preferably 0.02% or more.
  • V amount is preferably 0.05% or more.
  • the Ti content is preferably 0.050% or less.
  • the Nb amount is preferably 0.030% or less.
  • the amount of Mo is preferably 0.30% or less.
  • the amount of V is preferably 0.2% or less.
  • the balance is Fe and inevitable impurities.
  • One or more of the following elements can be appropriately contained as necessary.
  • Cr 0.005-2.0%, Ni: 0.005-2.0%, Cu: 0.005-2.0%, B: 0.0001-0.0050%, Ca: 0.0001- One or more selected from 0.0050%, REM: 0.0001 to 0.0050%, Sn: 0.01 to 0.50%, Sb: 0.0010 to 0.10% Cr, Ni, and Cu are martens It is an element that generates sites and is effective in increasing strength. From the viewpoint of obtaining such effects, the amount of each of Cr, Ni, and Cu is preferably 0.005% or more. More preferably, it is 0.05% or more. If the respective contents of Cr, Ni, and Cu exceed 2.0%, the yield ratio after warm working may be reduced. More preferably, it is 1.0% or less.
  • B is an element that generates martensite and is effective in increasing strength. From the viewpoint of obtaining such an effect, the amount of B is preferably 0.0001% or more. More preferably, it is 0.0005% or more. If the amount of B exceeds 0.0050%, inclusions may increase and the warm workability may deteriorate. More preferably, it is 0.0040% or less.
  • Ca and REM are effective elements for improving warm workability by controlling the form of inclusions.
  • the amount of each of Ca and REM is preferably 0.0001% or more. More preferably, it is 0.0005% or more. If the amount of each of Ca and REM exceeds 0.0050%, the amount of inclusions may increase and the warm workability may deteriorate. More preferably, it is 0.0040% or less.
  • Sn and Sb are elements that are effective in suppressing the reduction in strength of steel by suppressing decarburization, denitrification, deboronation, and the like. From the viewpoint of obtaining such an effect, the amount of Sn is set to 0.01% or more, more preferably 0.03% or more.
  • the amount of Sb is preferably 0.0010% or more. More preferably, it is 0.01% or more. If the amount of Sn exceeds 0.50% and the amount of Sb exceeds 0.10%, the steel may become brittle and the warm workability may deteriorate.
  • the Sn content is more preferably 0.05% or less. The amount of Sb is more preferably 0.05% or less.
  • the contents of Cr, Ni, Cu, B, Ca, REM, Sn, and Sb are Cr: 0.005 to 2.0%, Ni: 0.005 to 2.0%, and Cu: 0.005 to 2.0%, B: 0.0001 to 0.0050%, Ca: 0.0001 to 0.0050%, REM: 0.0001 to 0.0050%, Sn: 0.01 to 0.50%, Sb : 0.0010 to 0.10% is preferable.
  • other elements may contain up to 0.002% of Zr, Mg, La, and Ce.
  • the optional element included below the lower limit value is included as an inevitable impurity.
  • Residual austenite 10-60% If the area ratio of retained austenite is less than 10%, EL of 27% or more cannot be obtained during warm working. On the other hand, if it exceeds 60%, the yield ratio after warm working decreases. Therefore, the area ratio of retained austenite is 10 to 60%.
  • the lower limit side of the area ratio is preferably 15% or more, more preferably 20% or more or more than 20%. More preferably, it is 30% or more or more than 30%. More preferably, it is 35% or more.
  • the upper limit side of the area ratio is preferably 55% or less.
  • the area ratio of ferrite is 10 to 80%.
  • the content is preferably 10 to 60%, more preferably 10 to 50%.
  • Martensite 10-50% If the area ratio of martensite is less than 10%, a TS of 1180 MPa or more cannot be obtained at room temperature. On the other hand, if it exceeds 50%, EL of 27% or more cannot be obtained during warm working. Therefore, the area ratio of martensite is 10 to 50%.
  • the lower limit side of the area ratio is preferably 15% or more. More preferably, it exceeds 20%, and more preferably 25% or more.
  • the upper limit side of the area ratio is preferably 45% or less.
  • Bainite 0-5%
  • bainite is not preferred, but is allowed up to 5%. If it exceeds 5%, the yield ratio after warm working decreases. Therefore, bainite is 0 to 5%, preferably 0 to 3%, more preferably 0 to 1%.
  • the steel sheet structure of the present invention is composed of retained austenite, ferrite, and martensite (also including bainite) and does not include other phases.
  • the total of retained austenite, ferrite, and martensite is 95% or more.
  • perlite is not included.
  • the C content in retained austenite is determined by the following equations (1) and (2).
  • the amount of C in the retained austenite is 0.40% by mass or more, the high yield ratio after the warm working of the present invention cannot be obtained. Therefore, the amount of C in the retained austenite is less than 0.40% by mass, preferably less than 0.3% by mass, more preferably less than 0.2% by mass.
  • Average crystal grain size of retained austenite, martensite, and ferrite 2.0 ⁇ m or less respectively If the average crystal grain size of any of retained austenite, martensite, and ferrite exceeds 2.0 ⁇ m, high yield after the warm working of the present invention The ratio is not obtained. Therefore, the average crystal grain size of retained austenite, martensite, and ferrite is 2.0 ⁇ m or less, preferably 1.0 ⁇ m or less.
  • Carbide containing at least one selected from Nb, Ti, Mo, and V existing in the grain boundary Nb, Ti, Mo, and V-based fine carbides are arranged in the grain boundary, so that dislocations near the grain boundary can be obtained. The movement is suppressed and the yield ratio after warm working is improved.
  • the yield ratio after warm working can be further improved by setting the average particle size of the carbide to 200 nm or less.
  • the lower limit is not particularly specified, but when the average particle diameter is less than 10 nm, the above effect is reduced, and therefore, 10 nm or more is preferable.
  • the average particle size of the carbides was observed with a transmission electron microscope (TEM) at a magnification of 100,000 and 10 visual fields, and the average particle size of all the carbides recognized in the visual field was determined.
  • TEM transmission electron microscope
  • the area ratio of ferrite, martensite, and bainite is the ratio of the area of each structure to the observation area. These area ratios are obtained by cutting a sample from a steel plate, polishing a plate thickness cross section parallel to the rolling direction, corroding with 3% nital, and multiplying the plate thickness 1/4 position by 1500 times with SEM (scanning electron microscope). In each case, three field images are taken, and the area ratio of each tissue is obtained from the obtained image data using Image-Pro made by Media Cybernetics, and the average area ratio of the visual field is taken as the area ratio of each tissue.
  • ferrite is distinguished as black, martensite and retained austenite as white, and bainite as dark gray including carbide or island martensite with uniform orientation.
  • the area ratio of martensite is obtained by subtracting the area ratio of residual austenite described later from the area ratio of the white structure.
  • the martensite may be autotempered martensite or tempered martensite containing carbides having no uniform orientation.
  • perlite can be distinguished as a black and white layered structure.
  • the crystal grain sizes of ferrite, martensite and retained austenite are measured by a cutting method with respect to an image in which the area ratio is measured, and the average value is defined as the average crystal grain size of the structure.
  • the number of lines used in the cutting method was 10 in the vertical direction and 10 in the horizontal direction, and the images were drawn so as to be equally divided into 11. Martensite and retained austenite are not distinguished and have the same particle size. In the present invention, packet boundaries and block boundaries are not included in the grain boundaries.
  • the volume ratio of retained austenite is determined by using a K ⁇ ray of Mo with an X-ray diffractometer on a surface obtained by grinding a steel plate to a 1/4 position of the plate thickness and further polishing 0.1 mm by chemical polishing, using fcc iron (austenite).
  • the integrated reflection intensity of the (200) plane, (220) plane, (311) plane, and the (200) plane, (211) plane, and (220) plane of bcc iron (ferrite) was measured.
  • the volume ratio is obtained from the intensity ratio of the integrated reflection intensity from each surface of the fcc iron to the integrated reflection intensity.
  • the volume ratio value is used as the area ratio value.
  • the lattice constant a of the retained austenite is calculated by the equation (1) from the diffraction peak shift amount of the (220) plane using the Co K ⁇ ray by an X-ray diffractometer, and further, from the equation (2), C amount is calculated.
  • the mass% of the element M (other than C) in the retained austenite is the mass% of the entire steel. If the element content other than a and C is substituted into the equation (2), the amount of C in the retained austenite can be calculated.
  • the steel sheet of the present invention may have a galvanized layer or an alloyed galvanized layer on the surface.
  • the composition of the galvanized layer may be, for example, Al: 0.05 to 0.25%, the balance being Zn and inevitable impurities.
  • the high-strength steel sheet for warm working of the present invention is, for example, a hot-rolled steel sheet or a cold-rolled steel sheet produced by subjecting steel such as a slab having the above composition to hot rolling or further cold rolling.
  • An annealing heating step in which a temperature range of 300 to 500 ° C. is heated at an average heating rate of 10 ° C./s or more, and further heating to 680 ° C. to 720 ° C., and annealing holding for 1 to 30 s in that temperature range It can be manufactured by a manufacturing method having a process and an annealing cooling process for cooling from the Ms point to room temperature at an average cooling rate exceeding 10 ° C./s.
  • an annealing process including an annealing heating process, an annealing holding process, and an annealing cooling process will be described.
  • a hot-rolled steel sheet or a cold-rolled steel sheet is subjected to an annealing process.
  • 300 to 500 ° C . Heating at an average heating rate of 10 ° C./s or more If the average heating rate at 300 to 500 ° C. is less than 10 ° C./s, the ferrite grains become coarse and the steel sheet structure of the present invention cannot be obtained. Therefore, the average heating rate at 300 to 500 ° C. is set to 10 ° C./s or more.
  • the upper limit is not particularly specified, but is preferably 2000 ° C./s or less from the viewpoint of operational stability.
  • the average heating rate at 300 to 500 ° C. is more preferably 1000 ° C./s or less.
  • the average heating rate from 500 degreeC to the following annealing temperature is not specifically limited.
  • Annealing temperature Over 680 ° C to 720 ° C
  • austenite is not generated, or even if it is generated, the warm workability of the present invention and the high yield ratio after warm processing cannot be obtained due to excessive concentration of C and Mn.
  • ferrite and retained austenite are reduced, and warm workability becomes insufficient. Accordingly, the annealing temperature is set to be over 680 ° C. to 720 ° C.
  • Annealing retention time 1-30s If the annealing time is less than 1 s, austenite is not sufficiently produced, and the steel sheet structure of the present invention cannot be obtained. On the other hand, if it exceeds 30 s, the crystal grains become coarse and the steel sheet structure of the present invention cannot be obtained. Accordingly, the annealing holding time is 1 to 30 s.
  • the steel sheet may be subjected to galvanization treatment after the annealing holding step and before the annealing cooling step.
  • the composition of the plating bath used for zinc plating is preferably composed of 0.10 to 0.25% of Al and the balance of zinc and inevitable impurities. Further, an alloying treatment may be performed.
  • the alloying conditions are preferably maintained at 460 to 600 ° C. for 1 to 60 s.
  • the plating when plating is applied, it must be in the middle of cooling from the annealing holding step to the Ms point. If the plating is performed after cooling to the Ms point or lower, the steel sheet structure of the present invention cannot be obtained, and the warm workability of the present invention and the high yield ratio after warm working after warm working cannot be obtained.
  • the Ms point (° C.) is obtained by a four master.
  • Cooling from Ms point to room temperature at an average cooling rate exceeding 10 ° C./s After the above treatment or annealing holding step, cooling is performed to the Ms point. Thereafter, cooling is further performed from the Ms point to room temperature at an average cooling rate of more than 10 ° C./s.
  • the average cooling rate from the Ms point to room temperature is 10 ° C./s or less, the amount of C in the retained austenite increases due to the diffusion of C, and the warm workability and the yield ratio after warm working decrease. Therefore, the average cooling rate from the Ms point to room temperature is set to more than 10 ° C./s. Even when reheating is accompanied during the cooling below the Ms point, the amount of C in the retained austenite increases due to the diffusion of C.
  • the upper limit is not particularly specified, but if it exceeds 1000 ° C./s, excessive cooling equipment is required and the cost is increased. Therefore, the upper limit of the average cooling rate is preferably 1000 ° C./s or less.
  • the room temperature means 0 to 50 ° C.
  • the conditions of the production method before the annealing step are not particularly limited, and for example, it is preferable to carry out under the following conditions.
  • the slab is preferably produced by a continuous casting method in order to prevent macro segregation, and can also be produced by an ingot-making method or a thin slab casting method.
  • the slab may be cooled to room temperature and then re-heated for hot rolling, or the slab may be charged in a heating furnace without being cooled to room temperature. Can also be done.
  • an energy saving process in which hot rolling is performed immediately after performing a slight heat retention can also be applied.
  • heating temperature of the slab is preferably 1300 ° C. or lower.
  • the slab temperature is the temperature of the slab surface.
  • the rough bar after rough rolling can also be heated.
  • what is called a continuous rolling process which joins rough bars and performs finish rolling continuously can be applied.
  • finish rolling may increase anisotropy and reduce workability after cold rolling / annealing, it is preferably performed at a finishing temperature of 800 ° C. or higher.
  • lubrication rolling with a friction coefficient of 0.10 to 0.25 in all passes or a part of the finishing rolling.
  • the cold rolling may be performed according to a conventional method. Further, the rolling reduction ratio of the cold rolling is not particularly specified, but if it is less than 30%, the subsequent annealing may lead to a non-uniform structure such as coarse grains or a non-recrystallized structure, so 30% or more is preferable. Further, if it exceeds 90%, the plate shape may be deteriorated, so 90% or less is preferable. In the present invention, heat treatment may be performed before cold rolling. Further, when the maximum temperature exceeds 600 ° C., it causes a structural change such as the formation of austenite.
  • the high-strength steel sheet for warm working is preferably used for working at 50 to 200 ° C.
  • Annealing is performed in the laboratory under the conditions shown in Table 2 using a heat treatment and plating apparatus, and a hot-rolled high-strength steel sheet (HR) obtained by annealing a hot-rolled steel sheet and a temperature obtained by annealing a cold-rolled steel sheet.
  • HR high-strength steel sheets
  • GI hot-dip galvanized steel sheets
  • GA galvannealed steel sheets
  • ⁇ Room temperature tensile test> A JIS No. 5 tensile test piece (JIS Z2201) was sampled in parallel to the rolling direction from an annealed plate (in the case of galvanized treatment or alloyed galvanized treatment, it means a steel plate). A tensile test was performed in accordance with JIS Z 2241 with a strain rate of 10 ⁇ 3 / s to obtain TS. In addition, 1180 Mpa or more was set as the pass.
  • the sample was cooled to room temperature, and then a tensile strength in accordance with the provisions of JIS Z 2241 at a strain rate of 10 ⁇ 3 / s at room temperature.
  • a test was performed to determine the yield ratio after warm working by dividing the yield strength at room temperature by the tensile strength.
  • JIS No. 5 tensile test piece (JIS Z2201) is taken from the annealed plate in the direction parallel to the rolling direction, and a tensile test is performed at a test temperature of 80 ° C. or 150 ° C. and a strain rate of 10 ⁇ 3 / s. Asked.
  • the warm workability is good when the EL of the warm tensile test is 27% or more.
  • the TS at room temperature is 1180 MPa or more
  • the Vickers hardness HV at room temperature after warm processing is 400 or more
  • the yield ratio after warm processing is 60% or more
  • the EL at warm is It is a high-strength steel sheet for warm working excellent in yield ratio after warm working having 27% or more.
  • steel plate No. No. 14 when the temperature of the warm tensile test was 150 ° C., the EL at the warm was 29%, the HV after the warm working was 400 or more, and the yield ratio after the warm working was 60% or more. .
  • a high-strength steel sheet for warm working that has a TS of 1180 MPa or more at room temperature, an EL of warm of 27% or more, and an excellent high yield ratio after warm working. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

優れた温間加工性および温間加工後高降伏比を有する温間加工用高強度鋼板およびその製造方法を提供すること。 質量%で、C:0.05~0.20%、Si:3.0%以下、Mn:3.5~8.0%、P:0.100%以下、S:0.02%以下、Al:0.01~3.0%、N:0.010%以下を含み、かつNb:0.005~0.20%、Ti:0.005~0.20%、Mo:0.005~1.0%、V:0.005~1.0%から選ばれる1種以上を含み、残部がFeおよび不可避的不純物からなる成分組成を有し、面積率で、10~60%の残留オーステナイト、10~80%のフェライト、10~50%のマルテンサイト、0~5%のベイナイトからなり、かつ残留オーステナイト中のC量が0.40質量%未満、かつ残留オーステナイト、マルテンサイトおよびフェライトの平均結晶粒径がそれぞれ2.0μm以下、かつ結晶粒界にNb、Ti、Mo、Vから選ばれる少なくとも1種を含む炭化物を有する鋼板組織を有する、温間加工用高強度鋼板。

Description

温間加工用高強度鋼板およびその製造方法
 本発明は、温間加工性および温間加工後降伏比に優れた温間加工用高強度鋼板およびその製造方法に関する。
 自動車における衝突安全性改善と重量低減による燃費向上の観点から自動車用部品に用いられる鋼板においては高強度化が求められている。しかしながら、鋼板等の材料の高強度化は一般に加工性の低下を招くため、強度と加工性の両方に優れた鋼板の開発が必要とされている。また、衝突時等の乗員安全性の観点から耐変形性や耐衝撃性にも優れることが要望されている。
 このような背景の中、様々な特性を有する鋼板の開発が行われている。特許文献1では残留オーステナイトを活用し、衝撃吸収エネルギーおよび伸び(以下、EL)を高めたTRIP鋼板に関する技術が開示されている。非特許文献1ではオーステナイト単相まで加熱した後加工することで高い加工性を確保しつつ、その後の急冷却により低C量で高強度を得る技術が開示されている。特許文献2では加熱温度を300℃まで低温化しても優れた伸びと強度を両立する残留オーステナイト含有鋼板が開示されている。
特開2001-11565号公報 特開2014-62286号公報
H.Karbasian,A.E.Tekkaya:Journal of Materials Processing Technology,210(2010),p.2103-2118.
 しかしながら、上記特許文献1に記載の鋼板が衝撃エネルギー吸収に優れるのは10%以上の高ひずみ変形の場合であり、側面衝突部位等のように乗員空間確保の観点から変形させない部位に適用できない。加えて室温で安定な残留オーステナイトを得るために残留オーステナイト中のC量が高くなっており、加工後に生じる高C量のマルテンサイトにより降伏比が低下する。
 非特許文献1に開示の技術では高温加熱のために結晶粒が粗大化し、さらにフレッシュマルテンサイトの残留等により降伏比に乏しくなるという課題がある。また、鋼板を高温加熱するための設備が必要で、そのランニングコストも高いため、加熱温度の低温化が望まれている。
 特許文献2に記載の鋼板は、残留オーステナイト中のC量が0.5質量%以上と依然高いため加工後降伏比に課題があり、温間加熱温度の低温化も不十分である。
 以上より、50~200℃程度の低い加熱温度でも優れた加工性を有し、かつ加工後に高い強度、高い降伏比を有する温間加工用高強度鋼板の例はなく、開発が望まれている。
 本発明は、優れた温間加工性および温間加工後高降伏比を有する温間加工用高強度鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、上記した課題を達成するため、鋭意研究を重ねた結果、以下のことを見出した。
 質量%で、C:0.05~0.20%、Si:3.0%以下、Mn:3.5~8.0%、P:0.100%以下、S:0.02%以下、Al:0.01~3.0%、N:0.010%以下を含み、かつNb:0.005~0.20%、Ti:0.005~0.20%、Mo:0.005~1.0%、V:0.005~1.0%から選ばれる1種以上を含み、残部がFeおよび不可避的不純物からなる成分組成を有し、かつ組織を面積率で10~60%の残留オーステナイト、10~80%のフェライト、10~50%のマルテンサイト、0~5%のベイナイトとし、かつ残留オーステナイト中のC量を0.40質量%未満、かつ残留オーステナイト、マルテンサイトおよびフェライトの平均結晶粒径をそれぞれ2.0μm以下、かつ結晶粒界にNb、Ti、Mo、Vから選ばれる少なくとも1種を含む炭化物を有することで高強度かつ優れた温間加工性および温間加工後高降伏比を実現できる。
 従来、このような低C量の残留オーステナイトはオーステンパが不十分な場合に付随的に生成するもので、室温の加工特性に優れず、また安定性に乏しく、経時変化しやすい等の問題から避けるべき相と認識されていた。このため、低C量の残留オーステナイトを多量に生成させる方法についてもあまり検討されておらず、知見に乏しかった。また、残留オーステナイトは生成してもそのほとんどが0.7%以上程度のC量であった。しかし、本発明者らは残留オーステナイトのC量を従来よりもさらに低め、かつ安定した状態で多量に生成させることにより温間加工性を飛躍的に高めつつ、一方で室温でも高強度を得て、さらには結晶粒界への炭化物の配置と組み合わせることで降伏比の向上をも図ることを着想した。そして、C量、Mn量とその他の合金元素および焼鈍条件を精緻に制御することでこれを達成し得ることを見出した。
 なお、本発明において、高強度とは室温での引張強度(以下、TSとも称する)が1180MPa以上かつ温間加工後室温でのビッカース硬さHVが400以上、高降伏比とは温間加工後の室温での降伏比が60%以上、優れた温間加工性とは150℃でのELが27%以上とする。また、鋼板には冷延鋼板および熱延鋼板を含み、さらにこれらの溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板を含む。鋼板において、説明で区別が必要となる場合は呼び分ける。
 本発明の要旨は以下のとおりである。
 [1]質量%で、C:0.05~0.20%、Si:3.0%以下、Mn:3.5~8.0%、P:0.100%以下、S:0.02%以下、Al:0.01~3.0%、N:0.010%以下を含み、かつNb:0.005~0.20%、Ti:0.005~0.20%、Mo:0.005~1.0%、V:0.005~1.0%から選ばれる1種以上を含み、残部がFeおよび不可避的不純物からなる成分組成を有し、面積率で、10~60%の残留オーステナイト、10~80%のフェライト、10~50%のマルテンサイト、0~5%のベイナイトからなり、かつ残留オーステナイト中のC量が0.40質量%未満、かつ残留オーステナイト、マルテンサイトおよびフェライトの平均結晶粒径がそれぞれ2.0μm以下、かつ結晶粒界にNb、Ti、Mo、Vから選ばれる少なくとも1種を含む炭化物を有する鋼板組織を有する、温間加工用高強度鋼板。
 [2]前記Nb、Ti、Mo、Vから選ばれる少なくとも1種を含む炭化物の平均粒径が200nm以下である[1]に記載の温間加工用高強度鋼板。
 [3]さらに、質量%で、Cr:0.005~2.0%、Ni:0.005~2.0%、Cu:0.005~2.0%、B:0.0001~0.0050%、Ca:0.0001~0.0050%、REM:0.0001~0.0050%、Sn:0.01~0.50%、Sb:0.0010~0.10%から選ばれる1種以上を含む成分組成を有する[1]または[2]に記載の温間加工用高強度鋼板。
 [4]さらに、表面に亜鉛めっき層または合金化亜鉛めっき層を有する[1]~[3]のいずれかに記載の温間加工用高強度鋼板。
 [5][1]または[3]に記載の成分組成を有する鋼に、熱間圧延を施して熱延鋼板とする熱間圧延工程と、熱延鋼板に酸洗を施す酸洗工程と、前記酸洗を施した鋼板を、300~500℃の温度範囲を10℃/s以上の平均加熱速度で加熱する焼鈍加熱工程と、さらに加熱して680℃超~720℃とし、該温度域で1~30s保持する焼鈍保持工程と、Ms点~室温までを平均冷却速度10℃/s超で冷却する焼鈍冷却工程と、を有する温間加工用高強度鋼板の製造方法。
 [6]前記酸洗工程後に冷間圧延を施して冷延鋼板とする冷間圧延工程をさらに有し、前記冷延鋼板を前記焼鈍加熱工程に供する、[5]に記載の温間加工用高強度鋼板の製造方法。
 [7]前記焼鈍保持工程後前記焼鈍冷却工程前に亜鉛めっきを施す[5]または[6]に記載の温間加工用高強度鋼板の製造方法。
 [8]さらに、前記亜鉛めっき後前記焼鈍冷却工程前に合金化処理を施す[7]に記載の温間加工用高強度鋼板の製造方法。
 [9][1]または[3]に記載の成分組成を有する熱延鋼板または冷延鋼板を、300~500℃の温度範囲を10℃/s以上の平均加熱速度で加熱する焼鈍加熱工程と、さらに加熱して680℃超~720℃とし、該温度域で1~30s保持する焼鈍保持工程と、Ms点~室温までを平均冷却速度10℃/s超で冷却する焼鈍冷却工程と、を有する温間加工用高強度鋼板の製造方法。
 本発明によれば、温間加工性および温間加工後降伏比に優れた温間加工用高強度鋼板を得ることができる。
 以下に、本発明の実施形態を説明する。なお、成分元素の含有量(単に「量」と表記する場合がある。)を表す「%」は、特に断らない限り「質量%」を意味する。
 1)成分組成
 C:0.05~0.20%
 Cは、マルテンサイトや残留オーステナイトを生成させて温間加工後のHVや温間加工時のEL(温間加工に相当する150℃の条件でのEL)を上昇させるのに有効な元素である。0.05%未満ではこのような効果が十分得られない。一方、C量が0.20%を超えると残留オーステナイト中のC量が高まり、温間加工後の降伏比が低下する。したがって、C量は0.05~0.20%とする。C量は、下限側は好ましくは0.10以上である。上限側は好ましくは0.20%以下である。
 Si:3.0%以下
 Siは、鋼を固溶強化してTSや温間加工後のHVを上昇させるのに有効な元素である。こうした効果を得るにはSi量は0.01質量%以上とすることが好ましい。一方、Si量が3.0%を超えると、温間加工後の降伏比が低下する。したがって、Si量は3.0%以下とし、好ましくは2.5%以下、より好ましくは2.0%以下とする。
 Mn:3.5~8.0%
 Mnは、マルテンサイトや残留オーステナイトを生成させて温間加工後のHVや温間のELを上昇させるのに有効な元素である。また、残留オーステナイト中のC量を低減するのに有効な元素である。3.5%未満ではこうした効果が十分得られず、また本発明に好ましくないベイナイトが生成しやすくなる。一方、8.0%を超えると温間加工後の降伏比が低下する。したがって、Mn量は3.5~8.0%とし、好ましくは3.5~7.0%とする。また、Mn含有量の下限については、3.5%超が好ましい。より好ましくは4.0%超である。さらに好ましくは4.5%以上である。
 P:0.100%以下
 Pは、鋼を脆化させ温間加工性が劣化するため、その量は極力低減することが望ましく、本発明ではP量は0.100%まで許容できる。好ましくは、0.02%以下である。下限は特に規定しないが、0.001%未満では生産能率の低下を招くため、0.001%以上が好ましい。
 S:0.02%以下
 Sは、鋼を脆化させ温間加工性が劣化するため、その量は極力低減することが好ましく、本発明ではS量は0.02%まで許容できる。好ましくは、0.005%以下である。下限は特に規定しないが、0.0005%未満では生産能率の低下を招くため、0.0005%以上が好ましい。
 Al:0.01~3.0%
 Alは、フェライトの生成を促進し、フェライトを得るのに有効な元素である。Al量が3.0%を超えると、温間加工後の降伏比が低下する。したがって、Al量は3.0%以下、好ましくは1.5%以下、より好ましくは1.0%以下とする。一方、製鋼工程での脱酸の観点から、Al量は0.01%以上とし、好ましくは0.02%以上である。
 N:0.010%以下
 Nはマルテンサイトを硬化させ、温間加工後の降伏比の低下を招くため、その量は極力低減することが好ましく、本発明ではN量は0.010%まで許容できる。好ましくは、0.007%以下である。下限は特に規定しないが、0.0005%未満では生産能率の低下を招くため、0.0005%以上が好ましい。
 Nb:0.005~0.20%、Ti:0.005~0.20%、Mo:0.005~1.0%、V:0.005~1.0%から選ばれる1種以上
 Nb、Ti、Mo、Vは、微細組織および微細粒界炭化物を形成させ、温間加工後の降伏比を改善する。すなわち、本発明レベルにMnを高めることで界面移動速度を低めた上で、かつ該微細粒界炭化物のピン止め効果により焼鈍時の粒成長を抑制することで微細組織を形成させつつ結晶粒界に該微細粒界炭化物が配置されることで温間加工後の降伏比が格段に向上する。Nb、Ti、Mo、Vの含有量がそれぞれ上記下限未満の場合、このような効果が得られない。一方、Nb、Ti、Mo、Vの含有量がそれぞれ上限を超えるとオーステナイト中のC量が低下して本発明の残留オーステナイト量が得られなくなる。したがって、Nb、Ti、Mo、Vから選ばれる少なくとも1種のそれぞれの含有量はNb:0.005~0.20%、Ti:0.005~0.20%、Mo:0.005~1.0%、V:0.005~1.0%とする。下限について、Ti量は0.010%以上が好ましい。Nb量は0.010%以上が好ましい。Mo量は0.02%以上が好ましい。V量は0.05%以上が好ましい。上限について、Ti量は0.050%以下が好ましい。Nb量は0.030%以下が好ましい。Mo量は0.30%以下が好ましい。V量は0.2%以下が好ましい。
 残部はFeおよび不可避的不純物である。なお、必要に応じて以下の元素(任意元素)の1種以上を適宜含有させることができる。
 Cr:0.005~2.0%、Ni:0.005~2.0%、Cu:0.005~2.0%、B:0.0001~0.0050%、Ca:0.0001~0.0050%、REM:0.0001~0.0050%、Sn:0.01~0.50%、Sb:0.0010~0.10%から選ばれる1種以上
 Cr、Ni、Cuはマルテンサイトを生成させ、高強度化に有効な元素である。このような効果を得る観点から、Cr、Ni、Cuのそれぞれの量は0.005%以上が好ましい。より好ましくは0.05%以上である。Cr、Ni、Cuのそれぞれの含有量が2.0%を超えると、温間加工後の降伏比が低下するおそれがある。より好ましくは1.0%以下である。
 Bはマルテンサイトを生成させ、高強度化に有効な元素である。このような効果を得る観点から、Bの量は0.0001%以上が好ましい。より好ましくは0.0005%以上である。Bの量が0.0050%を超えると介在物が増加して温間加工性が劣化するおそれがある。より好ましくは0.0040%以下である。
 Ca、REMは介在物の形態制御により温間加工性の向上に有効な元素である。このような効果を得る観点から、Ca、REMそれぞれの量は0.0001%以上が好ましい。より好ましくは0.0005%以上である。Ca、REMそれぞれの量が0.0050%を超えると、介在物量が増加して温間加工性が劣化するおそれがある。より好ましくは0.0040%以下である。
 Sn、Sbは脱炭や脱窒、脱硼等を抑制して、鋼の強度低下抑制に有効な元素である。このような効果を得る観点から、Snの量は0.01%以上、より好ましくは0.03%以上とする。また、Sbの量は0.0010%以上が好ましい。より好ましくは0.01%以上である。Snの量が0.50%、Sbの量が0.10%を超えると鋼が脆化して温間加工性が劣化するおそれがある。また、上限についてSn量は0.05%以下がより好ましい。Sb量は0.05%以下がより好ましい。
 したがって、Cr、Ni、Cu、B、Ca、REM、Sn、Sbの含有量はそれぞれCr:0.005~2.0%、Ni:0.005~2.0%、Cu:0.005~2.0%、B:0.0001~0.0050%、Ca:0.0001~0.0050%、REM:0.0001~0.0050%、Sn:0.01~0.50%、Sb:0.0010~0.10%が好ましい。
 また、その他の元素として本願発明では、Zr、Mg、La、Ceを合計で0.002%まで含んでも構わない。
 また、上記任意元素を下限値未満で含む場合、下限値未満で含まれる任意元素は、不可避的不純物として含まれるものとする。
 2)鋼板組織
 以下の説明において、鋼板組織の面積率は単に「%」と表示する。亜鉛めっき層または合金化亜鉛めっき層を有する場合はこれらを含まない地鉄鋼板を意味する。
 残留オーステナイト:10~60%
 残留オーステナイトの面積率が10%未満では温間加工時に27%以上のELが得られない。一方、60%を超えると温間加工後の降伏比が低下する。したがって、残留オーステナイトの面積率は10~60%とする。面積率の下限側は好ましくは15%以上であり、より好ましくは20%以上又は20%超である。より好ましくは30%以上又は30%超である。さらに好ましくは35%以上である。面積率の上限側は好ましくは55%以下である。
 フェライト:10~80%
 フェライトの面積率が10%未満では温間加工時に27%以上のELと温間加工後の降伏比が両立できない。一方、80%を超えると本発明の高強度が得られない。したがって、フェライトの面積率は10~80%とする。好ましくは10~60%とし、より好ましくは10~50%とする。
 マルテンサイト:10~50%
 マルテンサイトの面積率が10%未満では室温で1180MPa以上のTSが得られない。一方、50%を超えると温間加工時に27%以上のELが得られない。したがって、マルテンサイトの面積率は10~50%とする。面積率の下限側は好ましくは15%以上である。より好ましくは20%超、さらに好ましくは25%以上である。面積率の上限側は好ましくは45%以下である。
 ベイナイト:0~5%
 本発明においてベイナイトは好ましくないが5%まで許容される。5%を超えると温間加工後の降伏比が低下する。したがって、ベイナイトは0~5%、好ましくは0~3%、より好ましくは0~1%とする。
 本発明の鋼板組織は、残留オーステナイト、フェライト、マルテンサイト(さらに含んでもベイナイト)からなり、他の相は含まない。残留オーステナイト、フェライト、マルテンサイトの合計は、95%以上である。例えば、パーライトは含まない。
 残留オーステナイト中のC量:0.40質量%未満
 後述のように、残留オーステナイト中のC量は下記(1)式、(2)式により求める。残留オーステナイト中のC量が0.40質量%以上では本発明の温間加工後の高降伏比が得られない。したがって残留オーステナイト中のC量は0.40質量%未満とし、好ましくは0.3質量%未満、より好ましくは0.2質量%未満とする。
 残留オーステナイト、マルテンサイト、フェライトの平均結晶粒径:それぞれ2.0μm以下
 残留オーステナイト、マルテンサイト、フェライトのいずれかの平均結晶粒径が2.0μmを超えると本発明の温間加工後の高降伏比が得られない。したがって、残留オーステナイト、マルテンサイト、フェライトそれぞれの平均結晶粒径は2.0μm以下とし、好ましくは1.0μm以下とする。
 結晶粒界に存在する、Nb、Ti、Mo、Vから選ばれる少なくとも1種を含む炭化物
 Nb、Ti、Mo、V系の微細炭化物を結晶粒界に配置することで、粒界近傍の転位の移動が抑制されて温間加工後の降伏比が向上する。
 該炭化物の平均粒径を200nm以下とすることでさらに温間加工後の降伏比をさらに改善できる。下限は特に規定しないが、平均粒径が10nm未満になると上記効果が小さくなるため10nm以上が好ましい。
 本発明において、該炭化物の平均粒径は透過型電子顕微鏡(TEM)を用いて10万倍で10視野観察し、該視野に認められた全炭化物の粒径の平均値とした。
 本発明においてフェライト、マルテンサイト、ベイナイトの面積率とは、観察面積に占める各組織の面積の割合のことである。これらの面積率は、鋼板よりサンプルを切り出し、圧延方向に平行な板厚断面を研磨後、3%ナイタールで腐食し、板厚1/4位置をSEM(走査型電子顕微鏡)で1500倍の倍率でそれぞれ3視野撮影し、得られた画像データからMedia Cybernetics社製のImage-Proを用いて各組織の面積率を求め、視野の平均面積率を各組織の面積率とする。前記画像データにおいて、フェライトは黒色、マルテンサイトおよび残留オーステナイトは白色、ベイナイトは方位の揃った炭化物または島状マルテンサイトを含む暗灰色として区別される。マルテンサイトの面積率は該白色組織の面積率から後述する残留オーステナイトの面積率を差し引くことで求める。なお、本発明において、マルテンサイトは方位の揃っていない炭化物を含むオートテンパードマルテンサイトや焼戻しマルテンサイトであっても構わない。また、本発明では含有しないが、パーライトは黒色と白色の層状組織として区別できる。
 また、フェライト、マルテンサイトおよび残留オーステナイトの結晶粒径は面積率を測定した画像について、切断法により測定し、その平均値を該組織の平均結晶粒径とする。切断法で用いた線の数は縦方向に10本、横方向に10本とし、画像をそれぞれ11に等分割するように引いた。マルテンサイトと残留オーステナイトは区別せず同じ粒径とする。なお、本発明においてはパケット境界やブロック境界は粒界に含まない。
 残留オーステナイトの体積率は、鋼板を板厚の1/4位置まで研削後、化学研磨によりさらに0.1mm研磨した面について、X線回折装置でMoのKα線を用い、fcc鉄(オーステナイト)の(200)面、(220)面、(311)面と、bcc鉄(フェライト)の(200)面、(211)面、(220)面の積分反射強度を測定し、bcc鉄の各面からの積分反射強度に対するfcc鉄の各面からの積分反射強度の強度比から体積率を求める。本発明では該体積率の値を面積率の値として用いる。
 また、残留オーステナイトの格子定数aを、X線回折装置でCoのKα線を用い、(220)面の回折ピークシフト量から(1)式により算出し、さらに(2)式より残留オーステナイト中のC量を算出する。
Figure JPOXMLDOC01-appb-M000001
 本発明では残留オーステナイト中の元素M(C以外)の質量%は鋼全体に占める質量%とした。aとC以外の元素含有量を(2)式に代入すれば、残留オーステナイト中のC量が算出できる。
 本発明鋼板は、表面に亜鉛めっき層または合金化亜鉛めっき層を有してよい。亜鉛めっき層の組成は、例えば、Al:0.05~0.25%、残部がZnおよび不可避的不純物としてよい。
 3)製造条件
 本発明の温間加工用高強度鋼板は、例えば、上記の成分組成を有するスラブ等の鋼に、熱間圧延あるいはさらに冷間圧延を施し作製した、熱延鋼板あるいは冷延鋼板を、300~500℃の温度範囲を10℃/s以上の平均加熱速度で加熱する焼鈍加熱工程と、さらに加熱して680℃超~720℃とし、該温度域で1~30s保持する焼鈍保持工程と、Ms点~室温までを平均冷却速度10℃/s超で冷却する焼鈍冷却工程と、を有する製造方法で製造可能である。焼鈍では初めの昇温過程においてFe系炭化物を溶解させつつ、Nb、Ti、Mo、Vの少なくとも1種を含む炭化物を生成させ、かつ再結晶フェライトの粒成長を該炭化物によるピン止め効果により抑制しつつ、オーステナイトを生成させることで、粒界に微細炭化物が配置された微細なフェライトとオーステナイトからなる組織を得る。続くフェライトとオーステナイトの2相域焼鈍での保持時間を適正化することで元素分配を制御する。さらにその後の冷却において、Ms点以下の平均冷却速度を10℃/s超とすることで、先に生成したマルテンサイトから隣接する残部オーステナイトへのCの拡散が抑制されて、本発明のC量の低い残留オーステナイトとフェライトおよびマルテンサイトを含む微細なミクロ組織(鋼板組織)を得ることができる。以下、詳しく説明する。なお、製造条件の説明において、時間をあらわす「s」は秒を意味する。
 まず、焼鈍加熱工程、焼鈍保持工程、焼鈍冷却工程を含む焼鈍工程について説明する。熱延鋼板または冷延鋼板を焼鈍工程に供する。
 300~500℃まで:10℃/s以上の平均加熱速度で加熱
 300~500℃の平均加熱速度が10℃/s未満では、フェライト粒が粗大化して本発明の鋼板組織が得られない。したがって、300~500℃の平均加熱速度は10℃/s以上とする。上限は特に規定しないが、操業安定性の観点からは2000℃/s以下が好ましい。また、300~500℃の平均加熱速度は1000℃/s以下がより好ましい。10℃/s以上の平均加熱速度での加熱について、加熱開始温度が300℃を上回るとフェライト粒が粗大化して本発明の鋼板組織が得られない場合がある。なお、500℃から下記の焼鈍温度までの平均加熱速度は特に限定されない。
 焼鈍温度:680℃超~720℃
 焼鈍温度が680℃以下ではオーステナイトが生成しない、あるいは生成してもCやMnの過濃化により本発明の温間加工性や温間加工後の高降伏比が得られない。一方、720℃を超えるとフェライトや残留オーステナイトが減少し、温間加工性が不十分となる。したがって、焼鈍温度は680℃超~720℃とする。
 焼鈍保持時間:1~30s
 焼鈍時間が1s未満では、オーステナイトの生成が不十分となって本発明の鋼板組織が得られない。一方、30sを超えると結晶粒が粗大化して本発明の鋼板組織が得られない。したがって、焼鈍保持時間は1~30sとする。
 亜鉛めっき処理
 焼鈍保持工程後焼鈍冷却工程前に鋼板に亜鉛めっき処理を施してもよい。亜鉛めっきに使用するめっき浴の組成はAlが0.10~0.25%、残部が亜鉛と不可避的不純物からなることが好ましい。さらに合金化処理を行ってもよい。合金化条件は460~600℃で1~60s保持することが好ましい。
 また、めっきを付与する場合は上記焼鈍保持工程後からMs点までの冷却の途中でなければならない。Ms点以下まで冷却した後めっきを施すと本発明の鋼板組織が得られず、本発明の温間加工性や温間加工後の温間加工後の高降伏比が得られない。
 本発明において、Ms点(℃)はフォーマスタにより求める。
 Ms点~室温までを平均冷却速度10℃/s超で冷却
 以上の処理または焼鈍保持工程の後、Ms点まで冷却する。その後さらに、Ms点~室温までを平均冷却速度10℃/s超で冷却する。Ms点~室温までの平均冷却速度が10℃/s以下では、Cの拡散により残留オーステナイト中のC量が増加して温間加工性や温間加工後の降伏比が低下する。したがって、Ms点~室温までの平均冷却速度は10℃/s超とする。なお、Ms点以下の冷却途中で再加熱を伴う場合もCの拡散により残留オーステナイト中のC量が増加するため、Ms点から室温までの冷却中は加熱してはならない。上限は特に規定しないが1000℃/sを超えると過剰な冷却設備が必要となりコストアップを招くため、平均冷却速度の上限は1000℃/s以下が好ましい。なお、室温とは0~50℃を意味する。
 上記焼鈍工程前までの製造方法の条件は、特に限定せず、例えば以下の条件で行うのが好ましい。
 スラブは、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましく、また、造塊法、薄スラブ鋳造法により製造することもできる。スラブを熱間圧延するには、スラブをいったん室温まで冷却し、その後再加熱して熱間圧延を行ってもよいし、スラブを室温まで冷却せずに加熱炉に装入して熱間圧延を行うこともできる。あるいはわずかの保熱を行った後に直ちに熱間圧延する省エネルギープロセスも適用できる。スラブを加熱する場合は、炭化物を溶解させたり、圧延荷重の増大を防止するため、1100℃以上に加熱することが好ましい。また、スケールロスの増大を防止するため、スラブの加熱温度は1300℃以下とすることが好ましい。なお、スラブ温度はスラブ表面の温度である。スラブを熱間圧延する際は、粗圧延後の粗バーを加熱することもできる。また、粗バー同士を接合し、仕上げ圧延を連続的に行う、いわゆる連続圧延プロセスを適用できる。仕上げ圧延は、異方性を増大させ、冷間圧延・焼鈍後の加工性を低下させる場合があるので、800℃以上の仕上げ温度で行うことが好ましい。また、圧延荷重の低減や形状・材質の均一化のために、仕上げ圧延の全パスあるいは一部のパスで摩擦係数が0.10~0.25となる潤滑圧延を行うことが好ましい。
 巻取り後の鋼板は、スケールを酸洗などにより除去する。場合によりさらに熱処理、冷間圧延が施され、その後さらに焼鈍、亜鉛めっき等が施される。
 上記冷間圧延は、常法に則り、行えばよい。また、冷間圧延の圧下率は特に規定しないが30%未満ではその後の焼鈍で粗粒等の不均一組織や未再結晶組織を招く場合があるため、30%以上が好ましい。また、90%を超えると板形状の悪化を招く場合があるため90%以下が好ましい。なお、本発明においては冷間圧延前に熱処理を施しても構わない。またその最高到達温度は600℃を超えるとオーステナイトの生成等の組織変化を伴うため、600℃以下が好ましい。
 4)その他
 また、本発明では、温間加工用高強度鋼板は50~200℃での加工に用いられることが好ましい。
 以下、本発明を、実施例に基づいて具体的に説明する。本発明の技術的範囲は以下の実施例に限定されない。
 表1に示す成分組成の鋼(残部はFeおよび不可避的不純物)を実験室の真空溶解炉により溶製し、圧延して鋼スラブとした。これらの鋼スラブを1200℃に加熱後粗圧延、仕上げ圧延して、厚さ3.0mmの熱延板とした。熱延の仕上げ圧延温度は900℃、巻取り温度は500℃とした。巻取り後、酸洗を施した。一部は、次いで、軟質化のために600℃で1時間の焼鈍(熱処理)を施した後1.4mmまで冷間圧延して冷延鋼板(CR)とした。得られた熱延鋼板および冷延鋼板を焼鈍に供した。
 焼鈍は実験室にて熱処理およびめっき処理装置を用いて表2に示す条件で行い、熱延鋼板を焼鈍してなる温間加工用高強度鋼板(HR)、冷延鋼板を焼鈍してなる温間加工用高強度鋼板(CR)、溶融亜鉛めっき鋼板(GI)および合金化溶融亜鉛めっき鋼板(GA)1~25を作製した。亜鉛めっき鋼板は460℃のめっき浴中に浸漬し、付着量35~45g/mのめっき層を形成させ、合金化亜鉛めっき鋼板はめっき層形成後550℃で1~60s保持する合金化処理を行うことで作製した。表2No.8は焼鈍後の冷却で一旦Ms点より低い温度まで冷却しているので、「Ms~室温までの平均冷却速度」を記載していない。表2No18は焼鈍後室温まで冷却している。
 得られた熱延鋼板を焼鈍してなる温間加工用高強度鋼板、冷延鋼板を焼鈍してなる温間加工用高強度鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板に伸長率0.3%の調質圧延を施した後、以下の試験方法にしたがい、室温の引張特性、温間の引張特性および引張後耐衝撃性を評価した。結果を表3に示す。また、上述の方法で測定した相の面積率等も表3に示した。
 <室温引張試験>
 焼鈍板(亜鉛めっき処理、合金化亜鉛めっき処理をした場合は地鉄鋼板を意味する。以下同じ。)より圧延方向に対して平行方向にJIS5号引張試験片(JIS Z2201)を採取し、室温で歪速度が10-3/sとするJIS Z 2241の規定に準拠した引張試験を行い、TSを求めた。なお、1180MPa以上を合格とした。また、後述の温間引張試験と同様の方法で27%の引張ひずみを付与した後、室温まで冷却し、次いで室温で歪速度が10-3/sとするJIS Z 2241の規定に準拠した引張試験を行い、室温での降伏強さを引張強度で除して、温間加工後の降伏比を求めた。
 <温間引張試験>
 焼鈍板より圧延方向に対して平行方向にJIS5号引張試験片(JIS Z2201)を採取し、試験温度が80℃または150℃、歪速度が10-3/sとする引張試験を行い、ELを求めた。なお、本発明では温間引張試験のELが27%以上を温間加工性良好とした。
 <温間加工後室温ビッカース硬さ試験>
 上記温間引張試験と同様の方法で27%の引張ひずみを付与した後、室温まで冷却し、該引張試験片の中央部の引張方向に平行な板厚断面において、板厚の1/4位置について、荷重が1kgfで5点ビッカース硬さ試験を行い、最大値と最小値を除いた3点の平均ビッカース硬さHVを求めた。なお、本発明ではHV:400以上を高強度とした。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 発明例では、いずれも室温でのTSが1180MPa以上かつ温間加工後室温でのビッカース硬さHVが400以上で、かつ温間加工後降伏比が60%以上で、かつ温間でのELが27%以上有する温間加工後の降伏比に優れた温間加工用高強度鋼板である。なお、鋼板No.14について、温間引張試験の温度を150℃とした場合、温間でのELは29%となり、温間加工後のHVは400以上、温間加工後の降伏比も60%以上であった。
 一方、本発明の範囲を外れる比較例は所望の強度が得られていないか、温間でのELが得られていないか、温間加工後の高降伏比が得られていない。
 本発明によれば、室温でのTSが1180MPa以上で、温間でのELが27%以上、かつ優れた温間加工後の高降伏比を有する温間加工用高強度鋼板を得ることができる。

Claims (9)

  1.  質量%で、
    C:0.05~0.20%、
    Si:3.0%以下、
    Mn:3.5~8.0%、
    P:0.100%以下、
    S:0.02%以下、
    Al:0.01~3.0%、
    N:0.010%以下を含み、
    かつNb:0.005~0.20%、
    Ti:0.005~0.20%、
    Mo:0.005~1.0%、
    V:0.005~1.0%から選ばれる1種以上を含み、残部がFeおよび不可避的不純物からなる成分組成を有し、
     面積率で、10~60%の残留オーステナイト、10~80%のフェライト、10~50%のマルテンサイト、0~5%のベイナイトからなり、かつ残留オーステナイト中のC量が0.40質量%未満、かつ残留オーステナイト、マルテンサイトおよびフェライトの平均結晶粒径がそれぞれ2.0μm以下、かつ結晶粒界にNb、Ti、Mo、Vから選ばれる少なくとも1種を含む炭化物を有する鋼板組織を有する、
     温間加工用高強度鋼板。
  2.  前記Nb、Ti、Mo、Vから選ばれる少なくとも1種を含む炭化物の平均粒径が200nm以下である請求項1に記載の温間加工用高強度鋼板。
  3.  さらに、質量%で、
    Cr:0.005~2.0%、
    Ni:0.005~2.0%、
    Cu:0.005~2.0%、
    B:0.0001~0.0050%、
    Ca:0.0001~0.0050%、
    REM:0.0001~0.0050%、
    Sn:0.01~0.50%、
    Sb:0.0010~0.10%から選ばれる1種以上を含む成分組成を有する請求項1または2に記載の温間加工用高強度鋼板。
  4.  さらに、表面に亜鉛めっき層または合金化亜鉛めっき層を有する請求項1~3のいずれかに記載の温間加工用高強度鋼板。
  5.  請求項1または3に記載の成分組成を有する鋼に、熱間圧延を施して熱延鋼板とする熱間圧延工程と、
     熱延鋼板に酸洗を施す酸洗工程と、
     前記酸洗を施した鋼板を、300~500℃の温度範囲を10℃/s以上の平均加熱速度で加熱する焼鈍加熱工程と、
     さらに加熱して680℃超~720℃とし、該温度域で1~30s保持する焼鈍保持工程と、
     Ms点~室温までを平均冷却速度10℃/s超で冷却する焼鈍冷却工程と、
     を有する温間加工用高強度鋼板の製造方法。
  6.  前記酸洗工程後に冷間圧延を施して冷延鋼板とする冷間圧延工程をさらに有し、
     前記冷延鋼板を前記焼鈍加熱工程に供する、請求項5に記載の温間加工用高強度鋼板の製造方法。
  7.  前記焼鈍保持工程後前記焼鈍冷却工程前に亜鉛めっきを施す請求項5または6に記載の温間加工用高強度鋼板の製造方法。
  8.  さらに、前記亜鉛めっき後前記焼鈍冷却工程前に合金化処理を施す請求項7に記載の温間加工用高強度鋼板の製造方法。
  9.  請求項1または3に記載の成分組成を有する熱延鋼板または冷延鋼板を、300~500℃の温度範囲を10℃/s以上の平均加熱速度で加熱する焼鈍加熱工程と、
     さらに加熱して680℃超~720℃とし、該温度域で1~30s保持する焼鈍保持工程と、
     Ms点~室温までを平均冷却速度10℃/s超で冷却する焼鈍冷却工程と、
     を有する温間加工用高強度鋼板の製造方法。
PCT/JP2017/002614 2016-01-29 2017-01-26 温間加工用高強度鋼板およびその製造方法 WO2017131053A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780008401.3A CN109072371B (zh) 2016-01-29 2017-01-26 温加工用高强度钢板及其制造方法
JP2017527825A JP6252710B2 (ja) 2016-01-29 2017-01-26 温間加工用高強度鋼板およびその製造方法
US16/073,905 US11414720B2 (en) 2016-01-29 2017-01-26 High-strength steel sheet for warm working and method for manufacturing the same
EP17744283.7A EP3409805B1 (en) 2016-01-29 2017-01-26 High-strength steel sheet for warm working, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-016097 2016-01-29
JP2016016097 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017131053A1 true WO2017131053A1 (ja) 2017-08-03

Family

ID=59398434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002614 WO2017131053A1 (ja) 2016-01-29 2017-01-26 温間加工用高強度鋼板およびその製造方法

Country Status (5)

Country Link
US (1) US11414720B2 (ja)
EP (1) EP3409805B1 (ja)
JP (1) JP6252710B2 (ja)
CN (1) CN109072371B (ja)
WO (1) WO2017131053A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080493A1 (ja) * 2018-10-17 2020-04-23 日本製鉄株式会社 鋼板及び鋼板の製造方法
JP2021501833A (ja) * 2017-11-02 2021-01-21 イージーフォーミング・スティール・テクノロジー・カンパニー・リミテッドEasyforming Steel Technology Co., Ltd. ホットスタンピングに使用される鋼、ホットスタンピング方法および成形された構成要素
JP2021508769A (ja) * 2017-12-19 2021-03-11 アルセロールミタル 靭性、延性及び強度に優れた鋼板及びその製造方法
US20210087646A1 (en) * 2017-12-19 2021-03-25 Arcelormittal High strength and high formability steel sheet and manufacturing method
JP2021513604A (ja) * 2018-02-08 2021-05-27 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv 亜鉛または亜鉛合金でコーティングされた鋼のブランクから物品を成形する方法
EP3848479A4 (en) * 2018-09-04 2021-10-20 Posco ULTRA HIGH STRENGTH AND DUCTILITY STEEL SHEET WITH EXCELLENT PERFORMANCE RATIO AND MANUFACTURING PROCESS

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11248275B2 (en) * 2016-01-29 2022-02-15 Jfe Steel Corporation Warm-workable high-strength steel sheet and method for manufacturing the same
WO2018036918A1 (de) * 2016-08-23 2018-03-01 Salzgitter Flachstahl Gmbh Verfahren zur herstellung eines höchstfesten stahlbandes mit verbesserten eigenschaften bei der weiterverarbeitung und ein derartiges stahlband
CN110284064B (zh) * 2019-07-18 2021-08-31 西华大学 一种高强度含硼钢及其制备方法
EP4370718A1 (en) * 2021-07-16 2024-05-22 ArcelorMittal Method of manufacturing of a steel part
CN114045431B (zh) * 2021-10-15 2022-12-16 首钢集团有限公司 一种870MPa级高塑韧性中锰钢宽厚钢板及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093319A1 (ja) * 2010-01-26 2011-08-04 新日本製鐵株式会社 高強度冷延鋼板及びその製造方法
JP2012251239A (ja) * 2011-05-12 2012-12-20 Jfe Steel Corp 衝突エネルギー吸収能に優れた自動車用衝突エネルギー吸収部材およびその製造方法
JP2015503023A (ja) * 2011-11-07 2015-01-29 ポスコ 温間プレス成形用鋼板、温間プレス成形部材、及びこれらの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525812B2 (ja) 1999-07-02 2004-05-10 住友金属工業株式会社 衝撃エネルギー吸収性に優れた高強度鋼板およびその製造方法
KR101027250B1 (ko) 2008-05-20 2011-04-06 주식회사 포스코 고연성 및 내지연파괴 특성이 우수한 고강도 냉연강판,용융아연 도금강판 및 그 제조방법
JP5834534B2 (ja) * 2010-06-29 2015-12-24 Jfeスチール株式会社 高一様伸び特性を備えた高強度低降伏比鋼、その製造方法、および高強度低降伏比溶接鋼管
MX338997B (es) 2011-03-28 2016-05-09 Nippon Steel & Sumitomo Metal Corp Placa de acero laminada en frio y metodo de produccion de la misma.
JP5825119B2 (ja) * 2011-04-25 2015-12-02 Jfeスチール株式会社 加工性と材質安定性に優れた高強度鋼板およびその製造方法
EP2765212B1 (en) 2011-10-04 2017-05-17 JFE Steel Corporation High-strength steel sheet and method for manufacturing same
US9976203B2 (en) 2012-01-19 2018-05-22 Arcelormittal Ultra fine-grained advanced high strength steel sheet having superior formability
CN104508163B (zh) * 2012-07-31 2016-11-16 杰富意钢铁株式会社 成形性及定形性优异的高强度热浸镀锌钢板及其制造方法
JP5860373B2 (ja) 2012-09-20 2016-02-16 株式会社神戸製鋼所 降伏強度と温間成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
BR112017000567A2 (pt) * 2014-07-18 2017-11-07 Nippon Steel & Sumitomo Metal Corp produto de aço e método de fabricação do mesmo
EP3219822B1 (en) * 2015-01-15 2018-08-22 Jfe Steel Corporation High-strength hot-dip galvanized steel sheet and production method thereof
CN107109571B (zh) * 2015-01-15 2018-12-04 杰富意钢铁株式会社 高强度热镀锌钢板及其制造方法
US11248275B2 (en) * 2016-01-29 2022-02-15 Jfe Steel Corporation Warm-workable high-strength steel sheet and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093319A1 (ja) * 2010-01-26 2011-08-04 新日本製鐵株式会社 高強度冷延鋼板及びその製造方法
JP2012251239A (ja) * 2011-05-12 2012-12-20 Jfe Steel Corp 衝突エネルギー吸収能に優れた自動車用衝突エネルギー吸収部材およびその製造方法
JP2015503023A (ja) * 2011-11-07 2015-01-29 ポスコ 温間プレス成形用鋼板、温間プレス成形部材、及びこれらの製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7269588B2 (ja) 2017-11-02 2023-05-09 イージーフォーミング・スティール・テクノロジー・カンパニー・リミテッド ホットスタンピングに使用される鋼、ホットスタンピング方法および成形された構成要素
EP3704282A4 (en) * 2017-11-02 2021-08-25 Easyforming Steel Technology Co., Ltd. STEEL USED FOR HOT STAMPING, HOT STAMPING PROCESS AND SHAPED COMPONENT
JP2021501833A (ja) * 2017-11-02 2021-01-21 イージーフォーミング・スティール・テクノロジー・カンパニー・リミテッドEasyforming Steel Technology Co., Ltd. ホットスタンピングに使用される鋼、ホットスタンピング方法および成形された構成要素
US20210087646A1 (en) * 2017-12-19 2021-03-25 Arcelormittal High strength and high formability steel sheet and manufacturing method
JP2021508769A (ja) * 2017-12-19 2021-03-11 アルセロールミタル 靭性、延性及び強度に優れた鋼板及びその製造方法
JP7275137B2 (ja) 2017-12-19 2023-05-17 アルセロールミタル 靭性、延性及び強度に優れた鋼板及びその製造方法
US11591665B2 (en) 2017-12-19 2023-02-28 Arcelormittal Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
US11920208B2 (en) * 2017-12-19 2024-03-05 Arcelormittal High strength and high formability steel sheet and manufacturing method
US11965225B2 (en) 2017-12-19 2024-04-23 Arcelormittal Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
JP2021513604A (ja) * 2018-02-08 2021-05-27 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv 亜鉛または亜鉛合金でコーティングされた鋼のブランクから物品を成形する方法
JP7354119B2 (ja) 2018-02-08 2023-10-02 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ 亜鉛または亜鉛合金でコーティングされた鋼のブランクから物品を成形する方法
EP3848479A4 (en) * 2018-09-04 2021-10-20 Posco ULTRA HIGH STRENGTH AND DUCTILITY STEEL SHEET WITH EXCELLENT PERFORMANCE RATIO AND MANUFACTURING PROCESS
JP6760543B1 (ja) * 2018-10-17 2020-09-23 日本製鉄株式会社 鋼板及び鋼板の製造方法
WO2020080493A1 (ja) * 2018-10-17 2020-04-23 日本製鉄株式会社 鋼板及び鋼板の製造方法

Also Published As

Publication number Publication date
US20190040489A1 (en) 2019-02-07
JPWO2017131053A1 (ja) 2018-02-01
US11414720B2 (en) 2022-08-16
EP3409805A4 (en) 2018-12-19
CN109072371A (zh) 2018-12-21
CN109072371B (zh) 2020-08-21
EP3409805A1 (en) 2018-12-05
JP6252710B2 (ja) 2017-12-27
EP3409805B1 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP6252710B2 (ja) 温間加工用高強度鋼板およびその製造方法
CN109642288B (zh) 高强度钢板及其制造方法
JP5983895B2 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5821911B2 (ja) 高降伏比高強度冷延鋼板およびその製造方法
JP4659134B2 (ja) 穴拡げ性と延性のバランスが極めて良好で、疲労耐久性にも優れた高強度鋼板及び亜鉛めっき鋼板、並びにそれらの鋼板の製造方法
JP4941619B2 (ja) 冷延鋼板およびその製造方法
WO2016021193A1 (ja) 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法
JP5915412B2 (ja) 曲げ性に優れた高強度熱延鋼板およびその製造方法
JPWO2018073919A1 (ja) めっき鋼板、溶融亜鉛めっき鋼板の製造方法及び合金化溶融亜鉛めっき鋼板の製造方法
JP5256690B2 (ja) 加工性および耐衝撃特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JPWO2019159771A1 (ja) 高強度鋼板およびその製造方法
JP2019044269A (ja) 高強度冷延薄鋼板
JP2011214073A (ja) 冷延鋼板およびその製造方法
JP5821810B2 (ja) 細粒鋼板の製造方法
JP6252709B2 (ja) 温間加工用高強度鋼板およびその製造方法
JP5533145B2 (ja) 冷延鋼板およびその製造方法
JP6683291B2 (ja) 鋼板及び鋼板の製造方法
JP2011214070A (ja) 冷延鋼板およびその製造方法
JP5776762B2 (ja) 冷延鋼板およびその製造方法
JP7078186B1 (ja) 高強度冷延鋼板,高強度めっき鋼板,高強度冷延鋼板の製造方法,及び高強度めっき鋼板の製造方法
JP5776761B2 (ja) 冷延鋼板およびその製造方法
JP7070812B1 (ja) 高強度冷延鋼板,高強度めっき鋼板,高強度冷延鋼板の製造方法,高強度めっき鋼板の製造方法,及び自動車部品
JP5776764B2 (ja) 冷延鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017527825

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017744283

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744283

Country of ref document: EP

Effective date: 20180829