WO2013115174A1 - 内燃機関の可変バルブタイミング制御装置 - Google Patents

内燃機関の可変バルブタイミング制御装置 Download PDF

Info

Publication number
WO2013115174A1
WO2013115174A1 PCT/JP2013/051884 JP2013051884W WO2013115174A1 WO 2013115174 A1 WO2013115174 A1 WO 2013115174A1 JP 2013051884 W JP2013051884 W JP 2013051884W WO 2013115174 A1 WO2013115174 A1 WO 2013115174A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve timing
rotor
valve
engine
rotational speed
Prior art date
Application number
PCT/JP2013/051884
Other languages
English (en)
French (fr)
Inventor
博則 伊藤
糸山 浩之
阿部 浩
健司 有賀
健 塩澤
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013115174A1 publication Critical patent/WO2013115174A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L1/0532Camshafts overhead type the cams being directly in contact with the driven valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34463Locking position intermediate between most retarded and most advanced positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34466Locking means between driving and driven members with multiple locking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/02Camshaft drives characterised by their transmission means the camshaft being driven by chains
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2250/00Camshaft drives characterised by their transmission means
    • F01L2250/04Camshaft drives characterised by their transmission means the camshaft being driven by belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/041Camshafts position or phase sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/04Sensors
    • F01L2820/042Crankshafts position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a variable valve timing control device for an internal combustion engine.
  • Patent Document 1 discloses a variable valve timing device for an internal combustion engine that can lock the phase of a camshaft with respect to a crankshaft at an intermediate phase.
  • the lock mechanism in Patent Document 1 is a housing that rotates in synchronization with a crankshaft via a timing chain, and a vane that is provided in the housing and rotates together with the camshaft along a direction perpendicular to the camshaft.
  • the lock pin formed so as to extend is restricted from relative rotation of the camshaft with respect to the crankshaft.
  • the valve timing is forcibly controlled to the intermediate phase, so that the lock pin is engaged to the intermediate phase. It is possible to fix.
  • the lock pin since the lock pin is provided in a direction orthogonal to the cam shaft, the lock pin does not fit or is released from the fitted state in a region where the engine speed is extremely high, and the valve timing is set to the intermediate position. There are concerns that cannot be fixed.
  • the present invention provides a variable valve timing control device for an internal combustion engine that can fix the valve timing of the internal combustion engine at an intermediate position by a lock mechanism even when a failure occurs in sensors such as a crank angle sensor. For the purpose.
  • the variable valve timing control device for an internal combustion engine includes a first rotor that rotates in conjunction with a camshaft, a second rotor that rotates in conjunction with a crankshaft, and rotations of the first rotor and the second rotor.
  • An intermediate that can move back and forth in a direction perpendicular to the axis, and that can fix the relative rotational phase of the first rotor and the second rotor to a predetermined intermediate phase and fix the valve timing of the engine valve at a predetermined intermediate position.
  • a position fixing member and based on at least one of a crank angle sensor and a cam angle sensor, changing a relative rotational phase of the first rotor and the second rotor according to an operating state, thereby changing the engine valve
  • Valve timing changing means for varying the valve timing is provided, and when a failure of the crank angle sensor or the cam angle sensor is detected, the predetermined intermediate position is obtained. With changing the valve timing of the engine valve as has been decided to restrict the engine speed to a predetermined rotational speed.
  • the crank angle sensor or the cam angle sensor fails, the engine rotational speed of the internal combustion engine is limited to a predetermined rotational speed, so that the centrifugal force acting on the intermediate position fixing member can be suppressed. Therefore, the intermediate position fixing member engaged with both the first rotor and the second rotor in a predetermined intermediate phase is greatly increased in the direction orthogonal to the rotation axes of the first rotor and the second rotor due to the centrifugal force. It is possible to prevent the intermediate position fixing member from being disengaged from both the first rotor and the second rotor. That is, even when the crank angle sensor or the cam angle sensor is out of order, the valve timing of the internal combustion engine can be fixed at the intermediate position by the lock mechanism.
  • FIG. 1 is an explanatory view schematically showing a schematic configuration of an internal combustion engine for a vehicle to which the present invention is applied.
  • the valve operating mechanism that drives the intake valve 1 is a variable valve timing mechanism (VTC) 2 that can continuously delay the valve timing of the intake valve 1.
  • VTC variable valve timing mechanism
  • the variable valve timing mechanism 2 receives supply of hydraulic oil and continuously variably controls the rotational phase difference between the crankshaft 3 and the intake camshaft 4 to control the valve timing of the intake valve 1 (phase of the lift center angle). It is variable within a predetermined range.
  • the valve mechanism that drives the exhaust valve 5 is a general direct-acting valve mechanism, and the phases of the lift / operation angle and the lift center angle of the exhaust valve 5 are always constant. In FIG.
  • 1, 7 is an intake passage
  • 8 is a fuel injection valve
  • 9 is a throttle valve for controlling the amount of intake air
  • 10 is an exhaust passage
  • 11 is an ECM (engine control module) described later
  • 12 is a crankshaft 3.
  • 13 is a cam angle sensor that detects the rotation angle of the intake camshaft 4
  • 14 is a spark plug.
  • FIG. 2 is an explanatory diagram showing a schematic configuration of a variable valve timing control device for an internal combustion engine according to the present invention.
  • the variable valve timing mechanism 2 includes an inner rotor 21 and an outer rotor 22 that is fitted to the inner rotor 21 so as to be relatively rotatable.
  • the inner rotor 21 is fixed to the front end portion of the intake camshaft 4 rotatably supported by a cylinder block (not shown) of the internal combustion engine, and rotates integrally with the intake camshaft 4.
  • the intake camshaft 4 rotates together with the inner rotor 21, the intake valve 1 is driven to open and close by a cam 4a provided on the intake camshaft 4.
  • Four vanes 23 are provided radially on the outer periphery of the inner rotor 21.
  • the outer rotor 22 is coaxially disposed on the outer peripheral side of the inner rotor 21 so as to cover the inner rotor 21.
  • the outer rotor 22 is fixed to an intake cam sprocket (not shown) by a plurality of mounting bolts 24.
  • the intake cam sprocket is linked to the crankshaft 3 via a timing chain (or timing belt) (not shown).
  • the tip of the vane 23 is in sliding contact with the inner periphery of the recess 26, and the tip of the protrusion 25 is in sliding contact with the outer periphery of the inner rotor 21.
  • the inner rotor 21 and the intake camshaft 4, and the intake cam sprocket and the outer rotor 22 can be relatively rotated around the same axis.
  • two spaces 27 and 28 are defined in a liquid-tight manner by being partitioned by the vane 23.
  • the space 28 on the rotation direction (arrow P1 direction) side of the intake camshaft 4 with respect to the vane 23 is the retarded hydraulic chamber, and the space 27 on the opposite side (arrow P2 direction). It is an advance side hydraulic chamber.
  • an oil passage 32 that communicates with an advance angle side oil passage 30 that is a phase control oil passage, and an oil passage 33 that communicates with a retard angle side oil passage 31 that is a phase control oil passage. And are formed.
  • the hydraulic oil is not supplied to the advance side hydraulic chamber 27 and the retard side hydraulic chamber 28 at the same time.
  • a lock mechanism 34 that can fix the relative rotational phase of the inner rotor 21 and the outer rotor 22 to a predetermined intermediate phase.
  • the vane 23 is, for example, one end surface 26a of the recess 26 or a stopper on the end surface 26a side (see FIG. (Not shown), the valve timing of the intake valve 1 is in the most advanced state.
  • the position of the valve timing of the intake valve 1 at this time is defined as the most advanced angle position.
  • the vane 23 is, for example, a stopper (not shown) on the other end face 26b or end face 26b side of the recess 26.
  • the valve timing of the intake valve 1 is most retarded.
  • the position of the valve timing of the intake valve 1 at this time is set as the most retarded position.
  • the valve timing of the intake valve 1 is approximately the intermediate position between the most advanced position and the most retarded position, in other words, the volume of the advance side hydraulic chamber 27 and the volume of the retard side hydraulic chamber 28 are approximately.
  • the relative rotation phases of the inner rotor 21 and the outer rotor 22 are fixed by the lock mechanism 34 at the same timing.
  • the predetermined intermediate phase means that the valve timing of the intake valve 1 is at a substantially intermediate position between the most advanced angle position and the most retarded angle position, and the volume of the advanced angle side hydraulic chamber 27 and the retarded angle side hydraulic chamber. In this state, the volume of 28 is substantially equal.
  • the valve timing of the intake valve 1 is at a predetermined intermediate position
  • the valve timing of the intake valve 1 is at an approximately intermediate position between the most advanced angle position and the most retarded angle position, and the advance side hydraulic chamber 27 And the volume of the retard side hydraulic chamber 28 are substantially equal.
  • the lock mechanism 34 in the present embodiment is configured to prevent the inner rotor 21 from moving in the advance direction (arrow P1 direction) and to move the inner rotor 21 in the retard direction (arrow P2 direction). And a retard side locking mechanism 34b for blocking. Further, the advance side lock mechanism 34a and the retard side lock mechanism 34b in this embodiment have substantially the same configuration.
  • the advance side lock mechanism 34a includes an elongated lock key 35a that can be advanced and retracted in a direction orthogonal to the rotation axes of the inner rotor 21 and the outer rotor 22, a lock key accommodation chamber 36a formed on the convex portion 25 of the outer rotor 22, and a lock A coil spring 37a as an elastic member that is disposed in the key storage chamber 36a and constantly urges the lock key 35b toward the inner rotor 21, and an engagement formed with the outer periphery of the inner rotor 21 and engageable with the tip of the lock key 35a.
  • the concavity 38a is roughly constituted.
  • the advance side lock mechanism 34a prevents the inner rotor 21 from moving from the predetermined intermediate phase to the advance side when the tip of the lock key 35a is engaged with the engagement recess 38a in the predetermined intermediate phase. is there.
  • hydraulic oil can be supplied to the engaging recess 38 a from an oil passage 40 a formed in the inner rotor 21. Further, the hydraulic oil in the engagement recess 38a can be drained (discharged) through the oil passage 40a.
  • the retard-side lock mechanism 34 b has substantially the same configuration as the advance-angle side lock mechanism 34 a, and an elongated lock key 35 b that can advance and retreat in a direction orthogonal to the rotation axes of the inner rotor 21 and the outer rotor 22, and the outer rotor 22.
  • the retard side lock mechanism 34b prevents the inner rotor 21 from moving from the predetermined intermediate phase to the retard side when the tip of the lock key 35b engages with the engagement recess 38b in the predetermined intermediate phase. is there.
  • hydraulic oil can be supplied to the engaging recess 38b from an oil passage 40b formed in the inner rotor 21.
  • the hydraulic oil in the engagement recess 38b can be drained (discharged) through the oil passage 40b.
  • the advance side lock mechanism 34a can prevent the inner rotor 21 from moving from the predetermined intermediate phase to the advance side, and the retard side lock mechanism 34b allows the inner rotor 21 to move to the predetermined intermediate phase.
  • the valve timing of the variable valve timing mechanism 2 can be fixed at the predetermined intermediate position.
  • the variable valve timing mechanism 2 is driven by hydraulic oil from the oil pump 41.
  • the oil pump 41 is mechanically driven based on the rotational force of the crankshaft 3 and sucks the hydraulic oil in the oil pan 42.
  • the oil pump 41 supplies hydraulic oil to an oil control valve (OCV) 43 and an oil switching valve (OSV) 44.
  • OCV oil control valve
  • OSV oil switching valve
  • the oil control valve 43 and the oil switching valve 44 are control valves that are duty-controlled based on commands from an ECM (engine control module) 11.
  • the oil control valve 43 can supply hydraulic oil to the advance side hydraulic chamber 27 via the advance side oil passage 30 and supply hydraulic oil to the retard side hydraulic chamber 28 via the retard side oil passage 31. It is possible.
  • the oil switching valve 44 can supply hydraulic oil from the intermediate position fixing oil passage 45 to the engagement recesses 38a and 38b of the lock mechanisms 34a and 34b through the oil passages 40a and 40b.
  • the oil switching valve 44 has substantially the same configuration as that in which the port communicating with the advance side oil passage 30 is sealed when the oil control valve 43 is advanced.
  • the ECM 11 receives detection signals from various sensors. Based on the engine operating state grasped from the detection results of these various sensors, the ECM 11 The valve timing target value (target intake valve timing) is sequentially updated and calculated. Then, the ECM 11 outputs a command signal to the oil control valve 43 according to the engine operating state, and performs switching control of the oil control valve 43.
  • the oil control valve 43 is switched so that the hydraulic oil is supplied to the advance side hydraulic chamber 27, and when the valve timing of the intake valve 1 is delayed, the oil control valve 43 is delayed.
  • the oil control valve 43 is switched so that hydraulic oil is supplied to the corner side hydraulic chamber 28.
  • the valve timing of the intake valve 1 variably controlled by the variable valve timing mechanism 2 can be detected by the ECM 11 based on the output signals of the crank angle sensor 12 and the cam angle sensor 13.
  • the ECM 11 performs switching control of the oil switching valve 44 in accordance with whether or not the crank angle sensor 12 has failed.
  • the oil switching valve 44 is switched so that hydraulic oil is supplied to the engagement recesses 38a and 38b of the lock mechanisms 34a and 34b, and the crank angle sensor 12 is broken. Is not detected, the oil switching valve 44 is switched so that hydraulic oil is not supplied to the engagement recesses 38a and 38b of the lock mechanisms 34a and 34b.
  • the failure determination of the crank angle sensor 12 is determined as a failure when, for example, a detection signal from the crank angle sensor 12 is not input to the ECM 11 due to a disconnection or a short circuit, or when a pulse signal detected by the crank angle sensor 12 is not normal. .
  • FIG. 3 is an explanatory diagram schematically showing the operating state of the oil control valve 43 and the oil switching valve 44 with respect to the duty ratio which is a control command value.
  • the operation state of the oil control valve 43 includes an advance operation that advances the valve timing of the intake valve 1 and a neutral operation that does not supply hydraulic oil to both the advance side hydraulic chamber 27 and the retard side hydraulic chamber 28 ( A dead zone) and a retarding operation for retarding the valve timing of the intake valve 1.
  • the hydraulic oil is supplied to the advance side hydraulic chamber 27 while the hydraulic oil in the retard side hydraulic chamber 28 is drained (discharged), so that the valve timing of the intake valve 1 advances. It changes to the corner side.
  • the hydraulic oil is supplied to the retard hydraulic chamber 28 while the hydraulic oil in the advance hydraulic chamber 27 is drained (discharged), so the valve timing of the intake valve 1 is retarded. Change to the side.
  • the operation state of the oil switching valve 44 includes a lock state in which the valve timing of the intake valve 1 can be fixed at the predetermined intermediate position, and a lock release in which the valve timing of the intake valve 1 is not fixed at the predetermined intermediate position.
  • the state is roughly divided into a lock indefinite state in which it is not certain whether the valve timing of the intake valve 1 can be fixed at the predetermined intermediate position.
  • each lock key 35a, 35b may be engaged with the engagement recess 38a, 38b, respectively, or the tip of each lock key 35a, 35b may be engaged with the engagement recess 38a. , 38b may not be engaged.
  • variable valve timing mechanism 2 variably controls the valve timing of the intake valve 1 according to the driving conditions of the internal combustion engine
  • the oil switching valve 44 is controlled to the unlocked state by a command from the ECM 11.
  • the variable valve timing mechanism 2 fixes the valve timing of the intake valve 1 at the predetermined intermediate position
  • the oil switching valve 44 is controlled to the locked state by a command from the ECM 11.
  • valve timing of the intake valve 1 cannot be detected due to the failure of the crank angle sensor 12
  • the valve timing of the intake valve 1 by the variable valve timing mechanism 2 cannot be variably controlled.
  • the valve timing of the intake valve 1 is set to the predetermined intermediate position in order to achieve both combustion stability and a relative fuel efficiency improvement effect by advancing from the most retarded position. Fix it.
  • variable valve timing mechanism 2 when the engine rotational speed is high, the rotational speeds of the inner rotor 21 and the outer rotor 22 also increase, and thus act on the lock keys 35a and 35b of the lock mechanisms 34a and 34b. Since the centrifugal force is greater than the urging force of the coil springs 37a and 37b, the lock keys 35a and 35b resist the urging force of the coil springs 37a and 37b even when the oil switching valve 44 is controlled to the locked state. Therefore, there is a possibility that the leading ends of the lock keys 35a and 35b may not engage with the engagement recesses 38a and 38b.
  • each lock key 35a, the lock key 35a when the crank angle sensor 12 fails, each lock key 35a, the lock key 35a, the engine rotation speed is limited so that the engine rotation speed is equal to or lower than a predetermined upper limit rotation speed R1.
  • the centrifugal force acting on 35b is suppressed. Therefore, the lock keys 35a and 35b engaged with both the inner rotor 21 and the outer rotor 22 in the predetermined intermediate phase are greatly increased in the direction orthogonal to the rotation axes of the inner rotor 21 and the outer rotor 22 due to the centrifugal force. It can suppress that it will move and the engagement with respect to both the inner rotor 21 and the outer rotor 22 will be cancelled
  • FIG. 4 is a timing chart showing an example of changes in various parameters when a failure of the crank angle sensor 12 is detected.
  • the ECM 11 guides the valve timing of the intake valve 1 to the predetermined intermediate position. Implement neutral position guidance control.
  • the rotation speed limit flag is switched from “0” to “1” in order to limit the engine rotation speed.
  • the ECM 11 corrects the valve opening degree of the throttle valve 9 in the valve closing direction and controls the engine rotational speed to be equal to or less than the upper limit rotational speed R1.
  • the upper limit rotational speed R1 is influenced by the centrifugal force acting on the lock keys 35a and 35b even when the oil switching valve 44 is in the locked state.
  • the engine speed is such that it no longer engages with 38a and 38b, and is a value obtained in advance through experiments or the like.
  • the engine speed limit by the throttle valve 9 is delayed until the engine speed actually becomes equal to or lower than the upper limit speed R1, so in the example of FIG. 4, the neutral position guidance control is terminated. Until the timing of time t4, the engine speed is equal to or higher than the upper limit speed R1.
  • the neutral position guidance control is performed only once when a failure of the crank angle sensor 12 is detected, and the inner rotor of the variable valve timing mechanism 2 with the oil switching valve 44 controlled to the locked state.
  • the oil control valve 43 is controlled so that the relative rotational phase between the outer rotor 22 and the outer rotor 22 reliably experiences the predetermined intermediate phase.
  • the oil control valve 43 is controlled so that the valve timing of the intake valve 1 is at the most retarded position. Specifically, the duty ratio which is the control command value of the oil control valve 43 is set to 0% so that the valve timing of the intake valve 1 becomes the most retarded position at the maximum response speed of the variable valve timing mechanism 2. . In the period from time t2 to time t3, the oil control valve 43 is controlled so that the valve timing of the intake valve 1 is at the most advanced position. Specifically, the duty ratio which is the control command value of the oil control valve 43 is set to 100% so that the valve timing of the intake valve 1 is at the most advanced position at the maximum response speed of the variable valve timing mechanism 2. .
  • the time for controlling the oil control valve 43 with the duty ratio of 0% is set so as to secure a time that allows the valve timing of the intake valve 1 to change to the most retarded position.
  • the time for controlling the oil control valve 43 at a duty ratio of 100% is the time that the valve timing of the intake valve 1 can be changed from the most retarded position to the most advanced position. It is set to be secured.
  • the relative rotational phase of the inner rotor 21 and the outer rotor 22 of the variable valve timing mechanism 2 is at least between the times t1 and t3, regardless of the position of the valve timing of the intake valve 1 when the crank angle sensor 12 fails. If the engine rotational speed is equal to or lower than the upper limit rotational speed R1, the variable valve timing mechanism 2 is locked at the predetermined neutral position by the lock mechanisms 34a and 34b.
  • the crank angle sensor 12 when the crank angle sensor 12 fails, the neutral position guidance control is performed before the engine rotational speed is equal to or higher than the upper limit rotational speed R1 and before the engine rotational speed is reduced due to the engine rotational speed limitation. Therefore, the valve timing of the intake valve 1 is not fixed at the predetermined intermediate position until time t4 and thereafter, and the valve timing of the intake valve 1 changes according to the duty control of the oil control valve 43. . 4 indicates the valve timing of the intake valve 1, the thick solid line indicates the actual valve timing, and the thin line indicates the target valve timing of the intake valve 1. In FIG.
  • neutral position guidance control ends at time t3
  • neutral duty control or forced lock control is performed according to the engine speed at that time.
  • the neutral duty control is performed when the engine speed is higher than the upper limit rotational speed R1 when the crank angle sensor 12 fails.
  • the forced lock control is performed when the engine speed is equal to or lower than the upper limit rotational speed R1 when the crank angle sensor 12 fails.
  • the neutral duty control when the neutral duty control is performed, hysteresis is provided for the upper limit rotational speed R1, which is a threshold value, and the neutral duty control is started when the engine rotational speed exceeds the upper limit rotational speed R1.
  • the neutral duty control is continued until the engine rotational speed becomes smaller than the lower limit threshold rotational speed R2 that is a predetermined rotational speed smaller than the upper limit rotational speed R1.
  • the forced lock control is switched.
  • the engine rotational speed is higher than the upper limit rotational speed R1 at the time t3 when the neutral position guidance control is finished, so the timing until the time t5 when the engine rotational speed becomes lower than the lower limit threshold rotational speed R2 is reached.
  • Neutral duty control is implemented.
  • the oil control valve 43 is controlled to open so that the valve timing of the intake valve 1 is at the predetermined intermediate position, and the oil switching valve 44 is controlled to the locked state.
  • the rate of change of the valve timing of the intake valve 1 by the oil control valve 43 is small as seen from the center dead zone where the rate of change of the valve timing of the intake valve 1 becomes 0, as shown in FIG.
  • the rate of change of the valve timing of the intake valve 1 toward the retard side increases in the direction, and the rate of change of the valve timing of the intake valve 1 toward the advance side increases in the direction where the current value increases.
  • the control command value is not the duty ratio but the current value is converted to the horizontal axis, and the duty ratio increases in the direction in which the current value increases.
  • the valve timing of the intake valve 1 may be an evolution side from the predetermined intermediate position depending on the product due to the product variation of the oil control valve 43. Or it may change toward the retard side, and the valve timing of the intake valve 1 at the predetermined intermediate position cannot be guaranteed.
  • the value M on the advance side of the dead zone is used as the control command value of the oil control valve 43 during the neutral duty control. It should be noted that as the control command value of the oil control valve 43 when the valve timing of the intake valve 1 is set to the predetermined intermediate position, a value on the retard side from the dead zone can be used.
  • the forced lock control is performed.
  • the oil control valve 43 is controlled to be open and the oil switching valve 44 is controlled to the locked state so that the valve timing of the intake valve 1 becomes the most retarded position.
  • control command value at the time of the neutral duty control is set so that the valve timing of the intake valve 1 is advanced from the predetermined intermediate position.
  • the target value of the valve timing of the intake valve 1 changes to the most retarded position through the predetermined intermediate position, so that each lock mechanism 34a, 34b causes the intake valve 1 to The valve timing can be fixed at the predetermined intermediate position.
  • the inner rotor 21 and the outer rotor 22 are arranged so that the valve timing of the intake valve 1 becomes the most retarded position. Try to rotate relative. Therefore, the tip of the lock key 35b is pressed against the engaging recess 38b so as to prevent this relative rotation, and the rear end side of the lock key 35b also prevents this relative rotation with respect to the lock key storage chamber 36b. Pressed like so.
  • the lock key 35b is pressed against the engagement recess 38b and the lock key storage chamber 36b, and the frictional force of the pressed portion causes the lock key 35b in a direction orthogonal to the rotation axes of the inner rotor 21 and the outer rotor 22. Since the movement is suppressed, the influence of the centrifugal force acting on the lock key 35b can be reduced, and the engagement of the lock key 35b with both the inner rotor 21 and the outer rotor 22 is more reliably suppressed. be able to.
  • the upper limit rotation speed R1 is changed from a rotation speed that is smaller than the upper limit rotation speed R1 due to, for example, a downshift caused by traveling on an uphill road or a driver's operation.
  • the fuel cut is performed so that the engine rotational speed is equal to or lower than the upper limit rotational speed R1.
  • the engine speed limit is applied to the throttle valve 9, if the engine speed becomes higher than the upper limit speed R1, the engine speed is reduced by further performing fuel cut. It can be reliably lowered.
  • FIG. 6 is a timing chart showing an example of changes in various parameters when the engine rotational speed exceeds the upper limit rotational speed R1 when the engine rotational speed restriction is performed.
  • the neutral duty control is performed instead of the forced lock control. And the fuel cut which stops the fuel injection from the fuel injection valve 8 from the timing of this time T1 is started.
  • the neutral duty control is performed from time T1 until time T3 when the engine rotational speed becomes smaller than the lower limit threshold rotational speed R2.
  • time T2 in FIG. 6 is a timing at which the engine rotational speed becomes equal to or lower than the upper limit rotational speed R1.
  • the control command value of the oil control valve 43 is a value on the advance side of the value (duty ratio 50%) that sets the valve timing of the intake valve 1 to the predetermined intermediate position (the above-mentioned advancement value). Since the angle side value M) is used, the actual valve timing of the intake valve 1 (the VTC operating degree shown by the thick solid line in FIG. 6) slightly changes to the advance side from time T1 to time T3. is doing.
  • the forced lock control is performed.
  • the fuel cut continues even when the neutral duty control ends, and ends at the timing of time T4 when a predetermined time has elapsed from time T3.
  • the centrifugal force acting on the lock key 35b is caused by the frictional force on the engagement recess 38b of the lock key 35b and the lock key storage chamber 36b by the forced lock control. This is to reduce the influence. That is, the fuel cut release delay time with respect to time T3, that is, the period from time T3 to time T4, the valve timing of the intake valve 1 is reliably changed to the predetermined intermediate position after switching to the forced lock control. This is the maximum value expected as the time until each locking mechanism 34a, 34b fixes the predetermined intermediate position.
  • the valve timing of the intake valve 1 can be fixed at the predetermined intermediate position when the crank angle sensor 12 fails. Therefore, the intake air in the cold idling operation is aimed at improving the exhaust performance. Even if it is applied to a vehicle in which the valve timing of the valve is advanced, or a hybrid vehicle in which the valve timing of the intake valve at the start is advanced in order to achieve both startability and drivability, the crank angle sensor 12 The combustion stability at the time of failure can be secured.
  • FIG. 7 is a flowchart showing the flow of control in the embodiment described above.
  • the neutral position guidance control is performed, and the process proceeds to S15.
  • the rotation speed limit flag is set to “1” and the current routine is terminated.
  • the rotation speed limit flag is “0” in the initial state where the crank angle sensor 12 is not malfunctioning.
  • S16 it is determined whether or not the engine speed is higher than the upper limit speed R1. When the engine speed is higher than the upper limit speed R1, fuel cut is performed (S17), and the neutral duty control is performed (S18). When the engine rotational speed is equal to or lower than the upper limit rotational speed R1, the process proceeds to S19 and the forced lock control is performed.
  • the fuel cut is performed when the engine rotational speed exceeds the upper limit rotational speed R1, but the ignition by the spark plug 14 is stopped at the fuel cut timing instead of the fuel cut. You may make it implement ignition cut. Moreover, you may make it implement a fuel cut and an ignition cut simultaneously.
  • the control command value during the neutral duty control is set so that the valve timing of the intake valve 1 is on the more advanced side than the predetermined intermediate position.
  • the neutral duty is controlled by controlling the valve timing of the intake valve 1 to be the most advanced position during the forced lock control. It is also possible to set the control command value at the time of control so that the valve timing of the intake valve 1 is retarded from the predetermined intermediate position. In this case, when the neutral duty control is switched to the forced lock control, the valve timing of the intake valve 1 changes to the most advanced position through the predetermined intermediate position, and each lock mechanism The valve timing of the intake valve 1 can be fixed at the predetermined intermediate position by 34a and 34b.
  • the front end of the lock key 35a is pressed against the engaging recess 38a so as to prevent relative rotation between the inner rotor 21 and the outer rotor 22, and the rear end of the lock key 35a is against the lock key accommodating chamber 36a.
  • the inner rotor 21 and the outer rotor 22 are pressed so as to prevent relative rotation. Therefore, the frictional force of these pressed portions suppresses the movement of the lock key 35a in the direction orthogonal to the rotation axes of the inner rotor 21 and the outer rotor 22, and can reduce the influence of centrifugal force acting on the lock key 35a. It is possible to more reliably suppress the engagement of the lock key 35a with both the inner rotor 21 and the outer rotor 22 from being released.
  • the valve timing of the intake valve 1 is fixed at the predetermined intermediate position when the crank angle sensor 12 fails. However, when the cam angle sensor 13 fails, the valve of the intake valve 1 is fixed. The timing may be fixed at the predetermined intermediate position.
  • the present invention can be applied to a variable valve timing mechanism that can vary the valve timing of the engine valve, and the variable valve timing that makes the valve timing (phase of the lift center angle) of the exhaust valve 5 variable within a predetermined range. Applicable to mechanisms.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 クランク角センサ(12)の故障が検知されると、それ以降は、スロットル弁(9)の弁開度を閉弁方向に補正し、機関回転速度が所定の上限回転速度以下となるように機関回転速度制限を実施する。そして、吸気弁(1)のバルブタイミングが所定の中間位置となるよう可変バルブタイミング機構(2)を制御し、ロック機構(34)により所定の中間位置に可変バルブタイミング機構(2)をロックする。

Description

内燃機関の可変バルブタイミング制御装置
 本発明は、内燃機関の可変バルブタイミング制御装置に関する。
 特許文献1には、クランク軸に対するカム軸の位相を中間位相でロックすることが可能な内燃機関の可変バルブタイミング装置が開示されている。
 この特許文献1におけるロック機構は、タイミングチェーンを介してクランク軸と同期して回転するハウジングと、ハウジング内に設けられ、カム軸と共に回転するベーンに対し、カム軸に対して直交する方向に沿って延びるよう形成されるロックピンによりクランク軸に対するカム軸の相対回転を規制する。
 ここで、バルブタイミングを運転状態に応じた位相に制御している状態でセンサ類が故障した場合、バルブタイミングを強制的に中間位相へ制御することで、ロックピンを係合させて中間位相へ固定することが可能である。しかしながら、ロックピンは、カム軸に対して直交する方向に設けられているので、エンジン回転速度が極めて高い領域では、ロックピンが嵌らなかったり、嵌った状態から解除され、バルブタイミングを中間位置に固定できない懸念がある。
 そこで、本願発明は、クランク角センサ等のセンサ類に故障が生じた場合でも、ロック機構により内燃機関のバルブタイミングを中間位置に固定することが可能な内燃機関の可変バルブタイミング制御装置を提供することを目的とする。
特開2005-16445号公報
 本発明の内燃機関の可変バルブタイミング制御装置は、カムシャフトと連動して回転する第1ロータと、クランクシャフトに連動して回転する第2ロータと、前記第1ロータ及び前記第2ロータの回転軸に対して直交する方向に進退可能で、前記第1ロータ及び前記第2ロータの相対回転位相を所定の中間位相に固定して、機関弁のバルタイミングを所定の中間位置に固定可能な中間位置固定部材と、を有し、クランク角センサ及びカム角センサの少なくとも一方に基づいて、前記第1ロータ及び前記第2ロータの相対回転位相を運転状態に応じて変更することで前記機関弁のバルブタイミングを可変するバルブタイミング変更手段を備え、前記クランク角センサもしくは前記カム角センサの故障が検知されると、前記所定の中間位置となるように前記機関弁のバルブタイミングを変更すると共に、機関回転速度を所定の回転速度に制限することとしている。
 本発明によれば、クランク角センサもしくはカム角センサの故障時に、内燃機関の機関回転速度を所定回転速度に制限するので、中間位置固定部材に作用する遠心力を抑制することができる。そのため、所定の中間位相で第1ロータと第2ロータの双方に係合している中間位置固定部材が遠心力の影響で第1ロータ及び第2ロータの回転軸に対して直交する方向に大きく移動してしまい、中間位置固定部材の第1ロータ及び第2ロータの双方に対する係合が解除されてしまうことを抑制できる。つまり、クランク角センサもしくはカム角センサの故障時であっても、ロック機構により内燃機関のバルブタイミングを中間位置に固定することが可能となる。
本発明が適用される車両用の内燃機関の概略構成を模式的に示した説明図。 本発明に係る内燃機関の可変バルブタイミング制御装置の概略構成を示す説明図。 デューティ比に対するオイルコントロールバルブ及びオイルスイッチングバルブの作動状況を模式的に示した説明図。 クランク角センサの故障が検知されたときの各種パラメータの変化の一例を示したタイミングチャート。 オイルコントロールバルブへの制御指令値とバルブタイミングの変化速度の相関を示した説明図。 機関回転速度制限の実施時に、機関回転速度が上限回転速度を超えた場合の各種パラメータの変化の一例を示したタイミングチャート。 本発明の実施例における制御の流れを示すフローチャート。
 以下、本発明の一実施例を図面に基づいて詳細に説明する。
 図1は、本発明が適用される車両用の内燃機関の概略構成を模式的に示した説明図である。吸気弁1を駆動する動弁機構は、吸気弁1のバルブタイミングを連続的に遅進可能な可変バルブタイミング機構(VTC)2となっている。この可変バルブタイミング機構2は、作動油の供給を受けてクランクシャフト3と吸気カムシャフト4の回転位相差を連続的に可変制御して、吸気弁1のバルブタイミング(リフト中心角の位相)を所定範囲内で可変可能とするものである。排気弁5を駆動する動弁機構は、一般的な直動式の動弁機構であり、排気弁5のリフト・作動角及びリフト中心角の位相は常に一定である。なお、図1中の7は吸気通路、8は燃料噴射弁、9は吸入空気量を制御するスロットル弁、10は排気通路、11は後述するECM(エンジンコントロールモジュール)、12はクランクシャフト3の回転角度を検知するクランク角センサ、13は吸気カムシャフト4の回転角度を検知するカム角センサ、14は点火プラグである。
 図2は、本発明に係る内燃機関の可変バルブタイミング制御装置の概略構成を示す説明図である。可変バルブタイミング機構2は、図2に示すように、インナロータ21と、インナロータ21に相対回転可能に嵌合するアウタロータ22と、を備えている。
 インナロータ21は、内燃機関のシリンダブロック(図示せず)に回転可能に支持された吸気カムシャフト4の先端部に固定され、吸気カムシャフト4と連動して一体的に回転する。インナロータ21とともに吸気カムシャフト4が回転すると、吸気カムシャフト4に設けられたカム4aにより吸気弁1が開閉駆動される。このインナロータ21の外周には、4枚のベーン23が放射状に設けられている。
 アウタロータ22は、インナロータ21を覆うようにインナロータ21の外周側に同軸上に配置されている。このアウタロータ22は、複数の取付ボルト24により吸気カムスプロケット(図示せず)に固定されている。この吸気カムスプロケットは、図示せぬタイミングチェーン(またはタイミングベルト)を介してクランクシャフト3に連動している。
 アウタロータ22の内周には、インナロータ21のベーン23と同数(4つ)の凸部25が形成されており、隣り合った凸部25の間に形成された凹部26内に個々のベーン23が収容されている。
 ベーン23の先端は凹部26の内周と摺接し、凸部25の先端はインナロータ21の外周と摺接している。その結果、インナロータ21及び吸気カムシャフト4と、前記吸気カムスプロケット及びアウタロータ22は、互いに同一の軸心を中心として相対回転可能となる。
 また、凹部26には、ベーン23によって区画されることで2つの空間27,28が液密に画成されている。これら2つの空間27,28のうち、ベーン23に対して吸気カムシャフト4の回転方向(矢印P1方向)側の空間28が遅角側油圧室、その反対側(矢印P2方向)の空間27が進角側油圧室となっている。
 インナロータ21内には、位相制御用油路である進角側油路30と連通している油路32と、位相制御用油路である遅角側油路31と連通している油路33とが形成されている。なお、進角側油圧室27と遅角側油圧室28に同時に作動油が供給されることはない。
 また、インナロータ21とアウタロータ22との間には、インナロータ21及びアウタロータ22の相対回転位相を所定の中間位相に固定可能なロック機構34が設けられている。
 なお、本実施例において、インナロータ21に対するアウタロータ22の相対位相が矢印P1方向に最も進んだ状態のときに、換言すればベーン23が例えば凹部26の一方の端面26aや端面26a側のストッパ(図示せず)に突き当たるときに、吸気弁1のバルブタイミングが最も進角した状態となる。このときの吸気弁1のバルブタイミングの位置を最進角位置とする。一方、インナロータ21に対するアウタロータ22の相対位相が、矢印P2方向に最も進んだ状態のときに、換言すればベーン23が例えば、凹部26の他方の端面26bや端面26b側のストッパ(図示せず)に突き当たるときに、吸気弁1のバルブタイミングが最も遅角した状態となる。このときの吸気弁1のバルブタイミングの位置を最遅角位置とする。そして、吸気弁1のバルブタイミングが前記最進角位置と前記最遅角位置の略中間位置のとき、換言すれば進角側油圧室27の容積と遅角側油圧室28の容積とが略等しくなるタイミングのときに、本実施例では、ロック機構34によりインナロータ21及びアウタロータ22の相対回転位相が固定される。つまり、前記所定の中間位相とは、吸気弁1のバルブタイミングが前記最進角位置と前記最遅角位置の略中間位置にあり、また進角側油圧室27の容積と遅角側油圧室28の容積とが略等しくなっている状態である。さらに言えば、吸気弁1のバルブタイミングが所定の中間位置にあるときには、吸気弁1のバルブタイミングが前記最進角位置と前記最遅角位置の略中間位置にあり、進角側油圧室27の容積と遅角側油圧室28の容積とが略等しくなっている。
 本実施例におけるロック機構34は、インナロータ21の進角方向(矢印P1方向)への移動を阻止する進角側ロック機構34aと、インナロータ21の遅角方向(矢印P2方向方向)への移動を阻止する遅角側ロック機構34bと、からなっている。また、本実施例における進角側ロック機構34aと遅角側ロック機構34bとは、略同一構成となっている。
 進角側ロック機構34aは、インナロータ21及びアウタロータ22の回転軸に対して直交する方向に進退可能な細長いロックキー35aと、アウタロータ22の凸部25に形成されたロックキー収容室36aと、ロックキー収容室36a内に配置され、ロックキー35bをインナロータ21側に向かって常時付勢する弾性部材としてのコイルバネ37aと、インナロータ21の外周に形成され、ロックキー35aの先端と係合可能な係合凹部38aと、から大略構成されている。進角側ロック機構34aは、前記所定の中間位相でロックキー35aの先端が係合凹部38aと係合すると、インナロータ21が前記所定の中間位相から進角側に移動することを阻止するものである。なお、係合凹部38aには、インナロータ21に形成された油路40aから作動油が供給可能となっている。また、係合凹部38a内の作動油は、油路40aを介してドレイン(排出)可能となっている。
 遅角側ロック機構34bは、進角側ロック機構34aと略同一構成となっており、インナロータ21及びアウタロータ22の回転軸に対して直交する方向に進退可能な細長いロックキー35bと、アウタロータ22の凸部25に形成されたロックキー収容室36bと、ロックキー収容室36b内に配置され、ロックキー35bをインナロータ21側に向かって常時付勢する弾性部材としてのコイルバネ37bと、インナロータ21の外周に形成され、ロックキー35bの先端と係合可能な係合凹部38bと、から大略構成されている。遅角側ロック機構34bは、前記所定の中間位相でロックキー35bの先端が係合凹部38bと係合すると、インナロータ21が前記所定の中間位相から遅角側に移動することを阻止するものである。なお、係合凹部38bには、インナロータ21に形成された油路40bから作動油が供給可能となっている。また、係合凹部38b内の作動油は、油路40bを介してドレイン(排出)可能となっている。
 つまり、前記所定の中間位相で、進角側ロック機構34aによりインナロータ21が前記所定の中間位相から進角側への移動阻止が可能となり、遅角側ロック機構34bによりインナロータ21が前記所定の中間位相から遅角側への移動阻止が可能となることで、可変バルブタイミング機構2のバルブタイミングを前記所定の中間位置に固定可能となっている。
 可変バルブタイミング機構2は、オイルポンプ41からの作動油によって駆動される。オイルポンプ41は、クランクシャフト3の回転力に基づき機械的に駆動され、オイルパン42内の作動油を吸引している。そして、このオイルポンプ41から、オイルコントロールバルブ(OCV)43とオイルスイッチングバルブ(OSV)44に作動油が供給されている。オイルコントロールバルブ43及びオイルスイッチングバルブ44は、ECM(エンジンコントロールモジュール)11からの指令に基づいてデューティ制御される制御弁である。
 オイルコントロールバルブ43は、進角側油路30を介して進角側油圧室27に作動油を供給可能であり、遅角側油路31を介して遅角側油圧室28に作動油を供給可能となっている。また、オイルスイッチングバルブ44は、中間位置固定用油路45から油路40a、40bを介してロック機構34a、34bの係合凹部38a、38bに作動油を供給可能となっている。なお、オイルスイッチングバルブ44は、本実施例では、オイルコントロールバルブ43の進角時に進角側油路30と連通するポートを目封じしたものと略同一構成となっている。
 ECM11は、上述したクランク角センサ12やカム角センサ13のほか、各種センサからの検出信号が入力されており、これらの各種センサの検出結果より把握される機関運転状態に基づき、吸気弁1のバルブタイミングの目標値(目標吸気バルブタイミング)を逐次更新・算出する。そして、ECM11は、機関運転状態に応じてオイルコントロールバルブ43へ指令信号を出力し、オイルコントロールバルブ43の切替制御を実施する。吸気弁1のバルブタイミングを進角させる場合には進角側油圧室27に作動油が供給されるようにオイルコントロールバルブ43が切り替えられ、吸気弁1のバルブタイミングを遅角させる場合には遅角側油圧室28に作動油が供給されるようにオイルコントロールバルブ43が切り替えられる。なお、可変バルブタイミング機構2により可変制御された吸気弁1のバルブタイミングは、クランク角センサ12とカム角センサ13の出力信号に基づいてECM11により検知可能となっている。
 また、ECM11は、クランク角センサ12の故障の有無に応じて、オイルスイッチングバルブ44の切替制御を実施する。クランク角センサ12の故障が検知された場合には各ロック機構34a、34bの各係合凹部38a、38bに作動油が供給されるようにオイルスイッチングバルブ44が切り替えられ、クランク角センサ12の故障が検知されない場合には各ロック機構34a、34bの各係合凹部38a、38bに作動油が供給されないようにオイルスイッチングバルブ44が切り替えられる。クランク角センサ12の故障判定は、例えば、断線や短絡によりクランク角センサ12からの検出信号がECM11に入力されない場合や、クランク角センサ12で検出されるパルス信号が正常でない場合に故障と判定する。
 オイルスイッチングバルブ44の切替制御により各ロック機構34a、34bの各係合凹部38a、38bに作動油が供給された状態では、インナロータ21及びアウタロータ22の相対回転位相が前記所定の中間位相になっても、各係合凹部38a、38bに供給される作動油の油圧により各ロックキー35a、35b先端が対応する各係合凹部38a、38b内にそれぞれ進入することができず、各ロック機構34a、34bは解除状態となる。
 一方、オイルスイッチングバルブ44の切替制御により各ロック機構34a、34bの各係合凹部38a、38bへの作動油が供給が停止され、かつ各係合凹部38a、38b内の作動油がドレイン(排出)される状態では、各係合凹部38a、38b内の油圧が低下しているので、インナロータ21及びアウタロータ22の相対回転位相が前記所定の中間位相になると、各コイルバネ37a、37bの付勢力により各ロックキー35a、35bがそれぞれインナロータ21側に移動し、各ロックキー35a、35bの先端が対応する各係合凹部38a、38bと係合して、吸気弁1のバルブタイミングが前記所定の中間位置に固定可能となる。
 図3は、制御指令値であるデューティ比に対するオイルコントロールバルブ43及びオイルスイッチングバルブ44の作動状況を模式的に示した説明図である。
 オイルコントロールバルブ43の作動状態は、吸気弁1のバルブタイミングを進角させる進角動作と、進角側油圧室27及び遅角側油圧室28の双方に作動油の供給を行わない中立動作(不感帯)と、吸気弁1のバルブタイミングを遅角させる遅角動作とに大別される。進角動作中には、進角側油圧室27に作動油が供給される一方で、遅角側油圧室28内の作動油がドレイン(排出)されるため、吸気弁1のバルブタイミングは進角側に変化する。遅角動作中には、遅角側油圧室28に作動油が供給される一方で進角側油圧室27内の作動油がドレイン(排出)されるため、吸気弁1のバルブタイミングは遅角側に変化する。中立動作中には、進角側油圧室27及び遅角側油圧室28に対する作動油の供給と作動油のドレイン(排出)が停止し、吸気弁1のバルブタイミングが進角側へも遅角側へも変化しない不感帯となるため、吸気弁1のバルブタイミングは現在の状態に保持される。
 オイルスイッチングバルブ44の作動状態は、吸気弁1のバルブタイミングを前記所定の中間位置に固定可能なロック状態と、吸気弁1のバルブタイミングが前記所定の中間位置で固定されることがないロック解除状態と、吸気弁1のバルブタイミングを前記所定の中間位置で固定可能か定かではないロック不定状態と、に大別される。
 前記ロック状態では、各係合凹部38a、38b内の作動油が同時にドレイン(排出)されており、各ロックキー35a、35b先端が対応する各係合凹部38a、38b内にそれぞれ進入可能な状態となっているので、吸気弁1のバルブタイミングが前記所定の中間位置になると、各ロックキー35a、35bの先端がそれぞれ対応する各係合凹部38a、38bと係合し、吸気弁1のバルブタイミングを前記所定の中間位置に固定可能となる。なお、このロック状態においては、各係合凹部38a、38bに作動油が供給されることはない。
 前記ロック解除状態では、各係合凹部38a、38b内に作動油が同時に供給され、各ロックキー35a、35bに作用する各コイルバネ37a、37bの付勢力よりも大きい油圧が各係合凹部38a、38b内に生じているので、吸気弁1のバルブタイミングが前記所定の中間位置になっても、各ロックキー35a、35b先端がそれぞれ対応する各係合凹部38a、38b内にそれぞれ進入できず、吸気弁1のバルブタイミングは前記所定の中間位置に固定されることはない。なお、このロック解除状態においては、各係合凹部38a、38b内の作動油がドレイン(排出)されることはない。
 前記ロック不定状態では、各係合凹部38a、38b内に対する作動油の供給と作動油のドレイン(排出)がそれぞれ禁止された状態となるので、各係合凹部38a、38b内がロック不定状態となる直前の状態に保持されることになり、各ロックキー35a、35bの先端がそれぞれ係合凹部38a、38bと係合する場合もあれば、各ロックキー35a、35bの先端が係合凹部38a、38bと係合しない場合もある。
 従って、可変バルブタイミング機構2により吸気弁1のバルブタイミングを内燃機関の駆動条件に応じて可変制御する場合には、ECM11から指令によりオイルスイッチングバルブ44を前記ロック解除状態に制御する。そして、可変バルブタイミング機構2により吸気弁1のバルブタイミングを前記所定の中間位置に固定する場合には、ECM11から指令によりオイルスイッチングバルブ44を前記ロック状態に制御する。
 クランク角センサ12の故障により、吸気弁1のバルブタイミングが検知できなくなると、可変バルブタイミング機構2による吸気弁1のバルブタイミングを可変制御することができなくなるため、本実施例では、クランク角センサ12の故障時には、燃焼安定性と、前記最遅角位置よりも進角させることによる相対的な燃費向上効果との両立を図るために、吸気弁1のバルブタイミングを、前記所定の中間位置に固定する。
 しかしながら、上述した構成の可変バルブタイミング機構2においては、機関回転速度が大きい場合、インナロータ21及びアウタロータ22の回転速度も大きくなるので、各ロック機構34a、34bの各ロックキー35a、35bに作用する遠心力が、各コイルバネ37a、37bの付勢力よりも大きくなるため、オイルスイッチングバルブ44を前記ロック状態に制御しても、各ロックキー35a、35bが各コイルバネ37a、37bの付勢力に抗ってアウタロータ側に移動しようとするため、各ロックキー35a、35bの先端が各係合凹部38a、38bに係合しなくなる可能性がある。
 そこで、本実施例では、クランク角センサ12の故障時には、機関回転速度が予め設定された所定の上限回転速度R1以下となるように、機関回転速度制限を実施することで、各ロックキー35a、35bに作用する遠心力を抑制する。そのため、前記所定の中間位相でインナロータ21とアウタロータ22の双方に係合している各ロックキー35a、35bが、遠心力の影響でインナロータ21及びアウタロータ22の回転軸に対して直交する方向に大きく移動してしまい、インナロータ21及びアウタロータ22の双方に対する係合が解除されてしまうことを抑制することができる。つまり、クランク角センサ12の故障時であっても、吸気弁1のバルブタイミングを中間位置に保持することが可能となる。
 図4は、クランク角センサ12の故障が検知されたときの各種パラメータの変化の一例を示したタイミングチャートである。
 時刻t1のタイミングでクランク角センサ12の故障が検知され、クランク角センサNG判定フラグが「0」から「1」に切り替わると、ECM11は吸気弁1のバルブタイミングを前記所定の中間位置に誘導する中立位置誘導制御を実施する。また、クランク角センサの故障が検知されると、前記機関回転速度制限を実施するべく、回転速度制限フラグが「0」から「1」に切り替わる。回転速度制限フラグが「1」になると、ECM11は、スロットル弁9の弁開度を閉弁方向に補正し、機関回転速度が前記上限回転速度R1以下となるように制御する。この上限回転速度R1は、オイルスイッチングバルブ44を前記ロック状態としても、各ロックキー35a、35bに作用する遠心力の影響で、実際には、各ロックキー35a、35bの先端が各係合凹部38a、38bに係合しなくなるような機関回転速度であり、予め実験等により求められた値である。なお、スロットル弁9による前記機関回転速度制限は、実際に機関回転速度が前記上限回転速度R1以下となるまでに応答遅れがあるため、図4の例では、前記中立位置誘導制御の終了後の時刻t4のタイミングまで、機関回転速度が前記上限回転速度R1以上となっている。
 前記中立位置誘導制御は、クランク角センサ12の故障が検知された際に、一度だけ実施されるものであり、オイルスイッチングバルブ44を前記ロック状態に制御した状態で、可変バルブタイミング機構2のインナロータ21及びアウタロータ22の相対回転位相が前記所定の中間位相を確実に経験するようオイルコントロールバルブ43を制御するものである。
 本実施例では、時刻t1から時刻t2まで期間は、吸気弁1のバルブタイミングが前記最遅角位置となるようにオイルコントロールバルブ43を制御する。具体的には、可変バルブタイミング機構2の最大応答速度で、吸気弁1のバルブタイミングが前記最遅角位置となるように、オイルコントロールバルブ43の制御指令値であるデューティ比を0%としている。そして、時刻t2~時刻t3までの期間は、吸気弁1のバルブタイミングが前記最進角位置となるようにオイルコントロールバルブ43を制御する。具体的には、可変バルブタイミング機構2の最大応答速度で、吸気弁1のバルブタイミングが前記最進角位置となるように、オイルコントロールバルブ43の制御指令値であるデューティ比を100%としている。
 ここで、オイルコントロールバルブ43をデューティ比0%で制御する時間、つまり時刻t1~t2の期間は、吸気弁1のバルブタイミングが前記最遅角位置まで変化できる程度の時間が確保されるよう設定されている。また、オイルコントロールバルブ43をデューティ比100%で制御する時間、つまり時刻t2~t3の期間は、吸気弁1のバルブタイミングが前記最遅角位置から前記最進角位置まで変化できる程度の時間が確保されるよう設定されている。
 これにより、クランク角センサ12の故障時に吸気弁1のバルブタイミングがいかなる位置にあったとしても、少なくとも時刻t1~t3の間に可変バルブタイミング機構2のインナロータ21及びアウタロータ22の相対回転位相が前記所定の中間位相となり得るので、このとき機関回転速度が前記上限回転速度R1以下であれば、各ロック機構34a、34bにより前記所定の中立位置に可変バルブタイミング機構2はロックされる。
 なお、図4に示す例では、クランク角センサ12の故障時に、機関回転速度が前記上限回転速度R1以上であり、また前記機関回転速度制限により機関回転速度が低下する前に前記中立位置誘導制御を実施しているため、吸気弁1のバルブタイミングは、時刻t4以降まで前記所定の中間位置に固定されず、吸気弁1のバルブタイミングがオイルコントロールバルブ43のデューティ制御に応じて変化している。また、図4におけるVTC作動度は、吸気弁1のバルブタイミングを示すものであり、太実線が実際のバルブタイミングを示し、細線が目標とする吸気弁1のバルブタイミングを示している。
 そして、時刻t3で前記中立位置誘導制御が終了すると、そのときの機関回転速度に応じて、中立デューティ制御または強制ロック制御を実施する。
 前記中立デューティ制御は、クランク角センサ12の故障時に、機関回転速度が前記上限回転速度R1よりも大きいときに実施される。前記強制ロック制御は、クランク角センサ12の故障時に、機関回転速度が前記上限回転速度R1以下のときに実施される。なお、本実施例では、前記中立デューティ制御を実施するに当たって、閾値となる前記上限回転速度R1にヒステリシスを設けており、機関回転速度が前記上限回転速度R1を超えると前記中立デューティ制御が開始されるが、機関回転速度が前記上限回転速度R1以下となっても、前記上限回転速度R1に対して所定回転速度小さい下限閾値回転速度R2よりも小さくなるまでは前記中立デューティ制御を継続し、機関回転速度が下限閾値回転速度R2よりも小さくなると、前記強制ロック制御に切り替える。
 本実施例では、前記中立位置誘導制御が終了した時刻t3において機関回転速度が前記上限回転速度R1よりも大きいので、機関回転速度が前記下限閾値回転速度R2よりも小さくなる時刻t5のタイミングまで前記中立デューティ制御を実施している。
 前記中立デューティ制御では、吸気弁1のバルブタイミングが前記所定の中間位置となるようにオイルコントロールバルブ43をオープン制御すると共に、オイルスイッチングバルブ44を前記ロック状態に制御する。
 ここで、オイルコントロールバルブ43による吸気弁1のバルブタイミングの変化速度は、図5に示すように、吸気弁1のバルブタイミングの変化速度が0となる中央の不感帯からみた、電流値が小さくなる方向で吸気弁1のバルブタイミングの遅角側への変化速度が大きくなり、電流値が大きくなる方向で吸気弁1のバルブタイミングの進角側への変化速度が大きくなる。なお、この図5においては、制御指令値をデューティ比ではなく電流値換算として横軸にとっており、電流値が大きくなる方向でデューティ比が大きくなるものとしている。
 そのため、オイルコントロールバルブ43の制御指令値として不感帯中央値(デューティ比50%)とすると、オイルコントロールバルブ43の製品バラツキにより、吸気弁1のバルブタイミングが前記所定の中間位置から場合によっては進化側もしくは遅角側に向かって変化してしまう場合があり、前記所定の中間位置における吸気弁1のバルブタイミングを保証することができない。
 そこで本実施例では、前記中立デューティ制御時のオイルコントロールバルブ43の制御指令値として、不感帯よりも進角側の値Mを用いている。なお、吸気弁1のバルブタイミングを前記所定の中間位置とする場合のオイルコントロールバルブ43の制御指令値として、不感帯よりも遅角側の値を用いることも可能である。
 そして、時刻t5以降は、前記強制ロック制御が実施される。本実施例における前記強制ロック制御では、吸気弁1のバルブタイミングが前記最遅角位置となるように、オイルコントロールバルブ43をオープン制御すると共に、オイルスイッチングバルブ44を前記ロック状態に制御する。
 本実施例では、前記中立デューティ制御時の制御指令値が、吸気弁1のバルブタイミングを前記所定の中間位置よりも進角側となるように設定されているため、前記中立デューティ制御から前記強制ロック制御に切り替わった際に、吸気弁1のバルブタイミングの目標値が前記所定の中間位置を経て前記最遅角位置へと変化することになるため、各ロック機構34a、34bにより吸気弁1のバルブタイミングを前記所定の中間位置に固定することができる。
 そして、各ロック機構34a、34bにより吸気弁1のバルブタイミングが前記所定の中間位置に固定された状態で、吸気弁1のバルブタイミングが前記最遅角位置となるようにインナロータ21とアウタロータ22とが相対回転しようとする。そのため、ロックキー35bの先端は、係合凹部38bに対してこの相対回転を阻止するように押し付けられ、ロックキー35bの後端側も、ロックキー収容室36bに対してこの相対回転を阻止するように押し付けられる。
 つまり、ロックキー35bが係合凹部38b及びロックキー収容室36bに対して押し付けられ、この押し付けられた部分の摩擦力によりロックキー35bのインナロータ21及びアウタロータ22の回転軸に対して直交する方向の移動が抑制されるので、ロックキー35bに作用する遠心力の影響を軽減することができ、ロックキー35bのインナロータ21及びアウタロータ22の双方に対する係合が解除されてしまうことを一層確実に抑制することができる。
 また、前記機関回転速度制限を実施していても、例えば、登坂路の走行や運転者の操作によるダウンシフト等により機関回転速度が前記上限回転速度R1よりも小さい回転速度から前記上限回転速度R1をよりも大きい回転速度に一時的に変化するような場合には、機関回転速度が前記上限回転速度R1以下となるように、燃料カットを実施する。このように、スロットル弁9に前記機関回転速度制限を実施していても、機関回転速度が前記上限回転速度R1よりも大きくなる場合には、さらに燃料カットを実施することで、機関回転速度を確実に低下させることができる。
 図6は、前記機関回転速度制限の実施時に、機関回転速度が前記上限回転速度R1を超えた場合の各種パラメータの変化の一例を示したタイミングチャートである。
 前記強制ロック制御の実施中、時刻T1において機関回転速度が前記上限回転速度R1よりも大きくなると、この強制ロック制御に替えて前記中立デューティ制御を実施する。そして、この時刻T1のタイミングから燃料噴射弁8からの燃料噴射を中止する燃料カットを開始する。
 図6に示す例では、前記中立デューティ制御は、時刻T1から機関回転速度が前記下限閾値回転速度R2よりも小さくなる時刻T3のタイミングまで前記中立デューティ制御を実施している。なお、図6中の時刻T2は、機関回転速度が前記上限回転速度R1以下となるタイミングである。
 この中立デューティ制御の実施中、オイルコントロールバルブ43の制御指令値として、吸気弁1のバルブタイミングを前記所定の中間位置とする値(デューティ比50%)よりも進角側の値(上述した進角側の値M)を用いているため、時刻T1~時刻T3の間、吸気弁1の実際のバルブタイミング(図6中に太実線で示したVTC作動度)は僅かに進角側に変化している。
 時刻T3以降は、前記強制ロック制御が実施される。一方燃料カットは、前記中立デューティ制御が終了しても継続し、時刻T3から所定時間経過した時刻T4のタイミングで終了する。これは、燃料カットの解除により機関回転速度が大きくなっても、前記強制ロック制御によるロックキー35bの係合凹部38b及びロックキー収容室36bに対する摩擦力で、ロックキー35bに作用する遠心力の影響を軽減させるためである。つまり、時刻T3に対する燃料カット解除のディレイ時間、つまり時刻T3~時刻T4までの期間は、前記強制ロック制御に切り替わってから吸気弁1のバルブタイミングが前記所定の中間位置まで確実に変化して、各ロック機構34a、34bにより前記所定の中間位置に固定されるまでの時間として予想される最大値となっている。
 このように、本実施例は、クランク角センサ12の故障時に、吸気弁1のバルブタイミングを前記所定の中間位置に固定することが可能なので、排気性能向上を目的として冷機時アイドル運転での吸気弁のバルブタイミングを進角させた設定の車両や、始動性と運転性を両立させるために始動時における吸気弁のバルブタイミングを進角させたハイブリッド車両等に適用しても、クランク角センサ12の故障時の燃焼安定性を確保できる。
 図7は上述した実施例における制御の流れを示すフローチャートである。
 S11では、クランク角センサ11が故障と判定されているか否かを検知し、クランク角センサ11が故障している場合にはS12へ進み、クランク角センサ11が故障していない場合には今回のルーチンを終了する。S12では、スロットル弁9による機関回転速度制限を実施してS13へ進む。この機関回転速度制限は、クランク角センサ11が故障している実施されるものである。S13では、回転速度制限フラグが「1」であるか否かを判定し、「1」であればS16へ進み、「1」でなければS14へ進む。すなわち、このS13では、前記中立位置誘導制御が既に実施されている否かを判定している。前記中立位置誘導制御は、クランク角センサセンサ11が正常な状態から故障したと判定された際に、実施されるものである。S14では、前記中立位置誘導制御を実施し、S15へ進む。S15では、回転速度制限フラグを「1」として今回のルーチンを終了する。回転速度制限フラグは、クランク角センサ12が故障していない初期状態では「0」である。S16では、機関回転速度が前記上限回転速度R1より大きいか否かを判定する。機関回転速度が前記上限回転速度R1よりも大きい場合には、燃料カットを実施し(S17)、前記中立デューティ制御を実施する(S18)。機関回転速度が前記上限回転速度R1以下の場合には、S19へ進んで前記強制ロック制御を実施する。
 なお、上述した実施例においては、機関回転速度が前記上限回転速度R1よりも大きくなると燃料カットを実施しているが、燃料カットに替えて、燃料カットのタイミングで点火プラグ14による点火を中止する点火カットを実施するようにしてもよい。また、燃料カットと点火カットを同時に実施するようにしてもよい。
 そして、上述した実施例では、前記中立デューティ制御時の制御指令値が、吸気弁1のバルブタイミングを前記所定の中間位置よりも進角側となるように設定され、前記強制ロック制御時には、吸気弁1のバルブタイミングが前記最遅角位置となるように制御されているが、前記強制ロック制御時に、吸気弁1のバルブタイミングが前記最進角位置となるように制御して、前記中立デューティ制御時の制御指令値を、吸気弁1のバルブタイミングを前記所定の中間位置よりも遅角側となるように設定することも可能である。この場合には、前記中立デューティ制御から前記強制ロック制御に切り替わった際に、吸気弁1のバルブタイミングが前記所定の中間位置を経て前記最進角位置へと変化することになり、各ロック機構34a、34bにより吸気弁1のバルブタイミングが前記所定の中間位置に固定することができる。また、この場合には、ロックキー35aの先端が係合凹部38a対してインナロータ21とアウタロータ22との相対回転を阻止するように押し付けられ、ロックキー35aの後端がロックキー収容室36aに対してインナロータ21とアウタロータ22との相対回転を阻止するように押し付けられることになる。そのため、これら押し付けられた部分の摩擦力によりロックキー35aのインナロータ21及びアウタロータ22の回転軸に対して直交する方向の移動が抑制され、ロックキー35aに作用する遠心力の影響を軽減することができ、ロックキー35aのインナロータ21及びアウタロータ22の双方に対する係合が解除されてしまうことを一層確実に抑制することができる。
 また、上述した実施例では、クランク角センサ12の故障時に、吸気弁1のバルブタイミングを前記所定の中間位置に固定するようにしているが、カム角センサ13の故障時に、吸気弁1のバルブタイミングを前記所定の中間位置に固定するようにしてもよい。
 そして、本発明は、機関弁のバルブタイミングを可変可能な可変バルブタイミング機構に適用可能であり、排気弁5のバルブタイミング(リフト中心角の位相)を所定範囲内で可変可能とする可変バルブタイミング機構にも適用可能である。

Claims (8)

  1.  カムシャフトと連動して回転する第1ロータと、当該第1ロータと同軸上に配置され、クランクシャフトに連動して回転する第2ロータと、前記第1ロータ及び前記第2ロータの回転軸に対して直交する方向に進退可能であって、前記第1ロータ及び前記第2ロータに同時に係合することで、前記第1ロータ及び前記第2ロータの相対回転位相を所定の中間位相に固定して、機関弁のバルタイミングを所定の中間位置に固定可能な中間位置固定部材と、を有し、クランク角センサ及びカム角センサの少なくとも一方に基づいて、前記第1ロータ及び前記第2ロータの相対回転位相を運転状態に応じて変更することで前記機関弁のバルブタイミングを可変するバルブタイミング変更手段を備えた内燃機関の可変バルブタイミング制御装置において、
     前記クランク角センサもしくは前記カム角センサの故障が検知されると、前記所定の中間位置となるように前記機関弁のバルブタイミングを変更すると共に、機関回転速度を所定の回転速度に制限する内燃機関の可変バルブタイミング制御装置。
  2.  前記機関回転速度の制限は、スロットル開度を閉弁方向に調整することで実施される請求項1に記載の内燃機関の可変バルブタイミング制御装置。
  3.  スロットル開度を閉弁方向に調整する機関回転速度制限を実施しても、機関回転速度が前記所定回転速度よりも大きくなる場合には、燃料カットまたは点火カットの少なくとも一方を実施する請求項2に記載の内燃機関の可変バルブタイミング制御装置。
  4.  機関回転速度を前記所定の回転速度に制限後であって、前記第1ロータ及び前記第2ロータの相対回転位相が前記所定の中間位相となる状態で前記中間位置固定部材が前記第1ロータ及び前記第2ロータに係合しているときに、
     前記バルブタイミング変更手段は、前記所定の中間位相よりも前記第1ロータ及び前記第2ロータの相対回転位相が進角側もしくは遅角側になるように変更することで、前記中間位置固定部材を前記第1ロータ及び前記第2ロータに対して押し当てる請求項1~3のいずれかに記載の内燃機関の可変バルブタイミング制御装置。
  5.  機関回転速度が前記所定の回転速度以下で、前記第1ロータ及び前記第2ロータの相対回転位相を前記所定の中間位相となる状態で固定する際の該バルブタイミング変更手段への制御指令値が、前記所定の中間位相よりも進角側寄りを目標とする値である場合には、
     機関回転速度が前記所定の回転速度よりも大きく、前記第1ロータ及び前記第2ロータの相対回転位相を前記所定の中間位相となる状態で固定する際の該バルブタイミング変更手段への制御指令値が、前記所定の中間位相よりも遅角側寄りを目標とする値に設定される請求項4に記載の内燃機関の可変バルブタイミング制御装置。
  6.  機関回転速度が前記所定の回転速度以下で、前記第1ロータ及び前記第2ロータの相対回転位相を前記所定の中間位相となる状態で固定する際の該バルブタイミング変更手段への制御指令値が、前記所定の中間位相よりも遅角側寄りを目標とする値である場合には、
     機関回転速度が前記所定の回転速度よりも大きく、前記第1ロータ及び前記第2ロータの相対回転位相を前記所定の中間位相となる状態で固定する際の該バルブタイミング変更手段への制御指令値が、前記所定の中間位相よりも進角側寄りを目標とする値に設定される請求項4に記載の内燃機関の可変バルブタイミング制御装置。
  7.  機関回転速度を前記所定の回転速度に制限しているにも関わらず、機関回転速度が前記所定の回転速度よりも大きくなった場合には、前記機関弁のバルブタイミングを前記所定の中間位置とする制御指令値によりオープン制御する請求項1~6のいずれかに記載の内燃機関の可変バルブタイミング制御装置。
  8.  前記クランク角センサもしくは前記カム角センサの故障が検知されると、機関弁のバルブタイミングを最遅角位置とする制御指令値により前記バルブタイミング変更手段を制御し、その後機関弁のバルブタイミングを最進角位置とする制御指令値により前記バルブタイミング変更手段を制御する請求項1~7のいずれかに記載の内燃機関の可変バルブタイミング制御装置。
PCT/JP2013/051884 2012-01-30 2013-01-29 内燃機関の可変バルブタイミング制御装置 WO2013115174A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-016103 2012-01-30
JP2012016103 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013115174A1 true WO2013115174A1 (ja) 2013-08-08

Family

ID=48905209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051884 WO2013115174A1 (ja) 2012-01-30 2013-01-29 内燃機関の可変バルブタイミング制御装置

Country Status (1)

Country Link
WO (1) WO2013115174A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208312A1 (ja) * 2016-05-31 2017-12-07 日産自動車株式会社 可変動弁装置の制御方法及び可変動弁装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049671A (ja) * 2001-08-07 2003-02-21 Denso Corp エンジンのバルブタイミング制御装置
JP2004316635A (ja) * 2003-03-28 2004-11-11 Denso Corp バルブタイミング調整装置
JP2005220758A (ja) * 2004-02-03 2005-08-18 Hitachi Ltd 内燃機関の制御装置
JP2006170026A (ja) * 2004-12-14 2006-06-29 Aisin Seiki Co Ltd 内燃機関の弁開閉時期制御装置
JP2011001888A (ja) * 2009-06-19 2011-01-06 Nissan Motor Co Ltd 内燃機関の制御装置
JP2011021493A (ja) * 2009-07-13 2011-02-03 Toyota Motor Corp 内燃機関の可変動弁装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003049671A (ja) * 2001-08-07 2003-02-21 Denso Corp エンジンのバルブタイミング制御装置
JP2004316635A (ja) * 2003-03-28 2004-11-11 Denso Corp バルブタイミング調整装置
JP2005220758A (ja) * 2004-02-03 2005-08-18 Hitachi Ltd 内燃機関の制御装置
JP2006170026A (ja) * 2004-12-14 2006-06-29 Aisin Seiki Co Ltd 内燃機関の弁開閉時期制御装置
JP2011001888A (ja) * 2009-06-19 2011-01-06 Nissan Motor Co Ltd 内燃機関の制御装置
JP2011021493A (ja) * 2009-07-13 2011-02-03 Toyota Motor Corp 内燃機関の可変動弁装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208312A1 (ja) * 2016-05-31 2017-12-07 日産自動車株式会社 可変動弁装置の制御方法及び可変動弁装置

Similar Documents

Publication Publication Date Title
JP5046015B2 (ja) 弁開閉時期制御装置
JP4743287B2 (ja) 可変動弁装置の制御装置
JP5929300B2 (ja) エンジンのバルブタイミング制御装置
KR20060069334A (ko) 밸브 타이밍 제어 장치 및 최소 토크의 설정 방법
CA2755884C (en) Control device for hydraulic variable valve timing mechanism
JP5321911B2 (ja) 弁開閉時期制御装置
JP6337674B2 (ja) 弁開閉時期制御装置
JP2009074383A (ja) 弁開閉時期制御装置
JP2011001888A (ja) 内燃機関の制御装置
JP5692459B2 (ja) 内燃機関の可変バルブタイミング制御装置
WO2013129110A1 (ja) 内燃機関の可変バルブタイミング制御装置
JP4103277B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5141649B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP5979093B2 (ja) 弁開閉時期制御装置
JP6036600B2 (ja) 弁開閉時期制御装置
WO2013115174A1 (ja) 内燃機関の可変バルブタイミング制御装置
US9140197B2 (en) Valve timing control apparatus
JP2019019721A (ja) 内燃機関の制御装置
JP5720503B2 (ja) 可変動弁装置
JP5267263B2 (ja) 弁開閉時期制御装置
JP4478855B2 (ja) 弁開閉時期制御装置
US9206712B2 (en) Variable valve timing device
JP5573609B2 (ja) バルブタイミング調整装置の異常復帰装置
WO2017208312A1 (ja) 可変動弁装置の制御方法及び可変動弁装置
JP2008280933A (ja) 内燃機関制御装置及び内燃機関制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP