WO2013115187A1 - 離型フィルムおよびこれを用いた半導体デバイスの製造方法 - Google Patents

離型フィルムおよびこれを用いた半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2013115187A1
WO2013115187A1 PCT/JP2013/051917 JP2013051917W WO2013115187A1 WO 2013115187 A1 WO2013115187 A1 WO 2013115187A1 JP 2013051917 W JP2013051917 W JP 2013051917W WO 2013115187 A1 WO2013115187 A1 WO 2013115187A1
Authority
WO
WIPO (PCT)
Prior art keywords
release film
resin
mold
semiconductor device
sealing
Prior art date
Application number
PCT/JP2013/051917
Other languages
English (en)
French (fr)
Inventor
渉 笠井
樋口 義明
真和 安宅
大輔 田口
聡 大継
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020147016191A priority Critical patent/KR102019656B1/ko
Priority to JP2013556416A priority patent/JP6123683B2/ja
Priority to CN201380007058.2A priority patent/CN104080585B/zh
Publication of WO2013115187A1 publication Critical patent/WO2013115187A1/ja
Priority to US14/445,663 priority patent/US9306135B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0067Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other
    • B29C37/0075Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other using release sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/50Removing moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • H01L21/566Release layers for moulds, e.g. release layers, layers against residue during moulding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • B29C2043/181Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles encapsulated
    • B29C2043/182Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles encapsulated completely
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • B29C2043/3444Feeding the material to the mould or the compression means using pressurising feeding means located in the mould, e.g. plungers or pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • B29C45/14655Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame
    • B29C2045/14663Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components connected to or mounted on a carrier, e.g. lead frame the mould cavity walls being lined with a film, e.g. release film
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2827/00Use of polyvinylhalogenides or derivatives thereof as mould material
    • B29K2827/12Use of polyvinylhalogenides or derivatives thereof as mould material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0016Lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3406Components, e.g. resistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements

Definitions

  • the present invention relates to a release film disposed on a cavity surface of a mold for sealing a semiconductor element of a semiconductor device with a sealing resin to form a resin sealing portion, and manufacture of a semiconductor device using the release film Regarding the method.
  • a semiconductor device (including a light emitting diode) has a resin sealing portion in which the semiconductor element is sealed with a sealing resin in order to protect the semiconductor element (including the light emitting element).
  • the resin sealing portion also has a function as a lens portion for improving the front luminance by aligning the direction of light emitted from the light emitting element with the front direction of the light emitting diode.
  • a substrate on which a light-emitting element is mounted is arranged so that the light-emitting element is positioned at a predetermined position in a cavity of a mold, and a sealing resin is filled in the cavity.
  • a so-called compression molding method or transfer molding method for forming a lens portion is known.
  • a release film is usually disposed on the cavity surface of the mold in order to prevent the sealing resin and the mold from sticking to each other (Patent Document 1).
  • the mold release film used in the conventional method is the mold cavity while pulling the mold release film over a wide area.
  • the entire release film does not extend uniformly, resulting in unevenness in the thickness of the release film. Then, unevenness in the thickness of the release film is transferred to the surface of the lens portion and appears as distortion of the surface of the lens portion.
  • the uneven thickness of the release film is not easily transferred to the surface of the lens part, and this is not a big problem, but the lens part is large or its structure Is complicated, the uneven thickness of the release film is easily transferred to the surface of the lens portion, and the distortion of the surface of the lens portion causes a decrease in light emitting efficiency of the light emitting diode, variation in light distribution, etc. .
  • the release film that does not cause unevenness in the thickness of the release film when the release film is stretched, and the resin sealing part is enlarged and complicated.
  • the present invention provides a release film having the following configurations [1] to [14] and a method for producing a semiconductor device using the release film.
  • a release film disposed on a cavity surface of a mold for sealing a semiconductor element of a semiconductor device with a curable sealing resin to form a resin sealing portion The tensile elastic modulus at 132 ° C. measured according to JIS K 7127 is 10 to 24 MPa, A release film having a maximum peel strength of 0.8 N / 25 mm or less.
  • the release film of [1] made of a fluororesin.
  • the release film according to [2], wherein the fluororesin is a copolymer having a unit based on tetrafluoroethylene, a unit based on ethylene, and a unit based on a third monomer other than those.
  • the copolymer has a molar ratio of tetrafluoroethylene-based repeating units to ethylene-based repeating units (tetrafluoroethylene / ethylene) of 80/20 to 40/60, The proportion of repeating units based on (perfluorobutyl) ethylene is 5 to 10 mol% of all repeating units (100 mol%),
  • a method for producing a semiconductor device comprising the following steps ( ⁇ 1) to ( ⁇ 5): ( ⁇ 1) A step of disposing the release film of any one of [1] to [5] so as to cover the cavity of the mold. ( ⁇ 2) A step of vacuum sucking the release film toward the cavity surface of the mold. ( ⁇ 3) A step of filling the cavity with a sealing resin. ( ⁇ 4) A step of disposing a semiconductor element at a predetermined position in the cavity and sealing the semiconductor element with the sealing resin to form a resin sealing portion to obtain a semiconductor device. ( ⁇ 5) A step of taking out the semiconductor device from the mold.
  • a method for manufacturing a semiconductor device comprising the following steps ( ⁇ 1) to ( ⁇ 5): ( ⁇ 1) A step of disposing the release film of any one of [1] to [5] so as to cover the cavity of the mold. ( ⁇ 2) A step of vacuum-sucking the release film toward the cavity surface side of the mold. ( ⁇ 3) A step of arranging the semiconductor element at a predetermined position in the cavity. ( ⁇ 4) A step of filling the cavity with a sealing resin, sealing the semiconductor element with the sealing resin to form a resin sealing portion, and obtaining a semiconductor device. ( ⁇ 5) A step of taking out the semiconductor device from the mold.
  • the semiconductor device is a light emitting diode;
  • the semiconductor element is a light emitting element;
  • the resin sealing portion is a lens portion;
  • the thickness of the release film is less likely to be uneven when the release film is stretched.
  • a semiconductor device in which distortion of the surface of the resin sealing portion is suppressed can be manufactured even if the resin sealing portion is enlarged and complicated.
  • a semiconductor element (including a light-emitting element) of a semiconductor device (including a light-emitting diode) is sealed with a curable sealing resin, and a resin-encapsulated part (including a lens part).
  • the release film of the present invention is arranged so as to cover a cavity surface of a mold having a cavity having a shape corresponding to the shape of the lens part. It is a film which improves the releasability from the metal mold
  • the release film of the present invention has a tensile elastic modulus at 132 ° C. measured in accordance with JIS K 7127 of 10 to 24 MPa, preferably 12 to 20 MPa.
  • the mold temperature is usually 100 to 140 ° C., and if the tensile elastic modulus at 132 ° C. of the release film is within the above range, the release film is within this mold temperature range. Indicates good physical properties. That is, when the tensile elastic modulus at 132 ° C. is 24 MPa or less, the release film is uniformly stretched, so that the thickness of the release film is less likely to be uneven.
  • the appearance defect (distortion) of the surface of the resin sealing portion due to the uneven thickness of the release film being transferred to the surface of the resin sealing portion If the tensile elastic modulus at 132 ° C. is 10 MPa or more, the tension is evenly applied to the release film because the release film is not too soft when it is placed so as to cover the mold cavity while pulling the release film. Wrinkles are less likely to occur. As a result, the appearance defect of the surface of the resin sealing portion due to the wrinkles of the release film being transferred to the surface of the resin sealing portion can be suppressed.
  • the tensile elastic modulus at 132 ° C. of the release film is as follows: for a test sheet obtained by cutting the release film into a strip shape (test piece type 5), the sheet temperature is 132 ° C. and the tensile speed is 1 mm / min. Measured by performing a tensile test at
  • the tensile modulus of the release film of the present invention can be adjusted by adjusting the crystallinity of the release film resin. Specifically, the lower the crystallinity of the release film resin, the lower the tensile modulus of the release film.
  • the crystallinity of the release film resin may be selected from tetrafluoroethylene (hereinafter referred to as TFE) and ethylene (hereinafter referred to as E and It can be adjusted by adjusting the type and ratio of the unit based on the third monomer which is a monomer other than the above.
  • the maximum value of the peeling force of the release film of the present invention is 0.8 N / 25 mm or less, preferably 0.5 N / 25 mm or less. If the maximum value of the peel force is 0.8 N / 25 mm or less, the release film and the cured sealing resin are better because the separation from the lens-cured sealing resin becomes even easier during actual production. It is difficult to happen that the device stops without leaving, and the continuous productivity is excellent.
  • the peel strength of the release film in the present invention is a peel force measured in a 180 ° peel test between the release film and the cured sealing resin as described below in accordance with JIS K 6854-2.
  • a thermosetting silicone resin will be described as an example of the curable sealing resin.
  • (C) A laminate comprising a release film, a cured silicone resin layer, and an aluminum plate is cut into a width of 25 mm to obtain a test piece.
  • (D) Using a tensile tester, measure the 180 ° peel force of the release film at normal temperature against the cured silicone resin layer in the test piece at a peel rate of 100 mm / min.
  • (E) The maximum value (unit: N / 25 mm) of the peeling force from the gripping movement distance of 25 mm to 125 mm in the force (N) -grasping movement distance curve is obtained.
  • (F) The arithmetic average of the maximum value of the peeling force of each release film is determined using five test pieces.
  • the thickness of the release film of the present invention is preferably 16 to 75 ⁇ m, and more preferably 25 to 50 ⁇ m. If the thickness is 16 ⁇ m or more, the release film is easy to handle, and wrinkles are unlikely to occur when the mold release film is placed so as to cover the mold cavity. If the thickness is 75 ⁇ m or less, the release film can be easily deformed and the followability to the shape of the cavity of the mold is improved, so that the release film can be firmly attached to the cavity surface, and high-quality resin sealing The stop can be formed stably. Moreover, it is preferable that the thickness of the release film of the present invention is thinner within the above range as the mold cavity is larger. Further, it is preferable that the more complex the mold having a large number of cavities, the thinner the range.
  • the surface of the release film of the present invention is preferably smooth.
  • a release film having a smooth surface it is easy to form a high-quality resin-encapsulated portion, and for example, it becomes easy to manufacture a light-emitting diode having excellent optical characteristics.
  • one surface of the release film is used as a satin finish and the surface is used on the cavity side of the mold, vacuum adsorption to the cavity is facilitated, but the use of the film is uneven on the surface of the resin sealing part. For example, in the case of a lens unit, the lens accuracy may be reduced.
  • the 10-point average roughness (Rz) of the surface of the release film of the present invention is preferably 0.01 to 0.1 ⁇ m in the case of a mirror surface. In the case of a satin surface, 0.15-3.5 ⁇ m is preferable. When Rz is 0.15 ⁇ m or more, vacuum adsorption to the cavity of the release film is promoted. Moreover, if Rz is 3.5 micrometers or less, it will be suppressed that an unevenness
  • the release film is required to have releasability, surface smoothness, heat resistance that can withstand the mold temperature of about 100 to 140 ° C., and strength that can withstand the flow and pressure of the sealing resin.
  • the release film of the present invention is preferably a film made of one or more resins selected from the group consisting of polyolefins and fluororesins from the viewpoints of releasability, heat resistance, strength, and elongation at high temperatures, and is made of a fluororesin. A film is more preferable.
  • the release film of the present invention may be a film in which a fluorine resin and a non-fluorine resin are used in combination, or may be a film in which an inorganic additive, an organic additive, or the like is blended.
  • polymethylpentene is preferable from the viewpoint of releasability and mold followability.
  • Polyolefin may be used individually by 1 type and may use 2 or more types together.
  • the fluororesin include ETFE, polytetrafluoroethylene, perfluoro (alkyl vinyl ether) / tetrafluoroethylene copolymer, and the like, and ETFE is particularly preferable because of high elongation at high temperatures.
  • a fluororesin may be used individually by 1 type, and may use 2 or more types together.
  • ETFE may be used individually by 1 type and may use 2 or more types together.
  • the third monomer As ETFE, it is preferable to have a unit based on the third monomer from the viewpoint of easy adjustment of the crystallinity of the release film resin, that is, the tensile elastic modulus of the release film.
  • a copolymer having a unit based on TFE, a unit based on E, and a unit based on (perfluorobutyl) ethylene is particularly preferable because it can be performed.
  • the third monomer include a monomer having a fluorine atom and a monomer having no fluorine atom.
  • monomer having a fluorine atom examples include the following monomers (a1) to (a5).
  • Monomer (a1) a fluoroolefin having 3 or less carbon atoms.
  • Monomer (a2) X (CF 2 ) n CY ⁇ CH 2 (where X and Y are each independently a hydrogen atom or a fluorine atom, and n is an integer of 2 to 8).
  • Perfluoroalkylethylene Monomer (a3): fluorovinyl ethers.
  • Monomer (a5) a fluorine-containing monomer having an aliphatic ring structure.
  • Examples of the monomer (a1) include fluoroethylenes (trifluoroethylene, vinylidene fluoride, vinyl fluoride, chlorotrifluoroethylene, etc.), fluoropropylenes (hexafluoropropylene (hereinafter referred to as HFP)), 2-hydropenta Fluoropropylene and the like).
  • a monomer having n of 2 to 6 is preferable, and a monomer of 2 to 4 is more preferable.
  • a monomer in which X is a fluorine atom and Y is a hydrogen atom, that is, (perfluoroalkyl) ethylene is more preferable. Specific examples include the following.
  • PFBE perfluorobutyl ethylene
  • CF 2 CFO (CF 2 ) 3 CO 2 CH 3
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) 3 CO 2 CH 3
  • CF 2 CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 2 F and the like.
  • monomer having no fluorine atom examples include the following monomers (bl) to (b4).
  • Examples of the monomer (b1) include propylene and isobutene.
  • Examples of the monomer (b2) include vinyl acetate.
  • Examples of the monomer (b3) include ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, and hydroxybutyl vinyl ether.
  • Examples of the monomer (b4) include maleic anhydride, itaconic anhydride, citraconic anhydride, hymic anhydride (5-norbornene-2,3-dicarboxylic anhydride) and the like.
  • a 3rd monomer may be used individually by 1 type, and may use 2 or more types together.
  • the monomer (a2), HFP, PPVE, and vinyl acetate are preferable because the crystallinity can be easily adjusted, that is, the tensile elastic modulus can be easily adjusted.
  • HFP, PPVE, CF 3 CF 2 CH ⁇ CH 2 , PFBE is more preferable, and PFBE is particularly preferable.
  • TFE / E The molar ratio of the repeating unit based on TFE and the repeating unit based on E is preferably 80/20 to 40/60, more preferably 70/30 to 45/55, and 65/35 to 50/50. Is particularly preferred. If TFE / E is within the above range, the heat resistance and mechanical properties of ETFE will be good.
  • the proportion of repeating units based on the third monomer is preferably 0.01 to 20 mol%, more preferably 0.10 to 15 mol%, and more preferably 0.20 to 10 mol% of all repeating units (100 mol%). Is particularly preferred. If the ratio of the repeating unit based on the third monomer is within the above range, the heat resistance and mechanical properties of ETFE will be good.
  • the proportion of repeating units based on PFBE is preferably 5 to 10 mol%, particularly preferably 5 to 7 mol%, based on all repeating units (100 mol%). If the ratio of the repeating unit based on PFBE is within the above range, the tensile elastic modulus at 132 ° C. of the release film can be adjusted within the above range.
  • the ratio of the repeating unit based on PFBE is increased, (i) the film becomes too soft and difficult to handle, (ii) the oligomer is increased and the film production roll is easily soiled, (iii) the release film is low in heat resistance.
  • the repeating unit based on PFBE was not made 5 mol% or more. That is, in the conventional release film ETFE, the tensile elastic modulus at 132 ° C. was not 24 MPa or less.
  • the melt flow rate (MFR) of ETFE is preferably 2 to 40 g / 10 minutes, more preferably 5 to 30 g / 10 minutes, and particularly preferably 10 to 20 g / 10 minutes. If the MFR of ETFE is within the above range, the moldability of ETFE is improved and the mechanical properties of the release film are improved.
  • the MFR of ETFE is a value measured at 297 ° C. using a 5 kg load in accordance with ASTM D3159.
  • the release film of the present invention can be produced by, for example, melt molding using an extruder equipped with a T-die having a predetermined lip width, using a release film resin.
  • the release film of the present invention since the tensile modulus at 132 ° C. is 10 to 24 MPa, the release film can be uniformly stretched without causing wrinkles in the release film. Therefore, when placing the release film so as to cover the cavity of the mold while pulling the release film over a wide area, or when making the release film follow the cavity surface of a wide area or a complicated structure, the thickness of the release film is uneven. Is unlikely to occur. As a result, the distortion of the surface of the resin sealing portion, which appears when the unevenness in the thickness of the release film is transferred to the surface of the resin sealing portion, is suppressed. If the resin sealing portion is a lens portion of a light emitting diode, a light emitting diode having a good lens portion and excellent optical characteristics can be manufactured stably.
  • Examples of the semiconductor device manufactured by the semiconductor device manufacturing method of the present invention described later include an integrated circuit in which semiconductor elements such as transistors and diodes are integrated; a light emitting diode having a light emitting element, and the like.
  • the light emitting diode includes, for example, a substrate, a light emitting element mounted on the substrate, and a lens unit that seals the light emitting element.
  • the lens portion is formed by sealing the light emitting element with a resin in which a phosphor is dispersed and sealing the periphery with a sealing resin.
  • the area of the lens portion exposed to the outside (hereinafter referred to as a surface area) is preferably 56 mm 2 or more.
  • a surface area is preferably 56 mm 2 or more.
  • the surface area of the lens unit is more preferably 56 ⁇ 628mm 2, 56 ⁇ 353mm 2 is particularly preferred.
  • the shape of the lens part is a substantially hemispherical type; a cannonball type consisting of a cylindrical resin sealing part and a substantially hemispherical lens part thereon; a Fresnel lens type; Type: A substantially hemispherical lens array type in which a plurality of substantially hemispherical lens portions are continuously integrated and arranged.
  • FIG. 1 is a cross-sectional view showing an example of a light emitting diode.
  • the light emitting diode 1 includes a substrate 10, a light emitting element 12 mounted on the substrate 10, and a substantially hemispherical lens portion 14 that seals the light emitting element 12.
  • FIG. 2 is a cross-sectional view showing another example of the light emitting diode.
  • the light emitting diode 1 includes a substrate 10, a light emitting element 12 mounted on the substrate 10, and a bullet-shaped lens unit 14 that seals the light emitting element 12.
  • FIG. 3 is a cross-sectional view showing another example of the light emitting diode.
  • the light emitting diode 1 includes a substrate 10, a light emitting element 12 mounted on the substrate 10, and a Fresnel lens type lens portion 14 that seals the light emitting element 12.
  • FIG. 4 is a perspective view showing another example of the light emitting diode.
  • the light emitting diode 1 includes a substrate 10, a light emitting element 12 mounted on the substrate 10, and a bowl-shaped lens unit 14 that seals the light emitting element 12.
  • FIG. 5 is a perspective view showing another example of the light emitting diode.
  • the light emitting diode 1 includes a substrate 10, a plurality of light emitting elements 12 mounted on the substrate 10, and a substantially hemispherical lens array type lens unit 14 that seals the plurality of light emitting elements 12 together.
  • the curable sealing resin examples include a thermosetting resin and a photocurable resin, and the resin is cured and cured in a mold.
  • the curable sealing resin has fluidity, follows the inner shape of the mold cavity during molding, and cures in that state to form a molded product.
  • a resin having fluidity at normal temperature is usually used, but it may be a solid resin at normal temperature that is heated and fluidized when filled in a mold. Further, it may be a resin that is filled in a mold in a solid state (for example, a powder state), heated in the mold, and once cured to be cured.
  • the curable sealing resin may contain an optional component such as an additive.
  • thermosetting resin a thermosetting resin of a type in which a low molecular weight product is not by-produced during curing is preferable.
  • thermosetting silicone resins that are cured by a hydrosilation reaction, epoxy resins, and cross-linkable curable compounds having two or more polymerizable unsaturated groups (such as compounds having two or more acryloyloxy groups).
  • thermosetting silicone resin comprising a combination of an organopolysiloxane having a vinyl group and an organopolysiloxane having a hydrogen atom bonded to a silicon atom, an epoxy resin comprising a combination of a main agent comprising a polyepoxide and a curing agent or a crosslinking agent,
  • thermosetting acrylic resins composed of a combination of a compound having two or more acryloyloxy groups and a radical generator.
  • thermosetting silicone resins include LPS-3412AJ and LPS-3412B manufactured by Shin-Etsu Chemical Co., Ltd.
  • commercially available products of epoxy resins include those manufactured by Nippon Kayaku Co., Ltd. And SEJ-01R.
  • the method for producing a semiconductor device of the present invention is characterized in that the release film of the present invention is used in a method for producing a semiconductor device by sealing a semiconductor element with a curable sealing resin using a mold. .
  • a manufacturing method of the semiconductor device of the present invention a known manufacturing method can be adopted except that the release film of the present invention is used.
  • the method for forming the resin sealing portion include a compression molding method and a transfer molding method.
  • the apparatus a known compression molding apparatus or transfer molding apparatus can be used.
  • the manufacturing conditions may be the same as the conditions in a known semiconductor device manufacturing method.
  • a compression molding method and a transfer molding method are preferable as a method of curing a curable sealing resin in a cavity of a mold and forming a resin sealing portion made of the cured sealing resin.
  • the mold temperature that is, the temperature of the inner surface of the mold when the sealing resin is cured is usually 100 to 140 ° C., although it depends on the type of the sealing resin. In some cases, a higher mold temperature may be required depending on the type of sealing resin, and the mold temperature may increase due to heat generated when the sealing resin is cured.
  • the release film of the present invention can be used sufficiently until the mold temperature reaches about 185 ° C.
  • the release film of this invention is arrange
  • the sealing resin filled in the cavity is in contact with the inner surface of the mold through the release film, and the sealing resin is cured and cured in a state of being in contact with the mold. After the sealing resin is cured, a semiconductor device having a resin sealing portion made of the cured sealing resin is taken out from the mold.
  • the semiconductor device manufacturing method of the present invention includes the following two methods ( ⁇ ) and ( ⁇ ) depending on the filling timing of the sealing resin.
  • the following method ( ⁇ ) is an example of a compression molding method
  • the following method ( ⁇ ) is an example of a transfer molding method.
  • Method ( ⁇ ) A method having the following steps ( ⁇ 1) to ( ⁇ 5).
  • ( ⁇ 1) A step of disposing the release film of the present invention so as to cover the cavity of the mold.
  • ( ⁇ 2) A step of vacuum-sucking the release film toward the cavity surface side of the mold.
  • ( ⁇ 3) A step of filling the cavity with a sealing resin.
  • ( ⁇ 4) A step of disposing a semiconductor element at a predetermined position in the cavity and sealing the semiconductor element with a sealing resin to form a resin sealing portion to obtain a semiconductor device.
  • ( ⁇ 5) A step of taking out the semiconductor device from the mold.
  • Method ( ⁇ ) A method having the following steps ( ⁇ 1) to ( ⁇ 5).
  • ( ⁇ 1) A step of disposing the release film of the present invention so as to cover the cavity of the mold.
  • ( ⁇ 2) A step of vacuum-sucking the release film toward the cavity surface side of the mold.
  • ( ⁇ 3) A step of placing the semiconductor element at a predetermined position in the cavity.
  • ( ⁇ 4) A step of filling a cavity with a sealing resin, sealing a semiconductor element with the sealing resin to form a resin sealing portion, and obtaining a semiconductor device.
  • ( ⁇ 5) A step of taking out the semiconductor device from the mold.
  • Light emitting diode manufacturing method a method for manufacturing a light-emitting diode will be described as an example of a method for manufacturing a semiconductor device.
  • the compression molding method is a manufacturing method capable of producing a plurality of light emitting diodes in a mass in a batch as described in JP-A-2005-305954.
  • the mold used for the compression molding method has an upper mold 20, a middle mold (not shown), and a lower mold 22.
  • a vacuum vent (not shown) for adsorbing the substrate 10 is formed on the upper mold 20, and the substrate 10 on which the light emitting element 12 is mounted can be adsorbed on the upper mold 20.
  • a cavity 24 having a shape corresponding to the shape of the lens portion 14 of the light emitting diode 1 is formed in the lower mold 22.
  • the lower mold 22 is formed with a vacuum vent (not shown) for adsorbing the release film 30 to the lower mold 22 by sucking air between the release film 30 and the lower mold 22. .
  • the cavity surface 26 of the lower mold 22 is preferably smooth from the viewpoint that the high-quality lens portion 14 is easily formed and the light-emitting diode 1 having excellent optical characteristics is easily obtained. If the cavity surface 26 is a satin finish, the release film 30 can be vacuum-sucked to the cavity surface 26 more efficiently. However, the surface of the lens portion 14 of the resulting light-emitting diode 1 may be uneven and the lens accuracy may deteriorate. is there.
  • Step ( ⁇ 1) As shown in FIG. 6, a release film 30 is disposed so as to cover the cavity 24 of the lower mold 22.
  • the release film 30 is fed from an unwinding roll (not shown) and wound up by a winding roll (not shown). Since the release film 30 is pulled by the unwinding roll and the winding roll, the release film 30 is disposed so as to cover the cavity 24 of the lower mold 22 in the stretched state.
  • Step ( ⁇ 2) As shown in FIG. 7, vacuum suction is performed through a vacuum vent (not shown) formed outside the cavity 24 of the lower mold 22, the space between the release film 30 and the cavity surface 26 is decompressed, and the release film 30. Is stretched and deformed, and is vacuum-adsorbed to the cavity surface 26 of the lower mold 22. Further, a frame-shaped middle mold (not shown) arranged on the periphery of the lower mold 22 is tightened, and the release film 30 is pulled from all directions to be in a tension state.
  • a vacuum vent not shown
  • a frame-shaped middle mold (not shown) arranged on the periphery of the lower mold 22 is tightened, and the release film 30 is pulled from all directions to be in a tension state.
  • the release film 30 does not necessarily adhere to the cavity surface 26 depending on the strength and thickness of the release film 30 in a high temperature environment and the shape of the cavity 24. As shown in FIG. 7, a slight gap may remain between the release film 30 and the cavity surface 26 in the vacuum adsorption stage of the step ( ⁇ 2).
  • Step ( ⁇ 3) As shown in FIG. 8, an appropriate amount of a curable sealing resin 40 is filled on the release film 30 in the cavity 24 by an applicator (not shown).
  • a curable resin that is a transparent curable resin is usually used.
  • a curable resin containing an additive or the like that becomes a milky white transparent curable resin may be used.
  • Step ( ⁇ 4) As shown in FIG. 9, the lower mold 22 filled with the sealing resin 40 on the release film 30 in the cavity 24 and the upper mold 20 adsorbing the substrate 10 on which the light emitting element 12 is mounted are clamped. The mold is heated, the sealing resin 40 is cured to form a cured resin, and the lens portion 14 that seals the light emitting element 12 is formed. In the step ( ⁇ 4), the sealing resin 40 filled in the cavity 24 is further pushed into the cavity 24 by the clamping pressure, and the release film 30 is stretched and deformed to be in close contact with the cavity surface 26. Therefore, the lens portion 14 having a shape corresponding to the shape of the cavity 24 is formed.
  • the mold temperature that is, the temperature for curing the sealing resin 40 in the mold is preferably 100 to 185 ° C., more preferably 100 to 140 ° C.
  • the productivity of the light emitting diode 1 is improved.
  • the mold temperature is 185 ° C. or lower, deterioration during curing of the sealing resin 40 can be suppressed.
  • the mold temperature is preferably 140 ° C. or lower.
  • the thickness of the release film 30 at the time of clamping is desirably 75 ⁇ m or less.
  • the followability to the cavity surface 26 is sufficient, and the lens portion 14 having a uniform shape can be easily formed.
  • Step ( ⁇ 5) As shown in FIG. 10, the upper mold 20 and the lower mold 22 are opened, and the light emitting diode 1 is taken out. If the maximum value of the peeling force is 0.8 N / 25 mm or less, the light emitting diode 1 can be easily released from the mold. Simultaneously with the release, the used part of the release film 30 is sent to a take-up roll (not shown), and the unused part of the release film 30 is sent out from an unwind roll (not shown).
  • the thickness of the release film 30 when transported from the unwinding roll to the winding roll is preferably 16 ⁇ m or more. If the thickness is less than 16 ⁇ m, wrinkles are likely to occur when the release film 30 is conveyed. If wrinkles enter the release film 30, the wrinkles are transferred to the lens portion 14 and a product defect occurs. If the thickness is 16 ⁇ m or more, generation of wrinkles can be suppressed by sufficiently applying tension to the release film 30.
  • the tensile elastic modulus at 132 ° C. of the release film 30 when transported from the unwinding roll to the winding roll is preferably 10 MPa or more.
  • the release film 30 is very soft, so that the tension cannot be uniformly applied to the release film 30, and wrinkles are easily generated when the release film 30 is conveyed. If wrinkles enter the release film 30, the wrinkles are transferred to the lens portion 14 and a product defect occurs. If the tensile modulus at 132 ° C. is 10 MPa or more, generation of wrinkles can be suppressed by sufficiently applying tension to the release film 30.
  • Method ( ⁇ ) As an example of the method ( ⁇ ) among the methods for producing a light emitting diode, a case where the light emitting diode is produced by the ton-laser molding method will be described in detail.
  • the transfer molding method is a method usually used for manufacturing a light emitting diode.
  • the mold used for the transfer molding method has an upper mold 50 and a lower mold 52 as shown in FIG.
  • the upper die 50 is formed with a cavity 54 having a shape corresponding to the shape of the lens portion 14 of the light emitting diode 1 and a concave resin introduction portion 60 that guides the curable sealing resin 40 to the cavity 54.
  • the lower mold 52 is formed with a substrate placement portion 58 for placing the substrate 10 on which the light emitting element 12 is mounted, and a resin placement portion 62 for placing the sealing resin 40.
  • a plunger 64 that pushes the sealing resin 40 to the resin introduction portion 60 of the upper mold 50 is installed in the resin arrangement portion 62.
  • the cavity surface 56 of the upper mold 50 is preferably smooth from the viewpoint that the high-quality lens portion 14 is easily formed and the light-emitting diode 1 having excellent optical characteristics is easily obtained. If the cavity surface 56 is a satin finish, the release film 30 can be vacuum-sucked to the cavity surface 56 more efficiently. However, the surface of the lens portion 14 of the light-emitting diode 1 obtained may be uneven, and the lens accuracy may deteriorate. is there.
  • Step ( ⁇ 1) As shown in FIG. 12, the release film 30 is disposed so as to cover the cavity 54 of the upper mold 50.
  • the release film 30 is preferably disposed so as to cover the entire cavity 54 and the resin introducing portion 60. Since the release film 30 is pulled by an unwinding roll (not shown) and a winding roll (not shown), the release film 30 is disposed so as to cover the cavity 54 of the upper mold 50 in the stretched state.
  • Step ( ⁇ 2) As shown in FIG. 13, vacuum suction is performed through a groove (not shown) formed outside the cavity 54 of the upper mold 50, and the space between the release film 30 and the cavity surface 56, and the release film 30 and the resin are introduced. The space between the inner wall of the part 60 is decompressed, the release film 30 is stretched and deformed, and is vacuum-adsorbed on the cavity surface 56 of the upper mold 50.
  • the release film 30 does not necessarily adhere to the cavity surface 56 depending on the strength and thickness of the release film 30 in a high temperature environment and the shape of the cavity 54. As shown in FIG. 13, a slight gap may remain between the release film 30 and the cavity surface 56 in the vacuum adsorption stage of the step ( ⁇ 2).
  • Step ( ⁇ 3) As shown in FIG. 14, the substrate 10 on which the light emitting element 12 is mounted is placed on the substrate placement portion 58, and the curable sealing resin 40 is placed on the plunger 64 of the resin placement portion 62. Thereafter, the upper mold 50 and the lower mold 52 are clamped, and the light emitting element 12 is disposed at a predetermined position in the cavity 54.
  • the curable sealing resin 40 include those similar to the sealing resin 40 used in the method ( ⁇ ).
  • Step ( ⁇ 4) As shown in FIG. 15, the plunger 64 of the lower mold 52 is pushed up, and the sealing resin 40 is filled into the cavity 54 through the resin introduction part 60. Next, the mold is heated, the sealing resin 40 is cured, and the lens portion 14 that seals the light emitting element 12 is formed. In the step ( ⁇ 4), the cavity 54 is filled with the sealing resin 40, so that the release film 30 is further pushed into the cavity surface 56 side by the resin pressure, and is stretched and deformed to cause the cavity surface. 56. Therefore, the lens portion 14 having a shape corresponding to the shape of the cavity 54 is formed.
  • the mold temperature that is, the temperature at which the sealing resin 40 is cured is preferably in the same range as the temperature range in the method ( ⁇ ).
  • the resin pressure at the time of filling the sealing resin 40 is preferably 2 to 30 MPa, more preferably 3 to 10 MPa. If the resin pressure is 2 MPa or more, defects such as insufficient filling of the sealing resin 40 are unlikely to occur. If the resin pressure is 30 MPa or less, it is easy to obtain a light emitting diode 1 of good quality.
  • the resin pressure of the sealing resin 40 can be adjusted by the plunger 646.
  • Step ( ⁇ 5) As shown in FIG. 16, the light-emitting diode 1 in a state where the cured product 16 in which the sealing resin 40 is cured in the resin introduction portion 60 is attached is taken out of the mold and the cured product 16 is cut out. If the release film 30 is disposed between the formed lens portion 14 and the cavity surface 56 in the mold after the lens portion 14 is formed, and the maximum value of the peeling force is 0.8 N / 25 mm or less, light emission is performed. The diode 1 can be easily released from the mold.
  • the manufacturing method of the present invention can be applied to the manufacture of the light-emitting diode 1 having the lens portion 14 of another shape in the same manner as the manufacture of the light-emitting diode 1 having the substantially hemispherical lens portion 14 described above.
  • die which has a cavity corresponding to the shape of each lens part 14, and can install the light emitting element 12 in a predetermined position.
  • MFR The MFR of ETFE was measured at 297 ° C. using a 5 kg load in accordance with ASTM D3159.
  • the melting point of the resin was determined from the endothermic peak when the resin was heated at 10 ° C./min using a differential scanning calorimeter (DSC7020, manufactured by SII).
  • the tensile elastic modulus at 132 ° C. of the release film was measured according to JIS K 7127.
  • a 400 ⁇ m-thick press sheet prepared using the same resin as the release film was punched into a strip shape (test piece type 5) to prepare a test sheet.
  • the test sheet was subjected to a tensile test at a sheet temperature of 132 ° C. and a tensile speed of 1 mm / min, and a stress from a tensile strain of 0.05% to 0.25% was measured. Asked.
  • Tensile modulus (MPa) (Stress at 0.25% strain (MPa) ⁇ Stress at 0.05% strain (MPa)) / (Strain 0.25% ⁇ Strain 0.05%) / 100
  • the peeling force was measured in accordance with JIS K 6854-2 by a 180 ° peeling test between a release film and a two-component mixed thermosetting silicone resin as follows.
  • A An appropriate amount of a thermosetting silicone resin (OE6630 manufactured by Toray Dow Corning Co., Ltd.) mixed between the release film and the aluminum plate was applied.
  • B The release film sandwiching the thermosetting silicone resin and the aluminum plate were pressed at 130 ° C. and 1 MPa for 5 minutes to cure the thermosetting silicone resin. The amount of the thermosetting silicone resin applied was adjusted so that the thickness of the cured silicone resin layer was 100 ⁇ m.
  • C The bonded release film and aluminum plate were cut to a width of 25 mm.
  • Example 1 Manufacturing ETFE
  • 1-hydrotridecafluorohexane, 1,3-dichloro-1,1,2,2,3-pentafluoropropane (Asahi Glass Co., Ltd., AK225cb; AK225cb)
  • 60.4 g of an AK225cb solution of 50% by mass of tert-butylperoxypivalate was charged to initiate polymerization.
  • a mixed gas of TFE / E 60/40 (molar ratio) and an amount of PFBE corresponding to 7.0 mol% are continuously added so that the pressure becomes 1.5 MPaG. Then, after charging 7.19 kg of the mixed gas of TFE / E, the autoclave was cooled, the residual gas was purged, and the polymerization was terminated. The time required for the polymerization was 333 minutes. The obtained slurry of ETFE was transferred to a 220 L granulation tank, 77 L of water was added and heated while stirring to remove the polymerization solvent and residual monomer, and 7.2 kg of granular ETFE (1) was obtained.
  • the melting point was 195 ° C.
  • ETFE (1) was melt-extruded at 300 ° C. by an extruder adjusted to a lip so that the thickness was 50 ⁇ m, and a release film (1) having a thickness of 50 ⁇ m was obtained.
  • the release film (1) had a tensile elastic modulus at 132 ° C. of 12 MPa, and the maximum peel force was 0.6 N / 25 mm.
  • the light emitting element 12 As the light emitting element 12, a white light emitting element (operating voltage: 3, 5 V, current consumption: 10 mA) was used. As the release film 30, the release film (1) was used. As the sealing resin 40, a two-component mixed type curable silicone resin (a mixture of equal amounts of LPS-3412A manufactured by Shin-Etsu Chemical Co., Ltd. and LPS-3412B manufactured by Shin-Etsu Chemical Co., Ltd.) was used. This curable silicone resin becomes a transparent curable resin.
  • the mold shown in FIG. 11 was used as the mold.
  • the shape of the cavity 54 of the upper die 50 was a shape corresponding to a substantially hemispherical lens portion having a surface area of 56 mm 2 .
  • the release film 30 was disposed so as to cover the cavity 54 of the upper mold 50.
  • the substrate 10 on which the light emitting element 12 is mounted is arranged on the lower mold 52 so that the light emitting element 12 is positioned at the center of the opening of the cavity 54, and the curable silicone resin is placed on the plunger 64 of the resin arranging part 62. Arranged.
  • the mold release film 30 was vacuum-sucked on the cavity surface 56 by vacuum suction and the mold was clamped, and then the sealing resin 40 was filled into the cavity 54.
  • the mold was heated to cure the sealing resin 40 to form a substantially hemispherical lens portion 14.
  • the heating temperature of the mold was 110 ° C.
  • the curing time was 3 minutes. Thereafter, the upper mold 50 and the lower mold 52 were opened, and the light emitting diode 1 was taken out from the mold.
  • the appearance of the lens part was evaluated. The results are shown in Table 1.
  • Example 2 Manufacture of release film
  • a release film (2) was obtained in the same manner as in Example 1 except that the lip was adjusted to a thickness of 25 ⁇ m.
  • the release film (2) had a tensile elastic modulus at 132 ° C. of 12 MPa, and the maximum peel force was 0.6 N / 25 mm.
  • a light emitting diode was produced in the same manner as in Example 1 using the release film (2). The appearance of the lens part was evaluated. The results are shown in Table 1.
  • ETFE (1) of Example 1 and ETFE (2) of Example 2 were mixed in a 1: 1 ratio (mass ratio), and melt-kneaded at 300 ° C. with a 15 mm twin-screw extruder to obtain a kneaded product. Using the kneaded product, a release film (3) having a thickness of 50 ⁇ m was obtained in the same manner as in Example 1.
  • the release film (3) had a tensile modulus of elasticity at 132 ° C. of 20 MPa, and the maximum peel force was 0.5 N / 25 mm.
  • a light emitting diode was produced in the same manner as in Example 1 using the release film (3). The appearance of the lens part was evaluated. The results are shown in Table 1.
  • Example 4 Manufacturing ETFE
  • the obtained ETFE slurry was transferred to a 220 L granulation tank, 77 L of water was added and heated while stirring to remove the polymerization solvent and residual monomers, and 7.5 kg of granular ETFE (3) was obtained.
  • the melting point was 236.9 ° C.
  • the ETFE (3) was melt-extruded at 300 ° C. by an extruder adjusted to a lip so that the thickness was 50 ⁇ m to obtain a release film (4) having a thickness of 50 ⁇ m.
  • the release film (4) had a tensile modulus of elasticity at 132 ° C. of 40 MPa, and the maximum peel force was 0.3 N / 25 mm.
  • Ethylene / propylene having a repeating unit based on TFE / a repeating unit based on E / a repeating unit based on propylene 54.8 / 28.7 / 16.5 (molar ratio), MFR: 6 g / 10 min, melting point: 172 ° C. / Tetrafluoroethylene copolymer (hereinafter referred to as PETFE) was prepared.
  • PETFE was melt-extruded at 250 ° C. with an extruder having a lip adjusted so that the thickness was 50 ⁇ m to obtain a release film (5) having a thickness of 50 ⁇ m.
  • the release film (5) had a tensile modulus of elasticity at 132 ° C. of 4 MPa, and the maximum peel force was 0.8 N / 25 mm.
  • a light emitting diode was produced in the same manner as in Example 1. The appearance of the lens part was evaluated. The results are shown in Table 1.
  • Example 6 An ETFE film (Asahi Glass Co., Ltd., Fluon LM-ETFE film, thickness: 50 ⁇ m) was prepared. The tensile modulus at 132 ° C. of the test sheet prepared from the raw material resin of the LM-ETFE film was 28 MPa, and the maximum value of the peeling force was 0.3 N / 25 mm. A light emitting diode was produced in the same manner as in Example 1 using an ETFE film. The appearance of the lens part was evaluated. The results are shown in Table 1.
  • Example 7 A PP film (Futamura Chemical Co., Ltd., unstretched polypropylene film, FPK grade, thickness: 25 ⁇ m) was prepared. The tensile modulus at 132 ° C. of the test sheet prepared from the PP film was 65 MPa, and the maximum value of the peeling force was 3.6 N / 25 mm. Using a PP film, a light emitting diode was produced in the same manner as in Example 1. The appearance of the lens part was evaluated. The results are shown in Table 1.
  • Example 8 One surface of a 50 ⁇ m-thick release film obtained in the same manner as in Example 1 was subjected to a corona discharge treatment (using Corona Generator HV-05-2 manufactured by TANTEC, output voltage: 60 V, output frequency: 30 kHz). ), A release film (8) was obtained.
  • the release film (8) had a tensile modulus of elasticity at 132 ° C. of 12 MPa, and the maximum peel force was 6.5 N / 25 mm.
  • a light emitting diode 8 was produced in the same manner as in Example 1. However, the release film (8) was disposed so that the surface subjected to the corona discharge treatment faces the lower mold 52 side. The appearance of the lens part was evaluated. The results are shown in Table 1.
  • Example 4 is a trial of Example 1 of Patent Document 1.
  • the release film since the release film has a high tensile elastic modulus, the release film stretches unevenly, resulting in a large thickness difference (unevenness) in the release film after following the mold, resulting in a difference in thickness. It was transferred to the lens part, resulting in poor appearance (distortion).
  • Example 5 since the release film has a low tensile elastic modulus, it is too soft at the time of winding up the release film and cannot be uniformly tensioned, and wrinkles are easily generated, and the wrinkles are transferred to the lens portion, resulting in poor appearance. became.
  • Example 6 since the tensile elastic modulus of the ETFE film is high, the ETFE film stretches unevenly, a large thickness difference (unevenness) occurs in the ETFE film after following the mold, and the thickness difference is generated in the lens portion. The image was transferred, resulting in poor appearance (distortion).
  • Example 7 since the peel strength of the PP film was high, after the sealing resin was cured, the die was not opened when the lens part and the PP film were peeled off, and the light emitting diode could not be produced.
  • Example 8 since the maximum value of the peel strength of the ETFE film is large, after the sealing resin is cured, the mold is opened, and when the lens portion and the ETFE film are peeled off, the light emitting diode cannot be produced. It was.
  • the release film of the present invention is useful as a release film disposed on a cavity surface of a mold that forms a resin sealing portion by sealing a semiconductor element of a semiconductor device with a sealing resin. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2012-016476 filed on January 30, 2012 is cited herein as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Led Device Packages (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 金型が大型化、複雑化しても、離型フィルムを伸ばした際に離型フィルムの厚さにムラが生じにくい離型フィルム、および樹脂封止部が大型化、複雑化しても、樹脂封止部の表面の歪みが抑えられた半導体デバイスを製造できる方法を提供する。 半導体デバイス(発光ダイオード1等)の半導体素子(発光素子12等)を硬化性の封止樹脂で封止して樹脂封止部(レンズ部14等)を形成する金型のキャビティ面26に配置される離型フィルム30であって、JIS K 7127に準拠して測定した132℃における引張弾性率が10~24MPaであり、剥離力が0.8N/25mm以下である離型フィルム30を用いる。

Description

離型フィルムおよびこれを用いた半導体デバイスの製造方法
 本発明は、半導体デバイスの半導体素子を封止樹脂で封止して樹脂封止部を形成する金型のキャビティ面に配置される離型フィルム、および該離型フィルムを用いた半導体デバイスの製造方法に関する。
 半導体デバイス(発光ダイオードを含む。)は、半導体素子(発光素子を含む。)を保護するために、半導体素子を封止樹脂で封止した樹脂封止部を有する。また、発光ダイオードにおいては、該樹脂封止部は、発光素子から放射される光の方向を発光ダイオードの正面方向に揃え、正面輝度を向上させるレンズ部としての機能も有する。
 最近では、従来よりも高光束な照明用途(家庭用天井照明、自動車用ヘッドライト、屋外灯等)に発光ダイオードを展開する動きが広がっている。発光ダイオードの高光束を達成するためは、必然的に発光素子を集積する必要があり、それに伴い、レンズ部が大型化、レンズ部の構造も複雑化していく。
 発光ダイオードの製造方法としては、たとえば、発光素子が実装された基板を、該発光素子が金型のキャビティ内の所定の場所に位置するように配置し、キャビティ内に封止樹脂を充填してレンズ部を形成する、いわゆる圧縮成形法またはトランスファ成形法による方法が知られている。該方法においては、通常、封止樹脂と金型との固着を防ぐために、金型のキャビティ面に離型フィルムが配置される(特許文献1)。
国際公開第2011/037034号
 しかし、従来の方法に用いられる離型フィルムは、レンズ部の大型化や複雑化に対応して金型が大型またはその構造が複雑な場合、離型フィルムを広い面積で引っ張りながら金型のキャビティを覆うように配置する際や離型フィルムを広い面積または複雑な構造のキャビティ面に追随させる際に、離型フィルム全体が均一に伸びないため、離型フィルムの厚さにムラが生じる。そして、離型フィルムの厚さのムラが、レンズ部の表面に転写され、レンズ部の表面の歪みとして現れる。従来のようにレンズ部が小型でかつ形状が複雑でない場合には、離型フィルムの厚さのムラがレンズ部の表面に転写されにくく、大きな問題とはならないが、レンズ部が大型またはその構造が複雑な場合には、離型フィルムの厚さのムラがレンズ部の表面に転写されやすく、レンズ部の表面の歪みは、発光ダイオードの発光効率の低下、配光のばらつき等の原因となる。
 本発明は、金型のキャビティが大型化、複雑化しても、離型フィルムを伸ばした際に離型フィルムの厚さにムラが生じにくい離型フィルム、および樹脂封止部が大型化、複雑化しても、樹脂封止部の表面の歪みが抑えられた半導体デバイスを製造できる方法を提供する。
 本発明は、下記[1]~[14]の構成を有する離型フィルムおよびこれを用いた半導体デバイスの製造方法を提供する。
[1]半導体デバイスの半導体素子を硬化性の封止樹脂で封止して樹脂封止部を形成する金型のキャビティ面に配置される離型フィルムであって、
 JIS K 7127に準拠して測定した132℃における引張弾性率が、10~24MPaであり、
 剥離力の最大値が、0.8N/25mm以下である、離型フィルム。
[2]フッ素樹脂からなる、[1]の離型フィルム。
[3]前記フッ素樹脂が、テトラフルオロエチレンに基づく単位とエチレンに基づく単位とそれら以外の第3のモノマーに基づく単位とを有する共重合体である、[2]の離型フィルム。
[4]前記第3のモノマーが、(ペルフルオロブチル)エチレンである、[3]の離型フィルム。
[5]前記共重合体が、テトラフルオロエチレンに基づく繰り返し単位とエチレンに基づく繰り返し単位とのモル比(テトラフルオロエチレン/エチレン)が80/20~40/60であり、
 (ペルフルオロブチル)エチレンに基づく繰り返し単位の割合が全繰り返し単位(100モル%)のうち5~10モル%である、
共重合体である、[4]の離型フィルム。
[6]金型を用いて半導体素子を硬化性の封止樹脂で封止して半導体デバイスを製造する方法において、金型の封止樹脂が接するキャビティ面に、JIS K 7127に準拠して測定した132℃における引張弾性率が10~24MPaであり、かつ剥離力の最大値が0.8N/25mm以下である離型フィルムを配置し、前記封止樹脂を前記離型フィルムに接した状態で硬化させて樹脂封止部を形成することを特徴とする半導体デバイスの製造方法。
[7]前記半導体デバイスが発光ダイオードであり、前記半導体素子が発光素子であり、前記樹脂封止部がレンズ部である、[6]の半導体デバイスの製造方法。
[8]前記レンズ部の、外側に露出した部分の面積が、56mm以上である、[7]の半導体デバイスの製造方法。
[9]封止樹脂が熱硬化性樹脂であり、該封止樹脂を前記離型フィルムに接した状態で熱硬化させる、[6]~[8]のいずれかの半導体デバイスの製造方法。
[10]金型を用いて樹脂封止部を形成する方法が圧縮成形法である、[6]~[9]のいずれかの半導体デバイスの製造方法。
[11]金型を用いて樹脂封止部を形成する方法がトランスファ成形法である、[6]~[9]のいずれかの半導体デバイスの製造方法。
[12]下記の工程(α1)~(α5)を有する、半導体デバイスの製造方法。
 (α1)[1]~[5]のいずれかの離型フィルムを、金型のキャビティを覆うように配置する工程。
 (α2)前記離型フィルムを前記金型のキャビティ面の側に真空吸引する工程。
 (α3)前記キャビティ内に封止樹脂を充填する工程。
 (α4)半導体素子を前記キャビティ内の所定の位置に配置し、前記封止樹脂によって前記半導体素子を封止して樹脂封止部を形成し、半導体デバイスを得る工程。
 (α5)前記金型内から前記半導体デバイスを取り出す工程。
[13]下記の工程(β1)~(β5)を有する、半導体デバイスの製造方法。
 (β1)[1]~[5]のいずれかの離型フィルムを、金型のキャビティを覆うように配置する工程。
 (β2)前記離型フィルムを前記金型のキャビティ面の側に真空吸引する工程。
 (β3)半導体素子を前記キャビティ内の所定の位置に配置する工程。
 (β4)前記キャビティ内に封止樹脂を充填し、該封止樹脂により前記半導体素子を封止して樹脂封止部を形成し、半導体デバイスを得る工程。
 (β5)前記金型内から前記半導体デバイスを取り出す工程。
[14]前記半導体デバイスが発光ダイオードであり、
 前記半導体素子が発光素子であり、
 前記樹脂封止部がレンズ部であり、
 該レンズ部の外側に露出した部分の面積が、56mm以上である、[12]または[13]の半導体デバイスの製造方法。
 本発明の離型フィルムは、金型のキャビティが大型化、複雑化しても、離型フィルムを伸ばした際に離型フィルムの厚さにムラが生じにくい。
 本発明の半導体デバイスの製造方法によれば、樹脂封止部が大型化、複雑化しても、樹脂封止部の表面の歪みが抑えられた半導体デバイスを製造できる。
発光ダイオードの一例を示す断面図である。 発光ダイオードの他の例を示す断面図である。 発光ダイオードの他の例を示す断面図である。 発光ダイオードの他の例を示す斜視図である。 発光ダイオードの他の例を示す断面図である。 発光ダイオードの製造方法における工程(α1)を示す断面図である。 発光ダイオードの製造方法における工程(α2)を示す断面図である。 発光ダイオードの製造方法における工程(α3)を示す断面図である。 発光ダイオードの製造方法における工程(α4)を示す断面図である。 発光ダイオードの製造方法における工程(α5)を示す断面図である。 発光ダイオードの製造方法に用いる金型の一例を示す断面図である。 発光ダイオードの製造方法における工程(β1)を示す断面図である。 発光ダイオードの製造方法における工程(β2)を示す断面図である。 発光ダイオードの製造方法における工程(β3)を示す断面図である。 発光ダイオードの製造方法における工程(β4)を示す断面図である。 発光ダイオードの製造方法における工程(β5)を示す断面図である。
<離型フィルム>
 本発明の離型フィルムは、半導体デバイス(発光ダイオードを含む。)の半導体素子(発光素子を含む。)を硬化性の封止樹脂で封止して樹脂封止部(レンズ部を含む。)を形成する金型のキャビティ面に配置される離型フィルムである。たとえば、本発明の離型フィルムは、発光ダイオードのレンズ部を形成する際に、該レンズ部の形状に対応する形状のキャビティを有する金型のキャビティ面を覆うように配置され、形成したレンズ部とキャビティ面との間に位置されることによって、得られた発光ダイオードの金型からの離型性を高めるフィルムである。
(引張弾性率)
 本発明の離型フィルムの、JIS K 7127に準拠して測定した132℃における引張弾性率は、10~24MPaであり、12~20MPaが好ましい。
 硬化性の封止樹脂を硬化させる際の金型温度は通常100~140℃であり、離型フィルムの132℃における引張弾性率が上記範囲内であれば、この金型温度範囲において離型フィルムは良好な物性を示す。すなわち、132℃における引張弾性率が24MPa以下であれば、離型フィルムが均一に伸びるため、離型フィルムの厚さにムラが生じにくい。その結果、離型フィルムの厚さのムラが樹脂封止部の表面に転写されることによる、樹脂封止部の表面の外観不良(歪み)を抑えることができる。132℃における引張弾性率が10MPa以上であれば、離型フィルムを引っ張りながら金型のキャビティを覆うように配置する際に、離型フィルムが柔らかすぎないため、離型フィルムに張力が均一にかかり、しわが発生しにくい。その結果、離型フィルムのしわが樹脂封止部の表面に転写されることによる、樹脂封止部の表面の外観不良を抑えることができる。
 離型フィルムの132℃における引張弾性率は、具体的には、離型フィルムを短冊形状(試験片タイプ5)に切り抜いた試験シートについて、シート温度:132℃、引張速度:1mm/分の条件にて引張試験を行うことによって測定される。
 本発明の離型フィルムの引張弾性率は、離型フィルム用樹脂の結晶化度を調整することによって調整できる。具体的には、離型フィルム用樹脂の結晶化度が低いほど、離型フィルムの引張弾性率は低くなる。離型フィルム用樹脂の結晶化度は、たとえば、エチレン/テトラフルオロエチレン共重合体(以下、ETFEと記す。)の場合、テトラフルオロエチレン(以下、TFEと記す。)およびエチレン(以下、Eと記す。)以外のモノマーである第3のモノマーに基づく単位の種類や割合を調整することによって調整できる。
(剥離力)
 本発明の離型フィルムの剥離力の最大値は、0.8N/25mm以下であり、0.5N/25mm以下が好ましい。剥離力の最大値が0.8N/25mm以下であれば、実生産時、レンズ型に硬化した封止樹脂との剥離がより一層容易になるため、離型フィルムと硬化した封止樹脂がうまく離れず装置が止まるといったようなことが起こりにくくなり、連続生産性に優れる。
 本発明における離型フィルムの剥離力は、JIS K 6854-2に準拠し、以下のように、離型フィルムと硬化した封止樹脂との180°剥離試験で測定される剥離力である。なお、硬化性の封止樹脂として熱硬化性シリコーン樹脂を例に説明する。
 (a)離型フィルムとアルミニウム板との間に熱硬化性シリコーン樹脂を適量塗布する。
 (b)熱硬化性シリコーン樹脂を挟み込んだ離型フィルムとアルミニウム板とを130℃、1MPaで5分間プレスして熱硬化性シリコーン樹脂を硬化させる。なお、硬化したシリコーン樹脂層の厚さが100μmとなるように前記熱硬化性シリコーン樹脂の塗布量を調節する。
 (c)離型フィルムと硬化したシリコーン樹脂層とアルミニウム板とからなる積層板を25mm幅に切断して試験片とする。
 (d)引張試験機を用いて、試験片における硬化したシリコーン樹脂層に対する剥離フィルムの常温における180°剥離力を100mm/分の剥離速度で測定する。
 (e)力(N)-つかみ移動距離曲線における、つかみ移動距離25mmから125mmまでの剥離力の最大値(単位はN/25mm)を求める。
 (f)5個の試験片を用いて、各離型フィルムの剥離力の最大値の算術平均を求める。
(厚さ)
 本発明の離型フィルムの厚さは、16~75μmが好ましく、25~50μmがより好ましい。厚さが16μm以上であれば、離型フィルムの取り扱いが容易であり、離型フィルムを引っ張りながら金型のキャビティを覆うように配置する際に、しわが発生しにくい。厚さが75μm以下であれば、離型フィルムが容易に変形でき、金型のキャビティの形状への追従性が向上するため、離型フィルムがしっかりとキャビティ面に密着でき、高品質な樹脂封止部を安定して形成できる。また、本発明の離型フィルムの厚さは、金型のキャビティが大きいほど、前記範囲内において薄いことが好ましい。また、多数のキャビティを有する複雑な金型であるほど、前記範囲内において薄いことが好ましい。
(表面平滑性)
 本発明の離型フィルムの表面は、平滑であることが好ましい。表面が平滑な離型フィルムを用いることによって、高品質な樹脂封止部を形成しやすく、たとえば、光学特性に優れた発光ダイオードの製造が容易になる。なお、離型フィルムの一方の表面を梨地とし、該表面を金型のキャビティ側にして用いれば、キャビティへの真空吸着が容易になるが、該フィルムの使用は樹脂封止部の表面に凹凸を生じさせ、たとえばレンズ部の場合、レンズ精度を低下させるおそれがある。
 本発明の離型フィルムの表面の10点平均粗さ(Rz)は、鏡面の場合、0.01~0.1μmが好ましい。梨地表面の場合には、0.15~3.5μmが好ましい。Rzが0.15μm以上であれば、離型フィルムのキャビティへの真空吸着が促進される。また、Rzが3.5μm以下であれば、樹脂封止部の表面に凹凸が形成されることが抑えられる。Rzは、JIS B 0601に準拠して測定される。
(離型フィルム用樹脂)
 離型フィルムには、離型性、表面平滑性、成形時の金型の温度である100~140℃程度に耐え得る耐熱性、封止樹脂の流動や加圧力に耐え得る強度が求められる。本発明の離型フィルムとしては、離型性、耐熱性、強度、高温における伸びの点から、ポリオレフィンおよびフッ素樹脂からなる群から選ばれる1種以上の樹脂からなるフィルムが好ましく、フッ素樹脂からなるフィルムがより好ましい。本発明の離型フィルムは、フッ素樹脂と非フッ素樹脂とを併用したフィルムであってもよく、無機添加剤、有機添加剤等が配合されたフィルムであってもよい。
 ポリオレフィンとしては、離型性および金型追随性の点から、ポリメチルペンテンが好ましい。ポリオレフィンは、1種を単独で用いてもよく、2種以上を併用してもよい。
 フッ素樹脂としては、ETFE、ポリテトラフルオロエチレン、ペルフルオロ(アルキルビニルエーテル)/テトラフルオロエチレン共重合体等が挙げられ、高温での伸びが大きい点から、ETFEが特に好ましい。フッ素樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。また、ETFEは、1種を単独で用いてもよく、2種以上を併用してもよい。
 ETFEとしては、離型フィルム用樹脂の結晶化度、すなわち離型フィルムの引張弾性率を調整しやすい点から、第3のモノマーに基づく単位を有するものが好ましく、少量で引張弾性率の調整が行える点から、TFEに基づく単位とEに基づく単位と(ペルフルオロブチル)エチレンに基づく単位とを有する共重合体が特に好ましい。
 第3のモノマーとしては、フッ素原子を有するモノマーと、フッ素原子を有さないモノマーとが挙げられる。
 フッ素原子を有するモノマーの具体例としては、下記のモノマー(a1)~(a5)が挙げられる。
 モノマー(a1):炭素数3以下のフルオロオレフィン類。
 モノマ-(a2):X(CFCY=CH(ただし、X、Yは、それぞれ独立に水素原子またはフッ素原子であり、nは2~8の整数である。)で表されるペルフルオロアルキルエチレン。
 モノマー(a3):フルオロビニルエーテル類。
 モノマー(a4):官能基含有フルオロビニルエーテル類。
 モノマー(a5):脂肪族環構造を有する含フッ素モノマー。
 モノマー(a1)としては、フルオロエチレン類(トリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、クロロトリフルオロエチレン等)、フルオロプロピレン類(ヘキサフルオロプロピレン(以下、HFPと記す。)、2-ヒドロペンタフルオロプロピレン等)等が挙げられる。
 モノマー(a2)としては、nが2~6のモノマーが好ましく、2~4のモノマーがより好ましい。また、Xがフッ素原子、Yが水素原子であるモノマー、すなわち、(ペルフルオロアルキル)エチレンがより好ましい。具体例としては、下記のものが挙げられる。
 CFCFCH=CH
 CFCFCFCFCH=CH((ペルフルオロブチル)エチレン。以下、PFBEと記す。)、
 CFCFCFCFCF=CH
 CFHCFCFCF=CH
 CFHCFCFCFCF=CH等。
 モノマー(a3)としては、下記のものが挙げられる。なお、下記のうちジエンであるモノマーは環化重合しうるモノマーである。
 CF=CFOCF
 CF=CFOCFCF
 CF=CF(CFCF(ペルフルオロ(プロピルビニルエーテル)。以下、PPVEと記す。)、
 CF=CFOCFCF(CF)O(CFCF
 CF=CFO(CFO(CFCF
 CF=CFO(CFCF(CF)O)(CFCF
 CF=CFOCFCF(CF)O(CFCF
 CF=CFOCFCF=CF
 CF=CFO(CFCF=CF等。
 モノマー(a4)としては、下記のものが挙げられる。
 CF=CFO(CFCOCH
 CF=CFOCFCF(CF)O(CFCOCH
 CF=CFOCFCF(CF)O(CFSOF等。
 モノマー(a5)としては、ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)、2,2,4-トリフルオロ-5-トリフルオロメトキシ-1,3-ジオキソール、ペルフルオロ(2-メチレン-4-メチル-1,3-ジオキソラン)等が挙げられる。
 フッ素原子を有さないモノマーの具体例としては、下記のモノマー(bl)~(b4)が挙げられる。
 モノマー(b1):オレフィン類。
 モノマー(b2):ビニルエステル類。
 モノマー(b3):ビニルエーテル類。
 モノマー(b4):不飽和酸無水物。
 モノマー(b1)としては、プロピレン、イソブテン等が挙げられる。
 モノマー(b2)としては、酢酸ビニル等が挙げられる。
 モノマー(b3)としては、エチルビニルエーテル、プチルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル等が挙げられる。
 モノマー(b4)としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸、無水ハイミック酸(5-ノルボルネン-2,3-ジカルボン酸無水物)等が挙げられる。
 第3のモノマーは、1種を単独で用いてもよく、2種以上を併用してもよい。
 第3のモノマーとしては、結晶化度の調整すなわち引張弾性率の調整がしやすい点から、モノマー(a2)、HFP、PPVE、酢酸ビニルが好ましく、HFP、PPVE、CFCFCH=CH、PFBEがより好ましく、PFBEが特に好ましい。
 TFEに基づく繰り返し単位とEに基づく繰り返し単位とのモル比(TFE/E)は、80/20~40/60が好ましく、70/30~45/55がより好ましく、65/35~50/50が特に好ましい。TFE/Eが前記範囲内であれば、ETFEの耐熱性および機械物性が良好となる。
 第3のモノマーに基づく繰り返し単位の割合は、全繰り返し単位(100モル%)のうち0.01~20モル%が好ましく、0.10~15モル%がより好ましく、0.20~10モル%が特に好ましい。第3のモノマーに基づく繰り返し単位の割合が前記範囲内であれば、ETFEの耐熱性および機械物性が良好となる。
 第3のモノマーがPFBEである場合、PFBEに基づく繰り返し単位の割合は、全繰り返し単位(100モル%)のうち5~10モル%が好ましく、5~7モル%が特に好ましい。PFBEに基づく繰り返し単位の割合が前記範囲内であれば、離型フィルムの132℃における引張弾性率を前記範囲内に調整できる。
 なお、PFBEに基づく繰り返し単位の割合を多くすると、(i)フィルムが柔らかくなりすぎ取り扱いが困難、(ii)オリゴマーが多くなりフィルム製造のロールが汚れやすい、(iii)耐熱性が低く離型フィルムとして使いにくい、等の問題があるため、従来の離型フィルム用ETFEにおいては、PFBEに基づく繰り返し単位を5モル%以上とすることはなかった。すなわち、従来の離型フィルム用ETFEでは、132℃における引張弾性率を24MPa以下とすることはなかった。
 ETFEの溶融流量(MFR)は、2~40g/10分が好ましく、5~30g/10分がより好ましく、10~20g/10分が特に好ましい。ETFEのMFRが前記範囲内であれば、ETFEの成形性が向上し、離型フィルムの機械特性が向上する。
 ETFEのMFRは、ASTM D3159に準拠して、5kg負荷を用い、297℃にて測定される値である。
(離型フィルムの製造方法)
 本発明の離型フィルムは、たとえば、離型フィルム用樹脂を用いて、所定のリップ幅を有するTダイを具備する押出機による溶融成形等によって製造できる。
(作用効果)
 以上説明した本発明の離型フィルムにあっては、132℃における引張弾性率が10~24MPaであるため、離型フィルムにしわが発生させることなく離型フィルムを均一に伸ばすことができる。よって、離型フィルムを広い面積で引っ張りながら金型のキャビティを覆うように配置する際や離型フィルムを広い面積または複雑な構造のキャビティ面に追随させる際に、離型フィルムの厚さにムラが生じにくい。その結果、離型フィルムの厚さのムラが樹脂封止部の表面に転写されることによって現れる、樹脂封止部の表面の歪みが抑えられる。樹脂封止部が発光ダイオードのレンズ部であれば、良好なレンズ部を有し、優れた光学特性を示す発光ダイオードを安定して製造できる。
<半導体デバイス>
 後述する本発明の半導体デバイスの製造方法によって製造される半導体デバイスとしては、トランジスタ、ダイオード等の半導体素子を集積した集積回路;発光素子を有する発光ダイオード等が挙げられる。
(発光ダイオード)
 以下、半導体デバイスの一例として発光ダイオードについて説明する。
 発光ダイオードは、たとえば、基板と、基板の上に実装された発光素子と、発光素子を封止するレンズ部とを有する。
 発光ダイオードを白色発光ダイオードとする場合には、蛍光体を分散させた樹脂で発光素子を封入した状態で、その周りを封止樹脂で封止してレンズ部を形成する。
 レンズ部の、外側に露出した部分の面積(以下、表面積と記す。)は、56mm以上が好ましい。従来の離型フィルムを用いた場合に、レンズ部の表面に歪みが発生しやすい表面積が56mm以上のレンズ部であっても、本発明の離型フィルムを用いることによって、レンズ部の表面に歪みが発生しにくい。レンズ部の表面積は、56~628mmがより好ましく、56~353mmが特に好ましい。
 レンズ部の形状としては、略半球型;円柱形状の樹脂封止部とその上の略半球形状のレンズ部とからなる砲弾型;フレネルレンズ型;円柱を軸方向に二等分した形状の蒲鉾型;複数の略半球形状のレンズ部が連続して一体になって並んだ略半球レンズアレイ型等が挙げられる。
 図1は、発光ダイオードの一例を示す断面図である。
 発光ダイオード1は、基板10と、基板10の上に実装された発光素子12と、発光素子12を封止する略半球型のレンズ部14とを有する。
 図2は、発光ダイオードの他の例を示す断面図である。
 発光ダイオード1は、基板10と、基板10の上に実装された発光素子12と、発光素子12を封止する砲弾型のレンズ部14とを有する。
 図3は、発光ダイオードの他の例を示す断面図である。
 発光ダイオード1は、基板10と、基板10の上に実装された発光素子12と、発光素子12を封止するフレネルレンズ型のレンズ部14とを有する。
 図4は、発光ダイオードの他の例を示す斜視図である。
 発光ダイオード1は、基板10と、基板10の上に実装された発光素子12と、発光素子12を封止する蒲鉾型のレンズ部14とを有する。
 図5は、発光ダイオードの他の例を示す斜視図である。
 発光ダイオード1は、基板10と、基板10の上に実装された複数の発光素子12と、複数の発光素子12をまとめて封止する略半球レンズアレイ型のレンズ部14とを有する。
<硬化性の封止樹脂>
 硬化性の封止樹脂としては、熱硬化性樹脂や光硬化性樹脂等が挙げられ、金型内で硬化して硬化した樹脂となる。硬化性の封止樹脂は流動性を有し、成形に際して金型のキャビティの内面形状に追従し、その状態で硬化して成形物となる。硬化性の封止樹脂は通常常温で流動性を有するものが使用されるが、金型に充填される際に加熱されて流動化する、常温で固体の樹脂であってもよい。さらに、固体状態(たとえば、粉末状態)で金型に充填され、金型内で加熱されていったん流動状態となった後に硬化するような樹脂であってもよい。なお、硬化性の封止樹脂は添加剤等の任意成分が含有されていてもよい。たとえば、充填剤や顔料等の固体粉末が配合されていてもよい。
 硬化性の封止樹脂としては、熱硬化性樹脂が好ましい。熱硬化性樹脂としては、硬化の際に低分子量物が副生しないタイプの熱硬化性樹脂が好ましい。具体的には、ハイドロシリレーション反応で硬化する熱硬化性シリコーン樹脂、エポキシ樹脂、重合性不飽和基を2以上有する架橋硬化性化合物(アクリロイルオキシ基を2以上有する化合物等)が挙げられる。たとえば、ビニル基を有するオルガノポリシロキサンとケイ素原子に結合した水素原子を有するオルガノポリシロキサンの組合せからなる熱硬化性シリコーン樹脂、ポリエポキシドからなる主剤と硬化剤ないし架橋剤との組み合わせからなるエポキシ樹脂、アクリロイルオキシ基を2以上有する化合物とラジカル発生剤との組み合わせからなる熱硬化性アクリル樹脂等が挙げられる。具体的には、たとえば、熱硬化性シリコーン樹脂の市販品としては、信越化学工業社製のLPS-3412AJ、LPS-3412B等が挙げられ、エポキシ樹脂の市販品としては、日本化薬社製のSEJ-01R等が挙げられる。
<半導体デバイスの製造方法>
 本発明の半導体デバイスの製造方法は、金型を用いて半導体素子を硬化性の封止樹脂で封止して半導体デバイスを製造する方法において、本発明の離型フィルムを用いることを特徴とする。本発明の半導体デバイスの製造方法としては、本発明の離型フィルムを用いること以外は、公知の製造方法を採用できる。樹脂封止部の形成方法としては、圧縮成形法またはトランスファ成形法が挙げられる。装置としては、公知の圧縮成形装置またはトランスファ成形装置を用いることができる。製造条件も、公知の半導体デバイスの製造方法における条件と同じ条件とすればよい。
 硬化性の封止樹脂を金型のキャビティ内で硬化させて、硬化した封止樹脂からなる樹脂封止部を形成する方法としては、圧縮成形法およびトランスファ成形法が好ましい。これら成形法において、金型温度、すなわち、封止樹脂を硬化させる際の金型内面の温度は、封止樹脂の種類にもよるが、通常100~140℃である。場合によっては、封止樹脂の種類によりさらに高い金型温度が必要な場合があり、また、封止樹脂が硬化する際の発熱により金型温度が上昇する場合もある。本発明の離型フィルムは金型温度が185℃程度になる場合まで充分使用できる。
 本発明の離型フィルムは、金型の封止樹脂が接するキャビティ面に配置される。キャビティに充填された封止樹脂は離型フィルムを介して金型内面に接し、その金型に接した状態で封止樹脂が硬化して硬化した樹脂となる。封止樹脂が硬化した後、硬化した封止樹脂からなる樹脂封止部を有する半導体デバイスが金型から取り出される。
 本発明の半導体デバイスの製造方法として、より具体的には、封止樹脂の充填のタイミングによって下記の方法(α)と方法(β)の2種類が挙げられる。下記の方法(α)は圧縮成形法の一例であり、下記方法(β)はトランスファ成形法の一例である。
 方法(α):下記の工程(α1)~(α5)を有する方法。
 (α1)本発明の離型フィルムを、金型のキャビティを覆うように配置する工程。
 (α2)離型フィルムを金型のキャビティ面の側に真空吸引する工程。
 (α3)キャビティ内に封止樹脂を充填する工程。
 (α4)半導体素子をキャビティ内の所定の位置に配置し、封止樹脂によって半導体素子を封止して樹脂封止部を形成し、半導体デバイスを得る工程。
 (α5)金型内から半導体デバイスを取り出す工程。
 方法(β):下記の工程(β1)~(β5)を有する方法。
 (β1)本発明の離型フィルムを、金型のキャビティを覆うように配置する工程。
 (β2)離型フィルムを金型のキャビティ面の側に真空吸引する工程。
 (β3)半導体素子をキャビティ内の所定の位置に配置する工程。
 (β4)キャビティ内に封止樹脂を充填し、該封止樹脂によって半導体素子を封止して樹脂封止部を形成し、半導体デバイスを得る工程。
 (β5)金型内から半導体デバイスを取り出す工程。
(発光ダイオードの製造方法)
 以下、半導体デバイスの製造方法の一例として発光ダイオードの製造方法について説明する。
(方法(α))
 発光ダイオードの製造方法のうち方法(α)の一例として、発光ダイオードを圧縮成形法によって製造する場合について詳細に説明する。圧縮成形法は、特開2005-305954号公報に記載されているような、複数の発光ダイオードを一括で大量に生産できる製造方法である。
 圧縮成形法に用いる金型は、図6に示すように、上型20と中型(図示略)と下型22とを有する。上型20には、基板10を吸着する真空ベント(図示略)が形成されており、発光素子12を搭載した基板10を上型20に吸着させることができる。下型22には、発光ダイオード1のレンズ部14の形状に対応する形状のキャビティ24が形成されている。また、下型22には、離型フィルム30と下型22との間の空気を吸引することによって離型フィルム30を下型22に吸着するための真空ベント(図示略)が形成されている。
 下型22のキャビティ面26は、高品質なレンズ部14が形成されやすく、光学特性に優れた発光ダイオード1が得られやすい点から、平滑であることが好ましい。キャビティ面26を梨地とすれば、離型フィルム30をより効率的にキャビティ面26に真空吸着できるが、得られる発光ダイオード1のレンズ部14の表面に凹凸が生じ、レンズ精度が悪化するおそれがある。
 工程(α1):
 図6に示すように、下型22のキャビティ24を覆うように離型フィルム30を配置する。離型フィルム30は、巻出ロール(図示略)から送られ、巻取ロール(図示略)で巻き取られる。離型フィルム30は、巻出ロールおよび巻取ロールによって引っ張られるため、引き伸ばされた状態にて下型22のキャビティ24を覆うように配置される。
 工程(α2):
 図7に示すように、下型22のキャビティ24の外部に形成した真空ベント(図示略)を通じて真空吸引し、離型フィルム30とキャビティ面26との間の空間を減圧し、離型フィルム30を引き伸ばして変形させて、下型22のキャビティ面26に真空吸着させる。さらに、下型22の周縁に配置された枠状の中型(図示略)を締め、離型フィルム30を全方向から引っ張り、緊張状態にさせる。
 なお、高温環境下での離型フィルム30の強度、厚さ、またキャビティ24の形状によって、離型フィルム30は、キャビティ面26に密着するとは限らない。図7に示すように、工程(α2)の真空吸着の段階では、離型フィルム30とキャビティ面26との間には、空隙が少し残ることがある。
 工程(α3):
 図8に示すように、硬化性の封止樹脂40をアプリケータ(図示略)によって、キャビティ24内の離型フィルム30の上に適量充填する。
 封止樹脂40としては、通常、透明な硬化樹脂となる硬化性樹脂が用いられる。なお、光拡散性を目的として、乳白色の透明な硬化樹脂となる、添加剤等を含む硬化性樹脂を用いることもある。
 工程(α4):
 図9に示すように、キャビティ24内の離型フィルム30の上に封止樹脂40を充填した下型22と、発光素子12を搭載した基板10を吸着した上型20とを型締めし、金型を加熱し、封止樹脂40を硬化させて硬化樹脂とし、発光素子12を封止するレンズ部14を形成する。
 工程(α4)においては、キャビティ24内に充填された封止樹脂40が型締め圧力によって、さらにキャビティ24に押し込まれ、離型フィルム30が引き伸ばされて変形することによってキャビティ面26に密着する。そのため、キャビティ24の形状に対応した形状のレンズ部14が形成される。
 金型温度、すなわち金型内の封止樹脂40を硬化させる温度は、100~185℃が好ましく、100~140℃がより好ましい。金型温度が100℃以上であれば、発光ダイオード1の生産性が向上する。金型温度が185°C以下であれば、封止樹脂40の硬化の際の劣化が抑えられる。また、封止樹脂40の硬化物が金型から取り出される際の金型内外の温度差による熱収縮に起因するレンズ部14の形状変化をより抑制するために、また発光ダイオード1の保護が特に求められる場合には、金型温度は140℃以下とすることが好ましい。
 型締め時の離型フィルム30の厚さは、75μm以下が望ましい。厚さが75μm以下であれば、キャビティ面26への追従性が充分となり、均一な形のレンズ部14を形成しやすい。
 工程(α5):
 図10に示すように、上型20と下型22とを型開きし、発光ダイオード1を取り出す。剥離力の最大値が0.8N/25mm以下ならば、発光ダイオード1を金型から容易に離型できる。離型すると同時に、離型フィルム30の使用済み部分を巻取ロール(図示略)に送り、離型フィルム30の未使用部分を巻出ロール(図示略)から送り出す。
 巻出ロールから巻取ロールへ搬送する際の離型フィルム30の厚さは16μm以上が好ましい。厚さが16μm未満では、離型フィルム30の搬送時にしわが生じやすい。離型フィルム30にしわが入ると、しわがレンズ部14に転写されて製品不良となる。厚さが16μm以上であれば、離型フィルム30に張力を充分にかけることによって、しわの発生を抑えることができる。
 巻出ロールから巻取ロールへ搬送する際の離型フィルム30の132℃における引張弾性率は10MPa以上が好ましい。132℃における引張弾性率が10MPa未満では、離型フィルム30が非常に柔らかいため、離型フィルム30に張力を均一にかけられず、離型フィルム30の搬送時にしわが生じやすい。離型フィルム30にしわが入ると、しわがレンズ部14に転写されて製品不良となる。132℃における引張弾性率が10MPa以上であれば、離型フィルム30に張力を充分にかけることによって、しわの発生を抑えることができる。
(方法(β))
 発光ダイオードの製造方法のうち方法(β)の一例として、発光ダイオードをトンラスファ成形法によって製造する場合について詳細に説明する。トランスファ成形法は、発光ダイオードの製造に通常用いられる方法である。
 トランスファ成形法に用いる金型は、図11に示すように、上型50と下型52とを有する。上型50には、発光ダイオード1のレンズ部14の形状に対応する形状のキャビティ54と、キャビティ54に硬化性の封止樹脂40を導く凹状の樹脂導入部60とが形成されている。下型52には、発光素子12を搭載した基板10を設置する基板設置部58と、封止樹脂40を配置する樹脂配置部62が形成されている。また、樹脂配置部62内には、封止樹脂40を上型50の樹脂導入部60へと押し出すプランジャ64が設置されている。
 上型50のキャビティ面56は、高品質なレンズ部14が形成されやすく、光学特性に優れた発光ダイオード1が得られやすい点から、平滑であることが好ましい。キャビティ面56を梨地とすれば、離型フィルム30をより効率的にキャビティ面56に真空吸着できるが、得られる発光ダイオード1のレンズ部14の表面に凹凸が生じ、レンズ精度が悪化するおそれがある。
 工程(β1):
 図12に示すように、上型50のキャビティ54を覆うように離型フィルム30を配置する。離型フィルム30は、キャビティ54および樹脂導入部60の全体を覆うように配置することが好ましい。離型フィルム30は、巻出ロール(図示略)および巻取ロール(図示略)によって引っ張られるため、引き伸ばされた状態にて上型50のキャビティ54を覆うように配置される。
 工程(β2):
 図13に示すように、上型50のキャビティ54の外部に形成した溝(図示略)を通じて真空吸引し、離型フィルム30とキャビティ面56との間の空間、および離型フィルム30と樹脂導入部60の内壁との間の空間を減圧し、離型フィルム30を引き伸ばして変形させて、上型50のキャビティ面56に真空吸着させる。
 なお、高温環境下での離型フィルム30の強度、厚さ、またキャビティ54の形状によって、離型フィルム30は、キャビティ面56に密着するとは限らない。図13に示すように、工程(β2)の真空吸着の段階では、離型フィルム30とキャビティ面56との間には、空隙が少し残ることもある。
 工程(β3):
 図14に示すように、発光素子12を実装した基板10を、基板設置部58に設置して、また、樹脂配置部62のプランジャ64上には、硬化性の封止樹脂40を配置する。その後、上型50と下型52とを型締めし、発光素子12をキャビティ54内の所定の位置に配置する。
 硬化性の封止樹脂40としては、方法(α)で用いた封止樹脂40と同様のものが挙げられる。
 工程(β4):
 図15に示すように、下型52のプランジャ64を押し上げ、樹脂導入部60を通じてキャビティ54内に封止樹脂40を充填する。次いで、金型を加熱し、封止樹脂40を硬化させ、発光素子12を封止するレンズ部14を形成する。
 工程(β4)においては、キャビティ54内に封止樹脂40が充填されることによって、樹脂圧力によって離型フィルム30がさらにキャビティ面56側に押し込まれ、引き延ばされて変形することによってキャビティ面56に密着する。そのため、キャビティ54の形状に対応した形状のレンズ部14が形成される。
 金型温度、すなわち封止樹脂40を硬化させる温度は、方法(α)における温度範囲と同じ範囲とすることが好ましい。
 封止樹脂40の充填時の樹脂圧は、2~30MPaが好ましく、3~10MPaがより好ましい。樹脂圧が2MPa以上であれば、封止樹脂40の充填不足等の欠点が生じにくい。樹脂圧が30MPa以下であれば、良好な品質の発光ダイオード1が得られやすい。封止樹脂40の樹脂圧は、プランジャ646によって調整できる。
 工程(β5):
 図16に示すように、樹脂導入部60内で封止樹脂40が硬化した硬化物16が付着した状態の発光ダイオード1を金型から取り出し、硬化物16を切除する。
 レンズ部14形成後の金型内で、形成したレンズ部14とキャビティ面56との間に離型フィルム30が配置されており、剥離力の最大値が0.8N/25mm以下ならば、発光ダイオード1を金型から容易に離型できる。
 本発明の製造方法は、上述の略半球型のレンズ部14を有する発光ダイオード1の製造と同様にして、他の形状のレンズ部14を有する発光ダイオード1の製造にも適用できる。この場合、それぞれのレンズ部14の形状に対応するキャビティを有し、発光素子12を所定の位置に設置できる金型を用い、上述の工程を実施すればよい。
(作用効果)
 以上説明した本発明の半導体デバイスの製造方法にあっては、離型フィルムを伸ばした際に離型フィルムの厚さにムラが生じにくい本発明の離型フィルムを用いているため、離型フィルムの厚さのムラが樹脂封止部の表面に転写されることによって現れる、樹脂封止部の表面の歪みが抑えられる。よって、樹脂封止部が大型化、複雑化しても、樹脂封止部の表面の歪みが抑えられた半導体デバイスを製造できる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例に限定されない。
 例1~3は実施例であり、例4~8は比較例である。
(各繰り返し単位の割合)
 ETFEにおける各繰り返し単位の割合は、全フッ素量測定および溶融19F-NMR測定の結果から算出した。
(MFR)
 ETFEのMFRは、ASTM D3159に準拠して、5kg負荷を用い、297℃にて測定した。
(融点)
 樹脂の融点は、示差走査熱量計(SII社製、DSC7020)を用いて、樹脂を10℃/分で加熱した際の吸熱ピークから求めた。
(引張弾性率)
 離型フィルムの132℃における引張弾性率は、JIS K 7127に準拠して測定した。該離型フィルムと同じ樹脂を用いて作製した厚さ400μmのプレスシートを、短冊形状(試験片タイプ5)に打ち抜き、試験シートを作製した。該試験シートについて、シート温度:132℃、引張速度:1mm/分の条件にて引張試験を行い、引張ひずみ0.05%から0.25%までの応力を測定し、下式から引張弾性率を求めた。
 引張弾性率(MPa)=(ひずみ0.25%時の応力(MPa)-ひずみ0.05%時の応力(MPa))/(ひずみ0.25%-ひずみ0.05%)/100
(剥離力)
 剥離力は、JIS K 6854-2に準拠し、以下のように、離型フィルムと2液混合型の熱硬化性シリコーン樹脂との180°剥離試験で測定した。
 (a)離型フィルムとアルミニウム板の間に混合した熱硬化性シリコーン樹脂(東レダウコーニング社製、OE6630)を適量塗布した。
 (b)熱硬化性シリコーン樹脂を挟み込んだ離型フィルムとアルミニウム板を130℃、1MPaで5分間プレスして熱硬化性シリコーン樹脂を硬化させた。なお、硬化したシリコーン樹脂層の厚みが100μmとなるように前記熱硬化性シリコーン樹脂の塗布量を調節した。
 (c)接着した離型フィルムとアルミニウム板を25mm幅に切断した。
 (d)引張試験機(オリエンテック社製、RTC-1310A)を用いて、試験片における硬化したシリコーン樹脂層に対する剥離フィルムの常温における180°剥離力を、100mm/分の剥離速度で測定した。
 (e)力(N)-つかみ移動距離曲線における、つかみ移動距離25mmから125mmまでの剥離力の最大値(単位はN/25mm)を求めた。
 (f)5個の試験片を用いて、各離型フィルムの剥離力の最大値の算術平均を求めた。
(レンズ部の外観)
 発光ダイオードを製造した後、レンズ部の外観を目視にて評価した。
 ◎(非常に良好):レンズ部の表面は一様で、瑕疵は見られない。
 ○(良好):レンズ部の表面にわずかな歪みが見られるが、機能に影響はない。
 ×(不良):レンズ部の表面に歪み、しわ等の瑕疵が見られる。
〔例1〕
(ETFEの製造)
 真空引きした94Lのステンレス製オートクレーブに、1-ヒドロトリデカフルオロヘキサンの87.3kg、1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(旭硝子社製、AK225cb。以下、AK225cbと記す。)の4.21kg、PFBEの2.13kgを仕込み、撹拌しながら66℃まで昇温し、TFE/E=89/11(モル比)の混合ガスを1.5MPaGになるまで導入し、50質量%のtert-ブチルペルオキシピバレートのAK225cb溶液の60.4gを仕込んで重合を開始した。重合中は、圧力が1.5MPaGとなるようにTFE/E=60/40(モル比)の混合ガスおよび該混合ガスに対して7.0モル%に相当する量のPFBEを連続的に添加し、TFE/Eの混合ガスの7.19kgを仕込んだ後にオートクレーブを冷却し、残留ガスをパージし、重合を終了させた。重合に要した時間は333分であった。
 得られたETFEのスラリーを220Lの造粒槽へ移し、77Lの水を加えて撹拌しながら加熱し、重合溶媒や残留モノマーを除去し、粒状のETFE(1)の7.2kgを得た。
 得られたETFE(1)は、TFEに基づく繰り返し単位/Eに基づく繰り返し単位/PFBEに基づく繰り返し単位=54.5/39.0/6.5(モル比)、MFR:16.2g/10分、融点:195℃であった。
(離型フィルムの製造)
 厚さが50μmになるようにリップ調整した押出機によって、ETFE(1)を300℃で溶融押し出しし、厚さ50μmの離型フィルム(1)を得た。離型フィルム(1)の132℃における引張弾性率は、12MPaであり、剥離力の最大値は、0.6N/25mmであった。
(発光ダイオードの製造)
 発光素子12としては、白色発光素子(動作電圧:3、5V、消費電流:10mA)を用いた。
 離型フィルム30としては、離型フィルム(1)を用いた。
 封止樹脂40としては、2液混合型の硬化性シリコーン樹脂(信越化学工業社製のLPS-3412Aおよび信越化学工業社製のLPS-3412Bの等量混合物)を用いた。なお、この硬化性シリコーン樹脂は透明な硬化樹脂となる。
 金型としては、図11に示す金型を用いた。上型50のキャビティ54の形状は、表面積56mmの略半球型のレンズ部に対応する形状とした。
 上型50のキャビティ54を覆うように離型フィルム30を配置した。キャビティ54の開口部の中心に発光素子12が位置するように、下型52に発光素子12を実装した基板10を配置し、また、樹脂配置部62のプランジャ64上に前記硬化性シリコーン樹脂を配置した。真空吸引により離型フィルム30をキャビティ面56に真空吸着させ、型締めした後、キャビティ54内に封止樹脂40を充填した。金型を加熱して封止樹脂40を硬化させ、略半球型のレンズ部14を形成した。金型の加熱温度は、110℃とした。また、硬化時間は、3分とした。その後、上型50と下型52とを型開きし、金型から発光ダイオード1を取り出した。レンズ部の外観を評価した。結果を表1に示す。
〔例2〕
(離型フィルムの製造)
 25μmの厚さになるようにリップを調整した以外は、例1と同様にして離型フィルム(2)を得た。離型フィルム(2)の132℃における引張弾性率は、12MPaであり、剥離力の最大値は、0.6N/25mmであった。
 離型フィルム(2)を用い、例1と同様にして発光ダイオードを製造した。レンズ部の外観を評価した。結果を表1に示す。
〔例3〕
 TFEに基づく繰り返し単位/Eに基づく繰り返し単位/PFBEに基づく繰り返し単位=56.4/39.6/4.0(モル比)、MFR:18g/10分、融点:222℃であるETFE(2)を用意した。
 例1のETFE(1)と、例2のETFE(2)とを1対1(質量比)で混合し、15mm二軸押出機にて300℃で溶融混練し、混練物を得た。該混練物を用い、例1と同様にして厚さ50μmの離型フィルム(3)を得た。離型フィルム(3)の132℃における引張弾性率は、20MPaであり、剥離力の最大値は、0.5N/25mmであった。
 離型フィルム(3)を用い、例1と同様にして発光ダイオードを製造した。レンズ部の外観を評価した。結果を表1に示す。
〔例4〕
(ETFEの製造)
 真空引きした94Lのステンレス製オートクレーブに、1-ヒドロトリデカフルオロヘキサンの85.2kg、AK225cbの6.31kg、PFBEの1.22kgを仕込み、撹拌しながら66℃まで昇温し、TFE/E=89/11(モル比)の混合ガスを1.5MPaGになるまで導入し、50質量%のtert-ブチルペルオキシピバレートのAK225cb溶液を30.2g仕込んで重合を開始した。重合中は、圧力が1.5MPaGとなるようにTFE/E=60/40(モル比)の混合ガスおよび該混合ガスに対して3.3モル%に相当する量のPFBEを連続的に添加し、TFE/Eの混合ガスの7.19kgを仕込んだ後にオートクレーブを冷却し、残留ガスをパージし、重合を終了させた。重合に要した時間は305分であった。
 得られたETFEのスラリーを220Lの造粒槽へ移し、77Lの水を加えて撹拌しながら加熱し、重合溶媒や残留モノマーを除去し、粒状のETFE(3)の7.5kgを得た。
 得られたETFE(3)は、TFEに基づく繰り返し単位/Eに基づく繰り返し単位/PFBEに基づく繰り返し単位=56.3/40.7/3.0(モル比)、MFR:17.3g/10分、融点:236.9℃であった。
(離型フィルムの製造)
 厚さが50μmになるようにリップ調整した押出機によって、ETFE(3)を300℃で溶融押し出しし、厚さ50μmの離型フィルム(4)を得た。離型フィルム(4)の132℃における引張弾性率は、40MPaであり、剥離力の最大値は、0.3N/25mmであった。
(発光ダイオードの製造)
 離型フィルム(4)を用い、例1と同様にして発光ダイオードを製造した。レンズ部の外観を評価した。結果を表1に示す。
〔例5〕
 TFEに基づく繰り返し単位/Eに基づく繰り返し単位/プロピレンに基づく繰り返し単位=54.8/28.7/16.5(モル比)、MFR:6g/10分、融点:172℃であるエチレン/プロピレン/テトラフルオロエチレン共重合体(以下、PETFEと記す。)を用意した。
 厚さが50μmになるようにリップ調整した押出機によって、PETFEを250℃で溶融押し出しし、厚さ50μmの離型フィルム(5)を得た。離型フィルム(5)の132℃における引張弾性率は、4MPaであり、剥離力の最大値は、0.8N/25mmであった。 
 離型フィルム(5)を用い、例1と同様にして発光ダイオードを製造した。レンズ部の外観を評価した。結果を表1に示す。
〔例6〕
 ETFEフィルム(旭硝子社製、Fluon LM-ETFEフィルム、厚さ:50μm)を用意した。LM-ETFEフィルムの原料樹脂から作製した試験シートの132℃における引張弾性率は、28MPaであり、剥離力の最大値は、0.3N/25mmであった。
 ETFEフィルムを用い、例1と同様にして発光ダイオードを製造した。レンズ部の外観を評価した。結果を表1に示す。
〔例7〕
 PPフィルム(フタムラ化学社製、無延伸ポリプロピレンフィルム FPKグレード、厚さ:25μm)を用意した。PPフィルムから作製した試験シートの132℃における引張弾性率は、65MPaであり、剥離力の最大値は、3.6N/25mmであった。
 PPフィルムを用い、例1と同様にして発光ダイオードを製造した。レンズ部の外観を評価した。結果を表1に示す。
〔例8〕
 例1と同様にして得た厚さ50μmの離型フィルムの片方の表面に、コロナ放電処理を施し(TANTEC社製Corona Generator HV-05-2を使用、出力電圧:60V、出力周波数:30kHz。)、離型フィルム(8)を得た。離型フィルム(8)の132℃における引張弾性率は、12MPaであり、剥離力の最大値は6.5N/25mmであった。
 離型フィルム(8)を用い、例1と同様にして発光ダイオード8を製造した。ただし、離型フィルム(8)は下型52側にコロナ放電処理した面が向くように配置した。レンズ部の外観を評価した。結果を表1に示す
Figure JPOXMLDOC01-appb-T000001
 例4は、特許文献1の実施例1を追試したものである。例4においては、離型フィルムの引張弾性率が高いため、離型フィルムが不均一に伸び、金型追従後の離型フィルムに大きな厚さの差(ムラ)が生じ、厚さの差がレンズ部に転写されて外観不良(歪み)となった。
 例5においては、離型フィルムの引張弾性率が低いため、離型フィルムの巻き取り時に柔らかすぎて均一に張力がかけられず、容易にしわが発生し、しわがレンズ部に転写されて外観不良となった。
 例6においては、ETFEフィルムの引張弾性率が高いため、ETFEフィルムが不均一に伸び、金型追従後のETFEフィルムに大きな厚さの差(ムラ)が生じ、厚さの差がレンズ部に転写されて外観不良(歪み)となった。
 例7においては、PPフィルムの剥離力が高いため、封止樹脂の硬化後、金型を開いてレンズ部とPPフィルムを剥離する際に剥離せず、発光ダイオードの生産ができなかった。
 例8においては、ETFEフィルムの剥離力の最大値が大きいため、封止樹脂の硬化後、金型を開いてレンズ部とETFEフィルムを剥離する際に剥離せず、発光ダイオードの生産ができなかった。
 本発明の離型フィルムは、半導体デバイスの半導体素子を封止樹脂で封止して樹脂封止部を形成する金型のキャビティ面に配置される離型フィルムとして有用である。
 なお、2012年1月30日に出願された日本特許出願2012-016476号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1 発光ダイオード
 10 基板
 12 発光素子
 14 レンズ部
 16 硬化物
 20 上型
 22 下型
 24 キャビティ
 26 キャビティ面
 30 離型フィルム
 40 封止樹脂
 50 上型
 52 下型
 54 キャビティ
 56 キャビティ面
 58 基板設置部
 60 樹脂導入部
 62 樹脂配置部
 64 プランジャ

Claims (14)

  1.  半導体デバイスの半導体素子を硬化性の封止樹脂で封止して樹脂封止部を形成する金型のキャビティ面に配置される離型フィルムであって、
     JIS K 7127に準拠して測定した132℃における引張弾性率が、10~24MPaであり、
     剥離力の最大値が、0.8N/25mm以下である、離型フィルム。
  2.  フッ素樹脂からなる、請求項1に記載の離型フィルム。
  3.  前記フッ素樹脂が、テトラフルオロエチレンに基づく単位とエチレンに基づく単位とそれら以外の第3のモノマーに基づく単位とを有する共重合体である、請求項2に記載の離型フィルム。
  4.  前記第3のモノマーが、(ペルフルオロブチル)エチレンである、請求項3に記載の離型フィルム。
  5.  前記共重合体が、
     テトラフルオロエチレンに基づく繰り返し単位とエチレンに基づく繰り返し単位とのモル比(テトラフルオロエチレン/エチレン)が80/20~40/60であり、
     (ペルフルオロブチル)エチレンに基づく繰り返し単位の割合が全繰り返し単位(100モル%)のうち5~10モル%である、
    共重合体である、請求項4に記載の離型フィルム。
  6.  金型を用いて半導体素子を硬化性の封止樹脂で封止して半導体デバイスを製造する方法において、金型の封止樹脂が接するキャビティ面に、JIS K 7127に準拠して測定した132℃における引張弾性率が10~24MPaであり、かつ剥離力の最大値が0.8N/25mm以下である離型フィルムを配置し、前記封止樹脂を前記離型フィルムに接した状態で硬化させて樹脂封止部を形成することを特徴とする半導体デバイスの製造方法。
  7.  前記半導体デバイスが発光ダイオードであり、前記半導体素子が発光素子であり、前記樹脂封止部がレンズ部である、請求項6に記載の半導体デバイスの製造方法。
  8.  前記レンズ部の、外側に露出した部分の面積が、56mm以上である、請求項7に記載の半導体デバイスの製造方法。
  9.  封止樹脂が熱硬化性樹脂であり、該封止樹脂を前記離型フィルムに接した状態で熱硬化させる、請求項6~8のいずれか一項に記載の半導体デバイスの製造方法。
  10.  金型を用いて樹脂封止部を形成する方法が圧縮成形法である、請求項6~9のいずれか一項に記載の半導体デバイスの製造方法。
  11.  金型を用いて樹脂封止部を形成する方法がトランスファ成形法である、請求項6~9のいずれか一項に記載の半導体デバイスの製造方法。
  12.  下記の工程(α1)~(α5)を有する、半導体デバイスの製造方法。
     (α1)請求項1~5のいずれか一項に記載の離型フィルムを、金型のキャビティを覆うように配置する工程。
     (α2)前記離型フィルムを前記金型のキャビティ面の側に真空吸引する工程。
     (α3)前記キャビティ内に封止樹脂を充填する工程。
     (α4)半導体素子を前記キャビティ内の所定の位置に配置し、前記封止樹脂によって前記半導体素子を封止して樹脂封止部を形成し、半導体デバイスを得る工程。
     (α5)前記金型内から前記半導体デバイスを取り出す工程。
  13.  下記の工程(β1)~(β5)を有する、半導体デバイスの製造方法。
     (β1)請求項1~5のいずれか一項に記載の離型フィルムを、金型のキャビティを覆うように配置する工程。
     (β2)前記離型フィルムを前記金型のキャビティ面の側に真空吸引する工程。
     (β3)半導体素子を前記キャビティ内の所定の位置に配置する工程。
     (β4)前記キャビティ内に封止樹脂を充填し、該封止樹脂により前記半導体素子を封止して樹脂封止部を形成し、半導体デバイスを得る工程。
     (β5)前記金型内から前記半導体デバイスを取り出す工程。
  14.  前記半導体デバイスが発光ダイオードであり、
     前記半導体素子が発光素子であり、
     前記樹脂封止部がレンズ部であり、
     該レンズ部の外側に露出した部分の面積が、56mm以上である、請求項12または13に記載の半導体デバイスの製造方法。
PCT/JP2013/051917 2012-01-30 2013-01-29 離型フィルムおよびこれを用いた半導体デバイスの製造方法 WO2013115187A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147016191A KR102019656B1 (ko) 2012-01-30 2013-01-29 이형 필름 및 이것을 사용한 반도체 디바이스의 제조 방법
JP2013556416A JP6123683B2 (ja) 2012-01-30 2013-01-29 離型フィルムおよびこれを用いた半導体デバイスの製造方法
CN201380007058.2A CN104080585B (zh) 2012-01-30 2013-01-29 脱模膜和使用该脱模膜的半导体器件的制造方法
US14/445,663 US9306135B2 (en) 2012-01-30 2014-07-29 Mold release film and method of process for producing a semiconductor device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012016476 2012-01-30
JP2012-016476 2012-01-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/445,663 Continuation US9306135B2 (en) 2012-01-30 2014-07-29 Mold release film and method of process for producing a semiconductor device using the same

Publications (1)

Publication Number Publication Date
WO2013115187A1 true WO2013115187A1 (ja) 2013-08-08

Family

ID=48905222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051917 WO2013115187A1 (ja) 2012-01-30 2013-01-29 離型フィルムおよびこれを用いた半導体デバイスの製造方法

Country Status (6)

Country Link
US (1) US9306135B2 (ja)
JP (1) JP6123683B2 (ja)
KR (1) KR102019656B1 (ja)
CN (1) CN104080585B (ja)
TW (1) TWI610782B (ja)
WO (1) WO2013115187A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073080A (ja) * 2013-09-06 2015-04-16 富士電機株式会社 半導体装置およびその製造方法
WO2015068807A1 (ja) * 2013-11-07 2015-05-14 旭硝子株式会社 離型フィルム、および半導体パッケージの製造方法
WO2015098833A1 (ja) * 2013-12-26 2015-07-02 日東電工株式会社 半導体パッケージの製造方法
WO2016039443A1 (ja) * 2014-09-12 2016-03-17 日東電工株式会社 封止層被覆光半導体素子の製造方法および光半導体装置の製造方法
WO2018008562A1 (ja) * 2016-07-04 2018-01-11 旭硝子株式会社 エチレン-テトラフルオロエチレン系共重合体フィルムおよびその製造方法
WO2022219851A1 (ja) * 2021-04-15 2022-10-20 Towa株式会社 樹脂成形装置、及び、樹脂成形品の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011052834A1 (de) * 2011-08-19 2013-02-21 SÜDDEKOR GmbH Bahnförmige Matrize zum Erzeugen von Oberflächenmaterialien und Verfahren zum Herstellen einer bahnförmigen Matrize
DE102012212963B4 (de) * 2012-07-24 2022-09-15 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
JP6281427B2 (ja) * 2013-07-19 2018-02-21 セントラル硝子株式会社 膜形成用組成物およびその膜、並びにそれを用いる有機半導体素子の製造方法
EP3375796B1 (en) * 2015-11-13 2020-07-15 AGC Inc. Copolymer and composition containing same
JP6423399B2 (ja) * 2016-09-27 2018-11-14 アピックヤマダ株式会社 樹脂成形方法、フィルム搬送装置および樹脂成形装置
JP7029973B2 (ja) * 2018-02-16 2022-03-04 日本電産サンキョー株式会社 ゲル状部材の製造方法
KR20200124292A (ko) * 2018-03-01 2020-11-02 바스프 에스이 다공성 재료로 만들어진 바디를 제조하기 위한 몰드
CN111200049A (zh) * 2018-05-02 2020-05-26 首尔伟傲世有限公司 发光元件封装件
JP6994445B2 (ja) * 2018-08-31 2022-01-14 Towa株式会社 樹脂成形装置、離型フィルムの剥離方法、樹脂成形品の製造方法
CN114206573A (zh) * 2019-08-13 2022-03-18 美国陶氏有机硅公司 制造弹性体制品的方法
WO2021054126A1 (ja) * 2019-09-17 2021-03-25 I-Pex株式会社 樹脂封止方法及び樹脂封止金型
US10849235B1 (en) * 2020-05-20 2020-11-24 Tactotek Oy Method of manufacture of a structure and structure
TWI779614B (zh) * 2021-05-18 2022-10-01 薩摩亞商大煜國際有限公司 複合構件的製造方法
KR102554241B1 (ko) * 2022-12-02 2023-07-11 (주)상아프론테크 불소계 이형필름, 이를 통한 반도체 패키지 제조방법 및 반도체 패키지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158242A (ja) * 1999-11-30 2002-05-31 Hitachi Chem Co Ltd 半導体モールド用離型シート及び樹脂封止半導体装置の製造法
JP2009285990A (ja) * 2008-05-29 2009-12-10 Daikin Ind Ltd 離型フィルム
WO2010023907A1 (ja) * 2008-08-28 2010-03-04 三井化学株式会社 半導体樹脂パッケージ製造用金型離型フィルム、およびそれを用いた半導体樹脂パッケージの製造方法
WO2010079812A1 (ja) * 2009-01-08 2010-07-15 旭硝子株式会社 離型フィルムおよび発光ダイオードの製造方法
JP2012153775A (ja) * 2011-01-25 2012-08-16 Mitsui Chemicals Inc フィルム、前記フィルムの製造方法及びそれを用いたledパッケージの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1213305B1 (en) * 1999-09-13 2005-03-30 Asahi Glass Company Ltd. Tetrafluoroethylene / ethylene copolymer and film thereof
JP2004074713A (ja) * 2002-08-21 2004-03-11 Hitachi Chem Co Ltd 半導体モールド用離型シート
JP2006013170A (ja) * 2004-06-25 2006-01-12 Matsushita Electric Works Ltd 電子部品並びに電子部品の製造方法
WO2006059697A1 (ja) * 2004-12-03 2006-06-08 Asahi Glass Company, Limited エチレン-テトラフルオロエチレン系共重合体成形物およびその製造方法
WO2007116793A1 (ja) * 2006-04-05 2007-10-18 Asahi Glass Company, Limited 離型フィルム、離型性クッション材およびプリント基板の製造方法
JP5233381B2 (ja) * 2008-03-06 2013-07-10 旭硝子株式会社 エチレン/テトラフルオロエチレン共重合体の不織布
WO2011037034A1 (ja) 2009-09-24 2011-03-31 旭硝子株式会社 離型フィルムおよび発光ダイオードの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158242A (ja) * 1999-11-30 2002-05-31 Hitachi Chem Co Ltd 半導体モールド用離型シート及び樹脂封止半導体装置の製造法
JP2009285990A (ja) * 2008-05-29 2009-12-10 Daikin Ind Ltd 離型フィルム
WO2010023907A1 (ja) * 2008-08-28 2010-03-04 三井化学株式会社 半導体樹脂パッケージ製造用金型離型フィルム、およびそれを用いた半導体樹脂パッケージの製造方法
WO2010079812A1 (ja) * 2009-01-08 2010-07-15 旭硝子株式会社 離型フィルムおよび発光ダイオードの製造方法
JP2012153775A (ja) * 2011-01-25 2012-08-16 Mitsui Chemicals Inc フィルム、前記フィルムの製造方法及びそれを用いたledパッケージの製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015073080A (ja) * 2013-09-06 2015-04-16 富士電機株式会社 半導体装置およびその製造方法
WO2015068807A1 (ja) * 2013-11-07 2015-05-14 旭硝子株式会社 離型フィルム、および半導体パッケージの製造方法
CN105705308A (zh) * 2013-11-07 2016-06-22 旭硝子株式会社 脱模膜、以及半导体封装体的制造方法
JPWO2015068807A1 (ja) * 2013-11-07 2017-03-09 旭硝子株式会社 離型フィルム、および半導体パッケージの製造方法
CN105705308B (zh) * 2013-11-07 2017-12-29 旭硝子株式会社 脱模膜、以及半导体封装体的制造方法
US9859133B2 (en) 2013-11-07 2018-01-02 Asahi Glass Company, Limited Mold release film and process for producing semiconductor package
WO2015098833A1 (ja) * 2013-12-26 2015-07-02 日東電工株式会社 半導体パッケージの製造方法
WO2016039443A1 (ja) * 2014-09-12 2016-03-17 日東電工株式会社 封止層被覆光半導体素子の製造方法および光半導体装置の製造方法
WO2018008562A1 (ja) * 2016-07-04 2018-01-11 旭硝子株式会社 エチレン-テトラフルオロエチレン系共重合体フィルムおよびその製造方法
KR20190025817A (ko) 2016-07-04 2019-03-12 에이지씨 가부시키가이샤 에틸렌-테트라플루오로에틸렌계 공중합체 필름 및 그 제조 방법
DE112017003370T5 (de) 2016-07-04 2019-03-21 AGC Inc. Ethylen-tetrafluorethylen-copolymerfolie und verfahren zu deren herstellung
JPWO2018008562A1 (ja) * 2016-07-04 2019-04-18 Agc株式会社 エチレン−テトラフルオロエチレン系共重合体フィルムおよびその製造方法
US10940629B2 (en) 2016-07-04 2021-03-09 AGC Inc. Ethylene-tetrafluoroethylene copolymer film and method for producing same
KR102381501B1 (ko) * 2016-07-04 2022-03-31 에이지씨 가부시키가이샤 에틸렌-테트라플루오로에틸렌계 공중합체 필름 및 그 제조 방법
WO2022219851A1 (ja) * 2021-04-15 2022-10-20 Towa株式会社 樹脂成形装置、及び、樹脂成形品の製造方法
JP7482824B2 (ja) 2021-04-15 2024-05-14 Towa株式会社 樹脂成形装置、及び、樹脂成形品の製造方法

Also Published As

Publication number Publication date
US9306135B2 (en) 2016-04-05
JP6123683B2 (ja) 2017-05-10
US20140335634A1 (en) 2014-11-13
TW201334939A (en) 2013-09-01
CN104080585A (zh) 2014-10-01
TWI610782B (zh) 2018-01-11
JPWO2013115187A1 (ja) 2015-05-11
KR102019656B1 (ko) 2019-09-09
KR20140119689A (ko) 2014-10-10
CN104080585B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
JP6123683B2 (ja) 離型フィルムおよびこれを用いた半導体デバイスの製造方法
JP6402786B2 (ja) フィルム、およびその製造方法
JP6460091B2 (ja) 半導体素子実装用パッケージの製造方法、および離型フィルム
KR102389429B1 (ko) 이형 필름, 그 제조 방법, 및 반도체 패키지의 제조 방법
KR102381495B1 (ko) 이형 필름, 및 봉지체의 제조 방법
JP6481616B2 (ja) 離型フィルム、および半導体パッケージの製造方法
US10699916B2 (en) Mold release film, process for its production, and process for producing semiconductor package
US20120148820A1 (en) Mold release film and process for producing light emitting diode
US11318641B2 (en) Laminated film and method for producing semiconductor element
JPWO2018008562A1 (ja) エチレン−テトラフルオロエチレン系共重合体フィルムおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556416

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147016191

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743179

Country of ref document: EP

Kind code of ref document: A1