WO2013118431A1 - 車両および吸気量制御装置 - Google Patents

車両および吸気量制御装置 Download PDF

Info

Publication number
WO2013118431A1
WO2013118431A1 PCT/JP2013/000234 JP2013000234W WO2013118431A1 WO 2013118431 A1 WO2013118431 A1 WO 2013118431A1 JP 2013000234 W JP2013000234 W JP 2013000234W WO 2013118431 A1 WO2013118431 A1 WO 2013118431A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
value
speed
intake air
air amount
Prior art date
Application number
PCT/JP2013/000234
Other languages
English (en)
French (fr)
Inventor
学 藤戸
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to US14/377,543 priority Critical patent/US9435269B2/en
Priority to EP13747083.7A priority patent/EP2813691B1/en
Priority to JP2013557395A priority patent/JP5827699B2/ja
Publication of WO2013118431A1 publication Critical patent/WO2013118431A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/023Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0213Electronic or electric governor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0235Throttle control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/228Warning displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/022Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the clutch status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a vehicle and an intake air amount control device.
  • the generation of engine braking force is detected based on the intake pressure of the engine.
  • the magnitude of the engine braking force is adjusted by controlling the intake air amount of the engine based on the rotational speed of the engine.
  • An object of the present invention is to provide a vehicle and an intake air amount control device capable of stably controlling an engine brake.
  • a vehicle transmits a torque between a main body, an engine that generates torque for moving the main body, driving wheels driven by the engine, and the engine and driving wheels.
  • the engine intake amount by changing the control parameter corresponding to the engine intake amount and the clutch configured to be switched to a disconnected state where the torque is not transmitted between the engine and the drive wheel
  • An intake air amount adjusting unit configured to detect, a moving speed detecting unit configured to detect the moving speed of the main body, and a clutch connected based on the moving speed detected by the moving speed detecting unit during deceleration
  • the engine speed is calculated as the virtual engine speed
  • the calculated virtual engine speed and the set target engine are calculated. Get the value of the control parameter as a target based on the torque as the first value, in which and a configured controlled unit to set the control parameters of the intake air amount adjustment unit to a first value.
  • the engine rotation speed when the clutch is assumed to be engaged is calculated as the virtual engine rotation speed based on the movement speed detected by the movement speed detector.
  • the value of the target control parameter is acquired as the first value, and the control parameter of the intake air amount adjustment unit is set to the first value.
  • the virtual engine rotation speed is not affected by the clutch state. Therefore, the first value acquired based on the virtual engine speed and the target engine torque does not vary greatly depending on the state of the clutch. Thereby, the intake air amount of the set engine can be stably controlled by setting the control parameter of the intake air amount adjusting unit to the first value. Since the magnitude of the engine brake depends on the intake air amount of the engine, the engine brake can be stably controlled by stably controlling the intake air amount of the engine. As a result, the driving feeling of the driver can be sufficiently improved.
  • the vehicle further includes a transmission ratio detection unit configured to detect a transmission ratio between the engine and the drive wheel, and the control unit detects the movement speed detected by the movement speed detection unit, and the transmission ratio.
  • the virtual engine rotation speed may be calculated based on the speed ratio detected by the detection unit and the circumference of the drive wheel. In this case, the virtual engine rotation speed can be calculated easily and accurately.
  • the control unit stores in advance the relationship between the torque generated by the engine, the rotational speed of the engine, and the control parameter, and based on the stored relationship, the calculated virtual engine rotational speed and the set target engine
  • the control parameter value corresponding to the torque may be acquired as the first value.
  • the first value can be easily obtained based on the virtual engine rotation speed and the target engine torque.
  • the intake air amount adjustment unit includes at least one intake path for guiding air to the engine and at least one valve provided in the at least one intake path, and the control parameter includes an opening degree of at least one valve. But you can. In this case, since the opening degree of at least one valve is set to the first value acquired based on the virtual engine speed and the target engine torque, the intake air amount of the engine is stably controlled. Thereby, the engine brake can be stably controlled.
  • the at least one valve may be a throttle valve, and the opening degree of the at least one valve may be an opening degree of the throttle valve.
  • the opening of the throttle valve is set to the first value acquired based on the virtual engine speed and the target engine torque, the intake air amount of the engine is stably controlled. Thereby, the engine brake can be stably controlled.
  • the existing throttle valve can be used, the complexity of the configuration of the vehicle can be suppressed.
  • the vehicle has an operation unit that is operated by a driver to adjust a control parameter corresponding to an intake air amount of the engine, and an operation amount detection unit that is configured to detect an operation amount of the operation unit by the driver.
  • the control unit acquires the value of the control parameter corresponding to the operation amount detected by the operation amount detection unit as the second value, and the first value from which the acquired second value is acquired.
  • the control parameter of the intake air amount adjusting unit is set to the first value, and the control parameter of the intake air amount adjusting unit is set when the acquired second value is greater than or equal to the acquired first value. May be set to a second value.
  • the intake amount of the engine is controlled based on the virtual engine speed and the target engine torque.
  • the intake air amount of the engine is controlled based on the operation amount of the operation unit by the driver. Accordingly, it is possible to appropriately control the intake air amount of the engine in accordance with the operation of the operation unit by the driver while preventing the engine brake from acting excessively during deceleration.
  • the control unit is configured to determine whether or not the operation amount detection unit is normal, and to set the control parameter of the intake air amount adjustment unit to the first value when the operation amount detection unit is not normal. May be.
  • the control parameter of the intake air amount adjusting unit is set to the first value, so that the vehicle is automatically decelerated by the engine brake. Accordingly, it is possible to prevent the vehicle from making an unstable movement against the driver's intention.
  • a plurality of values may be set in advance as the target engine torque, and the vehicle may further include an engine torque switching unit that is operated by the driver to select one value from the plurality of values.
  • the target engine torque can be selected based on the driver's preference and driving conditions.
  • size of an engine brake can be adjusted according to a driver
  • the vehicle further includes a roll angle detection unit configured to detect a roll angle of the main body, and the control unit sets a target engine torque set based on the roll angle detected by the roll angle detection unit. And the first value may be acquired based on the corrected target engine torque.
  • the size of the engine brake can be controlled to an appropriate size according to the driving situation.
  • the vehicle further includes a steering angle detection unit configured to detect a steering angle formed by the traveling direction of the main body with respect to the front-rear direction of the main body, and the control unit is detected by the steering angle detection unit.
  • the target engine torque set based on the steered angle may be corrected, and the first value may be acquired based on the corrected target engine torque.
  • the size of the engine brake can be controlled to an appropriate size according to the traveling situation.
  • the vehicle further includes a friction coefficient acquisition unit configured to acquire a friction coefficient between the drive wheel and the ground, and the control unit is set based on the friction coefficient acquired by the friction coefficient acquisition unit.
  • the corrected target engine torque may be corrected, and the first value may be acquired based on the corrected target engine torque.
  • the size of the engine brake can be controlled to an appropriate size according to the driving situation.
  • the vehicle further includes a plurality of wheels including at least a drive wheel, and the moving speed detection unit is configured to detect a moving speed of the main body based on a rotation speed of at least one of the plurality of wheels. May be. In this case, the moving speed of the main body can be detected with a simple configuration.
  • the plurality of wheels may include non-driven wheels that are not driven by the engine, and the moving speed detector may be configured to detect the moving speed of the main body based on the rotational speed of the non-driven wheels.
  • engine braking does not occur on the non-driving wheels. For this reason, slippage is unlikely to occur between the non-driven wheel and the ground. Therefore, the moving speed of the main body can be detected more accurately based on the rotational speed of the non-driving wheels.
  • the plurality of wheels may include front wheels and rear wheels, and the moving speed detection unit may be configured to detect the moving speed of the main body based on the rotational speed of the front wheels.
  • the moving speed detection unit may be configured to detect the moving speed of the main body based on the rotational speed of the front wheels.
  • a load on the main body or the like is applied to the front wheels during deceleration. Therefore, the adhesion between the front wheel and the ground is increased. As a result, slippage is unlikely to occur between the front wheel and the ground. Therefore, the moving speed of the main body can be detected more accurately based on the rotational speed of the front wheels.
  • An intake air amount control device is an intake air amount control device that is provided in a vehicle including an engine, a clutch, and an intake air amount adjustment unit, and controls the intake air amount of the engine. Is configured to adjust the intake air amount of the engine by changing a control parameter corresponding to the intake air amount of the engine, and the intake air amount control device is configured to detect a moving speed of the vehicle.
  • the engine speed is calculated as the virtual engine speed when the clutch is assumed to be engaged based on the moving speed detected by the moving speed detector, and the calculated virtual engine speed is calculated.
  • a target control parameter value is acquired as a first value
  • the control parameter of the intake air amount adjusting unit is acquired.
  • the in which and a configured controlled unit so as to set to a first value.
  • the engine speed when the clutch is assumed to be engaged is calculated as the virtual engine speed based on the moving speed detected by the moving speed detector. Based on the calculated virtual engine rotation speed and the set target engine torque, the value of the target control parameter is acquired as the first value, and the control parameter of the intake air amount adjustment unit is set to the first value. .
  • the virtual engine rotation speed is not affected by the clutch state. Therefore, the first value acquired based on the virtual engine speed and the target engine torque does not vary greatly depending on the state of the clutch. Thereby, the intake air amount of the set engine can be stably controlled by setting the control parameter of the intake air amount adjusting unit to the first value. Since the magnitude of the engine brake depends on the intake air amount of the engine, the engine brake can be stably controlled by stably controlling the intake air amount of the engine. As a result, the driving feeling of the driver can be sufficiently improved.
  • the engine brake can be stably controlled.
  • FIG. 1 is a schematic side view showing a motorcycle according to the present embodiment.
  • FIG. 2 is a top view of the handle of the motorcycle.
  • FIG. 3 is a block diagram for explaining a drive system of the motorcycle.
  • FIG. 4 is a block diagram for explaining a control system of the motorcycle.
  • FIG. 5 is a timing chart for explaining the relationship among the vehicle speed, the actual engine speed, the virtual engine speed, and the gear ratio.
  • FIG. 6 is a timing chart for explaining the relationship between the virtual engine speed, the target engine torque, and the throttle opening.
  • FIG. 7 is a flowchart of the throttle opening adjustment process.
  • FIG. 1 is a schematic side view showing a motorcycle according to the present embodiment.
  • a head pipe 102 is provided at the front end of the main body frame 101.
  • a front fork 103 is provided on the head pipe 102 so as to be swingable in the left-right direction.
  • a front wheel 104 is rotatably attached to the lower end of the front fork 103.
  • a handle 105 is provided at the upper end of the head pipe 102.
  • FIG. 2 is a top view of the handle 105 of the motorcycle 100.
  • the handle 105 is provided with a clutch lever 105a, an accelerator grip 106, an engine torque changeover switch 120, and an accelerator opening sensor SE1.
  • the accelerator opening sensor SE1 detects the amount of operation of the accelerator grip 106 by the driver (hereinafter referred to as accelerator opening).
  • accelerator opening detects the amount of operation of the accelerator grip 106 by the driver (hereinafter referred to as accelerator opening).
  • accelerator opening the driver
  • the target engine torque level is selected. Details of the target engine torque will be described later.
  • the front fork 103 is provided with a vehicle speed sensor SE2.
  • the vehicle speed sensor SE2 detects the rotational speed of the front wheels 104.
  • a steering angle sensor SE4 is provided near the head pipe 102 in the main body frame 101.
  • the steering angle sensor SE4 detects the steering angle.
  • the steering angle refers to an angle formed by the center plane (symmetric plane) of the front wheel 104 with respect to the longitudinal direction of the main body frame 101.
  • the center plane of the front wheel 104 corresponds to the traveling direction of the motorcycle 100. For example, when the motorcycle 100 is traveling straight, the steering angle is 0 degree, and when the motorcycle 100 turns left or right, the steering angle increases. The steering angle changes as the handle 105 is operated.
  • An engine 107 is provided at the center of the main body frame 101.
  • An intake pipe 108 and an exhaust pipe 109 are attached to the engine 107.
  • the intake pipe 108 is provided with a throttle device 60 (FIG. 4) described later.
  • a mission case 110 is provided behind the engine 107.
  • a clutch 5 and a transmission 6 (FIG. 3), which will be described later, and a speed ratio sensor SE3 are provided in the mission case 110.
  • a shift pedal 210 is provided on the side of the mission case 110.
  • a rear arm 114 is provided so as to extend to the rear of the mission case 110.
  • a rear wheel 115 is rotatably attached to the rear end of the rear arm 114.
  • the torque (rotational force) generated by the engine 107 is transmitted to the rear wheel 115, whereby the rear wheel 115 is driven.
  • a fuel tank 112 is provided in the upper part of the engine 107, and two seats 113 are provided behind the fuel tank 112 so as to be arranged in the front-rear direction. Below these sheets 113, a roll angle sensor SE5 and an ECU (Electronic Control Unit) 50 are provided below these sheets 113.
  • the roll angle sensor SE5 is, for example, a gyro sensor, and detects the roll angle of the motorcycle 100.
  • the roll angle of the motorcycle 100 refers to the angle of inclination of the motorcycle 100 with respect to the vertical direction. For example, when the motorcycle 100 is in the upright posture, the roll angle is 0 degree, and when the motorcycle 100 turns right or left, the roll angle becomes large. Details of the ECU 50 will be described later.
  • FIG. 3 is a block diagram for explaining the drive system of the motorcycle 100.
  • the engine 107 is connected to the rear wheel 115 via the clutch 5 and the transmission 6.
  • the clutch 5 is switched between a connected state, a disconnected state, and a half-connected state (half-clutch state).
  • the transmission 6 includes a plurality of transmission gears.
  • the gear position changes, and the transmission ratio changes.
  • the gear ratio is the ratio of the rotational speed of the engine 107 to the rotational speed of the rear wheel 115.
  • the gear ratio sensor SE3 detects a gear position.
  • a CVT Continuous Variable Transmission
  • the gear ratio sensor SE3 detects the position of the pulley, for example.
  • FIG. 4 is a block diagram for explaining a control system of the motorcycle 100.
  • the ECU 50 includes a CPU (Central Processing Unit) 51, a ROM (Read Only Memory) 52, and a RAM (Random Access Memory) 53.
  • the detection results of the accelerator opening sensor SE1, the vehicle speed sensor SE2, the transmission ratio sensor SE3, the steering angle sensor SE4 and the roll angle sensor SE5, and the operation contents of the engine torque changeover switch 120 by the driver are given to the CPU 51 of the ECU 50.
  • the accelerator opening degree sensor SE1, the vehicle speed sensor SE2, the transmission ratio sensor SE3, the steering angle sensor SE4, the roll angle sensor SE5, the engine torque changeover switch 120, and the ECU 50 constitute an intake air amount control device.
  • the throttle device 60 includes a throttle valve 61, a throttle drive device 62, and a throttle opening sensor 63.
  • the throttle opening is an example of a control parameter corresponding to the intake amount of the engine 107.
  • the throttle drive device 62 is a motor, for example, and is controlled by the CPU 51 of the ECU 50.
  • the throttle opening sensor 63 detects the throttle opening and gives the detection result to the CPU 51 of the ECU 50.
  • a control program is stored in the ROM 52 of the ECU 50.
  • the CPU 51 performs a throttle opening adjustment process by executing a control program stored in the ROM 52 on the RAM 53.
  • the ROM 52 stores a map representing the relationship between the engine speed, engine torque, and throttle opening, and various numerical values used for throttle opening adjustment processing.
  • the target throttle opening is calculated based on the virtual engine speed and the target engine torque. Details of the virtual engine speed, the target engine torque, and the throttle opening adjustment process will be described below.
  • the CPU 51 (FIG. 4) of the ECU 50 determines the vehicle speed (moving speed of the motorcycle 100), the length of the outer periphery of the rear wheel 115 (hereinafter referred to as the rear wheel peripheral length), and the gear ratio. Based on this, the virtual engine rotation speed is calculated.
  • the vehicle speed is calculated based on the rotational speed of the front wheels 104 detected by the vehicle speed sensor SE2.
  • the rear wheel circumference is stored in advance in the ROM 52 (FIG. 3) of the ECU 50.
  • the gear ratio is acquired based on the gear position detected by the gear ratio sensor SE3.
  • the virtual engine rotation speed corresponds to the engine rotation speed when it is assumed that the clutch 5 is in a connected state and no slip occurs between the rear wheel 115 and the ground.
  • the rotational speed of the rear wheel 115 is calculated by dividing the vehicle speed by the rear wheel circumference.
  • the virtual engine rotation speed is calculated by multiplying the calculated rotation speed of the rear wheel 115 by the gear ratio.
  • the actual engine speed is referred to as the actual engine speed.
  • the actual engine speed changes depending on the state of the clutch 5 and the presence or absence of slip between the rear wheel 115 and the ground.
  • FIG. 5 is a timing chart for explaining the relationship between the vehicle speed, the actual engine speed, the virtual engine speed, and the gear ratio.
  • 5A shows changes in vehicle speed
  • FIG. 5B shows changes in actual engine speed and virtual engine speed
  • FIG. 5C shows changes in gear position
  • the solid line represents the actual engine rotation speed
  • the dotted line represents the virtual engine rotation speed.
  • the gear position being lowered means that the gear position is switched so as to increase the gear ratio.
  • the vehicle speed gradually decreases, and the gear position is gradually lowered at time points t1, t2, and t3.
  • the clutch 5 is temporarily maintained in a disconnected state. Specifically, the clutch 5 is switched from the connected state to the disconnected state at time t11 before time t1. At time t12 after time t1, the clutch 5 is switched from the disconnected state to the semi-connected state. Thereafter, the clutch 5 is switched from the semi-connected state to the connected state at time t13.
  • the clutch 5 is switched to a disconnected state at a time t21 before the time t2, the clutch 5 is switched to a semi-connected state at a time t22 after the time t2, and the clutch 5 is connected at a time t23 after the time t22. Switch to state. Also, the clutch 5 is switched to the disconnected state at the time t31 before the time t3, the clutch 5 is switched to the half-connected state at the time t32 after the time t3, and the clutch 5 is connected at the time t33 after the time t32. Can be switched to.
  • the virtual engine rotation speed is not affected by the state of the clutch 5.
  • the gear position is constant, the virtual engine rotation speed decreases as the vehicle speed decreases.
  • the gear position is lowered at time points t1, t2, and t3, the virtual engine speed increases stepwise.
  • the actual engine speed is affected by the state of the clutch 5.
  • the actual engine rotation speed becomes equal to the virtual engine rotation speed when the clutch 5 is in the connected state.
  • no slip occurs between the rear wheel 115 and the ground.
  • the actual engine rotation speed becomes lower than the virtual engine rotation speed even when the clutch 5 is in the connected state.
  • the clutch 5 is in a disconnected state and when the clutch 5 is in a half-connected state, the actual engine rotation speed becomes lower than the virtual engine rotation speed. This is because the engine torque becomes smaller than the rear wheel torque as the throttle opening becomes smaller.
  • the clutch 5 is maintained in the disengaged state during the period of time t11 to t12, t21 to t22, and t31 to t32. During this period, the actual engine rotation speed sharply decreases.
  • the clutch 5 is maintained in a semi-disengaged state during the period from time t12 to t13, t22 to t23, t32 to t33. During this period, the clutch 5 shifts from the disconnected state to the connected state. Therefore, the actual engine speed increases so as to approach the virtual engine speed.
  • the actual engine speed greatly varies depending on the operation of the clutch 5. If the throttle opening is adjusted based on the actual engine speed, the throttle opening changes greatly every time the driver operates the clutch 5, and the engine torque is not stable. Therefore, in the present embodiment, the throttle opening is adjusted based on the virtual engine rotation speed instead of the actual engine rotation speed. Since the virtual engine speed is not affected by the operation of the clutch 5, the throttle opening does not fluctuate due to the operation of the clutch 5 by the driver. Therefore, engine torque is stabilized.
  • the actual engine rotation speed is lower than the virtual engine rotation speed. Therefore, when the throttle opening is adjusted based on the actual engine speed, there is a possibility that the throttle opening is excessively adjusted when the clutch 5 is in the disconnected state or the semi-connected state. In that case, when the clutch 5 is switched to the connected state, the engine brake works excessively. Therefore, traveling of the motorcycle 100 becomes unstable due to slippage between the rear wheel 115 and the ground.
  • the throttle opening is adjusted based on the virtual engine speed, the throttle opening is not adjusted excessively even when the clutch 5 is in the disconnected state or the semi-connected state. Thereby, when the clutch 5 is switched to the connected state, the engine brake is prevented from being excessively operated, and the traveling of the motorcycle 100 is stably maintained.
  • the actual engine speed is affected by the presence or absence of slip
  • the virtual engine speed is not affected by the presence or absence of slip. Therefore, even if slip occurs between the rear wheel 115 and the ground, the engine torque is stably maintained by adjusting the throttle opening based on the virtual engine rotation speed.
  • Target engine torque The CPU 51 (FIG. 4) of the ECU 50 operates the engine torque changeover switch 120 (FIG. 2) by the driver, the steering angle, the roll angle, and the coefficient of friction between the rear wheel 115 and the ground (hereinafter referred to as the engine torque change switch 120).
  • the target engine torque is calculated based on the ground friction coefficient.
  • the steering angle and roll angle are detected by a steering angle sensor SE4 and a roll angle sensor SE5.
  • the ground friction coefficient is detected based on a detection result of a time or a travel distance from when the rotation of the front wheel 104 or the rear wheel 115 is stopped until the traveling of the motorcycle 100 is stopped. Can be calculated.
  • the ground friction coefficient can be obtained by capturing an image of the running ground with a camera and analyzing the obtained image.
  • the target engine torque is a target value of the engine torque that should be generated when the motorcycle 100 decelerates.
  • the engine torque changeover switch 120 is configured to be able to select one level among a plurality of levels representing the magnitude of the target engine torque. The driver selects a desired level by operating the engine torque changeover switch 120 according to the preference or the driving situation.
  • the initial value of the target engine torque is set in advance so as to correspond to each level.
  • Each set initial value is stored in the ROM 52 of the ECU 50.
  • the CPU 51 corrects the target engine torque by multiplying the initial value corresponding to the selected level by a gain corresponding to the steering angle, roll angle, and ground friction coefficient.
  • the engine brake becomes large.
  • the rear wheel 115 is easily locked (rotation stopped).
  • the steering angle is large and the roll angle is large, the rear wheel 115 is locked and the vehicle body becomes unstable.
  • the ground friction coefficient is small, the rear wheel 115 is locked, so that a large slip is likely to occur between the rear wheel 115 and the ground.
  • the gain corresponding to the steering angle is multiplied by the initial value so that the target engine torque increases as the steering angle increases.
  • the gain corresponding to the roll angle is multiplied by the initial value so that the target engine torque increases as the roll angle increases.
  • the initial value is multiplied by a gain corresponding to the ground friction coefficient so that the target engine torque increases as the ground friction coefficient decreases.
  • a positive or negative correction value according to the steering angle, roll angle and ground friction coefficient is added to the initial value.
  • the target engine torque may be calculated.
  • FIG. 6 is a timing chart for explaining the relationship between virtual engine rotation speed, target engine torque, and throttle opening.
  • 6 (a) shows the change in vehicle speed
  • FIG. 6 (b) shows the change in virtual engine rotation speed
  • FIG. 6 (c) shows the change in gear position
  • FIG. 6 (d) shows the target engine torque.
  • FIG. 6E shows a change in the throttle opening. Note that changes in the vehicle speed, the virtual engine rotation speed, and the gear position in FIGS. 6A to 6C are the same as those in FIGS. 5A to 5C.
  • the target engine torque is maintained at the calculated value.
  • the throttle opening is adjusted based on the virtual engine speed and the target engine torque. In this case, as the virtual engine speed decreases, the throttle opening also decreases. Further, when the virtual engine rotation speed is increased by lowering the gear position, the throttle opening is also increased.
  • the target engine torque is kept constant.
  • the present invention is not limited to this, and the target engine torque may be dynamically changed.
  • the target engine torque may be set in advance so as to gradually increase or decrease.
  • FIG. 7 is a flowchart of the throttle opening adjustment processing.
  • the throttle opening adjustment process in FIG. 7 is repeatedly performed at a constant cycle, for example, when the motorcycle 100 is traveling.
  • the CPU 51 calculates a virtual engine rotation speed based on the detection results of the vehicle speed sensor SE2 and the transmission ratio sensor SE3 and the rear wheel circumference stored in the ROM 52 (step S1).
  • the CPU 51 calculates a target engine torque based on the operation content of the engine torque changeover switch 120, the detection results of the steering angle sensor SE4 and the roll angle sensor SE5, and the acquired ground friction coefficient (step S2).
  • the CPU 51 obtains the throttle opening corresponding to the virtual engine speed calculated in step S1 and the target engine torque calculated in step S2 as a deceleration opening from the map stored in the ROM 52 (step S3).
  • the deceleration opening is a throttle opening corresponding to the virtual engine speed and the target engine torque.
  • a function representing the relationship between the engine rotational speed, the engine torque, and the throttle opening may be stored in the ROM 52 instead of the map representing the relationship between the engine rotational speed, the engine torque, and the throttle opening.
  • the CPU 51 uses the function stored in the ROM 52 to calculate the deceleration opening degree from the virtual engine rotation speed and the target engine torque.
  • the CPU 51 determines whether or not the accelerator opening sensor SE1 is normal (step S4). For example, when the detection result is not output from the accelerator opening sensor SE1, or when the detection result of the accelerator opening sensor SE1 is not within a predetermined range, the CPU 51 determines that the accelerator opening sensor SE1 is not normal. To do. On the other hand, when the detection result is continuously output from the accelerator opening sensor SE1 and the detection result is within a predetermined range, the CPU 51 determines that the accelerator opening sensor SE1 is normal.
  • the CPU 51 calculates the normal opening based on the detection result of the accelerator opening sensor SE1 (step S5).
  • the normal opening is a throttle opening corresponding to the accelerator opening.
  • the CPU 51 determines whether or not the normal opening is equal to or greater than the deceleration opening (step S6).
  • the normal opening is equal to or greater than the deceleration opening.
  • the CPU 51 controls the throttle driving device 62 so that the actual throttle opening becomes the normal opening calculated in step S5 (step S7). The process is terminated. In this case, the throttle opening is adjusted according to the amount of operation of the accelerator grip 106 by the driver.
  • the normal opening becomes smaller than the deceleration opening.
  • the CPU 51 controls the throttle driving device 62 so that the actual throttle opening becomes the deceleration opening calculated in step S3 (step S8). The process is terminated. In this case, the throttle opening is adjusted so that the engine torque becomes the target engine torque calculated in step S2.
  • Step S8 the process ends.
  • an abnormality may be presented to the driver by a presentation device such as a buzzer or a lamp, and at least one of the front wheel 104 and the rear wheel 115 may be presented.
  • the motorcycle 100 may be automatically stopped by a braking device (brake) that brakes the vehicle.
  • the throttle opening is adjusted to the calculated deceleration opening during a period from when it is determined that the accelerator opening sensor SE1 is not normal until the motorcycle 100 is stopped. Thereby, the motorcycle 100 is stably stopped.
  • the throttle opening degree may be adjusted to an opening degree set in advance so that an appropriate engine brake works, instead of being adjusted to the calculated deceleration opening degree.
  • the deceleration opening is calculated based on the virtual engine speed and the target engine torque, and the throttle opening during deceleration is calculated.
  • the deceleration opening is adjusted.
  • the virtual engine rotation speed is not affected by the state of the clutch 5
  • the throttle opening is not changed by the operation of the clutch 5 by the driver.
  • the engine brake can be stably controlled.
  • the engine brake at the time of deceleration can be stably controlled using the existing throttle valve 61, the configuration of the motorcycle 100 can be prevented from being complicated and the increase in cost can be suppressed. .
  • the virtual engine rotation speed is determined based on the rotation speed of the front wheels 104 detected by the vehicle speed sensor SE2, the transmission ratio detected by the transmission ratio sensor SE3, and the rear wheel circumference stored in advance. Calculated. Thereby, the virtual engine rotation speed can be calculated easily and accurately.
  • the throttle opening corresponding to the virtual engine speed and the target engine torque is acquired as the deceleration opening based on a map or function stored in advance. Thereby, the opening degree for deceleration can be acquired easily.
  • the throttle opening when the normal opening according to the accelerator opening is smaller than the calculated deceleration opening, the throttle opening is adjusted to the deceleration opening, and according to the accelerator opening.
  • the throttle opening is adjusted to the normal opening.
  • the throttle opening is adjusted to the deceleration opening. This prevents the throttle opening from being adjusted based on the detection result of the accelerator opening sensor SE1 when the accelerator opening sensor SE1 is not normal. Further, by adjusting the throttle opening to the deceleration opening, the motorcycle 100 is automatically decelerated by the engine brake. As a result, it is possible to prevent the motorcycle 100 from making an unstable movement against the intention of the driver.
  • the magnitude of the target engine torque is adjusted based on the operation of the engine torque changeover switch 120 by the driver.
  • size of an engine brake can be adjusted according to a driver
  • the target engine torque is corrected based on the steering angle, the roll angle, and the ground friction coefficient.
  • size of an engine brake can be controlled to the appropriate magnitude
  • the CPU 51 calculates the vehicle speed (the moving speed of the motorcycle 100) based on the rotational speed of the front wheels 104 detected by the vehicle speed sensor SE2, but the vehicle speed may be acquired by other methods.
  • the vehicle speed may be acquired using GPS (Global Positioning System).
  • the vehicle speed may be calculated based on the rotation speed of the rear wheel 115 instead of the rotation speed of the front wheel 104.
  • the vehicle speed cannot be accurately calculated. Therefore, in order to obtain an accurate vehicle speed, it is preferable to calculate the vehicle speed using the rotation speed of the front wheel 104 rather than the rotation speed of the rear wheel 115.
  • one level is selected from a plurality of levels representing the magnitude of the target engine torque by operating the engine torque changeover switch 120, but the present invention is not limited to this.
  • one level may be automatically selected from a plurality of levels based on parameters such as a steering angle, a roll angle, and a ground friction coefficient.
  • the target engine torque corresponding to the selected level is not used, but only a predetermined target engine torque may be used.
  • the target engine torque is corrected based on the steering angle, the roll angle, and the ground friction coefficient, but the present invention is not limited to this.
  • the target engine torque may be corrected based on one or two of the steering angle, the roll angle, and the ground friction coefficient.
  • the target engine torque may be used as it is without being corrected.
  • the target engine torque may be corrected based on other parameters such as temperature, humidity, or driver weight.
  • the intake amount of the engine 107 at the time of deceleration is adjusted by adjusting the opening of the throttle valve 61 provided in the intake pipe 108.
  • the present invention is not limited to this.
  • another intake path (sub-intake path) that guides secondary air to the engine 107 and other valves that open and close the sub-intake path are provided.
  • the intake air amount of engine 107 during deceleration may be adjusted by adjusting the degree.
  • the throttle opening is adjusted to the deceleration opening when the normal opening is smaller than the deceleration opening, and the throttle opening is normally adjusted when the normal opening is equal to or greater than the deceleration opening.
  • the opening degree it is not limited to this.
  • the throttle opening is adjusted to a deceleration opening when the normal opening is smaller than a predetermined threshold, and the throttle opening is adjusted when the normal opening is equal to or larger than a predetermined threshold. May be controlled to the normal opening.
  • the deceleration opening may be calculated only when the normal opening is smaller than a predetermined threshold.
  • the rear wheel 115 is a driving wheel driven by the engine 107, but the present invention is not limited thereto, and the front wheel 114 may be a driving wheel.
  • the function of the control unit is realized by the CPU 51 of the ECU 50 and the control program, but at least a part of the function of the control unit may be realized by hardware such as an electronic circuit.
  • the above embodiment is an example in which the present invention is applied to a motorcycle.
  • other saddle-type vehicles such as ATV (All Terrain Vehicle), or an automatic tricycle or an automatic four-wheel vehicle are used.
  • the present invention can also be applied to other vehicles such as a wheeled vehicle.
  • the motorcycle 100 is an example of a vehicle
  • the main body frame 101 is an example of a main body
  • the engine 107 is an example of an engine
  • the rear wheel 115 is an example of driving wheels
  • the clutch 5 is It is an example of a clutch
  • the opening degree of the throttle valve 61 is an example of a control parameter
  • the intake pipe 108, the throttle valve 61, and the throttle drive device 62 are examples of an intake air amount adjustment unit
  • the vehicle speed sensor SE2 is a movement speed detection unit.
  • the ECU 50 is an example of the control unit
  • the deceleration opening is an example of the first value.
  • the transmission ratio sensor SE3 is an example of a transmission ratio detection unit
  • the intake pipe 108 is an example of an intake path
  • the throttle valve 61 is an example of a throttle valve
  • the accelerator grip 106 is an example of an operation unit
  • the opening sensor SE1 is an example of the operation amount detection unit
  • the normal opening is an example of the second value.
  • the engine torque changeover switch 120 is an example of an engine torque switching unit
  • the roll angle sensor SE5 is an example of a roll angle detection unit
  • the steering angle sensor SE4 is an example of a steering angle detection unit
  • the ECU 50 acquires a friction coefficient.
  • the front wheel 104 is an example of a non-driving wheel.
  • the present invention can be effectively used for various vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 ECUのCPUは、車速センサにより検出される車両の速度に基づいて、クラッチが接続状態にあると仮定した場合のエンジンの回転速度を仮想エンジン回転速度として算出する。続いて、CPUは、算出された仮想エンジン回転速度および設定された目標エンジントルクに基づいて、目標となるスロットルバルブの開度を取得する。そして、CPUは、実際のスロットルバルブの開度が取得された開度となるように、スロットル駆動装置を制御する。

Description

車両および吸気量制御装置
 本発明は、車両および吸気量制御装置に関する。
 自動二輪車等の車両においては、ギアチェンジ等によって車両の走行速度が低下される際に、大きなエンジンブレーキが働くことによって運転者の走行フィーリングが悪化することがある。そこで、エンジンブレーキを制御するための種々の方法が提案されている。
 例えば、特許文献1に記載されるバックトルク低減装置においては、車両の走行時に前輪速度および後輪速度が検出され、前輪速度が後輪速度よりも大きくなると、空気供給通路を通して、吸気通路におけるスロットルバルブの下流側に空気が供給される。それにより、エンジンブレーキ効果が低減される。
 また、特許文献2に記載されるエンジンブレーキ制御装置においては、エンジンの吸気圧に基づいて、エンジンブレーキ力の発生が検出される。エンジンブレーキ力の発生時には、エンジンの回転速度に基づいて、エンジンの吸入空気量が制御されることにより、エンジンブレーキ力の大きさが調整される。
特開2005-98281号公報 特開2006-46300号公報
 車両の走行時においては、運転者によるクラッチの操作時に、駆動輪(例えば後輪)およびエンジンの回転速度が大きく変動する。そのため、上記特許文献1および特許文献2のように、駆動輪またはエンジンの回転速度に基づいてエンジンの吸気量が調整される場合には、クラッチの操作に応じて、エンジンブレーキの大きさが変動する。したがって、エンジンブレーキを安定に制御することができず、運転者の走行フィーリングが十分に改善されない。
 本発明の目的は、エンジンブレーキを安定に制御することができる車両および吸気量制御装置を提供することである。
 (1)本発明の一局面に従う車両は、本体部と、本体部を移動させるためのトルクを発生するエンジンと、エンジンによって駆動される駆動輪と、エンジンと駆動輪との間でトルクが伝達される接続状態、およびエンジンと駆動輪との間でトルクが伝達されない切断状態に切替可能に構成されたクラッチと、エンジンの吸気量に対応する制御パラメータを変化させることによりエンジンの吸気量を調整するように構成された吸気量調整部と、本体部の移動速度を検出するように構成された移動速度検出部と、減速時に、移動速度検出部により検出される移動速度に基づいてクラッチが接続状態にあると仮定した場合のエンジンの回転速度を仮想エンジン回転速度として算出し、算出された仮想エンジン回転速度および設定された目標エンジントルクに基づいて目標となる制御パラメータの値を第1の値として取得し、吸気量調整部の制御パラメータを第1の値に設定するように構成された制御部とを備えるものである。
 その車両においては、エンジンにより本体部を移動させるためのトルクが発生される。クラッチが接続状態であるときに、エンジンによって発生されるトルクが駆動輪に伝達されることにより、駆動輪が駆動される。それにより、本体部が移動する。
 減速時には、エンジンにより発生されるトルクが慣性による駆動輪のトルクよりも小さくなることにより、駆動輪を制動するエンジンブレーキが発生する。この場合、移動速度検出部により検出される移動速度に基づいてクラッチが接続状態にあると仮定した場合のエンジンの回転速度が仮想エンジン回転速度として算出される。算出された仮想エンジン回転速度および設定された目標エンジントルクに基づいて、目標となる制御パラメータの値が第1の値として取得され、吸気量調整部の制御パラメータが第1の値に設定される。
 仮想エンジン回転速度は、クラッチの状態に影響されない。そのため、仮想エンジン回転速度および目標エンジントルクに基づいて取得される第1の値もクラッチの状態によって大きく変動することがない。それにより、吸気量調整部の制御パラメータを第1の値に設定することにより、設定エンジンの吸気量を安定に制御することができる。エンジンブレーキの大きさはエンジンの吸気量に依存するため、エンジンの吸気量を安定に制御することにより、エンジンブレーキを安定に制御することができる。その結果、運転者の走行フィーリングを十分に向上させることができる。
 (2)車両は、エンジンと駆動輪との間における変速比を検出するように構成された変速比検出部をさらに備え、制御部は、移動速度検出部により検出される移動速度、および変速比検出部により検出される変速比および駆動輪の周長に基づいて仮想エンジン回転速度を算出するように構成されてもよい。この場合、仮想エンジン回転速度を容易にかつ正確に算出することができる。
 (3)制御部は、エンジンにより発生されるトルク、エンジンの回転速度、および制御パラメータの関係を予め記憶し、記憶された関係に基づいて、算出された仮想エンジン回転速度および設定された目標エンジントルクに対応する制御パラメータの値を第1の値として取得するように構成されてもよい。この場合、仮想エンジン回転速度および目標エンジントルクに基づいて第1の値を容易に取得することができる。
 (4)吸気量調整部は、エンジンに空気を導く少なくとも1つの吸気経路と、少なくとも1つの吸気経路に設けられる少なくとも1つの弁とを含み、制御パラメータは、少なくとも1つの弁の開度を含んでもよい。この場合、少なくとも1つの弁の開度が、仮想エンジン回転速度および目標エンジントルクに基づいて取得された第1の値に設定されるので、エンジンの吸気量が安定に制御される。それにより、エンジンブレーキを安定に制御することができる。
 (5)少なくとも1つの弁はスロットル弁であり、少なくとも1つの弁の開度は、スロットル弁の開度であってもよい。この場合、スロットル弁の開度が、仮想エンジン回転速度および目標エンジントルクに基づいて取得された第1の値に設定されるので、エンジンの吸気量が安定に制御される。それにより、エンジンブレーキを安定に制御することができる。また、既存のスロットル弁を用いることができるので、車両の構成の複雑化を抑制することができる。
 (6)車両は、エンジンの吸気量に対応する制御パラメータを調整するために運転者により操作される操作部と、運転者による操作部の操作量を検出するように構成された操作量検出部とをさらに備え、制御部は、操作量検出部により検出された操作量に対応する制御パラメータの値を第2の値として取得し、取得された第2の値が取得された第1の値よりも小さい場合に、吸気量調整部の制御パラメータを第1の値に設定し、取得された第2の値が取得された第1の値以上である場合に、吸気量調整部の制御パラメータを第2の値に設定するように構成されてもよい。
 この場合、第2の値が第1の値よりも小さい場合には、仮想エンジン回転速度および目標エンジントルクに基づいてエンジンの吸気量が制御される。一方、第2の値が第1の値以上である場合には、運転者による操作部の操作量に基づいてエンジンの吸気量が制御される。これにより、減速時にエンジンブレーキが過剰に働くことを防止しつつ、運転者による操作部の操作に応じてエンジンの吸気量を適正に制御することができる。
 (7)制御部は、操作量検出部が正常であるか否かを判定し、操作量検出部が正常でない場合に、吸気量調整部の制御パラメータを第1の値に設定するように構成されてもよい。
 この場合、操作量検出部が正常でない状態で、操作量検出部の検出結果に基づいてエンジンの吸気量が制御されることが防止される。また、吸気量調整部の制御パラメータが第1の値に設定されることにより、エンジンブレーキによって車両が自動的に減速される。それにより、運転者の意思に反して車両が不安定な動きをすることを防止することができる。
 (8)目標エンジントルクとして予め複数の値が設定され、車両は、複数の値から一の値を選択するために運転者により操作されるエンジントルク切替部をさらに備えてもよい。
 この場合、運転者の好みおよび運転状況に基づいて、目標エンジントルクの大きさを選択することができる。それにより、運転者の好みおよび運転状況に応じて、エンジンブレーキの大きさを調整することができる。
 (9)車両は、本体部のロール角を検出するように構成されたロール角検出部をさらに備え、制御部は、ロール角検出部により検出されたロール角に基づいて設定された目標エンジントルクを補正し、補正された目標エンジントルクに基づいて第1の値を取得するように構成されてもよい。
 この場合、本体部のロール角に基づいて目標エンジントルクを適正に補正することにより、エンジンブレーキの大きさを走行状況に応じた適正な大きさに制御することができる。
 (10)車両は、本体部の前後方向に対して本体部の進行方向がなす操舵角を検出するように構成された操舵角検出部をさらに備え、制御部は、操舵角検出部により検出された操舵角に基づいて設定された目標エンジントルクを補正し、補正された目標エンジントルクに基づいて第1の値を取得するように構成されてもよい。
 この場合、操舵角に基づいて目標エンジントルクを適正に補正することにより、エンジンブレーキの大きさを走行状況に応じた適正な大きさに制御することができる。
 (11)車両は、駆動輪と地面との間の摩擦係数を取得するように構成された摩擦係数取得部をさらに備え、制御部は、摩擦係数取得部により取得された摩擦係数に基づいて設定された目標エンジントルクを補正し、補正された目標エンジントルクに基づいて第1の値を取得するように構成されてもよい。
 この場合、駆動輪と地面との間の摩擦係数に基づいて目標エンジントルクを適正に補正することにより、エンジンブレーキの大きさを走行状況に応じた適正な大きさに制御することができる。
 (12)車両は、少なくとも駆動輪を含む複数の車輪をさらに備え、移動速度検出部は、複数の車輪のうち少なくとも1つの車輪の回転速度に基づいて本体部の移動速度を検出するように構成されてもよい。この場合、簡単な構成で本体部の移動速度を検出することができる。
 (13)複数の車輪は、エンジンによって駆動されない非駆動輪を含み、移動速度検出部は、非駆動輪の回転速度に基づいて本体部の移動速度を検出するように構成されてもよい。この場合、非駆動輪には、エンジンブレーキが発生しない。そのため、非駆動輪と地面との間では滑りが発生しにくい。したがって、非駆動輪の回転速度に基づいて本体部の移動速度をより正確に検出することができる。
 (14)複数の車輪は、前輪および後輪を含み、移動速度検出部は、前輪の回転速度に基づいて本体部の移動速度を検出するように構成されてもよい。この場合、減速時には、本体部等の荷重が前輪に加わる。そのため、前輪と地面との間の密着性が高まる。それにより、前輪と地面との間では滑りが発生しにくい。したがって、前輪の回転速度に基づいて本体部の移動速度をより正確に検出することができる。
 (15)本発明の他の局面に従う吸気量制御装置は、エンジン、クラッチおよび吸気量調整部を備える車両に設けられ、エンジンの吸気量を制御する吸気量制御装置であって、吸気量調整部は、エンジンの吸気量に対応する制御パラメータを変化させることによりエンジンの吸気量を調整するように構成され、吸気量制御装置は、車両の移動速度を検出するように構成された移動速度検出部と、車両の減速時に、移動速度検出部により検出される移動速度に基づいてクラッチが接続状態にあると仮定した場合のエンジンの回転速度を仮想エンジン回転速度として算出し、算出された仮想エンジン回転速度および設定された目標エンジントルクに基づいて目標となる制御パラメータの値を第1の値として取得し、吸気量調整部の制御パラメータを第1の値に設定するように構成された制御部とを備えるものである。
 その吸気量制御装置においては、移動速度検出部により検出される移動速度に基づいてクラッチが接続状態にあると仮定した場合のエンジンの回転速度が仮想エンジン回転速度として算出される。算出された仮想エンジン回転速度および設定された目標エンジントルクに基づいて、目標となる制御パラメータの値が第1の値として取得され、吸気量調整部の制御パラメータが第1の値に設定される。
 仮想エンジン回転速度は、クラッチの状態に影響されない。そのため、仮想エンジン回転速度および目標エンジントルクに基づいて取得される第1の値もクラッチの状態によって大きく変動することがない。それにより、吸気量調整部の制御パラメータを第1の値に設定することにより、設定エンジンの吸気量を安定に制御することができる。エンジンブレーキの大きさはエンジンの吸気量に依存するため、エンジンの吸気量を安定に制御することにより、エンジンブレーキを安定に制御することができる。その結果、運転者の走行フィーリングを十分に向上させることができる。
 本発明によれば、エンジンブレーキを安定に制御することができる。
図1は本実施の形態に係る自動二輪車を示す概略側面図である。 図2は自動二輪車のハンドルの上面図である。 図3は自動二輪車の駆動系について説明するためのブロック図である。 図4は自動二輪車の制御系について説明するためのブロック図である。 図5は車速、実エンジン回転速度、仮想エンジン回転速度および変速比の関係について説明するためのタイミングチャートである。 図6は仮想エンジン回転速度、目標エンジントルクおよびスロットル開度の関係について説明するためのタイミングチャートである。 図7はスロットル開度調整処理のフローチャートである。
 以下、本発明の実施の形態に係る車両の一例として、自動二輪車について図面を用いて説明する。
 (1)自動二輪車の概略構成
 図1は、本実施の形態に係る自動二輪車を示す概略側面図である。図1の自動二輪車100においては、本体フレーム101の前端にヘッドパイプ102が設けられる。ヘッドパイプ102にフロントフォーク103が左右方向に揺動可能に設けられる。フロントフォーク103の下端に前輪104が回転可能に取り付けられる。ヘッドパイプ102の上端にはハンドル105が設けられる。
 図2は、自動二輪車100のハンドル105の上面図である。ハンドル105には、クラッチレバー105a、アクセルグリップ106、エンジントルク切替スイッチ120およびアクセル開度センサSE1が設けられる。アクセル開度センサSE1は、運転者によるアクセルグリップ106の操作量(以下、アクセル開度と呼ぶ)を検出する。運転者がエンジントルク切替スイッチ120を操作することにより、目標エンジントルクのレベルが選択される。目標エンジントルクの詳細については後述する。
 図1に示すように、フロントフォーク103には、車速センサSE2が設けられる。車速センサSE2は、前輪104の回転速度を検出する。本体フレーム101におけるヘッドパイプ102の近傍には、操舵角センサSE4が設けられる。操舵角センサSE4は、操舵角を検出する。操舵角とは、本体フレーム101の前後方向に対する前輪104の中心面(対称面)がなす角度をいう。前輪104の中心面は、自動二輪車100の進行方向に相当する。例えば、自動二輪車100が直進しているときには操舵角が0度であり、自動二輪車100が左または右へ旋回するときに操舵角が大きくなる。操舵角は、ハンドル105が操作されることによって変化する。
 本体フレーム101の中央部にエンジン107が設けられる。エンジン107に吸気管108および排気管109が取り付けられる。吸気管108には、後述のスロットル装置60(図4)が設けられる。エンジン107の後方にミッションケース110が設けられる。ミッションケース110内に、後述のクラッチ5および変速機6(図3)ならびに変速比センサSE3が設けられる。ミッションケース110の側部には、シフトペダル210が設けられる。
 ミッションケース110の後方に延びるようにリアアーム114が設けられる。リアアーム114の後端に後輪115が回転可能に取り付けられる。エンジン107により発生されるトルク(回転力)が後輪115に伝達されることにより、後輪115が駆動される。エンジン107の上部に燃料タンク112が設けられ、燃料タンク112の後方に2つのシート113が前後に並ぶように設けられる。これらのシート113の下方に、ロール角センサSE5およびECU(Electronic Control Unit;電子制御ユニット)50が設けられる。ロール角センサSE5は、例えばジャイロセンサであり、自動二輪車100のロール角を検出する。自動二輪車100のロール角とは、鉛直方向に対する自動二輪車100の傾きの角度をいう。例えば、自動二輪車100が直立姿勢であるときにはロール角が0度であり、自動二輪車100が右または左へ旋回するときにロール角が大きくなる。ECU50の詳細については後述する。
 図3は、自動二輪車100の駆動系について説明するためのブロック図である。図3に示すように、エンジン107は、クラッチ5および変速機6を介して後輪115と接続される。運転者がクラッチレバー105aを操作することにより、クラッチ5が、接続状態、切断状態および半接続状態(半クラッチ状態)に切り替えられる。
 変速機6は、複数の変速ギアを含む。運転者がシフトペダル210を操作することにより、変速ギアの位置(以下、ギアポジションと呼ぶ)が変化し、変速比が変化する。変速比とは、後輪115の回転速度に対するエンジン107の回転速度の比をいう。変速比センサSE3は、ギアポジションを検出する。変速機6として、複数の変速ギアの代わりに、プーリおよびベルト等からなるCVT(Continuously Variable Transmission;無段変速機)が用いられてもよい。その場合、変速比センサSE3は、例えばプーリの位置を検出する。
 クラッチ5が接続状態である場合には、エンジン107と後輪115との間でトルクが伝達される。エンジン107で発生されるトルク(以下、エンジントルクと呼ぶ)は、エンジン107の回転速度(以下、エンジン回転速度と呼ぶ)およびスロットル開度に依存する。自動二輪車100の減速時において、エンジントルクが慣性による後輪115のトルク(以下、後輪トルクと呼ぶ)よりも小さくなると、エンジン107の回転抵抗が後輪115を制動する方向の力(以下、エンジンブレーキと呼ぶ)として後輪115に働く。
 クラッチ5が切断状態である場合には、エンジン107と後輪115との間でトルクが伝達されない。クラッチ5が半接続状態である場合には、エンジン107と後輪115との間でトルクが部分的に伝達される。
 図4は、自動二輪車100の制御系について説明するためのブロック図である。図4に示すように、ECU50は、CPU(中央演算処理装置)51、ROM(リードオンリメモリ)52およびRAM(ランダムアクセスメモリ)53を含む。アクセル開度センサSE1、車速センサSE2、変速比センサSE3、操舵角センサSE4およびロール角センサSE5の検出結果、ならびに運転者によるエンジントルク切替スイッチ120の操作内容がECU50のCPU51に与えられる。本例では、アクセル開度センサSE1、車速センサSE2、変速比センサSE3、操舵角センサSE4、ロール角センサSE5、エンジントルク切替スイッチ120およびECU50により吸気量制御装置が構成される。
 スロットル装置60は、スロットルバルブ61、スロットル駆動装置62およびスロットル開度センサ63を含む。スロットル駆動装置62によってスロットルバルブ61の開度(以下、スロットル開度と呼ぶ)が調整されることにより、エンジン107の吸気量が調整される。スロットル開度は、エンジン107の吸気量に対応する制御パラメータの例である。スロットル駆動装置62は、例えばモータであり、ECU50のCPU51により制御される。スロットル開度センサ63は、スロットル開度を検出し、その検出結果をECU50のCPU51に与える。
 ECU50のROM52には、制御プログラムが記憶される。CPU51は、ROM52に記憶された制御プログラムをRAM53上で実行することにより、スロットル開度調整処理を行う。また、ROM52には、エンジン回転速度、エンジントルクおよびスロットル開度の関係を表すマップ、ならびにスロットル開度調整処理に用いられる種々の数値等が記憶される。
 スロットル開度調整処理においては、仮想エンジン回転速度および目標エンジントルクに基づいて、目標とするスロットル開度が算出される。以下、仮想エンジン回転速度、目標エンジントルクおよびスロットル開度調整処理の詳細について説明する。
 (2)仮想エンジン回転速度
 ECU50のCPU51(図4)は、車速(自動二輪車100の移動速度)、後輪115の外周部の長さ(以下、後輪周長と呼ぶ)、および変速比に基づいて、仮想エンジン回転速度を算出する。車速は、車速センサSE2により検出された前輪104の回転速度に基づいて算出される。後輪周長は、予めECU50のROM52(図3)に記憶される。変速比は、変速比センサSE3により検出されたギアポジションに基づいて取得される。
 仮想エンジン回転速度は、クラッチ5が接続状態でありかつ後輪115と地面との間で滑りが発生していないと仮定された場合のエンジン回転速度に相当する。具体的には、車速が後輪周長で除算されることにより、後輪115の回転速度が算出される。算出された後輪115の回転速度に変速比が乗算されることにより、仮想エンジン回転速度が算出される。以下、実際のエンジン回転速度を実エンジン回転速度と呼ぶ。実エンジン回転速度は、クラッチ5の状態および後輪115と地面との間における滑りの有無に依存して変化する。
 図5は、車速、実エンジン回転速度、仮想エンジン回転速度および変速比の関係について説明するためのタイミングチャートである。図5(a)は車速の変化を示し、図5(b)は実エンジン回転速度および仮想エンジン回転速度の変化を示し、図5(c)はギアポジションの変化を示し、図5(d)はクラッチ5の状態を示す。図5(b)においては、実線が実エンジン回転速度を表し、点線が仮想エンジン回転速度を表す。以下の説明において、ギアポジションが下げられるとは、変速比が高くなるようにギアポジションが切り替えられることを意味する。
 図5の例では、車速が徐々に低下し、時点t1,t2,t3でギアポジションが段階的に下げられる。ギアポジションの切替時には、一時的にクラッチ5が切断状態に維持される。具体的には、時点t1の前の時点t11でクラッチ5が接続状態から切断状態に切り替えられる。時点t1の後の時点t12でクラッチ5が切断状態から半接続状態に切り替えられる。その後、時点t13でクラッチ5が半接続状態から接続状態に切り替えられる。同様に、時点t2の前の時点t21でクラッチ5が切断状態に切り替えられ、時点t2の後の時点t22でクラッチ5が半接続状態に切り替えられ、時点t22の後の時点t23でクラッチ5が接続状態に切り替えられる。また、時点t3の前の時点t31でクラッチ5が切断状態に切り替えられ、時点t3の後の時点t32でクラッチ5が半接続状態に切り替えられ、時点t32の後の時点t33でクラッチ5が接続状態に切り替えられる。
 仮想エンジン回転速度は、クラッチ5の状態に影響されない。ギアポジションが一定であるときには、仮想エンジン回転速度は車速の低下に伴って低下する。時点t1,t2,t3でギアポジションが下げられると、仮想エンジン回転速度が段階的に高くなる。
 実エンジン回転速度は、クラッチ5の状態に影響される。後輪115と地面との間で滑りが発生していない場合には、クラッチ5が接続状態であるときに、実エンジン回転速度が仮想エンジン回転速度と等しくなる。図5の例では、後輪115と地面との間で滑りが発生していない。自動二輪車100の減速時に、後輪115と地面との間で滑りが発生すると、クラッチ5が接続状態であっても、実エンジン回転速度が仮想エンジン回転速度よりも低くなる。一方、クラッチ5が切断状態であるとき、およびクラッチ5が半接続状態であるときに、実エンジン回転速度が仮想エンジン回転速度よりも低くなる。これは、スロットル開度が小さくなることによってエンジントルクが後輪トルクよりも小さくなることによる。
 具体的には、時点t11~t12,t21~t22,t31~t32の期間に、クラッチ5が切断状態に維持される。この期間に、実エンジン回転速度が急峻に低下する。時点t12~t13,t22~t23,t32~t33の期間に、クラッチ5が半切断状態に維持される。この期間に、クラッチ5が切断状態から接続状態に移行する。そのため、実エンジン回転速度が仮想エンジン回転速度に近づくように上昇する。
 このように、実エンジン回転速度は、クラッチ5の操作によって大きく変化する。仮に、実エンジン回転速度に基づいてスロットル開度が調整されると、運転者がクラッチ5を操作する毎にスロットル開度が大きく変化し、エンジントルクが安定しない。そこで、本実施の形態では、実エンジン回転速度ではなく仮想エンジン回転速度に基づいてスロットル開度が調整される。仮想エンジン回転速度は、クラッチ5の操作に影響されないので、運転者によるクラッチ5の操作によってスロットル開度が変動することがない。そのため、エンジントルクが安定する。
 また、上記のように、クラッチ5が切断状態または半接続状態であるときには、実エンジン回転速度が仮想エンジン回転速度よりも低い。そのため、実エンジン回転速度に基づいてスロットル開度が調整された場合、クラッチ5が切断状態または半接続状態であるときに、スロットル開度が過剰に大きく調整される可能性がある。その場合、クラッチ5が接続状態に切り替えられたときに、過剰にエンジンブレーキが働く。そのため、後輪115と地面との間で滑りが発生する等により、自動二輪車100の走行が不安定になる。
 それに対して、仮想エンジン回転速度に基づいてスロットル開度が調整された場合には、クラッチ5が切断状態または半接続状態であるときでも、スロットル開度が過剰に大きく調整されることがない。それにより、クラッチ5が接続状態に切り替えられたときに、過剰にエンジンブレーキが働くことが防止され、自動二輪車100の走行が安定に維持される。
 また、実エンジン回転速度は滑りの有無に影響されるのに対して、仮想エンジン回転速度は滑りの有無に影響されない。そのため、仮に、後輪115と地面との間で滑りが発生した場合でも、仮想エンジン回転速度に基づいてスロットル開度が調整されることにより、エンジントルクが安定に維持される。
 (3)目標エンジントルク
 ECU50のCPU51(図4)は、運転者によるエンジントルク切替スイッチ120(図2)の操作、操舵角、ロール角、ならびに後輪115と地面との間の摩擦係数(以下、地面摩擦係数と呼ぶ)に基づいて、目標エンジントルクを算出する。
 操舵角およびロール角は、操舵角センサSE4およびロール角センサSE5により検出される。地面摩擦係数は、例えば、自動二輪車100の制動時に、前輪104または後輪115の回転が停止してから自動二輪車100の走行が停止するまでの時間または走行距離を検出し、その検出結果に基づいて算出することができる。または、カメラにより走行中の地面を撮像し、取得された映像を解析することにより地面摩擦係数を取得することができる。
 目標エンジントルクは、自動二輪車100の減速時に発生されるべきエンジントルクの目標値である。エンジントルク切替スイッチ120は、目標エンジントルクの大きさを表す複数のレベルのうち一のレベルを選択可能に構成される。運転者は、好みまたは走行状況に応じて、エンジントルク切替スイッチ120を操作することにより、所望のレベルを選択する。
 各レベルに対応するように、予め目標エンジントルクの初期値が設定される。設定された各初期値は、ECU50のROM52に記憶される。CPU51は、選択されたレベルに対応する初期値に、操舵角、ロール角および地面摩擦係数に応じたゲインを乗算することにより、目標エンジントルクを補正する。
 エンジントルクが小さいと、エンジンブレーキが大きくなる。後輪115に大きいエンジンブレーキが働くと、後輪115がロック(回転停止)しやすくなる。操舵角が大きい場合およびロール角が大きい場合には、後輪115がロックすることにより、車体が安定しなくなる。また、地面摩擦係数が小さい場合には、後輪115がロックすることにより、後輪115と地面との間で大きな滑りが発生しやすくなる。
 そこで、操舵角が大きいほど目標エンジントルクが大きくなるように、操舵角に応じたゲインが初期値に乗算される。同様に、ロール角が大きいほど目標エンジントルクが大きくなるように、ロール角に応じたゲインが初期値に乗算される。また、地面摩擦係数が小さいほど目標エンジントルクが大きくなるように、地面摩擦係数に応じたゲインが初期値に乗算される。
 操舵角、ロール角および地面摩擦係数に応じたゲインが初期値に乗算される代わりに、操舵角、ロール角および地面摩擦係数に応じた正または負の補正値が初期値に加算されることにより、目標エンジントルクが算出されてもよい。
 (4)仮想エンジン回転速度、目標エンジントルクおよびスロットル開度の関係
 図6は、仮想エンジン回転速度、目標エンジントルクおよびスロットル開度の関係について説明するためのタイミングチャートである。図6(a)は車速の変化を示し、図6(b)は仮想エンジン回転速度の変化を示し、図6(c)はギアポジションの変化を示し、図6(d)は目標エンジントルクの変化を示し、図6(e)はスロットル開度の変化を示す。なお、図6(a)~(c)における車速、仮想エンジン回転速度およびギアポジションの変化は、図5(a)~(c)の例と同じである。
 図6に示すように、目標エンジントルクは、算出された値に維持される。仮想エンジン回転速度および目標エンジントルクに基づいて、スロットル開度が調整される。この場合、仮想エンジン回転速度が低下すると、スロットル開度も小さくなる。また、ギアポジションが下げられることによって仮想エンジン回転速度が上昇すると、スロットル開度も大きくなる。
 本例では、目標エンジントルクが一定に維持されるが、これに限らず、目標エンジントルクが動的に変化されてもよい。例えば、目標エンジントルクが徐々に大きくまたは小さくなるように予め設定されてもよい。
 (5)スロットル開度調整処理
 図7は、スロットル開度調整処理のフローチャートである。図7のスロットル開度調整処理は、例えば、自動二輪車100の走行時に、一定の周期で繰り返し行われる。
 図5に示すように、まず、CPU51は、車速センサSE2および変速比センサSE3の検出結果、ならびにROM52に記憶された後輪周長に基づいて、仮想エンジン回転速度を算出する(ステップS1)。次に、CPU51は、エンジントルク切替スイッチ120の操作内容、操舵角センサSE4およびロール角センサSE5の検出結果、ならびに取得された地面摩擦係数に基づいて、目標エンジントルクを算出する(ステップS2)。
 次に、CPU51は、ステップS1で算出された仮想エンジン回転速度およびステップS2で算出された目標エンジントルクに対応するスロットル開度をROM52に記憶されるマップから減速用開度として取得する(ステップS3)。減速用開度は、仮想エンジン回転速度および目標エンジントルクに応じたスロットル開度である。
 なお、エンジン回転速度、エンジントルクおよびスロットル開度の関係を表すマップの代わりに、エンジン回転速度、エンジントルクおよびスロットル開度の関係を表す関数がROM52に記憶されてもよい。この場合、CPU51は、ROM52に記憶された関数を用いて、仮想エンジン回転速度および目標エンジントルクから減速用開度を算出する。
 次に、CPU51は、アクセル開度センサSE1が正常であるか否かを判定する(ステップS4)。例えば、アクセル開度センサSE1から検出結果が出力されていない場合、またはアクセル開度センサSE1の検出結果が予め定められた範囲内にない場合、CPU51は、アクセル開度センサSE1が正常でないと判定する。一方、アクセル開度センサSE1から検出結果が継続的に出力され、かつその検出結果が予め定められた範囲内にある場合、CPU51は、アクセル開度センサSE1が正常であると判定する。
 アクセル開度センサSE1が正常である場合、CPU51は、アクセル開度センサSE1の検出結果に基づいて、通常用開度を算出する(ステップS5)。通常用開度は、アクセル開度に応じたスロットル開度である。
 次に、CPU51は、通常用開度が減速用開度以上であるか否かを判定する(ステップS6)。自動二輪車100の加速時または定速走行時には、通常用開度が減速用開度以上となる。通常用開度が減速用開度以上である場合、CPU51は、実際のスロットル開度が、ステップS5で算出された通常用開度となるように、スロットル駆動装置62を制御し(ステップS7)、処理を終了する。この場合、運転者によるアクセルグリップ106の操作量に応じてスロットル開度が調整される。
 一方、自動二輪車100の減速時において、アクセルグリップ106の操作量が小さくなると、通常用開度が減速用開度よりも小さくなる。通常用開度が減速用開度よりも小さい場合、CPU51は、実際のスロットル開度が、ステップS3で算出された減速用開度となるように、スロットル駆動装置62を制御し(ステップS8)、処理を終了する。この場合、エンジントルクがステップS2で算出された目標エンジントルクとなるようにスロットル開度が調整される。
 また、ステップS4において、アクセル開度センサSE1が正常でない場合にも、CPU51は、実際のスロットル開度が、ステップS3で算出された減速用開度となるように、スロットル駆動装置62を制御し(ステップS8)、処理を終了する。
 なお、アクセル開度センサSE1が正常でないと判定された場合には、ブザーまたはランプ等の提示装置によって運転者に異常の発生が提示されてもよく、さらに、前輪104および後輪115の少なくとも一方を制動する制動装置(ブレーキ)により、自動二輪車100が自動的に停止されてもよい。この場合、アクセル開度センサSE1が正常でないと判定されてから自動二輪車100が停止されるまでの期間に、スロットル開度が算出された減速用開度に調整される。それにより、自動二輪車100が安定に停止される。また、スロットル開度が、算出された減速用開度に調整される代わりに、適度なエンジンブレーキが働くように予め設定された開度に調整されてもよい。
 (6)本実施の形態の効果
 本実施の形態に係る自動二輪車100においては、仮想エンジン回転速度および目標エンジントルクに基づいて減速用開度が算出され、減速時におけるスロットル開度が、算出された減速用開度に調整される。この場合、仮想エンジン回転速度はクラッチ5の状態に影響されないので、運転者によるクラッチ5の操作によってスロットル開度が変化することがない。それにより、エンジンブレーキを安定に制御することができる。また、既存のスロットルバルブ61を用いて、減速時におけるエンジンブレーキを安定に制御することができるので、自動二輪車100の構成の複雑化を抑制することができ、コストの増大を抑制することができる。
 また、本実施の形態では、車速センサSE2により検出された前輪104の回転速度、変速比センサSE3により検出された変速比、および予め記憶された後輪周長に基づいて、仮想エンジン回転速度が算出される。それにより、仮想エンジン回転速度を容易にかつ正確に算出することができる。
 また、本実施の形態では、予め記憶されたマップまたは関数に基づいて、仮想エンジン回転速度および目標エンジントルクに対応するスロットル開度が減速用開度として取得される。それにより、減速用開度を容易に取得することができる。
 また、本実施の形態では、アクセル開度に応じた通常用開度が、算出された減速用開度よりも小さい場合に、スロットル開度が減速用開度に調整され、アクセル開度に応じた通常用開度が、算出された減速用開度以上である場合に、スロットル開度が通常用開度に調整される。これにより、減速時にエンジンブレーキが過剰に働くことを防止しつつ、運転者による操作部の操作に応じてスロットル開度を適正に制御することができる。
 また、本実施の形態では、アクセル開度センサSE1が正常でない場合に、スロットル開度が減速用開度に調整される。これにより、アクセル開度センサSE1が正常でない状態で、アクセル開度センサSE1の検出結果に基づいてスロットル開度が調整されることが防止される。また、スロットル開度が減速用開度に調整されることにより、エンジンブレーキによって自動二輪車100が自動的に減速される。その結果、運転者の意思に反して自動二輪車100が不安定な動きをすることを防止することができる。
 また、本実施の形態では、運転者によるエンジントルク切替スイッチ120の操作に基づいて、目標エンジントルクの大きさが調整される。それにより、運転者の好みおよび運転状況に応じて、エンジンブレーキの大きさを調整することができる。
 また、本実施の形態では、操舵角、ロール角および地面摩擦係数に基づいて、目標エンジントルクが補正される。これにより、エンジンブレーキの大きさを走行状況に応じた適正な大きさに制御することができる。
 (7)他の実施の形態
 (7-1)
 上記実施の形態では、車速センサSE2により検出された前輪104の回転速度に基づいてCPU51により車速(自動二輪車100の移動速度)が算出されるが、他の方法で車速が取得されてもよい。例えば、GPS(汎地球測位システム)を用いて、車速が取得されてもよい。
 また、前輪104の回転速度の代わりに後輪115の回転速度に基づいて車速が算出されてもよい。ただし、エンジンブレーキによって後輪115がロックすると、車速を正確に算出することができなくなる。そのため、正確な車速を取得するためには、後輪115の回転速度よりも前輪104の回転速度を用いて車速を算出することが好ましい。
 (7-2)
 上記実施の形態では、エンジントルク切替スイッチ120の操作により目標エンジントルクの大きさを表す複数のレベルから一のレベルが選択されるが、これに限らない。例えば、操舵角、ロール角および地面摩擦係数等のパラメータに基づいて、複数のレベルから一のレベルが自動的に選択されてもよい。または、選択されたレベルに対応する目標エンジントルクが用いられるのではなく、予め定められた一定の目標エンジントルクのみが用いられてもよい。
 (7-3)
 上記実施の形態では、操舵角、ロール角および地面摩擦係数に基づいて目標エンジントルクが補正されるが、これに限らない。例えば、操舵角、ロール角および地面摩擦係数のうち1つまたは2つに基づいて目標エンジントルクが補正されてもよい。または、目標エンジントルクが補正されることなく初期値のまま用いられてもよい。あるいは、温度、湿度または運転者の重量等の他のパラメータに基づいて目標エンジントルクが補正されてもよい。
 (7-4)
 上記実施の形態では、吸気管108に設けられたスロットルバルブ61の開度が調整されることにより減速時におけるエンジン107の吸気量が調整されるが、これに限らない。例えば、吸気管108およびスロットルバルブ61に加えて、エンジン107に二次空気を導く他の吸気経路(副吸気経路)およびその副吸気経路を開閉する他のバルブが設けられ、他のバルブの開度が調整されることにより減速時におけるエンジン107の吸気量が調整されてもよい。
 (7-5)
 上記実施の形態では、通常用開度が減速用開度より小さい場合にスロットル開度が減速用開度に調整され、通常用開度が減速用開度以上である場合にスロットル開度が通常用開度に制御されるが、これに限らない。例えば、通常用開度が予め定められたしきい値より小さい場合にスロットル開度が減速用開度に調整され、通常用開度が予め定められたしきい値以上である場合にスロットル開度が通常用開度に制御されてもよい。さらに、この場合には、通常用開度が予め定められたしきい値よりも小さい場合にのみ、減速用開度が算出されてもよい。
 (7-6)
 上記実施の形態では、後輪115がエンジン107によって駆動される駆動輪であるが、これに限らず、前輪114が駆動輪であってもよい。
 (7-7)上記実施の形態では、制御部の機能がECU50のCPU51および制御プログラムにより実現されるが、制御部の機能の少なくとも一部が電子回路等のハードウエアにより実現されてもよい。
 (7-8)
 上記実施の形態は、本発明を自動二輪車に適用した例であるが、これと同様に、ATV(All Terrain Vehicle;不整地走行車両)等の他の鞍乗り型車両、または自動三輪車もしくは自動四輪車等の他の車両にも本発明を適用することができる。
 (8)請求項の各構成要素と実施の形態の各要素との対応
 以下、請求項の各構成要素と実施の形態の各要素との対応の例について説明するが、本発明は下記の例に限定されない。
 上記実施の形態では、自動二輪車100が車両の例であり、本体フレーム101が本体部の例であり、エンジン107がエンジンの例であり、後輪115が駆動輪の例であり、クラッチ5がクラッチの例であり、スロットルバルブ61の開度が制御パラメータの例であり、吸気管108、スロットルバルブ61およびスロットル駆動装置62が吸気量調整部の例であり、車速センサSE2が移動速度検出部の例であり、ECU50が制御部の例であり、減速用開度が第1の値の例である。
 また、変速比センサSE3が変速比検出部の例であり、吸気管108が吸気経路の例であり、スロットルバルブ61がスロットル弁の例であり、アクセルグリップ106が操作部の例であり、アクセル開度センサSE1が操作量検出部の例であり、通常用開度が第2の値の例である。また、エンジントルク切替スイッチ120がエンジントルク切替部の例であり、ロール角センサSE5がロール角検出部の例であり、操舵角センサSE4が操舵角検出部の例であり、ECU50が摩擦係数取得部の例であり、前輪104が非駆動輪の例である。
 請求項の各構成要素として、請求項に記載されている構成または機能を有する他の種々の要素を用いることもできる。
 本発明は、種々の車両に有効に利用することができる。

Claims (15)

  1. 本体部と、
     前記本体部を移動させるためのトルクを発生するエンジンと、
     前記エンジンによって駆動される駆動輪と、
     前記エンジンと前記駆動輪との間でトルクが伝達される接続状態、および前記エンジンと前記駆動輪との間でトルクが伝達されない切断状態に切替可能に構成されたクラッチと、
     前記エンジンの吸気量に対応する制御パラメータを変化させることにより前記エンジンの吸気量を調整するように構成された吸気量調整部と、
     前記本体部の移動速度を検出するように構成された移動速度検出部と、
     減速時に、前記移動速度検出部により検出される移動速度に基づいて前記クラッチが接続状態にあると仮定した場合の前記エンジンの回転速度を仮想エンジン回転速度として算出し、前記算出された仮想エンジン回転速度および設定された目標エンジントルクに基づいて目標となる制御パラメータの値を第1の値として取得し、前記吸気量調整部の制御パラメータを前記第1の値に設定するように構成された制御部とを備える、車両。
  2. 前記エンジンと前記駆動輪との間における変速比を検出するように構成された変速比検出部をさらに備え、
     前記制御部は、前記移動速度検出部により検出される移動速度、および前記変速比検出部により検出される変速比および前記駆動輪の周長に基づいて前記仮想エンジン回転速度を算出するように構成された、請求項1記載の車両。
  3. 前記制御部は、前記エンジンにより発生されるトルク、前記エンジンの回転速度、および前記制御パラメータの関係を予め記憶し、前記記憶された関係に基づいて、前記算出された仮想エンジン回転速度および前記設定された目標エンジントルクに対応する制御パラメータの値を前記第1の値として取得するように構成された、請求項1記載の車両。
  4. 前記吸気量調整部は、前記エンジンに空気を導く少なくとも1つの吸気経路と、前記少なくとも1つの吸気経路に設けられる少なくとも1つの弁とを含み、
     前記制御パラメータは、前記少なくとも1つの弁の開度を含む、請求項1記載の車両。
  5. 前記少なくとも1つの弁はスロットル弁であり、前記少なくとも1つの弁の開度は、前記スロットル弁の開度である、請求項4記載の車両。
  6. 前記エンジンの吸気量に対応する制御パラメータを調整するために運転者により操作される操作部と、
     運転者による前記操作部の操作量を検出するように構成された操作量検出部とをさらに備え、
     前記制御部は、前記操作量検出部により検出された操作量に対応する制御パラメータの値を第2の値として取得し、前記取得された第2の値が前記取得された第1の値よりも小さい場合に、前記吸気量調整部の制御パラメータを前記第1の値に設定し、前記取得された第2の値が前記取得された第1の値以上である場合に、前記吸気量調整部の制御パラメータを前記第2の値に設定するように構成された、請求項1記載の車両。
  7. 前記制御部は、前記操作量検出部が正常であるか否かを判定し、前記操作量検出部が正常でない場合に、前記吸気量調整部の制御パラメータを前記第1の値に設定するように構成された、請求項6記載の車両。
  8. 前記目標エンジントルクとして予め複数の値が設定され、
     前記複数の値から一の値を選択するために運転者により操作されるエンジントルク切替部をさらに備えた、請求項1記載の車両。
  9. 前記本体部のロール角を検出するように構成されたロール角検出部をさらに備え、
     前記制御部は、前記ロール角検出部により検出されたロール角に基づいて前記設定された目標エンジントルクを補正し、前記補正された目標エンジントルクに基づいて前記第1の値を取得するように構成された、請求項1記載の車両。
  10. 前記本体部の前後方向に対して本体部の進行方向がなす操舵角を検出するように構成された操舵角検出部をさらに備え、
     前記制御部は、前記操舵角検出部により検出された操舵角に基づいて前記設定された目標エンジントルクを補正し、前記補正された目標エンジントルクに基づいて前記第1の値を取得するように構成された、請求項1記載の車両。
  11. 前記駆動輪と地面との間の摩擦係数を取得するように構成された摩擦係数取得部をさらに備え、
     前記制御部は、前記摩擦係数取得部により取得された摩擦係数に基づいて前記設定された目標エンジントルクを補正し、前記補正された目標エンジントルクに基づいて前記第1の値を取得するように構成された、請求項1記載の車両。
  12. 少なくとも前記駆動輪を含む複数の車輪をさらに備え、
     前記移動速度検出部は、前記複数の車輪のうち少なくとも1つの車輪の回転速度に基づいて前記本体部の移動速度を検出するように構成された、請求項1記載の車両。
  13. 前記複数の車輪は、前記エンジンによって駆動されない非駆動輪を含み、
     前記移動速度検出部は、前記非駆動輪の回転速度に基づいて前記本体部の移動速度を検出するように構成された、請求項12記載の車両。
  14. 前記複数の車輪は、前輪および後輪を含み、
     前記移動速度検出部は、前記前輪の回転速度に基づいて前記本体部の移動速度を検出するように構成された、請求項12記載の車両。
  15. エンジン、クラッチおよび吸気量調整部を備える車両に設けられ、前記エンジンの吸気量を制御する吸気量制御装置であって、
     前記吸気量調整部は、前記エンジンの吸気量に対応する制御パラメータを変化させることにより前記エンジンの吸気量を調整するように構成され、
     前記車両の移動速度を検出するように構成された移動速度検出部と、
     前記車両の減速時に、前記移動速度検出部により検出される移動速度に基づいて前記クラッチが接続状態にあると仮定した場合の前記エンジンの回転速度を仮想エンジン回転速度として算出し、前記算出された仮想エンジン回転速度および設定された目標エンジントルクに基づいて目標となる制御パラメータの値を第1の値として取得し、前記吸気量調整部の制御パラメータを前記第1の値に設定するように構成された制御部とを備える、吸気量制御装置。
PCT/JP2013/000234 2012-02-10 2013-01-18 車両および吸気量制御装置 WO2013118431A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/377,543 US9435269B2 (en) 2012-02-10 2013-01-18 Vehicle and intake amount control device
EP13747083.7A EP2813691B1 (en) 2012-02-10 2013-01-18 Vehicle and intake air amount control device
JP2013557395A JP5827699B2 (ja) 2012-02-10 2013-01-18 車両および吸気量制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012026821 2012-02-10
JP2012-026821 2012-02-10

Publications (1)

Publication Number Publication Date
WO2013118431A1 true WO2013118431A1 (ja) 2013-08-15

Family

ID=48947211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000234 WO2013118431A1 (ja) 2012-02-10 2013-01-18 車両および吸気量制御装置

Country Status (4)

Country Link
US (1) US9435269B2 (ja)
EP (1) EP2813691B1 (ja)
JP (1) JP5827699B2 (ja)
WO (1) WO2013118431A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435269B2 (en) * 2012-02-10 2016-09-06 Yamaha Hatsudoki Kabushiki Kaisha Vehicle and intake amount control device
JP5945572B2 (ja) * 2014-09-03 2016-07-05 ヤマハ発動機株式会社 駆動力制御システムおよび鞍乗り型車両
JP6838408B2 (ja) * 2017-01-30 2021-03-03 スズキ株式会社 車両制御装置
US11725598B2 (en) * 2021-04-23 2023-08-15 Bombardier Recreational Products Inc. Method for controlling engine braking in a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224949A (ja) * 1984-04-24 1985-11-09 Nissan Motor Co Ltd 内燃機関の補助空気制御装置
JPH01277660A (ja) * 1988-04-30 1989-11-08 Shimadzu Corp エンジンブレーキの検出装置
JPH02110240U (ja) * 1989-02-17 1990-09-04
JP2005098281A (ja) 2003-09-01 2005-04-14 Honda Motor Co Ltd 車両におけるバックトルク低減装置
JP2006046300A (ja) 2004-08-09 2006-02-16 Kokusan Denki Co Ltd エンジンブレーキ制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58200052A (ja) * 1982-05-18 1983-11-21 Nissan Motor Co Ltd 手動変速式車両のエンジン回転数調整装置
JPH02173333A (ja) 1988-12-24 1990-07-04 Mazda Motor Corp エンジンの吸入空気量制御装置
JP2001303980A (ja) * 2000-04-27 2001-10-31 Toyota Motor Corp 内燃機関の排気浄化装置
US6405587B1 (en) * 2000-05-08 2002-06-18 General Motors Corporation System and method of controlling the coastdown of a vehicle
JP3736345B2 (ja) * 2000-12-22 2006-01-18 日産自動車株式会社 自動車のエンジン制御装置
DE10232362B4 (de) 2002-07-17 2018-03-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Stabilisierung eines einspurigen Kraftfahrzeugs
JP4501790B2 (ja) * 2005-06-15 2010-07-14 トヨタ自動車株式会社 車両の減速度制御装置
JP4592543B2 (ja) 2005-09-15 2010-12-01 川崎重工業株式会社 自動二輪車
JP4793331B2 (ja) * 2007-06-13 2011-10-12 日産自動車株式会社 車両変速時の制御装置
JP4932617B2 (ja) * 2007-06-29 2012-05-16 川崎重工業株式会社 走行速度制御装置及び騎乗型乗り物
DE102010003951A1 (de) 2010-04-14 2011-10-20 Robert Bosch Gmbh Verfahren zum Stabilisieren eines Zweirads bei seitlich rutschendem Hinterrad
US9435269B2 (en) * 2012-02-10 2016-09-06 Yamaha Hatsudoki Kabushiki Kaisha Vehicle and intake amount control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224949A (ja) * 1984-04-24 1985-11-09 Nissan Motor Co Ltd 内燃機関の補助空気制御装置
JPH01277660A (ja) * 1988-04-30 1989-11-08 Shimadzu Corp エンジンブレーキの検出装置
JPH02110240U (ja) * 1989-02-17 1990-09-04
JP2005098281A (ja) 2003-09-01 2005-04-14 Honda Motor Co Ltd 車両におけるバックトルク低減装置
JP2006046300A (ja) 2004-08-09 2006-02-16 Kokusan Denki Co Ltd エンジンブレーキ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2813691A4

Also Published As

Publication number Publication date
US9435269B2 (en) 2016-09-06
EP2813691A1 (en) 2014-12-17
EP2813691B1 (en) 2018-09-05
JP5827699B2 (ja) 2015-12-02
US20150032355A1 (en) 2015-01-29
EP2813691A4 (en) 2015-12-16
JPWO2013118431A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP5779325B2 (ja) 車両用減速制御装置
JP6653085B2 (ja) 車両の駆動力制御装置
WO2015186213A1 (ja) 鞍乗り型車両
JP6185606B2 (ja) 鞍乗り型車両
JP5827699B2 (ja) 車両および吸気量制御装置
WO2017169522A1 (ja) ハイブリッド鞍乗り型車両
JP6008957B2 (ja) 車両
WO2015012326A1 (ja) 鞍乗り型車両
WO2020021382A1 (ja) 制御装置及び制御方法
JP5247313B2 (ja) 制御システムおよび車両
JP2008111430A (ja) 制御システムおよびそれを備えた車両
JP4626550B2 (ja) 車両の旋回挙動制御装置
JP6082805B2 (ja) 車両の制御装置、及びそれを備える自動二輪車
JP7162673B2 (ja) 制御装置及び制御方法
JP2012224232A (ja) 車両の走行支援装置及び車両の走行支援方法
JP5107184B2 (ja) 制御システムおよび車両
JP2009264505A (ja) 変速機構の制御装置、制御方法及び原動機付き車両の制御方法
JP2009257270A (ja) 鞍乗型車両
JP5634295B2 (ja) 自動二輪車の姿勢制御装置及び姿勢制御方法
JP2016047696A (ja) 車両の制御装置
JP2011027116A (ja) 鞍乗型車両のエンジン制御装置及びエンジン制御方法
JP2019065758A (ja) 加速度制御装置
JP2011058456A (ja) 鞍乗型車両
JP2017115935A (ja) 車両の変速制御装置
JP6991435B2 (ja) 縦力制御装置および縦力制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013557395

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377543

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013747083

Country of ref document: EP