WO2013117150A1 - 一种高透高雾度易清洁扩散板及其制备方法 - Google Patents

一种高透高雾度易清洁扩散板及其制备方法 Download PDF

Info

Publication number
WO2013117150A1
WO2013117150A1 PCT/CN2013/071368 CN2013071368W WO2013117150A1 WO 2013117150 A1 WO2013117150 A1 WO 2013117150A1 CN 2013071368 W CN2013071368 W CN 2013071368W WO 2013117150 A1 WO2013117150 A1 WO 2013117150A1
Authority
WO
WIPO (PCT)
Prior art keywords
easy
template
light
reflection
clean
Prior art date
Application number
PCT/CN2013/071368
Other languages
English (en)
French (fr)
Inventor
高雪峰
朱杰
李丰
陈诚
马慧军
Original Assignee
苏州锦富新材料股份有限公司
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州锦富新材料股份有限公司, 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 苏州锦富新材料股份有限公司
Publication of WO2013117150A1 publication Critical patent/WO2013117150A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/101Nanooptics

Definitions

  • the invention relates to a novel high transparency and high haze easy-cleaning diffusion plate and a preparation method thereof, and belongs to the field of preparation of photofunctional polymer materials.
  • the light diffusing plate is widely used in various LED lighting products, and can turn the LED bright light into a soft and healthy surface light, so that the light is evenly distributed to produce a good visual effect.
  • the conventional diffusion plate is formed by sanding on the surface of the material to form a certain microstructure.
  • the diffusion plate prepared by this method has low haze and high light absorption rate, and the light transmittance is low, and can only reach about 50%, which is serious. Affects the utilization efficiency of the LED light source.
  • the light-passing diffusing plate is made of optically transparent polymethyl methacrylate (PMMA) based on composite inorganic micro-particles, which refracts and reflects light between inorganic particles and resin.
  • PMMA polymethyl methacrylate
  • Nano-bionic studies have shown that the nano-mammary array structure covered by the insect compound eye corneal surface has high-efficiency anti-reflection and anti-reflection properties, and the structural features make the effective refractive index of the film plane
  • a biomimetic nano-cone array is designed on the surface of existing light-diffusing plates, which is expected to reduce reflection, increase transmission, and be easy to clean, and develop a new multi-functionality. Diffuser plate.
  • This patent further proposes the development of a multifunctional diffusion plate, which has not been reported yet.
  • the diffuser plate body is a transparent polymer material containing light-diffusing particles, and the diffusing plate body has a wide-spectrum anti-reflection and easy-cleaning biomimetic nanostructure on one or both sides;
  • the present invention can improve the shortcomings of the prior art and have high light transmittance. High haze and easy-to-clean function to reduce the number of lamps used or power consumption under the same luminous flux conditions.
  • another object of the present invention is to provide a preparation process for preparing the above-mentioned novel high-through-high-haze and easy-to-clean diffusion plate.
  • the mass fraction of the transparent polymer material in the molten state is 2% to 20%.
  • the light-diffusing particles are extruded and cooled into a diffusing plate by a 'extruder' in a molten state.
  • the diffuser plate body material is a transparent polymer material
  • the transparent polymer material may be selected from thermoplastic optical materials such as polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS), Polyethylene terephthalate (PET), polyacrylate, styrene-acrylonitrile copolymer (SAN), ethylene-tetrafluoroethylene copolymer (ETFE), poly 4-methyl-1-pentene ( TPX) or thermosetting optical materials such as CR-39 transparent epoxy resin.
  • thermoplastic optical materials such as polymethyl methacrylate (PMMA), polycarbonate (PC), polystyrene (PS), Polyethylene terephthalate (PET), polyacrylate, styrene-acrylonitrile copolymer (SAN), ethylene-tetrafluoroethylene copolymer (ETFE), poly 4-methyl-1-pentene ( TPX) or thermosetting optical materials such as CR-39 transparent epoxy resin.
  • the average particle diameter of the light diffusing particles incorporated in the diffusing plate body is 200 nm to 500 ⁇ m.
  • the composition is an inorganic or organic particle material. Such as: silicon oxide, silicon dioxide
  • titanium dioxide calcium carbonate, polycarbonate, polymethyl methacrylate, methyl methacrylate-styrene copolymer, styrene-tetrafluoroethylene copolymer.
  • a wide-spectrum anti-reflection and easy-cleaning biomimetic nanostructure is constructed on the surface of the diffusion plate body containing the light-diffusing particles, and the broad-spectrum anti-reflection and easy-cleaning biomimetic nanostructure is composed of a three-dimensional gradient nano-protrusion array or an array of cell elements, the three-dimensional gradient
  • the nano-protrusion array or the channel structure unit is uniform in size, the central axis is perpendicular to the base surface, and the size gradually becomes larger or smaller from bottom to top, and the bottom end diameter is 50 nm.
  • ⁇ 500nm height is 50nm ⁇ 12 ⁇ m
  • the refractive index of the nano-bionic structure is changed from the refractive index of the substrate to the refractive index of the air;
  • the above broad-spectrum anti-reflection and easy-cleaning biomimetic nanostructure has a composition of a transparent polymer material of the same material as the plate body.
  • the formed polymer nanostructure is separated from the template by a demolding method to obtain the broad-spectrum anti-reflection and easy-cleaning biomimetic nanostructure;
  • the method is a solution casting method incorporating nanoimprint:
  • the polymer is dissolved in a suitable solvent to form a weight fraction of 1 to 50%.
  • the polymer solution according to the viscosity and volatilization characteristics of the solution, is selected by casting, spin coating (rotation speed of 100 ⁇ 10000 rpm), immersion and pulling (pull speed is 0.01 ⁇ 10mm / min Or continuous coating or the like is applied on the diffuser plate body, and then the template is covered thereon to apply a certain pressure; and then according to the properties of the polymer material and the solvent, at different degrees of vacuum (for example, 0.1 to 101325 Pa) The solvent is dried at different temperatures (for example, 0 to 300 ° C); finally, the template is peeled off from the formed polymer nanostructure to obtain a target product.
  • the method is a hot pressing method combining nanoimprint:
  • the diffuser plate body is placed on the template, and is heated to 20 to 100 ° C above the glass transition temperature of the solid material according to the processing temperature required for the specific material. At this temperature, apply 1 to 500 The pressure of kPa is maintained at a pressure of 0 to 300 min. After the temperature was lowered to room temperature, the pressure was removed, and finally the template was peeled off to obtain the target product.
  • the method is a photopolymerization method incorporating nanoimprint:
  • the method is a thermal polymerization method incorporating nanoimprint:
  • the template having the three-dimensional graded nanoprojection array or the cell array structure used in the foregoing template is an alumina template, a metal nickel template or a fluoropolymer template.
  • the foregoing alumina template has a pore spacing of 50 nm to 500 A controlled, highly ordered inverted cone-type nanopore array structure alumina template in the nm range, which can be prepared by electrochemical self-ordering based on high electric field conditions.
  • the structure of the alumina template and the preparation process thereof can be specifically referred to the invention patent application disclosed by the inventor of the present invention as CN101838834.A and the application number is 201110006345.4.
  • the metal nickel template may be a metal nickel template prepared by an electrochemical deposition method based on the foregoing alumina template, which is highly ordered and complementary to the template, and the structure of the metal nickel template and the preparation process thereof can be specifically seen.
  • the invention patent application filed by the inventor of the present application is 201110054017.1.
  • For the structure of the fluoropolymer template and the preparation process thereof refer to the invention patent application No. 201110094310.0 proposed by the inventor of the present invention.
  • the polymer film layer is separated from the template by a direct demolding method or a solution dissolution method;
  • the direct demolding method is: the external force pulling surface has a bionic nanostructure at room temperature
  • the diffusion plate body and/or the template separates the polymer nanostructure formed on the diffusion plate body from the template, and the surface of the template is placed or coated with a polymer material, a polymer material monomer, a polymer precursor or a polymer. Before the solution, it is also pretreated by modification with fluorine or silicon-containing molecules or other low surface energy substances;
  • the solution is dissolved by: immersing the template with a solution that dissolves the template without damaging the polymer film layer, thereby removing the template.
  • a solution that dissolves the template without damaging the polymer film layer, thereby removing the template.
  • the concentration may be 10 wt% to 40 wt%. Soak for 1 to 24 hours in sodium hydroxide solution, or soak for 0.5 to 3 hours with a mixed solution of 3wt% hydrochloric acid and 3mol/L copper chloride.
  • the metal nickel template it can be immersed in a king aqueous solution for 0.5 to 3 hours.
  • Figure 1 is a schematic view showing the structure of a novel multi-functional diffusion plate.
  • 1 is a diffuser plate body
  • 2 is a light diffusing particle
  • 3 is a broad spectrum anti-reflection easy-cleaning polymer bionic nanostructure
  • FIG. 2 is an electron micrograph of a polymer nano-bionic structure on the surface of a novel high-through-high-haze and easy-to-clean diffuser plate in Example 1, and a transmittance spectrum curve of the diffusing plate, wherein FIG. 2a is a main body of the polymer nano-bionic structure.
  • Figure 2b is a side view of the polymer nano-bionic structure;
  • Figure 2c is a transmission spectrum curve of the novel high-through-high-haze and easy-to-clean diffuser;
  • Figure 3 is a photo of a new high permeability, high haze, easy to clean diffuser.
  • the present embodiment firstly prepares a light diffusion plate by using silicon dioxide (SiO 2 ) light diffusion particles of different particle diameters and different mass fractions to be incorporated into a polymethyl methacrylate (PMMA) substrate.
  • the second embodiment uses a reverse-cone alumina template having a pore diameter of 50 nm to 500 nm to prepare a broad-spectrum anti-reflection structure having different structural parameters on the surface of the diffusion plate prepared above by a nano-hot pressing method. The process is as follows:
  • the polymethyl methacrylate (PMMA) is heated to a molten state, and then silica light diffusing particles (SiO 2 ) having an average particle diameter of 200 nm to 500 ⁇ m and a mass fraction of 2% to 20% are incorporated, and then the inside is taken.
  • the molten substrate containing silica light-diffusing particles is extruded through an 'extruder' and cooled to form a 2 mm thick light diffusing plate; then two inverted-necked alumina templates having a pore diameter of 50 nm to 500 nm are respectively
  • Both sides of the diffusion plate prepared above were heated to 140 ° C, and a pressure of 500 kPa was applied. After holding for 30 minutes, the temperature was lowered to room temperature.
  • this embodiment firstly prepares a light diffusing plate body by using polycarbonate (PC) light diffusing particles of different particle diameters and different mass fractions to be incorporated into a polymethyl methacrylate (PMMA) substrate.
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • the use of aperture at 50nm ⁇ 500nm inverted cone type alumina template, the polymer broad spectrum anti-reflection film with different structural parameters is prepared by the nano thermal polymerization method on the surface of the diffusing plate body prepared above, the process is:
  • the polymethyl methacrylate (PMMA) is heated to a molten state and then incorporated into an average particle diameter of 200 nm to 500 ⁇ m. Quality score is between 2% and 20% Polycarbonate (PC) light-diffusing particles, and then extruding a molten substrate containing polycarbonate (PC) light-diffusing particles therein through an 'extruder' and cooling to form a 2 mm thick light diffusing plate; Dissolved with a mass fraction of 0.1 % of the initiator benzoyl peroxide (BPO) methyl methacrylate prepolymer was cast in two pore sizes between 50nm and 500nm On the inverted cone-shaped alumina template, the two templates were placed on both sides of the diffusion plate body, and a pressure of 50 kPa was applied and gradually heated to 100 ° C for 12 hours.
  • PC Polycarbonate
  • BPO benzoyl peroxide
  • a polycarbonate (PC) light-diffusing particle of different particle diameters and different mass fractions is firstly incorporated into a polymethyl methacrylate (PMMA) substrate to prepare a light diffusing plate body, and the second use pore diameter is 50 nm.
  • PC polycarbonate
  • PMMA polymethyl methacrylate
  • a 500 nm inverted cone-shaped metal nickel template was prepared by nano-UV polymerization on the surface of the diffused plate body prepared above to prepare a polymer broad spectrum anti-reverse nanostructure having different structural parameters. The process is as follows:
  • the polymethyl methacrylate (PMMA) is heated to a molten state and then incorporated into an average particle diameter of 200 nm to 500 ⁇ m. Quality score is 2% to 20% Polycarbonate (PC) light-diffusing particles, and then extruding a molten substrate containing polycarbonate (PC) light-diffusing particles therein through an 'extruder' and cooling to form a 5 mm thick light diffusing plate;
  • the pore size is at 50nm ⁇ 500nm
  • An inverted cone-shaped metal nickel template is used to fumigation a layer of fluorosilane (FAS) monolayer, and a methyl methacrylate prepolymer having a mass fraction of 0.1% of a photoinitiator benzoin ether is separately cast on the two templates.
  • FAS fluorosilane
  • silicon dioxide (SiO 2 ) light diffusion particles with different particle diameters and different mass fractions are mixed into a polycarbonate (PC) substrate to prepare a light diffusion plate body, and secondly, a pore diameter of 50 nm to 500 nm is used.
  • An inverted cone-shaped metal nickel template is prepared by solution casting on the surface of the diffusion plate body prepared above to prepare a polymer broad spectrum anti-reflection film having different structural parameters, and the process is as follows:
  • the polycarbonate (PC) is heated to a molten state, and then incorporated into a silica (SiO 2 ) light-diffusing particle having an average particle diameter of 200 nm to 500 ⁇ m and a mass fraction of 2% to 20%, and then contains a dioxide inside.
  • the molten substrate of silicon (SiO 2 ) light-diffusing particles is extruded through an 'extrusion machine' and cooled into a 5 mm thick light diffusing plate body; then a layer of inverted tapered metal nickel template having a pore diameter of 50 nm to 500 nm is fumigated.
  • a fluorosilane (FAS) monolayer was prepared by dissolving polycarbonate (PC) in tetrahydrofuran (THF) to form a polymer solution having a weight fraction of 40%.
  • the solution was cast onto the above nickel template, and two nickel templates were respectively applied to the two surfaces of the diffusion plate body, and the nickel template was removed after the solvent was completely evaporated at a pressure of atmospheric pressure (101,325 Pa) at 40 ° C to obtain two solutions.
  • the novel high-through-high-haze self-cleaning diffusing plates obtained in the foregoing Examples 1 to 4 have superior broad-spectrum, high-permeability and diffusion properties, and the average transmittance in the wavelength range of 380 nm to 860 nm is greater than 96%, and the haze is greater than 98%.

Abstract

一种高透高雾度易清洁扩散板及其制备方法。扩散板板体(1)为含有光扩散粒子(2)的透明高分子材料,扩散板板体单面或双面具有宽光谱抗反射易清洁仿生纳米结构(3)。制备方法中采用了三维渐变纳米结构模板,并在其中填充与基板同种材质的高分子材料。该扩散板在保证高雾度的同时又具有超高的透光率,可大幅提升灯具的光通量,并且由于采用廉价模板法制备,与普通扩散板的制备过程兼容。

Description

[根据细则37.2由ISA制定的发明名称] 一种高透高雾度易清洁扩散板及其制备方法 技术领域
本发明涉及一种新型高透高雾度易清洗扩散板及其制备方法,属于光功能高分子材料制备领域。
背景技术
光扩散板广泛应用在各种LED灯具产品中,可以将LED炫目的点光变成柔和的、健康的面光,从而使光线均匀分布产生良好的视觉效果。传统的扩散板是在材料表面进行磨砂处理等手段形成一定的微结构,但是利用这种方法制备的扩散板雾度低且光线吸收率高,透光率低,仅能达到50%左右,严重影响了LED光源的利用效率。最近出现的光通过型扩散板是以光学透明的聚甲基丙烯酸甲酯(PMMA)为基体、复合无机微米颗粒而成,该种复合材料使光线在无机颗粒和树脂之间不断折射、反射和散射,具有较好的雾度与光扩散效果。然而,由于扩散板表面的反射严重影响了光透过率,仅为80%左右,光能损失较高。随着LED室内照明的蓬勃发展和节能环保的日益需求背景下,如何设计和加工具有高透、高雾度和易清洁性能与一体的新型扩散板已成为应用产品研发人员急需攻克的技术难题。
纳米仿生学研究表明:昆虫复眼角膜表面覆盖的纳米乳突阵列结构具有高效减反增透特性,该种结构特征使得膜平面有效折射率从完
全空气向完全基底逐渐增加,消除了界面处折射率的突变,对宽波谱和广角度都有理想的增透效果。受此启发,通过模拟经亿万年进化的生物体表层纳米结构,在现有光扩散板表面上设计出仿生纳米锥突起阵列,有望减少反射、增加透射、易清洁,研制出新型多功能化扩散板。本专利进一步提出了多功能化扩散板的研制,这种新型纳米结构材料尚未见报道。
技术问题
本发明的目的在于提供一种新型高透高雾度易清洁扩散板。
该扩散板板体为含有光扩散粒子的透明高分子材料,并且扩散板板体单面或双面具有宽光谱抗反射易清洁仿生纳米结构;
借助在板体内部掺入光扩散粒子,并于扩散板板体单面或双面构筑宽光谱抗反射易清洁仿生纳米结构的手段,本发明可以改进现有技术缺点而具有高透光率、高雾度,易清洁的功能,可在同等光通量的条件下减少灯源的使用数量或功耗。
为了达到上述目的,本发明的另一个目的在于提出制备上述提新型高透高雾度易清洁扩散板的制备工艺。
首先在熔融状态下的透明高分子材料中掺入质量分数为2% ~ 20% 的光扩散粒子,熔融状态下经由'押出机'挤出冷却成型为扩散板。
上述扩散板板体板体材料为透明高分子材料,该透明高分子材料可选用热塑性光学材料如:聚甲基丙烯酸甲酯(PMMA)、聚碳酸酯(PC)、聚苯乙烯(PS)、聚对苯二甲酸乙二醇酯(PET)、聚丙烯酸酯、苯乙烯-丙烯腈共聚物(SAN)、乙烯-四氟乙烯共聚物(ETFE)、聚4-甲基-1-戊烯(TPX)或热固性光学材料如CR-39透明环氧树脂等。
上述扩散板板体内部掺入的光扩散粒子平均粒径为200nm ~ 500 µ m ,成分为无机或有机粒子材料。如:氧化硅、二氧化硅
二氧化钛、碳酸钙、聚碳酸酯、聚甲基丙烯酸甲酯、甲基丙烯酸甲酯-苯乙烯共聚物、苯乙烯-四氟乙烯共聚物中的一种或几种。
其次是在含有光扩散粒子的扩散板板体表面构筑宽光谱抗反射易清洁仿生纳米结构,该宽光谱抗反射易清洁仿生纳米结构是由三维渐变纳米突起阵列或孔道单元阵列构成,该三维渐变纳米突起阵列或孔道结构单元尺寸均匀,中轴线与基面垂直,尺寸自下而上逐渐变大或变小,底端直径在50nm ~ 500nm ,高度为50nm ~ 12 µ m ,该纳米仿生结构的折射率从基底折射率到空气折射率渐变;
上述的宽光谱抗反射易清洁仿生纳米结构,其组成成分为与板体同种材质的透明高分子材料。
技术解决方案
为实现上述发明目的,本发明采用了如下技术方案:
在具有三维渐变纳米突起阵列或孔道单元阵列结构的模板内填充与基板同种材质的高分子材料、高分子材料单体、高分子前躯体和高分子溶液中的任意一种,使高分子材料完全复形或固化后采用脱模法将形成的高分子纳米结构与模板分离,获得该宽光谱抗反射易清洁仿生纳米结构;
作为一种优选的实施方式,该方法是结合了纳米压印的溶液浇铸法:
首先将所述高分子溶解在适当溶剂中,形成重量分数为1 ~ 50% 的高分子溶液,根据溶液的粘度和挥发特性,选择通过浇铸,旋涂(转速为100 ~ 10000rpm ),浸渍提拉(提拉速度为0.01 ~ 10mm/min )或连续涂布等方法涂布在扩散板板体上,再将所述模板盖其上,施加一定压力;然后按照高分子材料以及溶剂的性质,在不同真空度(如,0.1 ~ 101325Pa ),不同温度(如0 ~ 300 ℃ )干燥所述溶剂;最后将模板与形成的高分子纳米结构剥离,从而获得目标产物。
作为另一种优选实施方式,该方法是结合了纳米压印的热压法:
首先将所述扩散板板体放置在所述模板上,根据具体材料所需的加工温度的不同,加热到固体材料的玻璃化温度之上20 ~ 100 ℃ 。在此温度下,施加1 ~ 500 kPa 的压强,并保持压力0 ~ 300 min 。待温度降至室温后,撤去压力,最后将模板剥离,获得目标产物。
作为又一种优选实施方式,该方法是结合了纳米压印的光聚合法:
首先根据粘度和挥发性的不同,针对不同单体、单体溶液或高分子前驱体选择浇铸,旋涂(转速为100 ~ 10000 rpm ),浸渍提拉(提拉速度为0.01 ~ 10mm/min )或连续涂布等方法涂布在前述扩散板板体上,再将所述模板盖其上,根据实际需要施加0 ~ 500Pa 的压强,并根据所用材料的特性用相应感光波段(波长为10 ~ 800nm )光辐照0.1s ~ 60 min ,待高分子固化后,将模板与形成的高分子纳米结构剥离,从而获得目标产物。前述反应可在有或无光引发剂参与的情况下进行。
作为再一种优选实施方式,该方法是结合了纳米压印的热聚合法:
首先根据粘度和挥发性的不同,针对不同单体、单体溶液或高分子前驱体通过浇铸,旋涂(转速为100 ~ 10000rpm ),浸渍提拉(提拉速度为0.01 ~ 10mm /min )或连续涂布等方法涂布在前述扩散板板体上,再将所述模板盖其上,而后在0 ~ 500Pa 的压强下,逐步升温或直接升温至高分子热固化温度(10 ~ 300 ℃ ),待高分子固化,待温度降至室温后,将模板与形成的高分子纳米结构剥离,从而获得目标产物。
前述模板采用的具有三维渐变纳米突起阵列或孔道单元阵列结构的模板为氧化铝模板、金属镍模板或含氟聚合物模板。
前述氧化铝模板是孔间距在50 nm~500 nm范围内可控的,高度有序的倒锥型纳米孔阵列结构氧化铝模板,其可通过基于高电场条件下的电化学自有序法制备。具体而言,该氧化铝模板的结构及其制备工艺具体可参见本案发明人提出的公开号为CN101838834.A以及申请号为201110006345.4的发明专利申请。前述金属镍模板可采用基于前述氧化铝模板而利用电化学沉积方法制备的,高度有序与模板互补的三维纳米突起阵列结构的金属镍模板,该金属镍模板的结构及其制备工艺具体可参见本案发明人提出的申请号为201110054017.1的发明专利申请。前述含氟聚合物模板的结构及其制备工艺具体可参见本案发明人提出的申请号为201110094310.0的发明专利申请。
前述方法中是采用直接脱模法或溶液溶解法将高分子膜层与模板分离的;
所述直接脱模法为:在室温下以外力牵引表面具有仿生纳米结构
的扩散板体和/或模板,使扩散板体上形成的高分子纳米结构与模板分离,所述模板表面在放置或涂布高分子材料、高分子材料单体、高分子前驱体或高分子溶液之前,还经过含氟或含硅分子或其他低表面能物质的修饰预处理;
所述溶液溶解法为:采用可溶解所述模板,且不会损伤高分子膜层的溶液浸泡模板,从而去除模板,例如,对于氧化铝模板,可采用浓度为 10wt% ~ 40wt% 的氢氧化钠溶液浸泡 1 ~ 24h ,或者用浓度为 3wt% 盐酸和摩尔浓度为 3mol/L 的氯化铜混合溶液浸泡 0.5 ~ 3 h ,对于金属镍模板,可采用王水溶液浸泡 0.5 ~ 3h 。
有益效果
附图说明
以下将结合附图对本发明专利的结构、制备方法及产生的技术效果作进一步说明,以充分地了解本发明专利的目的、特征和效果。其中:
图1是一种新型多功能扩散板的结构示意图。其中1为扩散板板体,2为光扩散粒子,3为宽光谱抗反射易清洁高分子仿生纳米结构;
图2是实施例1中新型高透高雾度易清洁扩散板表面的高分子纳米仿生结构的电镜照片及该扩散板的透射率光谱曲线图,其中,图2a是高分子纳米仿生结构的主视图,图2b是高分子纳米仿生结构的侧视图;图2c是新型高透高雾度易清洁扩散板的透射率光谱曲线图;
图3是新型高透高雾度易清洁扩散板的实物照片图。
本发明的最佳实施方式
本发明的实施方式
以下结合附图及若干较佳实施例对本发明的技术方案进一步详细说明,但本发明的保护范围并不受该等实施例限定。
实施例1
参阅图1和图2,本实施例是首先利用不同粒径不同质量分数的二氧化硅(SiO2)光扩散粒子掺入聚甲基丙烯酸甲酯(PMMA)基材中制备成光扩散板板体,其次利用孔径在50nm ~ 500nm 的倒锥型氧化铝模板,通过纳米热压法在上述制备的扩散板板体表面制备具有不同结构参数的高分子宽光谱减反结构,其过程为:
将聚甲基丙烯酸甲酯(PMMA)升温至熔融态,然后掺入平均粒径在200nm ~ 500 µ m 质量分数在2% ~ 20% 的二氧化硅光扩散粒子(SiO2),然后将内部含有二氧化硅光扩散粒子的熔融态基材经由'押出机'挤出并冷却成型为2mm厚的光扩散板;然后将两片孔径在50 nm ~ 500 nm 的倒锥型氧化铝模板分别至于上述制备的扩散板的两侧并加热至140 ℃,施加500kPa的压强,保压30 min后,降至室温。释放压力,并用40%的氢氧化钠将氧化铝模板去除,得到表面具有宽光谱减反纳米仿生结构的新型高透高雾度易清洁扩散板。由本实施例制得的一种抗反射高分子纳米仿生膜如图3所示。
实施例2
参阅图1和图2,本实施例是首先利用不同粒径不同质量分数的聚碳酸酯(PC)光扩散粒子掺入聚甲基丙烯酸甲酯(PMMA)基材中制备成光扩散板板体,其次利用孔径在50nm ~ 500nm 的倒锥型氧化铝模板,通过纳米热聚合法在上述制备的扩散板板体表面制备具有不同结构参数的高分子宽光谱减反膜,其过程为:
将聚甲基丙烯酸甲酯(PMMA)升温至熔融态,然后掺入平均粒径在200nm ~ 500 µ m 质量分数在2% ~ 20 % 的聚碳酸酯(PC)光扩散粒子,然后将内部含有聚碳酸酯(PC)光扩散粒子的熔融态基材经由'押出机'挤出并冷却成型为2mm厚的光扩散板板体;将溶有质量分数为0.1 %的引发剂过氧化苯甲酰(BPO)的甲基丙烯酸甲酯预聚物分别浇铸在两片孔径在50nm ~ 500nm 的倒锥型氧化铝模板上,再将上述两片模板分别至于扩散板板体的两侧,并施加50kPa的压强并逐渐升温至100℃聚合12h。待温度将至室温后,取出样品并用40%的氢氧化钠将氧化铝模板去除,得到两个表面具有宽光谱减反仿生纳米结构的新型高透高雾度易清洁扩散板。
实施例3
本实施例是首先利用不同粒径不同质量分数的聚碳酸酯(PC)光扩散粒子掺入聚甲基丙烯酸甲酯(PMMA)基材中制备成光扩散板板体,其次利用孔径在50nm ~ 500nm 的倒锥型金属镍模板,通过纳米紫外聚合法在上述制备的扩散板板体表面制备具有不同结构参数的高分子宽光谱减反纳米结构,其过程为:
将聚甲基丙烯酸甲酯(PMMA)升温至熔融态,然后参入平均粒径在200nm ~ 500 µ m 质量分数在2% ~ 20% 的聚碳酸酯(PC)光扩散粒子,然后将内部含有聚碳酸酯(PC)光扩散粒子的熔融态基材经由'押出机'挤出并冷却成型5mm厚的光扩散板板体;然后在孔径在50nm ~ 500nm 的倒锥型金属镍模板熏蒸一层氟硅烷(FAS)单分子层,将溶有质量分数0.1%的光引发剂安息香醚的甲基丙烯酸甲酯预聚物分别浇铸在两片上述模板上,将两片模板分别至于扩散板板体的两个表面上,并施加20kPa的压强。用365nm的紫外光照射5min。待温度将至室温后,取出样品并撕除镍模板,得到两个表面具有宽光谱抗反射易清洁仿生纳米结构的新型高透高雾度易清洁扩散板。
实施例4
本实施例是首先利用不同粒径不同质量分数的二氧化硅(SiO2)光扩散粒子掺入聚碳酸酯(PC)基材中制备成光扩散板板体,其次利用孔径在50nm ~ 500nm 的倒锥型金属镍模板,通过溶液浇铸法在上述制备的扩散板板体表面制备具有不同结构参数的高分子宽光谱减反膜,其过程为:
将聚碳酸酯(PC)升温至熔融态,然后参入平均粒径在200 nm ~ 500 µ m 质量分数在2% ~ 20% 的二氧化硅(SiO2)光扩散粒子,然后将内部含有二氧化硅(SiO2)光扩散粒子的熔融态基材经由'押出机'挤出并冷却成型为5mm厚的光扩散板板体;然后在孔径在50nm ~ 500nm 的倒锥型金属镍模板熏蒸一层氟硅烷(FAS)单分子层,将聚碳酸酯(PC)溶解在四氢呋喃(THF)中形成重量分数为40%的高分子溶液。将此溶液浇铸到前述镍模板上,将两片镍模板分别至于扩散板板体的两个表面上,在一个大气压(101325Pa),40℃下待溶剂挥发完全后撕除镍模板,得到两个表面具有宽光谱抗反射易清洁仿生纳米结构的新型高透高雾度自清洁扩散板。
前述实施例1~4中所采用氧化铝模板及金属镍模板的结构及其制备工艺具体参见公开号为CN101838834.A以及申请号为201110006345.4、201110054017.1的发明专利申请。
经测试发现,前述实施例1~4所得新型高透高雾度自清洁扩散板具有优越的宽光谱高透和扩散性能,在380nm~860nm波长范围内平均透过率大于96%,雾度大于98%。
综上所述,只是本发明中几种较佳的具体实施例。凡本技术领域中技术人员依本发明的构思在现有技术的基础上做出各种相应的改变和变形,都应属于本发明所附的权利要求的保护范围。
工业实用性
序列表自由内容

Claims (1)

  1. 1. 一种新型高透高雾度易清洁扩散板,其特征在于:该扩散板板体为含有光扩散粒子的透明高分子材料,并且扩散板板体单面或双面具有宽光谱抗反射易清洁仿生纳米结构。
    2. 如权利要求1所述的新型高透高雾度易清洁扩散板,其特征在于所述光扩散粒子的透明高分子材料选用热塑性光学材料:聚甲基丙烯酸甲酯、聚碳酸酯、聚苯乙烯、聚对苯二甲酸乙二醇酯、聚丙烯酸酯、苯乙烯-丙烯腈共聚物、乙烯-四氟乙烯共聚物、聚4-甲基-1-戊烯;或热固性光学材料:CR-39透明环氧树脂。
    3. 如权利要求1所述的新型高透高雾度易清洁扩散板,其特征在于所述光扩散粒子的平均粒径在200nm ~ 500 µ m ,成分为无机或有机粒子材料:氧化硅、二氧化硅、二氧化钛、碳酸钙、聚碳酸酯、聚甲基丙烯酸甲酯、甲基丙烯酸甲酯-苯乙烯共聚物、苯乙烯-四氟乙烯共聚物中的一种或几种。
    4. 如权利要求1所述的新型高透高雾度易清洁扩散板,其特征在于所述含有光扩散粒子的透明高分子材料的制备方法为:在熔融状态下的透明高分子材料中掺入质量分数为2% ~ 20% 的光扩散粒子,熔融状态下经由押出机挤出冷却成型为扩散板。
    5. 如权利要求1所述的新型高透高雾度易清洁扩散板,其特征在于所述宽光谱抗反射易清洁仿生纳米结构是由三维渐变纳米突起阵列或孔道单元阵列构成,该三维渐变纳米突起阵列或孔道结构单元尺寸均匀,中轴线与基面垂直,尺寸自下而上逐渐变大或变小,与所述扩散板板体接触的底端直径在50nm ~ 500nm ,高度为50nm ~ 12 µ m ,该仿生纳米结构的折射率从基底折射率到空气折射率渐变。
    6. 如权利要求1或5所述的新型高透高雾度易清洁扩散板,其特征在于所述宽光谱抗反射易清洁仿生纳米结构的组成成分为与所述扩散板板体同种材质的透明高分子材料。
    7. 一种宽光谱抗反射易清洁仿生纳米结构的制备方法,其特征在于:在具有三维渐变纳米突起阵列或孔道单元阵列结构的模板内填充与基板同种材质的高分子材料、高分子材料单体、高分子前躯体和高分子溶液中的任意一种,使高分子材料填充复形或固化,经去除模板后获得该宽光谱抗反射易清洁仿生纳米结构。
    8. 如权利7所述的宽光谱抗反射易清洁仿生纳米结构的制备方法,其特征在于:所述采用的模板是指具有倒锥型纳米孔洞阵列的氧化铝模板、金属镍模板或含氟聚合物模板。
PCT/CN2013/071368 2012-02-08 2013-02-05 一种高透高雾度易清洁扩散板及其制备方法 WO2013117150A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210027140.9 2012-02-08
CN201210027140.9A CN103245990B (zh) 2012-02-08 2012-02-08 一种新型高透高雾度易清洗扩散板及其制备方法

Publications (1)

Publication Number Publication Date
WO2013117150A1 true WO2013117150A1 (zh) 2013-08-15

Family

ID=48925622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071368 WO2013117150A1 (zh) 2012-02-08 2013-02-05 一种高透高雾度易清洁扩散板及其制备方法

Country Status (2)

Country Link
CN (1) CN103245990B (zh)
WO (1) WO2013117150A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969941A (zh) * 2014-05-26 2014-08-06 苏州大学 掩膜版及其制备方法和图形化方法
CN104371208B (zh) * 2014-12-05 2017-04-19 成都领航科技股份有限公司 高透高遮蔽性扩散板母料和制备方法及扩散板的制备方法
CN106432937A (zh) * 2016-09-09 2017-02-22 海信容声(广东)冰箱有限公司 一种光扩散材料以及采用该光扩散材料制备灯罩的方法
CN107643556A (zh) * 2017-11-06 2018-01-30 张永宏 一种扩散性好的光扩散片
CN107577005A (zh) * 2017-11-06 2018-01-12 张永宏 一种尺寸稳的光扩散片
CN107843945A (zh) * 2017-11-06 2018-03-27 张永宏 一种耐光性稳定的光扩散片
CN107934912A (zh) * 2017-12-07 2018-04-20 天津大学 一种仿生草履虫的微纳驱动器
TWI676816B (zh) * 2018-08-22 2019-11-11 白金科技股份有限公司 擴散片
CN109058933B (zh) * 2018-08-23 2022-04-15 中山驰马灯饰照明设计工程有限公司 一种防蓝光防雾的复合灯罩
CN110703362B (zh) * 2019-10-14 2024-02-13 合肥乐凯科技产业有限公司 一种高雾度高遮盖雾化膜
CN111308594A (zh) * 2020-04-02 2020-06-19 瑞年新材料(广东)有限公司 一种高亮度pet反光薄膜
CN114236710A (zh) * 2021-12-13 2022-03-25 无锡鑫巨宏智能科技有限公司 一种高速耦合透镜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1503009A (zh) * 2002-11-20 2004-06-09 力特光电科技股份有限公司 抗眩膜
JP2007065563A (ja) * 2005-09-02 2007-03-15 Nissan Motor Co Ltd 反射防止性光学構造体
JP2008158293A (ja) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd 親水性反射防止構造
JP2008209867A (ja) * 2007-02-28 2008-09-11 Mitsubishi Rayon Co Ltd スタンパおよび防眩性反射防止物品とその製造方法
JP2009230155A (ja) * 2002-04-24 2009-10-08 Dainippon Printing Co Ltd 防眩性フィルム、偏光素子及び画像表示装置
CN102041540A (zh) * 2011-01-13 2011-05-04 中国科学院苏州纳米技术与纳米仿生研究所 三维渐变孔阵列纳米结构阳极氧化铝模板及其制备方法
CN102174709A (zh) * 2011-03-08 2011-09-07 中国科学院苏州纳米技术与纳米仿生研究所 三维金属镍纳米渐变体阵列结构及其制备方法
CN102250377A (zh) * 2011-04-15 2011-11-23 中国科学院苏州纳米技术与纳米仿生研究所 宽光谱广角抗反射高分子纳米仿生膜及其制备方法
CN102351569A (zh) * 2011-07-08 2012-02-15 中国科学院物理研究所 一种硅表面抗反射纳米阵列结构的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619524A4 (en) * 2003-04-28 2009-05-20 Takiron Co ELECTROMAGNETIC SHIELD LIGHT DIFFUSION SHEET
JP4804708B2 (ja) * 2003-06-27 2011-11-02 大日本印刷株式会社 光拡散剤、光拡散シートおよびノングレアーシート
US7924368B2 (en) * 2005-12-08 2011-04-12 3M Innovative Properties Company Diffuse multilayer optical assembly
CN101836136B (zh) * 2007-10-23 2013-02-13 住友化学株式会社 防眩膜、防眩性偏振板及图像显示装置
CN201570289U (zh) * 2009-09-21 2010-09-01 远东新世纪股份有限公司 导电积层体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009230155A (ja) * 2002-04-24 2009-10-08 Dainippon Printing Co Ltd 防眩性フィルム、偏光素子及び画像表示装置
CN1503009A (zh) * 2002-11-20 2004-06-09 力特光电科技股份有限公司 抗眩膜
JP2007065563A (ja) * 2005-09-02 2007-03-15 Nissan Motor Co Ltd 反射防止性光学構造体
JP2008158293A (ja) * 2006-12-25 2008-07-10 Nissan Motor Co Ltd 親水性反射防止構造
JP2008209867A (ja) * 2007-02-28 2008-09-11 Mitsubishi Rayon Co Ltd スタンパおよび防眩性反射防止物品とその製造方法
CN102041540A (zh) * 2011-01-13 2011-05-04 中国科学院苏州纳米技术与纳米仿生研究所 三维渐变孔阵列纳米结构阳极氧化铝模板及其制备方法
CN102174709A (zh) * 2011-03-08 2011-09-07 中国科学院苏州纳米技术与纳米仿生研究所 三维金属镍纳米渐变体阵列结构及其制备方法
CN102250377A (zh) * 2011-04-15 2011-11-23 中国科学院苏州纳米技术与纳米仿生研究所 宽光谱广角抗反射高分子纳米仿生膜及其制备方法
CN102351569A (zh) * 2011-07-08 2012-02-15 中国科学院物理研究所 一种硅表面抗反射纳米阵列结构的制备方法

Also Published As

Publication number Publication date
CN103245990A (zh) 2013-08-14
CN103245990B (zh) 2016-06-08

Similar Documents

Publication Publication Date Title
WO2013117150A1 (zh) 一种高透高雾度易清洁扩散板及其制备方法
Buskens et al. Antireflective coatings for glass and transparent polymers
CN103467773B (zh) 一种结构色及浸润性双调控的光子晶体薄膜及其制备方法
CN109021481B (zh) 一种具有亮丽珠光色泽的彩色反蛋白石结构光子晶体塑料薄膜、其制备方法及应用
KR20220104312A (ko) 개선된 광 추출 구조체
KR101149757B1 (ko) 반사방지 나노구조물 및 그의 제조 방법
CN102250377B (zh) 宽光谱广角抗反射高分子纳米仿生结构材料及其制备方法
Hong et al. Imprinted moth-eye antireflection patterns on glass substrate
JP5211363B2 (ja) 高効率の光拡散高分子フィルム及びこの製造方法
Jin et al. Self-templated fabrication of robust moth-eye-like nanostructures with broadband and quasi-omnidirectional antireflection properties
Peng et al. Continuous fabrication of multiscale compound eyes arrays with antireflection and hydrophobic properties
Mizoshita et al. Versatile antireflection coating for plastics: partial embedding of mesoporous silica nanoparticles onto substrate surface
CN112480584A (zh) 一种亚克力光扩散板及其制备方法和光扩散剂
Li et al. Reversible embroidered ball-like antireflective structure arrays inspired by leafhopper wings
CN109375309B (zh) 一种复合led导光板及其制备方法
Lei et al. Leafhopper Wing-inspired broadband omnidirectional antireflective embroidered ball-like structure arrays using a nonlithography-based methodology
JP6167057B2 (ja) 凹凸パターン転写用モールドの製造方法及び凹凸構造を有する部材の製造方法
Park et al. Three-dimensional antireflective hemispherical lens covered by nanoholes for enhancement of light transmission
JP5522957B2 (ja) 重合体粒子集合体、その製造方法、光拡散剤及び光拡散性樹脂組成物
CN115201944A (zh) 仿生变色材料、其制备工艺以及仿生变色体系
TWI529203B (zh) 一種具有核殼結構的聚矽氧烷微球及其製備方法
TW201310081A (zh) 微奈米複合結構及其製作方法
JP2014219652A (ja) 積層体の製造方法
TWI388603B (zh) 聚甲基丙烯酸甲酯粒子披覆二氧化矽的製備方法
CN206209139U (zh) 一种单层一体成型的防眩光光扩散板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13746178

Country of ref document: EP

Kind code of ref document: A1