WO2013115166A1 - 車両用ブレーキ装置及びその制御方法 - Google Patents

車両用ブレーキ装置及びその制御方法 Download PDF

Info

Publication number
WO2013115166A1
WO2013115166A1 PCT/JP2013/051868 JP2013051868W WO2013115166A1 WO 2013115166 A1 WO2013115166 A1 WO 2013115166A1 JP 2013051868 W JP2013051868 W JP 2013051868W WO 2013115166 A1 WO2013115166 A1 WO 2013115166A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
hydraulic
hydraulic brake
pressure
valve
Prior art date
Application number
PCT/JP2013/051868
Other languages
English (en)
French (fr)
Inventor
求 吐合
安孝 長倉
Original Assignee
ボッシュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボッシュ株式会社 filed Critical ボッシュ株式会社
Priority to US14/375,477 priority Critical patent/US9352655B2/en
Priority to JP2013556402A priority patent/JP5746773B2/ja
Priority to EP13744217.4A priority patent/EP2810834B1/en
Publication of WO2013115166A1 publication Critical patent/WO2013115166A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/585Combined or convertible systems comprising friction brakes and retarders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T15/00Construction arrangement, or operation of valves incorporated in power brake systems and not covered by groups B60T11/00 or B60T13/00
    • B60T15/02Application and release valves
    • B60T15/025Electrically controlled valves
    • B60T15/028Electrically controlled valves in hydraulic systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/48Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition connecting the brake actuator to an alternative or additional source of fluid pressure, e.g. traction control systems
    • B60T8/4809Traction control, stability control, using both the wheel brakes and other automatic braking systems
    • B60T8/4827Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems
    • B60T8/4863Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems
    • B60T8/4872Traction control, stability control, using both the wheel brakes and other automatic braking systems in hydraulic brake systems closed systems pump-back systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition

Definitions

  • the present invention relates to a vehicle brake device and a control method therefor, and in particular, includes a hydraulic brake and a regenerative brake that generates a regenerative brake force, and can distribute the brake force between the hydraulic brake force and the regenerative brake force.
  • a hydraulic brake and a regenerative brake that generates a regenerative brake force, and can distribute the brake force between the hydraulic brake force and the regenerative brake force.
  • a hydraulic brake that generates a hydraulic brake force using a hydraulic pressure generated according to a driver's brake operation and a regenerative brake that generates a regenerative brake force are provided.
  • a vehicle brake device that performs regenerative cooperation by distributing braking force to braking force and regenerative braking force is known.
  • the purpose of the regenerative brake used in this type of vehicle brake device is to convert the kinetic energy of the wheels during braking into electrical energy and to make effective use of the energy.
  • the force is limited depending on the vehicle speed during braking of the vehicle, the state of charge of the battery, and the like. For this reason, even during braking of the hydraulic brake, the ratio of the braking force by the hydraulic brake and the braking force by the regenerative brake can be varied according to the maximum regenerative braking force to increase the ratio of the regenerative brake. It is also preferable from the viewpoint of effective use of energy.
  • the above-described vehicle brake device is intended to realize a comfortable brake feel by opening the pressure reducing valve when the regenerative brake is used and allowing the brake fluid to escape to the low pressure accumulator.
  • the pressure reducing valve is opened, a pressure of several bar is applied to the wheel by the reaction force of the accumulator. For this reason, even when the braking force can be provided only by the regenerative braking force, the regenerative braking force may not be fully utilized.
  • the pressure reducing valve can only be fully opened or fully closed. It is carried out. At this time, pulsation is generated in the brake fluid, and if there is a large difference in the fluid pressure between the brake fluid before and after the pressure reducing valve, there is a possibility that noise due to a water hammer or the like may occur.
  • an object of the present invention is to fully utilize the regenerative braking force by suppressing the influence of the accumulator reaction force when the pressure reducing valve is opened.
  • an object of the present invention is to eliminate the above-described problems of the prior art and prevent noise from being generated when the brake fluid supplied to the brake caliper is decompressed.
  • the first hydraulic brake and the second hydraulic brake that generate the hydraulic brake force, and the regenerative brake that generates the regenerative brake force the driver's required brake force.
  • the first pressure increasing valve capable of increasing the brake fluid supplied to the first hydraulic brake, and the first A first pressure reducing valve capable of depressurizing the brake fluid supplied to the hydraulic brake; a second pressure increasing valve capable of increasing the brake fluid supplied to the second hydraulic brake; and the second fluid.
  • a second pressure-reducing valve capable of depressurizing the brake fluid supplied to the pressure brake, and the first pressure-reducing valve and the second pressure-reducing valve are in communication with an accumulator, and the driver's request
  • the braking force is the regenerative braking force.
  • a vehicular brake device wherein the first pressure increasing valve and the first pressure reducing valve are opened while the second pressure increasing valve and the second pressure reducing valve are closed. Provided.
  • the first pressure increasing valve and the first pressure reducing valve are opened and the second pressure increasing valve and the second pressure reducing valve are closed while the driver's required braking force is covered only by the regenerative braking force. That is, while the driver's required braking force is provided only by the regenerative braking force, the brake fluid can be released to the accumulator by opening both the pressure reducing valve and the pressure increasing valve for the first hydraulic brake, As for the hydraulic brake, it is possible to prevent the reaction force of the accumulator from acting on the wheel by closing both the pressure reducing valve and the pressure increasing valve. Therefore, the influence of the accumulator reaction force can be suppressed while ensuring a comfortable brake feel, and the regenerative braking force can be fully utilized.
  • the first hydraulic brake is a rear wheel hydraulic brake
  • the second hydraulic brake is a front wheel hydraulic brake. is there.
  • the first hydraulic brake is the rear wheel hydraulic brake
  • the second hydraulic brake is the front wheel hydraulic brake. That is, while the driver's required braking force is provided only by the regenerative braking force, the rear wheel hydraulic brake can release the brake fluid to the accumulator by opening both the pressure reducing valve and the pressure increasing valve, while the front wheel hydraulic pressure Regarding the brake, the reaction force of the accumulator can be prevented from acting on the front wheels by closing both the pressure reducing valve and the pressure increasing valve. Therefore, the influence of the accumulator reaction force can be suppressed while ensuring a comfortable brake feel, and the regenerative braking force can be fully utilized. Also, since the braking force on the front wheel side is dominant as the braking force, the brake drag due to the accumulator reaction force can be remarkably reduced by preventing the reaction force of the accumulator from acting on the front wheels. The power can be fully utilized.
  • the vehicle brake device includes a plurality of brake systems, wherein the first hydraulic brake and the second hydraulic brake are 1 It is provided in one brake system.
  • the first hydraulic brake and the second hydraulic brake are provided in one brake system. For this reason, compared with the case where the 1st hydraulic brake and the 2nd hydraulic brake are each provided in a different brake system, the quantity of the brake fluid released to an accumulator can be decreased. Thereby, the rotation speed of a pump motor can be made small and the noise and vibration at the time of a pump motor operation
  • the first pressure increasing valve is provided between the first hydraulic brake and the second hydraulic brake.
  • An adjustment valve capable of continuously adjusting the flow rate of the brake fluid from the second hydraulic brake side to the first hydraulic brake side, and reducing the hydraulic brake force of the second hydraulic brake In this case, the opening of the adjustment valve is continuously increased and the first pressure reducing valve is opened.
  • the first hydraulic brake may not generate a braking force when reducing the hydraulic braking force of the second hydraulic brake.
  • the first pressure reducing valve is a solenoid valve that can be opened and closed intermittently, and may be kept open when the hydraulic brake force of the second hydraulic brake is reduced.
  • the second pressure reducing valve may maintain a closed state when the regenerative braking force is increased.
  • the vehicle brake device is capable of increasing the brake fluid supplied to the first hydraulic brake.
  • a second pressure reducing valve capable of reducing the pressure of the brake fluid supplied to the second hydraulic brake, wherein the first pressure reducing valve and the second pressure reducing valve are accumulators.
  • a control method for a vehicle brake device comprising: a step of closing the second pressure reducing valve; and a step of closing the second pressure increasing valve.
  • the first hydraulic brake is a rear wheel hydraulic brake
  • the second hydraulic brake is a front wheel liquid. It is a pressure brake.
  • the vehicular brake device in the control method for a vehicle brake device according to the eighth or ninth aspect, includes a plurality of brake systems, and the first hydraulic brake and the The second hydraulic brake is provided in one brake system.
  • the first pressure increasing valve includes the first hydraulic brake and the second hydraulic brake. And an adjustment valve that can continuously adjust the flow rate of the brake fluid from the second hydraulic brake side to the first hydraulic brake side,
  • the method includes a step of continuously increasing the opening of the adjustment valve and a step of opening the first pressure reducing valve.
  • the first hydraulic brake may not generate a braking force when reducing the hydraulic braking force of the second hydraulic brake.
  • the first pressure reducing valve is a solenoid valve that can be opened and closed intermittently, and may be kept open when the hydraulic brake force of the second hydraulic brake is reduced.
  • the second pressure reducing valve may maintain a closed state when the regenerative braking force is increased.
  • the braking force when the braking force can be provided only by the regenerative braking force, the influence of the accumulator reaction force when the pressure reducing valve is opened is suppressed, and the regenerative braking force is fully utilized while ensuring a comfortable brake feel. be able to.
  • FIG. 1 shows an example of a hydraulic circuit 10 constituting a hydraulic brake in a vehicle brake device to which the present invention is applied.
  • this embodiment includes two brake systems, and each system brakes one front wheel and a rear wheel that is diagonally positioned as a pair, so-called X-type piping hydraulic pressure.
  • the hydraulic circuit to which the present invention is applied is not limited to the X-type piping system, and may be, for example, a so-called II-type piping system that performs braking separately on the front wheel side and the rear wheel side.
  • the present invention can be widely applied to vehicles including not only four-wheeled vehicles but also two-wheeled vehicles.
  • the present invention is applied to a vehicle brake device that includes a regenerative brake and a hydraulic brake and distributes the braking force to the hydraulic brake force and the regenerative brake force with respect to the driver's required brake force. Therefore, although not shown, the vehicle to be controlled is equipped with a wheel drive motor that functions as a wheel drive source during traveling and functions as a generator during braking to generate regenerative braking force as a regenerative brake.
  • the power train ECU for controlling the motor and the brake ECU are electrically connected.
  • the brake ECU controls the regenerative brake force by giving a regenerative brake command value to the power train ECU, and the power train ECU outputs the maximum value of the regenerative brake force that can be output at that time to the brake ECU.
  • the brake ECU further includes a stroke sensor 2 attached to the brake pedal 1 and a master cylinder hydraulic pressure sensor 5 for detecting the hydraulic pressure in the master cylinder 4, and the speed of each wheel (RF, LR, LF, RR). An input from a wheel speed sensor (not shown) or the like is given.
  • the pedaling force applied to the brake pedal 1 is amplified by the booster 3 and transmitted to the master cylinder 4 as a hydraulic pressure generation source.
  • the master cylinder 4 two pressurizing chambers defined by a primary piston and a secondary piston (not shown) are formed. Each piston is pressed in accordance with the operation of the brake pedal, and the brake fluid is moved into the hydraulic circuit 10 via the hydraulic ports P1 and P2 communicating with the pressurizing chambers.
  • the booster 3 is a conventional pneumatic booster, which is connected to the brake pedal 1 via an input rod (not shown), and the amplified pedaling force is a push rod connected to the primary piston. (Not shown) is transmitted to the master cylinder 4.
  • the booster 3 has a so-called jump-in characteristic until the input rod of the booster 3 is mechanically connected to the push rod of the master cylinder 4.
  • a predetermined gap (in other words, a jump-in region) is provided between the input rod and the reaction disk attached to the push rod so as to form a region where the reaction force becomes extremely small.
  • Brake lines MC1 and MC2 extend from the hydraulic ports P1 and P2 of the master cylinder 4 toward the wheel cylinders of the respective wheels (RF, LR, LF, and RR).
  • the hydraulic circuit in the brake device of the present embodiment is an X-type piping system.
  • the wheel cylinder of the right front wheel (RF) hydraulic brake (second hydraulic brake) 19 is used.
  • the hydraulic circuit 10 is configured so that the brake fluid is supplied to the wheel cylinder of the brake) 20 and the wheel cylinder of the right rear wheel (RR) hydraulic brake (first hydraulic brake) 21 through the brake line MC1.
  • the brakes 18, 19, 20, and 21 can generate braking force on the wheels by operating the wheel cylinders with hydraulic pressure.
  • the hydraulic circuit of each system includes a normally open type linearly controllable circuit control valve 11, a normally closed type on / off controlled intake valve 12, and a normally open type linearly controllable pressure increase valve 13 f as electromagnetic valves. , 13r and pressure reducing valves 14f, 14r that are normally closed and on-off controlled, and further include a pump 16 driven by a pump motor 15 and a low-pressure accumulator 17.
  • the pressure increasing valve 13 f and the pressure reducing valve 14 f provided adjacent to the right front wheel hydraulic brake 19 are used for ABS control of the right front wheel hydraulic brake 19 and are provided adjacent to the left rear wheel hydraulic brake 18.
  • the pressure valve (regulating valve) 13r and the pressure reducing valve 14r are used for ABS control of the left rear wheel hydraulic brake 18.
  • the right front wheel side pressure increasing valve 13 f (second pressure increasing valve) is provided between the master cylinder 4 and the circuit control valve 11 and the right front wheel hydraulic brake 19.
  • the linearly controllable pressure increasing valve 13f can continuously adjust the flow rate of the brake fluid from the master cylinder 4 and the circuit control valve 11 side to the wheel cylinder side of the right front wheel hydraulic brake 19.
  • the pressure increasing valve 13f includes a check valve in which the brake fluid flows from the right front wheel hydraulic brake 19 side to the master cylinder 4 and the circuit control valve 11 side in the closed state, but does not flow in the opposite direction.
  • a bypass channel is provided.
  • the right front wheel side pressure reducing valve 14f (second pressure reducing valve) is a solenoid valve that can be fully opened or closed, and is provided between the wheel cylinder of the right front wheel hydraulic brake 19 and the low pressure accumulator 17. ing.
  • the pressure reducing valve 14f can depressurize the brake fluid supplied to the wheel cylinder of the right front wheel hydraulic brake 19 when opened.
  • the pressure reducing valve 14f can adjust the flow rate of the brake fluid flowing from the wheel cylinder of the right front wheel hydraulic brake 19 to the low pressure accumulator 17 by intermittently opening and closing the valve.
  • the pressure increasing valve 13r (first pressure increasing valve) on the left rear wheel side includes the master cylinder 4, the circuit control valve 11, the pressure increasing valve 13f, the wheel cylinder of the right front wheel hydraulic brake 19, and the wheel cylinder of the left rear wheel hydraulic brake 18. Between.
  • the linearly controllable pressure increasing valve 13r is a flow rate of brake fluid from the wheel cylinder side of the master cylinder 4, the circuit control valve 11, the pressure increasing valve 13f and the right front wheel hydraulic brake 19 to the wheel cylinder side of the left rear wheel hydraulic brake 18. Can be adjusted continuously.
  • the pressure increasing valve 13r includes a check valve in which the brake fluid flows from the left rear wheel hydraulic pressure brake 18 side to the left rear wheel hydraulic pressure brake 19 side in the closed state, but does not flow in the opposite direction. A bypass channel is provided.
  • the left rear wheel side pressure reducing valve 14r (first pressure reducing valve) is a solenoid valve that can be fully opened or fully closed, and is provided between the wheel cylinder of the left rear wheel hydraulic brake 18 and the low pressure accumulator 17. Is provided.
  • the pressure reducing valve 14r can reduce pressure by supplying brake fluid supplied to the wheel cylinder of the left rear wheel hydraulic brake 18 to the accumulator 17 when opened.
  • the pressure reducing valve 14r can adjust the flow rate of the brake fluid flowing from the wheel cylinder of the left rear wheel hydraulic brake 18 to the low pressure accumulator 17 by intermittently opening and closing the valve.
  • the circuit control valve 11 is arranged to communicate and block between the pressure increasing valves 13 f and 13 r and the master cylinder 4, and the suction valve 12 communicates and blocks between the master cylinder 4 and the suction side of the pump 16. It is arranged to make it. Since these are the same as the components for the conventional vehicle attitude control (ESC), detailed description is omitted. Further, the master cylinder hydraulic pressure sensor 5 described above is arranged in one brake pipe (the brake pipe MC1 in the example of FIG. 1).
  • the vehicle brake device performs the following processing to sufficiently utilize the regenerative braking force while ensuring a comfortable brake feel while the braking force is provided only by the regenerative braking force. Can do. Further, the braking force of the right front wheel hydraulic brake 19 and the left front wheel hydraulic brake 20 can be appropriately controlled according to the fluctuation of the maximum regenerative braking force that can be regenerated by the regenerative brake. In the present embodiment, only the right front wheel hydraulic brake 19 and the left rear wheel hydraulic brake 18 side will be described, but the left front wheel hydraulic brake 20 and the right rear wheel hydraulic brake 21 side are similarly controlled.
  • the brake ECU calculates a driver required brake force Fdrv indicating a target braking force according to an operation by the driver. For use in this calculation, the brake ECU stores a map A in which the correspondence relationship between the stroke sensor value s and the driver required brake force Fdrv as shown in FIG. 3A is set in advance. Therefore, the brake ECU calculates the driver request brake force Fdrv that is the target braking force from the stroke sensor value s and the map A (step S1).
  • brake ECU After calculating the driver's required braking force F drv, brake ECU is as the target regenerative braking force to be distributed to the driver's demand braking force F drv, it calculates the driver required regenerative braking force F drv regen (step S2). For use in this calculation, a map B as shown in FIG. 3B is stored in the brake ECU, for example. Map B is obtained by setting the correspondence between the driver's required braking force F drv the driver required regenerative braking force F drv regen. In the present embodiment, as shown in FIG. 3B, the driver-required regenerative braking force F drv regen with respect to the driver-required braking force F drv having a predetermined value is set to zero.
  • the brake ECU obtains the maximum regenerative braking force F regen max that is the maximum value of the regenerative braking force that can be output from the power train ECU at the current time (step S3). ).
  • brake ECU Upon obtaining the maximum regenerative braking force F regen max, brake ECU compares the maximum regenerative braking force F regen max and driver required regenerative braking force calculated at step S2 F drv regen obtained in step S3, the smaller The brake force F accu caused by the reaction force of the accumulator 17 is subtracted from the value of. The value thus obtained is output to the power train ECU as a regenerative brake command value F regen target (step S4).
  • the brake force F accu due to the reaction force of the accumulator 17 is a brake force generated by the reaction force of the accumulator 17 when the pressure reducing valve 14r is opened, and is a predetermined value set in advance.
  • the brake ECU acquires an actual regenerative brake force F regen corresponding to the current actual regenerative brake force from the power train ECU (step S5).
  • P target ⁇ (F drv ⁇ F regen so that the hydraulic braking force to be distributed with respect to the driver required braking force F drv is obtained. )
  • P target ⁇ (F drv ⁇ F regen so that the hydraulic braking force to be distributed with respect to the driver required braking force F drv is obtained. )
  • P target P target circuit pressure
  • the brake ECU determines whether or not the calculated target circuit pressure P target is greater than ⁇ F accum (step S7).
  • ⁇ F accu is a circuit pressure generated by the reaction force of the accumulator 17 when the pressure reducing valve 14r is opened, which is obtained by multiplying the brake force F accu by the reaction force of the accumulator 17 and the constant ⁇ .
  • the brake ECU can determine whether or not the required brake force based on the driver's brake operation is satisfied only by the regenerative brake.
  • step S7 If it is determined in step S7 that the target circuit pressure P target is not greater than ⁇ F accum (step S7: NO), the brake ECU opens the pressure reducing valve 14r on the left rear wheel side (step S8), and the rear left The wheel-side pressure increasing valve 13r is opened (step S9), the right front wheel-side pressure reducing valve 14f is closed (step S10), and the right front wheel-side pressure increasing valve 13f is closed (step S11).
  • the pump motor 15 is deactivated (step S12), and the series of processes is terminated.
  • the brake ECU opens the left rear wheel side pressure reducing valve 14r and the pressure increasing valve 13r when the required brake force is satisfied only by the regenerative brake by the processing of step S8 to step S12, and reduces the pressure on the right front wheel side.
  • the valve 14f and the pressure increasing valve 13f are closed.
  • the brake fluid corresponding to the operation amount of the brake pedal 1 is discharged to the accumulator 17 through the pressure increasing valve 13r and the pressure reducing valve 14r. A good operation feeling of the brake pedal 1 can be obtained.
  • the reaction force of the accumulator 17 does not act on the wheel, and no hydraulic brake is generated. Therefore, the influence of the reaction force of the accumulator 17 can be suppressed while ensuring a good brake feel, and the regenerative braking force can be fully utilized. Further, since the braking force on the front wheel side is dominant as the braking force, the brake drag due to the reaction force of the accumulator 17 is remarkably prevented by preventing the reaction force of the accumulator 17 from acting on the front wheel as in this embodiment. Therefore, the effective use of the regenerative brake can be realized more effectively.
  • step S7 when it is determined in step S7 that the target circuit pressure P target is larger than ⁇ F accu (step S7: YES), the brake ECU detects the master cylinder sensor hydraulic pressure Pmc detected by the master cylinder hydraulic pressure sensor 5 and the target circuit. Based on the pressure P target and the map C shown in FIG. 3C, the actual caliper volume V (the volume of brake fluid in the caliper wheel cylinder at the present time) and the target caliper volume V target (target circuit pressure P target (Volume of brake fluid in the wheel cylinder of the caliper) necessary for obtaining the above is calculated (step S13). In order to use for this calculation, the brake ECU stores a map C in which the relationship between the pressure P and the caliper volume V as shown in FIG.
  • the brake ECU determines whether ⁇ V is positive (step S15).
  • step S15 If it is determined in step S15 that ⁇ V is positive (step S15: YES), the brake ECU closes the pressure increase valve 13r on the left rear wheel side (step S16), and sets the pressure reduction valve 14r on the left rear wheel side.
  • the valve is closed (step S17), the number of revolutions of the pump motor 15 is controlled, the motor 15 is operated (step S18), and the series of processes is terminated.
  • the rotational speed of the motor 15 at this time is determined based on the value of ⁇ V.
  • step S15 determines whether ⁇ V is negative (step S19).
  • step S19 If it is determined in step S19 that ⁇ V is negative (step S19: YES), the brake ECU starts to gradually increase the valve opening of the left rear wheel side pressure increasing valve 13r by PWM control (step S20). ).
  • the brake ECU opens the pressure reducing valve 14r on the left rear wheel side (step S21) and deactivates the pump motor 15 (step S22). A series of processing ends. Accordingly, the pressure reducing valve 14r on the left rear wheel side is maintained in an open state, and the pressure reducing valve 14f on the right front wheel side is maintained in a closed state, so that the brake supplied to the wheel cylinder of the right front wheel hydraulic brake 19 is maintained.
  • the pressure reduction of the liquid is adjusted by the pressure increasing valve 13r on the left rear wheel side.
  • the brake ECU is configured to increase the regenerative braking force while the right front wheel hydraulic brake 19 is generating the hydraulic braking force.
  • the hydraulic pressure of the brake fluid supplied to can be continuously reduced gradually.
  • step S19 if it is determined in step S19 that ⁇ V is not negative (step S19: NO), the brake ECU closes the left rear wheel side pressure increasing valve 13r (step S23), and closes the left rear wheel side pressure reducing valve 14r ( In step S24), the pump motor 15 is deactivated (step S25), and the series of processes is terminated.
  • the brake ECU maintains the braking force of the right front wheel hydraulic brake 19 when ⁇ V is 0 (zero), that is, when the target caliper volume V target and the actual caliper volume V are the same. can do.
  • the brake ECU repeats the above processing every predetermined time.
  • the brake ECU when the braking force of the front wheel hydraulic brakes 19 and 20 is decreased, the brake ECU continuously increases the opening degree of the pressure increase valves 13r and 13r on the rear wheel side little by little, and on the rear wheel side.
  • the pressure reducing valves 14r and 14r are opened.
  • FIG. 4 is a diagram showing an example of a timing chart when the maximum regenerative braking force increases during braking.
  • the “maximum regenerative braking force” is the maximum value of the regenerative braking force that can be output at the present time, which is input from the powertrain ECU to the brake ECU. means. As described above, during braking, the maximum regenerative braking force changes depending on the vehicle speed, the state of charge of the battery, and the like.
  • the regenerative braking force (corresponding to the regenerative brake command value F regen ) is indicated by a solid line as the regenerative torque, and the driver required brake force F drv is indicated by a broken line as the required torque. Yes.
  • the front wheel pressure is indicated by a solid line, and the rear wheel pressure is indicated by a broken line.
  • the rear wheel side pressure reducing valve 14r is opened. Specifically, in the region D, the driver's demand braking force F drv by depression of the pedal is increased in the state of the hydraulic pressure braking force is zero or F accu, this time, the driver required regenerative braking force based on the map B F drv regen also increases.
  • the pressure increase valve 13r on the rear wheel side is continuously slightly reduced by PWM control. While gradually increasing, the pressure reducing valve 14r on the rear wheel side is opened (region C).
  • the pressure increasing valve 13r on the rear wheel side is raised little by little without opening the pressure reducing valve 14f on the front wheel side. The problem of vibration and noise when the pressure reducing valve is opened under pressure can be avoided.
  • the master cylinder sensor hydraulic pressure Pmc detected by the master cylinder hydraulic pressure sensor 5 is used to calculate the actual caliper volume V.
  • the present invention is not limited to this. If the actual caliper volume V can be calculated, a wheel that detects the hydraulic pressure in the wheel cylinders of the front wheel hydraulic brakes 19 and 20 between the wheel cylinders of the front wheel hydraulic brakes 19 and 20 and the pressure increasing valves 13f and 13f.
  • a cylinder hydraulic pressure sensor may be provided, and the hydraulic pressure detected by the wheel cylinder hydraulic pressure sensor may be used instead of the master cylinder sensor hydraulic pressure Pmc.
  • the brake ECU when the brake fluid supplied to the wheel cylinders of the front wheel hydraulic brakes 19 and 20 is depressurized, the brake ECU continuously increases the opening degree of the pressure increase valves 13r and 13r on the rear wheel side slightly. After raising each one, the pressure reducing valves 14r, 14r on the rear wheel side are opened, but the present invention is not limited to this. If the brake fluid supplied to the wheel cylinders of the front wheel hydraulic brakes 19 and 20 can be continuously reduced gradually, the rear wheel side pressure reducing valves 14r and 14r are opened, and then the rear wheel side pressure increasing valves 13r and The opening degree of 13r may be increased.
  • the present invention is not limited to this.
  • the rear wheel side pressure reducing valves 14r and 14r and the pressure increasing valves 13r and 13r are closed, and the front wheel side pressure reducing valves 14f and 14f and the pressure increasing valves 13f and 13f are opened. May be.
  • the pressure reducing valve and the pressure increasing valve that are opened are respectively set to the first pressure reducing valve.
  • the pressure-reducing valve and the pressure-increasing valve which are referred to as a valve and a first pressure-increasing valve, respectively, are called a second pressure-reducing valve and a second pressure-increasing valve, respectively.
  • the accumulator reaction force is not applied to only one hydraulic brake (for example, only the front wheel side of the X-type piping system) in one brake system. It is not limited to.
  • the present invention when the present invention is applied to a type II piping system and the braking force can be provided only by the regenerative braking force, all the pressure reducing valves and pressure increasing valves in the front wheel side brake system are closed, and the pressure reducing valve in the rear wheel side brake system And you may comprise so that all the pressure increase valves may be opened.
  • the amount of brake fluid that escapes to the accumulator 17 increases on the rear wheel side, it is necessary to increase the rotational speed of the pump motor 15 when the hydraulic brake force is increased.
  • the accumulator reaction force is not applied to only one hydraulic brake in one brake system (in other words, the pressure reducing valve is closed only for one hydraulic brake in one brake system and the other hydraulic brake is applied.
  • the pressure reducing valves for the pressure brake By opening the pressure reducing valves for the pressure brake), the number of revolutions of the pump motor 15 can be reduced as compared with the case of opening all the pressure reducing valves in one brake system, and the noise during operation of the pump motor can be reduced. Vibration can be reduced.
  • the present invention is widely applied not only to four-wheeled vehicles but also to vehicles including two-wheeled vehicles, and in particular, can be widely applied to vehicle brake devices including a so-called regenerative cooperative brake.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

 本発明は、減圧弁を開いたときのアキュムレータ反力の影響を抑制することにより、ブレーキの引き摺りを減少させ、回生ブレーキ力を十分に有効利用することを目的とする。 液圧ブレーキ力を発生させる少なくとも第1の液圧ブレーキ及び第2の液圧ブレーキと、回生ブレーキ力を発生させる回生ブレーキとを備え、運転者の要求ブレーキ力に対して液圧ブレーキ力と回生ブレーキ力の分配を行う車両用ブレーキ装置において、前記第1の液圧ブレーキに供給されたブレーキ液を増圧可能な第1の増圧弁と、前記第1の液圧ブレーキに供給されたブレーキ液を減圧可能な第1の減圧弁と、前記第2の液圧ブレーキに供給されたブレーキ液を増圧可能な第2の増圧弁と、前記第2の液圧ブレーキに供給されたブレーキ液を減圧可能な第2の減圧弁と、を備えており、前記第1の減圧弁及び前記第2の減圧弁は、アキュムレータに連通しており、運転者の要求ブレーキ力が回生ブレーキ力のみで賄われる間、前記第1の増圧弁及び前記第1の減圧弁を開き、前記第2の増圧弁及び前記第2の減圧弁を閉じるようになされた車両用ブレーキ装置が提供される。

Description

車両用ブレーキ装置及びその制御方法
 本発明は、車両用ブレーキ装置及びその制御方法に関し、特に、液圧ブレーキと、回生ブレーキ力を発生させる回生ブレーキとを備え、液圧ブレーキ力と回生ブレーキ力とに制動力を分配可能なものに関する。
 従来、車両用ブレーキ装置として、運転者のブレーキ操作に応じて発生する液圧を利用して液圧ブレーキ力を発生させる液圧ブレーキと、回生ブレーキ力を発生させる回生ブレーキとを備え、液圧ブレーキ力と回生ブレーキ力とに制動力を分配して回生協調を行う車両用ブレーキ装置が知られている。
 この種の車両用ブレーキ装置に用いられる回生ブレーキの目的は、制動時の車輪の運動エネルギを電気エネルギに変換し、エネルギの有効利用を図ることにあるが、回生ブレーキが回生可能な最大回生ブレーキ力は、車両の制動時の車速やバッテリの充電状態等により限界がある。このため、液圧ブレーキを制動させている最中にも、液圧ブレーキによる制動力と回生ブレーキによる制動力との割合を最大回生ブレーキ力に応じて変動させ、回生ブレーキの割合を高めることがエネルギの有効利用の観点からも好ましい。
 このため、回生協調を行うべく様々な方法が提案されているが、制動力に対する回生ブレーキの割合を変える場合には、運転者はブレーキフィールに違和感を覚えてしまうことがあった。このため、快適なブレーキフィールを得る手段として、回生ブレーキによる制動の際にブレーキ液を減圧弁を介して低圧アキュムレータ内へ逃がし、液圧を高める際には、電気制御されるモータポンプユニットを用いてアキュムレータからブレーキ液を圧送していた(例えば、特許文献1参照)。
特表2007-500104号公報
 上述の車両用ブレーキ装置では、回生ブレーキを使用する際に減圧弁を開き、ブレーキ液を低圧アキュムレータに逃がすことによって、快適なブレーキフィールを実現することを意図している。しかし、減圧弁を開くとアキュムレータの反力によって数バール程度の圧力が車輪にかかる。このため、制動力を回生ブレーキ力のみで賄うことができる場合であっても、回生ブレーキ力を十分に利用することができない場合がある。
 また、ブレーキキャリパに供給されたブレーキ液を減圧弁を介して低圧アキュムレータに逃がす上述の車両用ブレーキ装置では、減圧弁は、全開または全閉のみ可能であり、開閉を繰り返すことにより排出量の調整を行っている。このとき、ブレーキ液に脈動が生じてしまい、特に減圧弁の前後でブレーキ液の液圧の差が大きいと、ウォータハンマ等による異音が発生してしまうおそれがあった。
 上記従来技術に鑑み、本発明の目的は、減圧弁を開いたときのアキュムレータ反力の影響を抑制することによって、回生ブレーキ力を十分に利用することにある。
 また、本発明の目的は、上述した従来の技術が有する課題を解消し、ブレーキキャリパに供給されたブレーキ液を減圧する際に、異音を生じないようにすることにある。
 請求項1の発明によれば、液圧ブレーキ力を発生させる少なくとも第1の液圧ブレーキ及び第2の液圧ブレーキと、回生ブレーキ力を発生させる回生ブレーキとを備え、運転者の要求ブレーキ力に対して液圧ブレーキ力と回生ブレーキ力の分配を行う車両用ブレーキ装置において、前記第1の液圧ブレーキに供給されたブレーキ液を増圧可能な第1の増圧弁と、前記第1の液圧ブレーキに供給されたブレーキ液を減圧可能な第1の減圧弁と、前記第2の液圧ブレーキに供給されたブレーキ液を増圧可能な第2の増圧弁と、前記第2の液圧ブレーキに供給されたブレーキ液を減圧可能な第2の減圧弁と、を備えており、前記第1の減圧弁及び前記第2の減圧弁は、アキュムレータに連通しており、運転者の要求ブレーキ力が回生ブレーキ力のみで賄われる間、前記第1の増圧弁及び前記第1の減圧弁を開き、前記第2の増圧弁及び前記第2の減圧弁を閉じるようになされたことを特徴とする車両用ブレーキ装置が提供される。
 この構成によれば、運転者の要求ブレーキ力が回生ブレーキ力のみで賄われる間、第1の増圧弁及び第1の減圧弁を開き、第2の増圧弁及び第2の減圧弁を閉じる。すなわち、運転者の要求ブレーキ力が回生ブレーキ力のみで賄われる間、第1の液圧ブレーキについては減圧弁と増圧弁を共に開くことによってアキュムレータにブレーキ液を逃がすことができ、一方、第2の液圧ブレーキについては減圧弁と増圧弁を共に閉じることによってアキュムレータの反力を車輪に作用させないようにすることができる。従って、快適なブレーキフィールを確保しつつアキュムレータ反力の影響を抑制し、回生ブレーキ力を十分に利用することができる。
 請求項2の発明によれば、請求項1に記載の車両用ブレーキ装置において、前記第1の液圧ブレーキが後輪液圧ブレーキであり、前記第2の液圧ブレーキが前輪液圧ブレーキである。
 この構成によれば、第1の液圧ブレーキが後輪液圧ブレーキであり、第2の液圧ブレーキが前輪液圧ブレーキである。すなわち、運転者の要求ブレーキ力が回生ブレーキ力のみで賄われる間、後輪液圧ブレーキについては減圧弁と増圧弁を共に開くことによってアキュムレータにブレーキ液を逃がすことができ、一方、前輪液圧ブレーキについては減圧弁と増圧弁を共に閉じることによってアキュムレータの反力を前輪に作用させないようにすることができる。従って、快適なブレーキフィールを確保しつつアキュムレータ反力の影響を抑制し、回生ブレーキ力を十分に利用することができる。また、制動力は前輪側のブレーキ力が支配的であるため、アキュムレータの反力を特に前輪に作用させないようにすることによって、アキュムレータ反力によるブレーキの引き摺りを著しく減少させることができ、回生ブレーキ力を十分に利用することができる。
 請求項3の発明によれば、請求項1または2に記載の車両用ブレーキ装置において、複数のブレーキ系統を備えており、前記第1の液圧ブレーキ及び前記第2の液圧ブレーキは、1つのブレーキ系統に設けられている。
 この構成によれば、第1の液圧ブレーキ及び第2の液圧ブレーキは、1つのブレーキ系統に設けられている。このため、第1の液圧ブレーキ及び第2の液圧ブレーキが、それぞれ、異なるブレーキ系統に設けられた場合と比較して、アキュムレータに逃がすブレーキ液の量を少なくすることができる。これにより、ポンプモータの回転数を小さくすることができ、ポンプモータ作動時の騒音・振動を低減させることができる。
 請求項4の発明によれば、請求項3に記載の車両用ブレーキ装置において、前記第1の増圧弁は、前記第1の液圧ブレーキと前記第2の液圧ブレーキとの間に設けられ、前記第2の液圧ブレーキ側から前記第1の液圧ブレーキ側へのブレーキ液の流量を連続的に調整可能な調整弁であり、前記第2の液圧ブレーキの液圧ブレーキ力を減少させる場合に、前記調整弁の開度を連続的に上げるとともに、前記第1の減圧弁を開く。
 この場合において、前記第1の液圧ブレーキは、前記第2の液圧ブレーキの液圧ブレーキ力を減少させる場合に、制動力を発生させなくてもよい。前記第1の減圧弁は、断続的に開閉可能なソレノイドバルブであり、前記第2の液圧ブレーキの液圧ブレーキ力を減少させる場合に、開いた状態を維持してもよい。前記第2の減圧弁は、回生ブレーキ力を増加させる場合に、閉じた状態を維持してもよい。
 請求項8の発明によれば、液圧ブレーキ力を発生させる少なくとも第1の液圧ブレーキ及び第2の液圧ブレーキと、回生ブレーキ力を発生させる回生ブレーキとを備え、運転者の要求ブレーキ力に対して液圧ブレーキ力と回生ブレーキ力の分配を行う車両用ブレーキ装置の制御方法において、前記車両用ブレーキ装置は、前記第1の液圧ブレーキに供給されたブレーキ液を増圧可能な第1の増圧弁と、前記第1の液圧ブレーキに供給されたブレーキ液を減圧可能な第1の減圧弁と、前記第2の液圧ブレーキに供給されたブレーキ液を増圧可能な第2の増圧弁と、前記第2の液圧ブレーキに供給されたブレーキ液を減圧可能な第2の減圧弁と、を備えており、前記第1の減圧弁及び前記第2の減圧弁は、アキュムレータに連通しており、前記制御方法は、運転者の要求ブレーキ力を回生ブレーキ力のみで賄う場合に、前記第1の減圧弁を開くステップと、前記第1の増圧弁を開くステップと、
 前記第2の減圧弁を閉じるステップと、前記第2の増圧弁を閉じるステップと、を備えたことを特徴とする車両用ブレーキ装置の制御方法が提供される。
 請求項9の発明によれば、請求項8に記載の車両用ブレーキ装置の制御方法において、前記第1の液圧ブレーキが後輪液圧ブレーキであり、前記第2の液圧ブレーキが前輪液圧ブレーキである。
 請求項10の発明によれば、請求項8または9に記載の車両用ブレーキ装置の制御方法において、前記車両用ブレーキ装置が複数のブレーキ系統を備えており、前記第1の液圧ブレーキ及び前記第2の液圧ブレーキは、1つのブレーキ系統に設けられている。
 また、請求項11の発明によれば、請求項10に記載の車両用ブレーキ装置の制御方法において、前記第1の増圧弁は、前記第1の液圧ブレーキと前記第2の液圧ブレーキとの間に設けられ、前記第2の液圧ブレーキ側から前記第1の液圧ブレーキ側へのブレーキ液の流量を連続的に調整可能な調整弁であり、前記第2の液圧ブレーキの液圧ブレーキ力を減少させる場合に、前記調整弁の開度を連続的に上げるステップと、前記第1の減圧弁を開くステップと、を備える。
 この場合において、前記第1の液圧ブレーキは、前記第2の液圧ブレーキの液圧ブレーキ力を減少させる場合に、制動力を発生させなくてもよい。前記第1の減圧弁は、断続的に開閉可能なソレノイドバルブであり、前記第2の液圧ブレーキの液圧ブレーキ力を減少させる場合に、開いた状態を維持してもよい。前記第2の減圧弁は、回生ブレーキ力を増加させる場合に、閉じた状態を維持してもよい。
 本発明によれば、制動力を回生ブレーキ力のみで賄える場合に、減圧弁を開いたときのアキュムレータ反力の影響を抑制し、快適なブレーキフィールを確保しつつ回生ブレーキ力を十分に利用することができる。
 また、本発明では、ブレーキキャリパに供給されたブレーキ液を減圧する際に、異音を生じないようにすることができる。
本発明の一実施形態による、車両用ブレーキ装置の液圧回路の一例を示す図である。 ブレーキECU内の処理の一例を示すフローチャートである。 図2の処理で用いられるマップの例を示す図である。 最大回生ブレーキ力が増加する場合の制御例を示すタイミングチャートである。
 以下、図面を参照して、本発明の好適な実施の形態について説明する。
 図1は、本発明が適用される車両用ブレーキ装置における、液圧ブレーキを構成する液圧回路10の例を示す。図1に示すように、本実施形態は、2つのブレーキ系統を備え、各系統で1つの前輪およびそれと対角の位置にある後輪を1組として制動する、いわゆるX型配管方式の液圧回路に適用されるが、本発明が適用される液圧回路は、X型配管方式に限られず、例えば前輪側と後輪側に分けて制動する、いわゆるII型配管方式であってもよい。また、本発明は、四輪車のみに限らず、二輪車も含む車両に広く適用することができる。
 本発明は、回生ブレーキと液圧ブレーキとを備え、運転者の要求ブレーキ力に対して、液圧ブレーキ力と回生ブレーキ力とに制動力の分配が行われる車両用ブレーキ装置に適用される。従って、制御対象である車両には、図示されていないが、走行時に車輪駆動源として機能し、制動時には発電機として機能して回生ブレーキ力を生じさせる車輪駆動用モータが回生ブレーキとして搭載されており、このモータを制御するためのパワートレインECUとブレーキECUとが電気的に接続されている。ブレーキECUは、パワートレインECUに回生ブレーキ指令値を与えることにより回生ブレーキ力を制御し、パワートレインECUは、ブレーキECUに対し、その時点で出力可能な回生ブレーキ力の最大値を出力する。
 ブレーキECUには、さらに、ブレーキペダル1に取り付けられたストロークセンサ2及びマスタシリンダ4内の液圧を検出するマスタシリンダ液圧センサ5の他、各車輪(RF、LR、LF、RR)の速度を示す車輪速センサ(図示せず)等からの入力が与えられる。
 図1に示される液圧回路10において、ブレーキペダル1に加えられた踏力は、倍力装置3により増幅されて、液圧発生源としてのマスタシリンダ4に伝達される。マスタシリンダ4内には、図示されないプライマリピストン及びセカンダリピストンにより画定される2つの加圧室が形成されている。ブレーキペダル操作に応じて各ピストンが押圧され、各加圧室に連通する液圧ポートP1、P2を介してブレーキ液が液圧回路10内へ移動するようになされている。尚、倍力装置3は、従来の気圧式倍力装置であり、入力ロッド(図示せず)を介してブレーキペダル1側に接続され、増幅された踏力は、プライマリピストンに連結されたプッシュロッド(図示せず)を介して、マスタシリンダ4に伝達される。また、従来の倍力装置と同様に、倍力装置3は、所謂ジャンプイン特性を有しており、倍力装置3の入力ロッドがマスタシリンダ4のプッシュロッドに機械的に連結されるまでの間に反力が極小さくなる領域を形成するように、入力ロッドと、プッシュロッドに取り付けられるリアクションディスクとの間には、所定の隙間(換言すれば、ジャンプイン領域)が設けられている。
 マスタシリンダ4の液圧ポートP1、P2からは、それぞれ、各車輪(RF、LR、LF、RR)のホイールシリンダに向けてブレーキ管路MC1、MC2が延びている。上記したように、本実施形態のブレーキ装置における液圧回路は、X型配管方式であり、図1の例では、右前輪(RF)液圧ブレーキ(第2の液圧ブレーキ)19のホイールシリンダ及び左後輪(LR)液圧ブレーキ(第1の液圧ブレーキ)18のホイールシリンダには、ブレーキ管路MC2を通してブレーキ液が供給され、左前輪(LF)液圧ブレーキ(第2の液圧ブレーキ)20のホイールシリンダ及び右後輪(RR)液圧ブレーキ(第1の液圧ブレーキ)21のホイールシリンダには、ブレーキ管路MC1を通してブレーキ液が供給されるように液圧回路10が構成されている。これにより、各ブレーキ18,19,20,21は、液圧でホイールシリンダが動作することにより、車輪に制動力を生じさせることができるようになっている。
 各系統の液圧回路は、電磁弁として、常開型でリニア制御可能な回路制御弁11と、常閉型でオンオフ制御される吸入弁12と、常開型でリニア制御可能な増圧弁13f,13rと、常閉型でオンオフ制御される減圧弁14f,14rとを含み、さらに、ポンプモータ15により駆動されるポンプ16、及び低圧アキュムレータ17を備える。右前輪液圧ブレーキ19に隣接して設けられた増圧弁13f及び減圧弁14fは、右前輪液圧ブレーキ19のABS制御に用いられ、左後輪液圧ブレーキ18に隣接して設けられた増圧弁(調整弁)13r及び減圧弁14rは、左後輪液圧ブレーキ18のABS制御に用いられる。
 右前輪側の増圧弁13f(第2の増圧弁)は、マスタシリンダ4及び回路制御弁11と右前輪液圧ブレーキ19との間に設けられている。リニア制御可能な増圧弁13fは、マスタシリンダ4及び回路制御弁11側から右前輪液圧ブレーキ19のホイールシリンダ側へのブレーキ液の流量を連続的に調整できるようになっている。増圧弁13fは、増圧弁13fが閉じた状態において、ブレーキ液が右前輪液圧ブレーキ19側からマスタシリンダ4及び回路制御弁11側へ流れるが、その逆向きには流れないチェックバルブを備えたバイパス流路が設けられている。
 右前輪側の減圧弁14f(第2の減圧弁)は、弁を全開あるいは全閉のみが可能なソレノイドバルブであり、右前輪液圧ブレーキ19のホイールシリンダと低圧アキュムレータ17との間に設けられている。減圧弁14fは、開いたときに右前輪液圧ブレーキ19のホイールシリンダに供給されたブレーキ液を減圧できるようになっている。なお、減圧弁14fは、弁の開閉を断続的に繰り返すことにより右前輪液圧ブレーキ19のホイールシリンダから低圧アキュムレータ17に流れるブレーキ液の流量を調整することができる。
 左後輪側の増圧弁13r(第1の増圧弁)は、マスタシリンダ4、回路制御弁11、増圧弁13f及び右前輪液圧ブレーキ19のホイールシリンダと左後輪液圧ブレーキ18のホイールシリンダとの間に設けられている。リニア制御可能な増圧弁13rは、マスタシリンダ4、回路制御弁11、増圧弁13f及び右前輪液圧ブレーキ19のホイールシリンダ側から左後輪液圧ブレーキ18のホイールシリンダ側へのブレーキ液の流量を連続的に調整できるようになっている。増圧弁13rは、増圧弁13rが閉じた状態において、ブレーキ液が左後輪液圧ブレーキ18側から左後輪液圧ブレーキ19側へ流れるが、その逆向きには流れないチェックバルブを備えたバイパス流路が設けられている。
 左後輪側の減圧弁14r(第1の減圧弁)は、弁を全開あるいは全閉のみが可能なソレノイドバルブであり、左後輪液圧ブレーキ18のホイールシリンダと低圧アキュムレータ17との間に設けられている。減圧弁14rは、開いたときに左後輪液圧ブレーキ18のホイールシリンダに供給されたブレーキ液を、アキュムレータ17に供給することにより減圧できるようになっている。なお、減圧弁14rは、弁の開閉を断続的に繰り返すことにより左後輪液圧ブレーキ18のホイールシリンダから低圧アキュムレータ17に流れるブレーキ液の流量を調整することができる。
 回路制御弁11は、増圧弁13f,13rとマスタシリンダ4との間を連通、遮断するように配設され、吸入弁12は、マスタシリンダ4とポンプ16の吸引側との間を連通、遮断させるように配設されている。これらは、従来の車両姿勢制御(ESC)のための構成要素と同様であるので、詳しい説明は省略する。また、一方のブレーキ管路(図1の例ではブレーキ管路MC1)には、上記したマスタシリンダ液圧センサ5が配置されている。
 上記車両用ブレーキ装置におけるブレーキECUによる処理の例を図2のフローチャートに示す。本実施形態に係る車両用ブレーキ装置は、以下の処理を実行することにより、制動力が回生ブレーキ力のみで賄われる間、快適なブレーキフィールを確保しつつ、回生ブレーキ力を十分に利用することができる。また、回生ブレーキが回生可能な最大回生ブレーキ力の変動に応じて、右前輪液圧ブレーキ19及び左前輪液圧ブレーキ20の制動力を適切に制御することができる。本実施形態では、右前輪液圧ブレーキ19及び左後輪液圧ブレーキ18側についてのみ説明するが、左前輪液圧ブレーキ20及び右後輪液圧ブレーキ21側も同様に制御される。
 まず、ブレーキペダル1に取り付けられたストロークセンサ2のストロークセンサ値sに基づいて、ブレーキECUは、運転者による操作に応じた目標制動力を示す運転者要求ブレーキ力Fdrvを算出する。この演算に用いるために、ブレーキECUには、図3(A)に示すようなストロークセンサ値sと運転者要求ブレーキ力Fdrvとの対応関係を予め設定したマップAが記憶されている。従って、ブレーキECUは、ストロークセンサ値sとマップAから、目標制動力である運転者要求ブレーキ力Fdrvを算出する(ステップS1)。
 運転者要求ブレーキ力Fdrvを算出すると、ブレーキECUは、運転者要求ブレーキ力Fdrvに対して配分されるべき目標回生制動力としての、運転者要求回生ブレーキ力Fdrv regenを算出する(ステップS2)。この演算に用いるため、ブレーキECUには、例えば、図3(B)に示すようなマップBが記憶されている。マップBは、運転者要求ブレーキ力Fdrvと運転者要求回生ブレーキ力Fdrv regenとの対応関係を設定したものである。本実施形態では、図3(B)に示すように、所定の値の運転者要求ブレーキ力Fdrvに対する運転者要求回生ブレーキ力Fdrv regenがゼロに設定されている。
 運転者要求回生ブレーキ力Fdrv regenを算出すると、ブレーキECUは、パワートレインECUから得られる現時点での出力可能な回生ブレーキ力の最大値である最大回生ブレーキ力Fregen maxを取得する(ステップS3)。
 最大回生ブレーキ力Fregen maxを取得すると、ブレーキECUは、ステップS3にて取得した最大回生ブレーキ力Fregen maxとステップS2で算出した運転者要求回生ブレーキ力Fdrv regenとを比較し、小さい方の値から、アキュムレータ17の反力によるブレーキ力Faccuを減じる。これにより得られた値を回生ブレーキ指令値Fregen targetとして、パワートレインECUに出力する(ステップS4)。アキュムレータ17の反力によるブレーキ力Faccuは、減圧弁14rを開いたときにアキュムレータ17の反力により生じるブレーキ力であり、予め設定された所定値である。
 回生ブレーキ指令値Fregen targetをパワートレインECUに出力すると、ブレーキECUは、パワートレインECUから現在の実際の回生ブレーキ力に対応する実回生ブレーキ力Fregenを取得する(ステップS5)。
 実回生ブレーキ力Fregenを取得すると、ブレーキECUは、運転者要求ブレーキ力Fdrvに対して配分すべき液圧ブレーキ力が得られるように、所定の演算Ptarget=α(Fdrv-Fregen)に基づき、目標回路圧力Ptargetを算出する(ステップS6)。尚、αは、ブレーキ力を圧力へ変換するための定数である。
 目標回路圧力Ptargetを算出すると、ブレーキECUは、算出された目標回路圧力PtargetがαFaccuより大であるか否かを判断する(ステップS7)。αFaccuは、アキュムレータ17の反力によるブレーキ力Faccuと上記定数αを乗じて得られる、減圧弁14rを開いたときにアキュムレータ17の反力によって生じる回路圧力である。この処理により、ブレーキECUは、運転者のブレーキ操作に基づく要求ブレーキ力が回生ブレーキのみで満たされているか否かを判断することができる。
 ステップS7において、目標回路圧力PtargetがαFaccuより大ではないと判断すると(ステップS7:NO)、ブレーキECUは、左後輪側の減圧弁14rを開弁状態とし(ステップS8)、左後輪側の増圧弁13rを開弁状態とし(ステップS9)、右前輪側の減圧弁14fを閉弁状態とし(ステップS10)、右前輪側の増圧弁13fを閉弁状態とし(ステップS11)、ポンプモータ15を非作動状態とし(ステップS12)、一連の処理を終了する。こうして、ブレーキECUは、ステップS8乃至ステップS12の処理により、要求ブレーキ力が回生ブレーキのみで満たされている場合に、左後輪側の減圧弁14r及び増圧弁13rを開き、右前輪側の減圧弁14f及び増圧弁13fを閉じる。これにより、後輪側では、ブレーキペダル1の操作量に対応するブレーキ液が増圧弁13r、減圧弁14rを通ってアキュムレータ17に排出されるため、運転者は、ブレーキペダル1の自然な踏み込みによって良好なブレーキペダル1の操作感を得ることができる。一方、前輪側では、増圧弁13f、減圧弁14fが閉じられるので、アキュムレータ17の反力が車輪に作用することはなく、液圧ブレーキは発生しない。従って、良好なブレーキフィールを確保しつつアキュムレータ17の反力の影響を抑制し、回生ブレーキ力を十分に利用することができる。また、制動力は前輪側のブレーキ力が支配的なため、本実施形態のように、前輪にアキュムレータ17の反力を作用させないようにすることによって、アキュムレータ17の反力によるブレーキの引き摺りを著しく減少させることができ、回生ブレーキの有効利用をより効果的に実現することができる。
 一方、ステップS7において、目標回路圧力PtargetがαFaccuより大であると判断すると(ステップS7:YES)、ブレーキECUは、マスタシリンダ液圧センサ5で検出したマスタシリンダセンサ液圧Pmc及び目標回路圧力Ptargetと、図3(C)に示すマップCとに基づいて、実キャリパ容積V(現時点でのキャリパのホイールシリンダ内におけるブレーキ液の体積)と目標キャリパ容積Vtarget(目標回路圧力Ptargetを得るために必要な、キャリパのホイールシリンダ内におけるブレーキ液の体積)とをそれぞれ算出する(ステップS13)。この演算に用いるために、ブレーキECUには、図3(C)に示すような圧力Pとキャリパ容積Vとの関係を設定したマップCが記憶されている。
 実キャリパ容積Vと目標キャリパ容積Vtargetとをそれぞれ算出すると、ブレーキECUは、所定の演算ΔV=Vtarget―Vに基づいて、目標キャリパ容積Vtargetと実キャリパ容積Vとの差ΔVを算出する(ステップS14)。
 ΔVを算出すると、ブレーキECUは、ΔVが正であるか否かを判断する(ステップS15)。
 ステップS15において、ΔVが正であると判断すると(ステップS15:YES)、ブレーキECUは、左後輪側の増圧弁13rを閉弁状態とし(ステップS16)、左後輪側の減圧弁14rを閉弁状態とし(ステップS17)、ポンプモータ15の回転数を制御して、モータ15を作動させ(ステップS18)、一連の処理を終了する。このときのモータ15の回転数は、ΔVの値に基づき決定される。
 一方、ステップS15において、ΔVが正でないと判断すると(ステップS15:NO)、ブレーキECUは、ΔVが負であるか否かを判断する(ステップS19)。
 ステップS19において、ΔVが負であると判断すると(ステップS19:YES)、ブレーキECUは、左後輪側の増圧弁13rをPWM制御により弁の開度を連続的に少しずつ上げ始める(ステップS20)。左後輪側の増圧弁13rの開度を少しずつ上げ始めると、ブレーキECUは、左後輪側の減圧弁14rを開き(ステップS21)、ポンプモータ15を非作動状態とし(ステップS22)、一連の処理を終了する。これにより、左後輪側の減圧弁14rは開いた状態が維持され、右前輪側の減圧弁14fは閉じた状態を維持されるため、右前輪液圧ブレーキ19のホイールシリンダに供給されたブレーキ液の減圧は、左後輪側の増圧弁13rによって調整される。ステップS20乃至ステップS22の処理により、ブレーキECUは、右前輪液圧ブレーキ19が液圧ブレーキ力を発生している状態で、回生ブレーキ力を増加させる場合に、右前輪液圧ブレーキ19のホイールシリンダに供給されたブレーキ液の液圧を連続的に少しずつ減圧させることができる。
 一方、ステップS19において、ΔVが負でないと判断すると(ステップS19:NO)、ブレーキECUは、左後輪側の増圧弁13rを閉じ(ステップS23)、左後輪側の減圧弁14rを閉じ(ステップS24)、ポンプモータ15を非作動状態とし(ステップS25)、一連の処理を終了する。ステップS23乃至ステップS25の処理により、ブレーキECUは、ΔVが0(ゼロ)である、すなわち目標キャリパ容積Vtargetと実キャリパ容積Vとが同じときに、右前輪液圧ブレーキ19の制動力を保持することができる。
 ブレーキECUは、以上の処理を所定時間ごとに繰り返す。
 本実施形態では、前輪液圧ブレーキ19,20の制動力を減少させる場合に、ブレーキECUは、後輪側の増圧弁13r,13rの開度を連続的に少しずつ上げるとともに、後輪側の減圧弁14r,14rを開いている。これにより、前輪液圧ブレーキ19,20を制動させて液圧ブレーキ力を発生している状態で、回生ブレーキ力を増加させる場合等、車両の制動時の車速やバッテリの充電状態等により変動する最大回生ブレーキ力の変動に応じるべく、前輪液圧ブレーキ19,20のホイールシリンダに供給されたブレーキ液を減圧する際に、前輪側の減圧弁14f,14fを開閉する必要がない。このため、前輪側の減圧弁14f,14fが開閉することによる異音を生じないようにすることができる。
 図4は、制動中に最大回生ブレーキ力が増加する場合のタイミングチャートの例を示す図である。
 尚、図4及び以下の説明において、特に断りのない限り、「最大回生ブレーキ力」とは、パワートレインECUからブレーキECUに対して入力される、現時点で出力可能な回生ブレーキ力の最大値を意味する。上記したように、制動中、車速やバッテリの充電状態等によって、最大回生ブレーキ力は変化する。
 図4において、制動トルクと時間とのグラフは、回生ブレーキ力(回生ブレーキ指令値Fregenに対応)は回生トルクとして実線で、運転者要求ブレーキ力Fdrv、は要求トルクとして破線でそれぞれ示している。一方、ブレーキの液圧と時間とのグラフは、フロントホイール圧を実線で、リアホイール圧を破線でそれぞれ示している。
 図4に最初の領域Dで示すように、運転者要求ブレーキ力Fdrvが回生ブレーキ力のみで賄える間は、後輪側の減圧弁14rは開弁状態にされる。具体的には、領域Dでは、液圧ブレーキ力がゼロ乃至Faccuの状態でペダルの踏み込みによる運転者要求ブレーキ力Fdrvが増加し、このとき、マップBに基づいて運転者要求回生ブレーキ力Fdrv regenも増加する。運転者要求回生ブレーキ力Fdrv regenが最大回生ブレーキ力より大きくなり、目標回路圧力PtargetがαFaccuより大になるまでは、後輪側の減圧弁14rは開弁状態に維持され、ペダル操作量に対応するブレーキ液は、低圧アキュムレータ17に排出される。
 運転者要求回生ブレーキ力Fdrv regenが最大回生ブレーキ力より大きくなり、運転者要求ブレーキ力Fdrvが回生ブレーキ力のみで賄えなくなると(目標回路圧力PtargetがαFaccuより大)、後輪側の減圧弁14rが閉じられて、ペダル操作量に対応する液圧ブレーキ力が発生する(領域B)。このとき、運転者要求回生ブレーキ力Fdrv regenが最大回生ブレーキ力まで再び下がると、後輪側の減圧弁14rは開弁状態に維持され、ペダル操作量に対応するブレーキ液は、低圧アキュムレータ17に排出される(領域D)。
 最大回生ブレーキ力が増加し始めると、目標キャリパ容積Vtargetと実キャリパ容積Vとの差ΔVが負であるので、後輪側の増圧弁13rをPWM制御により弁の開度を連続的に少しずつ上げるとともに、後輪側の減圧弁14rを開く(領域C)。このように、本実施形態によれば、前輪側のブレーキ圧力を減圧する際に、前輪側の減圧弁14fを開弁させることなく、後輪側の増圧弁13rを連続的に少しずつ上げるので、減圧弁が圧力下で開弁した場合の振動や騒音の問題を回避できる。
 最大回生ブレーキ力が増加しなくなると、後輪側の増圧弁13r及び後輪側の減圧弁14rは閉弁状態が維持される(領域B)。
 最大回生ブレーキ力が減少し始めると、後輪側の増圧弁13r及び後輪側の減圧弁14rを閉弁状態に維持したまま、ポンプ16を作動させて前輪側液圧ブレーキ19,20のホイールシリンダ内におけるブレーキ液の液圧を上昇させる(領域E)。
 前輪側液圧ブレーキ19,20の制動力が運転者要求ブレーキ力Fdrvに到達すると、ポンプ16の作動を停止させる(領域B)。
 以上、実施形態に基づいて本発明を説明したが、本発明は、これに限定されるものではない。例えば、上記実施形態では、実キャリパ容積Vを算出するのに、マスタシリンダ液圧センサ5で検出したマスタシリンダセンサ液圧Pmcを用いているが、これに限定されることはない。実キャリパ容積Vを算出することができれば、前輪液圧ブレーキ19,20のホイールシリンダと増圧弁13f,13fとの間に、前輪液圧ブレーキ19,20のホイールシリンダ内の液圧を検出するホイールシリンダ液圧センサを設け、マスタシリンダセンサ液圧Pmcに代えてホイールシリンダ液圧センサで検出した液圧を用いてもよい。
 また、上記実施形態では、前輪液圧ブレーキ19,20のホイールシリンダに供給されたブレーキ液を減圧する際に、ブレーキECUは、後輪側の増圧弁13r,13rの開度を連続的に少しずつ上げた後に、後輪側の減圧弁14r,14rを開いているが、これに限定されることはない。前輪液圧ブレーキ19,20のホイールシリンダに供給されたブレーキ液を連続的に少しずつ減圧することができれば、後輪側の減圧弁14r,14rを開いた後に、後輪側の増圧弁13r,13rの開度を上げてもよい。
 尚、上記実施形態では、制動力が回生ブレーキ力のみで賄える場合に、後輪側の減圧弁14r、14r及び増圧弁13r、13rを開き、前輪側の減圧弁14f、14f及び増圧弁13f、13fを閉じるように構成したが、本発明はこれには限られない。制動力が回生ブレーキ力のみで賄える場合に、後輪側の減圧弁14r、14r及び増圧弁13r、13rを閉じ、前輪側の減圧弁14f、14f及び増圧弁13f、13fを開くように構成してもよい。本発明では、前輪側であるか後輪側であるかを問わず、制動力が回生ブレーキ力のみで賄える場合に、開弁状態におかれる減圧弁、増圧弁を、それぞれ、第1の減圧弁、第1の増圧弁と称し、閉弁状態におかれる減圧弁、増圧弁を、それぞれ、第2の減圧弁、第2の増圧弁と称する。
 また、上記実施形態では、1つのブレーキ系統内における一方の液圧ブレーキのみ(例えば、X型配管方式の前輪側のみ)について、アキュムレータ反力を作用させないように構成したが、本発明は、これには限られない。例えば、本発明をII型配管方式に適用し、制動力が回生ブレーキ力のみで賄える場合に、前輪側のブレーキ系統における減圧弁及び増圧弁を全て閉じて、後輪側のブレーキ系統における減圧弁及び増圧弁を全て開くように構成してもよい。しかし、この場合は、例えば後輪側においてアキュムレータ17に逃がすブレーキ液の量が多くなるため、液圧ブレーキ力を増加させる際のポンプモータ15の回転数を大きくする必要が生じる。従って、1つのブレーキ系統内における一方の液圧ブレーキのみについてアキュムレータ反力を作用させないようにする(換言すれば、1つのブレーキ系統内における一方の液圧ブレーキのみについて減圧弁を閉じ、他方の液圧ブレーキについては減圧弁を開く)ことによって、1つのブレーキ系統内における全ての減圧弁を開く場合と比較して、ポンプモータ15の回転数を小さくすることができ、ポンプモータ作動時の騒音・振動を低減させることができる。
 本発明は、四輪車のみに限らず、二輪車も含む車両に広く適用され、特に、いわゆる回生協調ブレーキを備える車両用ブレーキ装置に広く適用することができる。
1 ブレーキペダル
2 ストロークセンサ
3 倍力装置
4 マスタシリンダ
P1、P2 液圧ポート
MC1、MC2 ブレーキ管路
5 マスタシリンダ液圧センサ
6 ホイールシリンダ液圧センサ
10 液圧回路
11 回路制御弁
12 吸入弁
13f 増圧弁(第2の増圧弁)
13r 増圧弁(第1の増圧弁、調整弁)
14f 減圧弁(第2の減圧弁)
14r 減圧弁(第1の減圧弁)
15 ポンプモータ
16 ポンプ
17 低圧アキュムレータ
18 左後輪液圧ブレーキ(第1の液圧ブレーキ)
19 右前輪液圧ブレーキ(第2の液圧ブレーキ)
20 左前輪液圧ブレーキ(第2の液圧ブレーキ)
21 右後輪液圧ブレーキ(第1の液圧ブレーキ)

Claims (14)

  1.  液圧ブレーキ力を発生させる少なくとも第1の液圧ブレーキ及び第2の液圧ブレーキと、回生ブレーキ力を発生させる回生ブレーキとを備え、運転者の要求ブレーキ力に対して液圧ブレーキ力と回生ブレーキ力の分配を行う車両用ブレーキ装置において、
     前記第1の液圧ブレーキに供給されたブレーキ液を増圧可能な第1の増圧弁と、
     前記第1の液圧ブレーキに供給されたブレーキ液を減圧可能な第1の減圧弁と、
     前記第2の液圧ブレーキに供給されたブレーキ液を増圧可能な第2の増圧弁と、
     前記第2の液圧ブレーキに供給されたブレーキ液を減圧可能な第2の減圧弁と、を備えており、
     前記第1の減圧弁及び前記第2の減圧弁は、アキュムレータに連通しており、
     運転者の要求ブレーキ力が回生ブレーキ力のみで賄われる間、前記第1の増圧弁及び前記第1の減圧弁を開き、前記第2の増圧弁及び前記第2の減圧弁を閉じるようになされたことを特徴とする車両用ブレーキ装置。
  2.  請求項1に記載の車両用ブレーキ装置において、
     前記第1の液圧ブレーキが後輪液圧ブレーキであり、前記第2の液圧ブレーキが前輪液圧ブレーキであることを特徴とする車両用ブレーキ装置。
  3.  請求項1または2に記載の車両用ブレーキ装置において、
     複数のブレーキ系統を備えており、
     前記第1の液圧ブレーキ及び前記第2の液圧ブレーキは、1つのブレーキ系統に設けられていることを特徴とする車両用ブレーキ装置。
  4.  請求項3に記載の車両用ブレーキ装置において、
     前記第1の増圧弁は、前記第1の液圧ブレーキと前記第2の液圧ブレーキとの間に設けられ、前記第2の液圧ブレーキ側から前記第1の液圧ブレーキ側へのブレーキ液の流量を連続的に調整可能な調整弁であり、
     前記第2の液圧ブレーキの液圧ブレーキ力を減少させる場合に、前記調整弁の開度を連続的に上げるとともに、前記第1の減圧弁を開くことを特徴とする車両用ブレーキ装置。
  5.  請求項4に記載の車両用ブレーキ装置において、
     前記第1の液圧ブレーキは、前記第2の液圧ブレーキの液圧ブレーキ力を減少させる場合に、制動力を発生させないことを特徴とする車両用ブレーキ装置。
  6.  請求項4または5に記載の車両用ブレーキ装置において、
     前記第1の減圧弁は、断続的に開閉可能なソレノイドバルブであり、前記第2の液圧ブレーキの液圧ブレーキ力を減少させる場合に、開いた状態を維持することを特徴とする車両用ブレーキ装置。
  7.  請求項4乃至6のいずれか一項に記載の車両用ブレーキ装置において、
     前記第2の減圧弁は、回生ブレーキ力を増加させる場合に、閉じた状態を維持することを特徴とする車両用ブレーキ装置。
  8.  液圧ブレーキ力を発生させる少なくとも第1の液圧ブレーキ及び第2の液圧ブレーキと、回生ブレーキ力を発生させる回生ブレーキとを備え、運転者の要求ブレーキ力に対して液圧ブレーキ力と回生ブレーキ力の分配を行う車両用ブレーキ装置の制御方法において、
     前記車両用ブレーキ装置は、
     前記第1の液圧ブレーキに供給されたブレーキ液を増圧可能な第1の増圧弁と、
     前記第1の液圧ブレーキに供給されたブレーキ液を減圧可能な第1の減圧弁と、
     前記第2の液圧ブレーキに供給されたブレーキ液を増圧可能な第2の増圧弁と、
     前記第2の液圧ブレーキに供給されたブレーキ液を減圧可能な第2の減圧弁と、を備えており、
     前記第1の減圧弁及び前記第2の減圧弁は、アキュムレータに連通しており、
     前記制御方法は、
     運転者の要求ブレーキ力を回生ブレーキ力のみで賄う場合に、
     前記第1の減圧弁を開くステップと、
     前記第1の増圧弁を開くステップと、
     前記第2の減圧弁を閉じるステップと、
     前記第2の増圧弁を閉じるステップと、を備えたことを特徴とする車両用ブレーキ装置の制御方法。
  9.  請求項8に記載の車両用ブレーキ装置の制御方法において、
     前記第1の液圧ブレーキが後輪液圧ブレーキであり、前記第2の液圧ブレーキが前輪液圧ブレーキであることを特徴とする車両用ブレーキ装置の制御方法。
  10.  請求項8または9に記載の車両用ブレーキ装置の制御方法において、
     前記車両用ブレーキ装置が複数のブレーキ系統を備えており、
     前記第1の液圧ブレーキ及び前記第2の液圧ブレーキは、1つのブレーキ系統に設けられていることを特徴とする車両用ブレーキ装置の制御方法。
  11.  請求項10に記載の車両用ブレーキ装置の制御方法において、前記第1の増圧弁は、前記第1の液圧ブレーキと前記第2の液圧ブレーキとの間に設けられ、前記第2の液圧ブレーキ側から前記第1の液圧ブレーキ側へのブレーキ液の流量を連続的に調整可能な調整弁であり、
     前記第2の液圧ブレーキの液圧ブレーキ力を減少させる場合に、
     前記調整弁の開度を連続的に上げるステップと、
     前記第1の減圧弁を開くステップと、を備えたことを特徴とする車両用ブレーキ装置の制御方法。
  12.  請求項11に記載の車両用ブレーキ装置の制御方法において、
     前記第1の液圧ブレーキは、前記第2の液圧ブレーキの液圧ブレーキ力を減少させる場合に、制動力を発生させないことを特徴とする車両用ブレーキ装置の制御方法。
  13.  請求項11または12に記載の車両用ブレーキ装置の制御方法において、
     前記第1の減圧弁は、断続的に開閉可能なソレノイドバルブであり、前記第2の液圧ブレーキの液圧ブレーキ力を減少させる場合に、開いた状態を維持することを特徴とする車両用ブレーキ装置の制御方法。
  14.  請求項11乃至13のいずれか一項に記載の車両用ブレーキ装置の制御方法において、
     前記第2の減圧弁は、回生ブレーキ力を増加させる場合に、閉じた状態を維持することを特徴とする車両用ブレーキ装置の制御方法。
PCT/JP2013/051868 2012-01-30 2013-01-29 車両用ブレーキ装置及びその制御方法 WO2013115166A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/375,477 US9352655B2 (en) 2012-01-30 2013-01-29 Brake device for vehicle and control method thereof
JP2013556402A JP5746773B2 (ja) 2012-01-30 2013-01-29 車両用ブレーキ装置及びその制御方法
EP13744217.4A EP2810834B1 (en) 2012-01-30 2013-01-29 Vehicle brake device and method for controlling same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012016725 2012-01-30
JP2012-016725 2012-01-30

Publications (1)

Publication Number Publication Date
WO2013115166A1 true WO2013115166A1 (ja) 2013-08-08

Family

ID=48905201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051868 WO2013115166A1 (ja) 2012-01-30 2013-01-29 車両用ブレーキ装置及びその制御方法

Country Status (4)

Country Link
US (1) US9352655B2 (ja)
EP (1) EP2810834B1 (ja)
JP (1) JP5746773B2 (ja)
WO (1) WO2013115166A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100317A (ja) * 2018-12-24 2020-07-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 車両用ブレーキ装置及び車両用ブレーキ装置の制御方法
JP2020100318A (ja) * 2018-12-24 2020-07-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 車両用ブレーキ装置及び車両用ブレーキ装置の制御方法
CN111918801A (zh) * 2018-04-12 2020-11-10 罗伯特·博世有限公司 用于双轴车辆的制动系统和用于运行双轴车辆的制动系统的方法
CN113306539A (zh) * 2021-06-30 2021-08-27 吉林东光奥威汽车制动系统有限公司 一种电子式制动助力系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6530359B2 (ja) * 2016-09-09 2019-06-12 株式会社アドヴィックス 車両用制動装置
JP7146165B2 (ja) * 2018-02-09 2022-10-04 株式会社アドヴィックス 車両の制動制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500104A (ja) 2003-05-13 2007-01-11 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 自動車のブレーキシステムをコントロールするための方法
JP2009202678A (ja) * 2008-02-27 2009-09-10 Hitachi Ltd ブレーキ制御装置
WO2012032897A1 (ja) * 2010-09-09 2012-03-15 ボッシュ株式会社 車両用ブレーキ装置及び車両用ブレーキ装置の制御方法
WO2012086290A1 (ja) * 2010-12-20 2012-06-28 ボッシュ株式会社 車両用ブレーキ装置及びその制御方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721060B1 (ko) 2005-12-07 2007-05-22 주식회사 만도 차량의 제동시스템 및 그 제동방법
JP4441544B2 (ja) * 2007-03-15 2010-03-31 本田技研工業株式会社 車両の回生協調制動装置
JP2008253030A (ja) * 2007-03-29 2008-10-16 Toyota Motor Corp 制動装置および制動装置の制御方法
JP5150410B2 (ja) * 2008-08-25 2013-02-20 日立オートモティブシステムズ株式会社 ブレーキ装置
JP5859460B2 (ja) * 2010-01-28 2016-02-10 コンチネンタル・テベス・アーゲー・ウント・コンパニー・オーハーゲー 自動車用ブレーキシステムの作動方法及びブレーキシステム
JP5699044B2 (ja) * 2011-06-29 2015-04-08 日立オートモティブシステムズ株式会社 ブレーキ制御装置
JP5811997B2 (ja) * 2012-12-14 2015-11-11 株式会社デンソー 液圧ブレーキ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500104A (ja) 2003-05-13 2007-01-11 コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト 自動車のブレーキシステムをコントロールするための方法
JP2009202678A (ja) * 2008-02-27 2009-09-10 Hitachi Ltd ブレーキ制御装置
WO2012032897A1 (ja) * 2010-09-09 2012-03-15 ボッシュ株式会社 車両用ブレーキ装置及び車両用ブレーキ装置の制御方法
WO2012086290A1 (ja) * 2010-12-20 2012-06-28 ボッシュ株式会社 車両用ブレーキ装置及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2810834A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111918801A (zh) * 2018-04-12 2020-11-10 罗伯特·博世有限公司 用于双轴车辆的制动系统和用于运行双轴车辆的制动系统的方法
JP2021517095A (ja) * 2018-04-12 2021-07-15 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 2軸車両用のブレーキシステムおよび2軸車両のブレーキシステムを動作させる方法
CN111918801B (zh) * 2018-04-12 2022-10-14 罗伯特·博世有限公司 用于双轴车辆的制动系统和用于运行双轴车辆的制动系统的方法
JP7157817B2 (ja) 2018-04-12 2022-10-20 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 2軸車両用のブレーキシステムおよび2軸車両のブレーキシステムを動作させる方法
US11970145B2 (en) 2018-04-12 2024-04-30 Robert Bosch Gmbh Brake system for a two-axle vehicle and method for the operation thereof
JP2020100317A (ja) * 2018-12-24 2020-07-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 車両用ブレーキ装置及び車両用ブレーキ装置の制御方法
JP2020100318A (ja) * 2018-12-24 2020-07-02 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 車両用ブレーキ装置及び車両用ブレーキ装置の制御方法
JP7256006B2 (ja) 2018-12-24 2023-04-11 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 車両用ブレーキ装置及び車両用ブレーキ装置の制御方法
JP7313141B2 (ja) 2018-12-24 2023-07-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 車両用ブレーキ装置及び車両用ブレーキ装置の制御方法
CN113306539A (zh) * 2021-06-30 2021-08-27 吉林东光奥威汽车制动系统有限公司 一种电子式制动助力系统及方法

Also Published As

Publication number Publication date
US9352655B2 (en) 2016-05-31
JPWO2013115166A1 (ja) 2015-05-11
EP2810834A4 (en) 2015-07-01
EP2810834A1 (en) 2014-12-10
US20150048670A1 (en) 2015-02-19
EP2810834B1 (en) 2019-12-04
JP5746773B2 (ja) 2015-07-08

Similar Documents

Publication Publication Date Title
JP6663075B2 (ja) 車両のブレーキシステム及び車両のブレーキシステムの運転方法
JP5386042B2 (ja) 車両用ブレーキ装置及び車両用ブレーキ装置の制御方法
US10272902B2 (en) Brake control device
JP4412400B2 (ja) 車両用挙動制御装置
JP5386043B2 (ja) 車両用ブレーキ装置及びその制御方法
JP5746773B2 (ja) 車両用ブレーキ装置及びその制御方法
US20150375726A1 (en) Method for operating a brake system, brake system in which the method is performed, and uses of the brake system
CN105228870A (zh) 制动装置
JP2007500104A (ja) 自動車のブレーキシステムをコントロールするための方法
US20220314812A1 (en) Braking control device for vehicle
JP4803109B2 (ja) ブレーキ制御装置
JP2014196033A (ja) 制動装置
JP3704985B2 (ja) 4輪独立ブレーキ力制御装置
JP2008162562A (ja) ブレーキ制御装置
JP4360278B2 (ja) 車両用制動力制御装置
KR20150143008A (ko) 차량의 능동 유압 부스터 시스템 및 그 제어방법
JP7313141B2 (ja) 車両用ブレーキ装置及び車両用ブレーキ装置の制御方法
JP5088218B2 (ja) ブレーキ制御装置及びブレーキ制御方法
JP5251248B2 (ja) ブレーキ制御装置
JP7256006B2 (ja) 車両用ブレーキ装置及び車両用ブレーキ装置の制御方法
JPH1014009A (ja) 電動車両の制動制御装置
JP2010167969A (ja) ブレーキフルード充填方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13744217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556402

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013744217

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14375477

Country of ref document: US