WO2013114903A1 - レンズ鏡筒 - Google Patents

レンズ鏡筒 Download PDF

Info

Publication number
WO2013114903A1
WO2013114903A1 PCT/JP2013/000590 JP2013000590W WO2013114903A1 WO 2013114903 A1 WO2013114903 A1 WO 2013114903A1 JP 2013000590 W JP2013000590 W JP 2013000590W WO 2013114903 A1 WO2013114903 A1 WO 2013114903A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
rectilinear
cam
groove
peripheral surface
Prior art date
Application number
PCT/JP2013/000590
Other languages
English (en)
French (fr)
Inventor
哲哉 宇野
和昭 松井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013556283A priority Critical patent/JP6057258B2/ja
Publication of WO2013114903A1 publication Critical patent/WO2013114903A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Definitions

  • the technology disclosed herein relates to a lens barrel provided with an optical system.
  • the engagement position of the first rotation frame with respect to the fixed frame is set to the first rectilinear advance with respect to the fixed frame. It is necessary to provide in front of the frame engagement position.
  • the front end portion of the fixed frame is engaged. It is necessary to provide in front of the part.
  • the technology disclosed herein has been made in view of the above situation, and an object thereof is to provide a lens barrel that is strong against external force such as dropping and can be made compact.
  • the lens barrel disclosed herein includes a cylindrical fixed frame, a cylindrical first rectilinear frame, a cylindrical rotating frame, a cylindrical second rectilinear frame, a second rotating frame 220, and a second rotating frame 220.
  • the fixed frame has at least one first rectilinear groove and at least two first cam grooves on the inner peripheral surface.
  • the first rectilinear frame is disposed on the radially inner side of the fixed frame, and has at least one first rectilinear protrusion engaged with the first rectilinear groove on the outer peripheral surface, and at least one second rectilinear groove on the inner peripheral surface. And at least one bayonet groove formed along the circumferential direction on the inner peripheral surface.
  • the rotating frame is disposed on the radially inner side of the first rectilinear frame and is formed on the outer peripheral surface along at least two cam followers engaged with the at least two first cam grooves along the circumferential direction.
  • the second rectilinear frame is disposed on the radially inner side of the rotating frame, and at least one second rectilinear protrusion is engaged with the at least one second rectilinear groove on the outer peripheral surface via the at least one second cam groove.
  • Have At least a part of the bayonet protrusion is located between at least two cam followers in the circumferential direction around the axis of the rotating frame.
  • Perspective view of digital camera Perspective view of lens barrel Disassembled perspective view of lens barrel Perspective view of fixed frame Rear perspective view of fixed frame Expanded sectional view of the fixed frame Perspective view of the first rectilinear frame Perspective view of first rotating frame Rear perspective view of the first rotating frame Rear view of the first rotating frame Front view of the first rotating frame Rear view of the first rotating frame Side view of the first rotating frame Perspective view of the second rectilinear frame Perspective view of second rotating frame Perspective view of the third rectilinear frame Schematic diagram of the second rectilinear frame, the second rotating frame, and the third rectilinear frame assembled.
  • Perspective view of first lens group frame Perspective view of second lens group frame Perspective view of shutter frame Schematic sectional view of the lens barrel (collapsed state) Schematic cross section of lens barrel (wide state) Schematic cross section of lens barrel (telephoto state)
  • a digital camera will be described as an example of the imaging device.
  • the subject side is “front”, the opposite side of the subject is “rear”, the vertical upper side is “up”, the vertical lower side is “lower”, and the subject is facing the subject, with a digital camera in landscape orientation as a reference.
  • the right side is expressed as “right”, and the left side toward the subject is expressed as “left”.
  • the landscape orientation is a kind of orientation of the digital camera. When photographing in the landscape orientation, the long side direction of the horizontally long rectangular image substantially coincides with the horizontal direction in the image.
  • FIG. 1 is a perspective view of the digital camera 1.
  • FIG. 2 is a perspective view of the lens barrel 20.
  • the digital camera 1 includes a housing 10 and a lens barrel 20.
  • the housing 10 includes a front plate 11, a rear plate 12, and a side plate 13.
  • the front plate 11 has an opening 10S.
  • the lens barrel 20 includes a three-stage retractable zoom mechanism.
  • the lens barrel 20 is housed in the housing 10 when not photographing, and is drawn forward from the opening 10S when photographing.
  • the lens barrel 20 includes a first movable barrel portion 21, a second movable barrel portion 22, a third movable barrel portion 23, and a fixed barrel portion 24.
  • the first movable barrel portion 21 can be extended with respect to the fixed barrel portion 24.
  • the second movable lens barrel portion 22 can be extended with respect to the first movable lens barrel portion 21.
  • the third movable lens barrel portion 23 can be extended with respect to the second movable lens barrel portion 22.
  • the fixed barrel portion 24 is fixed in the housing 10. When the lens barrel 20 is extended, the third movable lens barrel portion 23 is located in the foremost position among the first to third movable lens barrel portions 21 to 23.
  • FIG. 3 is an exploded perspective view of the lens barrel 20.
  • the first to third movable lens barrel portions 21 to 23 of the lens barrel 20 are extended from the fixed barrel portion 24 along the optical axis AX of the optical system.
  • the optical system includes first to fourth lens groups L1 to L4.
  • the direction parallel to the optical axis AX is “optical axis direction”
  • the direction perpendicular to the optical axis direction is “radial direction”
  • the direction along the circle centered on the optical axis AX is “circumferential direction”.
  • the optical axis AX substantially coincides with the axis of each frame constituting the lens barrel 20.
  • the “straight frame” means a frame that moves in the optical axis direction without rotating in the circumferential direction.
  • Rotating frame means a frame that rotates in the circumferential direction.
  • the “rotating frame” includes both the meaning of a frame that moves in the optical axis direction and a frame that does not move in the optical axis direction.
  • the “straight groove” means a groove provided along the optical axis direction.
  • the “straight groove” is provided in both the rectilinear frame and the rotary frame.
  • “Straight” means moving in the optical axis direction without rotating in the circumferential direction. “Rotation” means rotating in the circumferential direction. “Rotation” is used to mean both when moving in the optical axis direction and when not moving in the optical axis direction. “Move” is a concept including moving in the optical axis direction while rotating in the circumferential direction. “Bayonet” or “Bayonet mechanism” means a mechanism in which frames having “bayonet protrusions” and “bayonet grooves” provided along the circumferential direction are engaged with each other in a rotatable manner, and integrally in the optical axis direction. Meaning mechanism to engage.
  • the first movable lens barrel unit 21 includes a first rectilinear frame 110, a first rotating frame 210, and a first decorative frame 301.
  • the first rectilinear frame 110 is a cylindrical resin member disposed on the inner side in the radial direction of the fixed frame 100 described later.
  • the first rotating frame 210 is a cylindrical resin member disposed on the radially inner side of the first rectilinear frame 110.
  • the first decorative frame 301 is a cylindrical sheet metal member that covers the outer periphery of the first rectilinear frame 110.
  • the second movable lens barrel 22 includes a second rectilinear frame 120, a second rotating frame 220, a third rectilinear frame 130, a second lens group frame 320, a second lens group L2, a third lens group frame 330, and a third lens. It has a group L3, a shutter frame 335, and a second decorative frame 302.
  • the second rectilinear frame 120 is a cylindrical resin member disposed on the radially inner side of the first rotating frame 210.
  • the second rotating frame 220 is a cylindrical resin member disposed on the radially inner side of the second rectilinear frame 120.
  • the third rectilinear frame 130 is a cylindrical resin member disposed on the radially inner side of the second rotating frame 220.
  • the second lens group frame 320 is disposed on the radially inner side of the third rectilinear frame 130 and supports the second lens group L2 for zooming.
  • the third lens group frame 330 is housed in the shutter frame 335 and supports the third lens group L3 for image blur correction.
  • the third lens group frame 330 is supported by a shutter frame 335 so as to be swingable in the radial direction, and constitutes an image blur correction mechanism together with the third lens group L3.
  • the shutter frame 335 is disposed on the radially inner side of the third rectilinear frame 130 and incorporates a shutter mechanism.
  • the shutter frame 335 supports the third lens group frame 330 so as to be swingable in the radial direction.
  • a flexible control wire 335 a is connected to the shutter frame 335.
  • the control flexible wiring 335a is disposed along the inner peripheral surface of the fixed frame 100, and is connected to a control device (not shown).
  • the control flexible wiring 335a transmits a control signal to a shutter mechanism and an image blur correction mechanism described later.
  • the second decorative frame 302 is a cylindrical sheet metal member that covers the outer periphery of the second rectilinear frame 120.
  • the third movable lens barrel unit 23 includes a first lens group frame 310, a first lens group L 1, and a third decorative frame 303.
  • the first lens group frame 310 is disposed between the second rectilinear frame 120 and the second rotation frame 220.
  • the first lens group frame 310 supports the first lens group L ⁇ b> 1 for taking light into the lens barrel 20.
  • the third decorative frame 303 is a cylindrical sheet metal member that covers the outer periphery of the first lens group frame 310.
  • the fixed barrel portion 24 includes a fixed frame 100, a fourth lens group frame 340, a fourth lens group L4, a zoom motor 241, a zoom gear 242, a focus motor 243, a master flange 244, an image sensor 245, and an image sensor flexible wiring 245a.
  • the fixed frame 100 is a cylindrical resin member disposed on the radially outer side of the first rectilinear frame 110 and the first rotating frame 210.
  • the fourth lens group frame 340 is attached to the master flange 244 and is driven in the optical axis direction by the focus motor 243.
  • the fourth lens group frame 340 supports the fourth lens group L4 for focus adjustment.
  • the zoom motor 241 is a drive source for extending the first to third movable lens barrel portions 21 to 23, and is attached to the side surface of the fixed frame 100.
  • the zoom gear 242 transmits the driving force of the zoom motor 241 to the first rotation frame 210.
  • the front end of the zoom gear 242 is supported by the fixed frame 100, and the rear end of the zoom gear 242 is supported by the master flange 244.
  • the focus motor 243 is a drive source for driving the fourth lens group frame 340 in the optical axis direction, and is attached to the master flange 244.
  • the master flange 244 is a plate-like resin member that covers the rear of the fixed frame 100.
  • the image sensor 245 is fitted in the center of the master flange 244.
  • the imaging element flexible wiring 245a is attached to the rear surface of the master flange 244 in a state where the imaging element flexible wiring 245a and the imaging element 245 are electrically connected.
  • the imaging element flexible wiring 245a is connected to a control device (not shown) and transmits a signal from the imaging element 245.
  • each frame which comprises the lens-barrel 20 is demonstrated, referring drawings.
  • the fixed frame 100 the first rectilinear frame 110, the first rotating frame 210, the second rectilinear frame 120, the second rotating frame 220, the third rectilinear frame 130, the first lens group frame 310, and the second lens group.
  • the engagement state between the frames will be described.
  • FIG. 4A is a front perspective view of the fixed frame 100.
  • 4B is a rear perspective view of the fixed frame 100.
  • the fixed frame 100 includes a fixed frame main body 101, a zoom gear support portion 102, and three attachment portions 103a to 103c.
  • the fixed frame main body 101 is formed in a substantially cylindrical shape, and has an inner peripheral surface 100S and an outer peripheral surface 100T.
  • the outer peripheral surface 100T has a flat surface Ta on which a mounting portion 103c described later is disposed. Accordingly, the outer peripheral surface 100T is entirely formed of a curved surface, but is recessed inwardly in the flat surface portion Ta.
  • the zoom gear support portion 102 is provided so as to protrude from the outer peripheral surface 100T.
  • the zoom gear support unit 102 rotatably supports the front end of the zoom gear 242. In the present embodiment, the zoom gear support portion 102 is covered with the front plate 11 and thus is not exposed to the outside of the housing 10 (see FIG. 1). Note that the tooth portion of the zoom gear 242 protrudes inside the fixed frame main body 101.
  • the three attachment portions 103a to 103c are disposed on the outer peripheral surface 100T.
  • the fixing frame 100 is fixed to the casing 10 by attaching the three mounting portions 103a to 103c to the inside of the casing 10 via screws.
  • the attachment portion 103c adjacent to the zoom gear 242 is disposed on the plane portion Ta of the outer peripheral surface 100T.
  • the fixed frame 100 has five rectilinear grooves a1 and three cam grooves b1. However, in FIG. 4A, three rectilinear grooves a1 and two cam grooves b1 are shown.
  • the five rectilinear grooves a1 are formed on the inner peripheral surface 100S along the optical axis direction, and are arranged at appropriate intervals in the circumferential direction.
  • the three cam grooves b1 are formed on the inner peripheral surface 100S so as to intersect the optical axis direction.
  • the three cam grooves b1 are arranged at a substantially equal pitch in the circumferential direction.
  • the three cam grooves b1 are formed along the movement locus of three cam followers B1 included in the first rotating frame 210 described later.
  • FIG. 4C is an enlarged cross-sectional view of the fixed frame 100 taken along a plane perpendicular to the axis P of the fixed frame 100 (see FIG. 7A, which coincides with the optical axis AX).
  • the periphery of the planar portion Ta of the outer peripheral surface 100T is schematically illustrated.
  • the inner peripheral surface 100S of the fixed frame 100 includes a first region Sa and a second region Sb.
  • the first area Sa is an area that faces a gear part 212 (see FIG. 6C) described later when the first rotating frame 210 moves while rotating.
  • the second region Sb is a region that does not face the gear portion 212 even when the first rotation frame 210 moves while rotating.
  • the first region Sa is farther from the axis of the fixed frame 100 than the second region Sb.
  • the gear portion 212 of the first rotating frame 210 is prevented from interfering with the inner peripheral surface 100S.
  • the second region Sb is located on the inner side in the radial direction than the first region Sa.
  • the cam groove b1 includes a first cam groove part b11 and a second cam groove part b12.
  • the first cam groove b11 is formed in the first region Sa of the inner peripheral surface 100S.
  • the second cam groove b12 is formed on the bottom surface of the first cam groove b11. That is, the first cam groove b11 is formed on the radially inner side than the second cam groove b12.
  • the distance from the axis of the bottom surface of the first cam groove b11 is the same as the distance from the axis of the first region Sa.
  • the first cam groove b11 has a first cam surface 104 against which a cam follower B1 (see FIG. 6C), which will be described later, comes into contact when the first rotating frame 210 moves while rotating.
  • the second cam groove b12 has a second cam surface 105 against which the cam follower B1 abuts when the first rotating frame 210 moves while rotating.
  • the distances from the axial centers of the first cam surface 104 and the second cam surface 105 are different from each other, and the distance from the axial center of the first cam surface 104 is larger than the distance from the axial center of the second cam surface 105. short. That is, the first cam surface 104 is located on the radially inner side with respect to the second cam surface 105.
  • the cam groove b1 has a two-stage configuration, so that the second region Sb can be made radially inward from the first region Sa, and a new portion formed by the planar portion Ta can be realized. This space can be configured outside the lens barrel 20. 2.
  • FIG. 5 is a perspective view of the first rectilinear frame 110.
  • the first rectilinear frame 110 includes a first rectilinear frame body 111, five rectilinear projections A1, three rectilinear grooves a2, a bayonet groove e1, and a bayonet projection E0.
  • the rectilinear frame main body 111 is formed in a cylindrical shape, and has an inner peripheral surface 110S and an outer peripheral surface 110T.
  • the five rectilinear protrusions A1 are erected on the rear end portion of the outer peripheral surface 110T.
  • the five rectilinear protrusions A1 are engaged with the five rectilinear grooves a1 of the fixed frame 100.
  • the three rectilinear grooves a2 are formed on the inner peripheral surface 110S along the optical axis direction.
  • the bayonet groove e1 is formed in an arc shape along the circumferential direction at the rear end portion of the inner peripheral surface 110S.
  • the bayonet groove e1 intersects with the three rectilinear grooves a2.
  • the bayonet protrusion E0 is disposed at the front end portion of the inner peripheral surface 110S.
  • the bayonet protrusion E0 is formed in an arc shape along the circumferential direction. In the present embodiment, a plurality of bayonet protrusions E0 are prepared in the circumferential direction.
  • FIG. 6A is a perspective view of the first rotating frame 210.
  • FIG. 6B is a rear perspective view of the first rotating frame 210.
  • FIG. 6C is a rear view of the first rotating frame 210.
  • the first rotating frame 210 includes a first rotating frame main body 211 and a gear portion 212.
  • the first rotating frame body 211 is formed in a cylindrical shape, and has an inner peripheral surface 210S, an outer peripheral surface 210T, and a rear end surface 210R.
  • the gear portion 212 is erected at the rear end portion of the outer peripheral surface 210T, and is formed along the circumferential direction.
  • the gear unit 212 When the gear unit 212 is engaged with the zoom gear 242, the first rotating frame 210 is rotated in the circumferential direction by the driving force of the zoom motor 241.
  • the gear portion 212 is located behind the rectilinear protrusion A1 of the first rectilinear frame 110.
  • the first rotating frame 210 includes three cam followers B1, three bayonet protrusions E1, three cam grooves b2, three guide grooves g, a bayonet groove e0, and three rectilinear grooves a3. Have. However, in FIGS. 6A and 6B, only one rectilinear groove a3 is shown.
  • FIG. 7B is a rear view of the first rotating frame 210.
  • one of the three cam followers B1 includes a first cam follower portion B11 and a second cam follower portion B12.
  • the distance from the axis P of the first cam follower B11 is smaller than the distance from the axis P of the second cam follower B12. That is, the second cam follower portion B12 is disposed on the radially outer side than the first cam follower portion B11.
  • 1st cam follower part B11 is engaged with 1st cam groove part b11 among the cam grooves b1 which the fixed frame 100 has.
  • the first cam follower portion B11 has a first side surface 214 that comes into contact with the first cam surface 104 (see FIG. 4C) of the first cam groove portion b11.
  • the second cam follower B12 is engaged with the second cam groove b12 in the cam groove b1.
  • the second cam follower portion B12 has a second side surface 215 that comes into contact with the second cam surface 105 (see FIG. 4C) of the second cam groove portion b12.
  • the 1st side surface 214 and the 2nd side surface 215 are formed in the both-sides edge part in the circumferential direction of cam follower B1.
  • a flange portion 213 is formed adjacent to the first side surface 214, and a gear portion 212 is formed adjacent to the second side surface 215.
  • the flange portion 213 faces the second region Sb on the inner peripheral surface 100S of the fixed frame 100, and the gear portion 212 faces the first region Sa on the inner peripheral surface 100S (see FIG. 4C).
  • the bayonet protrusion E1 is formed along the circumferential direction at the rear end portion of the outer peripheral surface 210T.
  • the bayonet protrusion E1 is disposed in front of the gear portion 212.
  • the bayonet protrusion E1 is engaged with the bayonet groove e1 of the first rectilinear frame 110.
  • the bayonet protrusion E1 and the bayonet groove e1 form a bayonet mechanism for engaging the first rotary frame 210 with the first rectilinear frame 110 in a rotatable manner and integrally engaging in the optical axis direction. It is composed.
  • the three bayonet protrusions E1 are formed in the circumferential direction.
  • the three cam grooves b2 penetrate the first rotating frame main body 211 from the inner peripheral surface 210S to the outer peripheral surface 210T.
  • the three guide grooves g are grooves for guiding three rectilinear cam followers AB2 (see FIG. 9) of the second rectilinear frame 120 (described later) to the three cam grooves b2.
  • the three guide grooves g are formed on the inner peripheral surface 210S.
  • Each of the three guide grooves g communicates with each of the three cam grooves b2 and the rear end surface 210R. Therefore, each of the three guide grooves g is open to the rear end face 210R.
  • the radial depth of the guide groove g is substantially the same as the radial depth of the cam groove b2, that is, the thickness of the first rotating frame main body 211.
  • the guide groove g is connected to the rear end portion of the cam groove b2 in the optical axis direction.
  • a portion used when the lens barrel is retracted, that is, a portion where the cam follower B1 exists is formed at the rear end portion in the optical axis direction of the cam groove b2.
  • FIG. 6C is a rear view of the first rotating frame 210.
  • each of the three guide grooves g has an opening 213 formed in the rear end face 210R.
  • the cam follower B ⁇ b> 1 is disposed outside the opening 213 in the radial direction centered on the axis P (coincidence with the optical axis AX) of the first rotation frame 210. Accordingly, the position of the cam follower B1 in the circumferential direction around the axis P is at least partially overlapped with the position of the opening 213 in the circumferential direction.
  • the guide groove g is formed inside the cam follower B1.
  • the opening 213 becomes thin or disappears.
  • the wall thickness can be secured by providing the cam follower B1 on the radially outer side of the opening 213.
  • the cam follower B1 is configured with the opening 213 interposed therebetween.
  • the cam follower B1 and the first rotating frame body 211 are coupled across the opening 213.
  • strength of the 1st rotation frame main body 211 can be raised.
  • the center position of the cam follower B1 in the circumferential direction around the axis P is different from the center position of the opening 213 in the circumferential direction.
  • the cam follower B1 is connected to the first rotation frame main body 211 across the opening 213, the width in the circumferential direction at the base of the cam follower B1 is not equal on both sides, and the width on one side can be increased. As a result, the root strength of the cam follower B1 can be increased.
  • the bayonet groove e0 is formed at the front end portion of the outer peripheral surface 210T.
  • the bayonet groove e0 is formed in an arc shape along the circumferential direction.
  • the bayonet groove e0 intersects with the three cam grooves b2.
  • a bayonet protrusion E0 is engaged with the bayonet groove e0.
  • the three rectilinear grooves a3 are formed along the optical axis direction on the inner peripheral surface 210S. Two of the three rectilinear grooves a3 are close to each other, and the other one is formed 120 ° to 180 ° apart.
  • FIG. 7A is a front view of the first rotating frame 210
  • FIG. 8 is a side view of the first rotating frame 210.
  • each of the three cam grooves b2 is part of the three cam followers B1 in the circumferential direction centered on the axis P (coincidence with the optical axis AX) of the first rotating frame 210. It is located between the two cam followers B1.
  • a part of the bayonet protrusion E1 is located between the two cam followers B1 in the circumferential direction.
  • a part of each part of the bayonet protrusion E1 is located between the two cam followers B1.
  • the positions in the circumferential direction of at least a part of each of the cam groove b2 and the bayonet protrusion E1 do not overlap with the positions in the circumferential direction of the two cam followers B1.
  • the cam groove b2, the bayonet protrusion E1, and the two cam followers B1 are arranged in order from the front in the axial direction (coincident with the front-rear direction) along the axis P.
  • the bayonet protrusion E1 is disposed so as to oppose the shootable section, in the present disclosure example, the cam groove b2 range used in the wide angle to intermediate focal length range.
  • the bayonet protrusion E1 is arrange
  • the image surface side end surface of the cam groove b2 tends to be deformed to the image surface side.
  • the bayonet protrusion E1 is on the image plane side of the cam groove b2, the deformation can be suppressed.
  • the bayonet protrusion E1 is rib shape, the intensity
  • the two cam followers B1 are disposed on the rear end portion 210a of the first rotating frame 210. Therefore, at least a part of the cam groove b2 is disposed between the bayonet protrusion E1 and the rear end portion 210a in the axial direction. Further, as shown in FIG. 8, the cam groove b2 has a linear groove b2st formed along the circumferential direction. A part of the bayonet protrusion E1 is formed along a part of the linear groove b2st.
  • FIG. 9 is a perspective view of the second rectilinear frame 120.
  • the second rectilinear frame 120 includes a second rectilinear frame main body 121 and two locking portions 122.
  • the second rectilinear frame main body 121 is formed in a cylindrical shape, and has an inner peripheral surface 120S and an outer peripheral surface 120T.
  • the two locking portions 122 are erected on the rear end surface of the second rectilinear frame main body 121 and protrude rearward.
  • the two locking portions 122 are formed at positions that are substantially symmetrical about the optical axis AX (see FIG. 3), that is, at positions that are 120 ° to 180 ° apart.
  • AX optical axis
  • one of the two locking portions 122 is formed longer in the circumferential direction than the other.
  • the second rectilinear frame 120 includes three rectilinear cam followers AB2, three rectilinear grooves a4, and a bayonet groove e2.
  • the three rectilinear cam followers AB2 are erected at the rear end portion of the outer peripheral surface 120T, and are arranged at substantially equal pitches in the circumferential direction.
  • the three rectilinear cam followers AB2 are engaged with the three cam grooves b2 of the first rotating frame 210.
  • the three rectilinear cam followers AB2 are inserted into the three cam grooves b2 and engaged with the three rectilinear grooves a2 of the first rectilinear frame 110.
  • FIG. 10 is a perspective view of the second rotating frame 220.
  • the second rotating frame 220 includes a second rotating frame main body 221, three rectilinear protrusions A3, three bayonet protrusions E2, two bayonet grooves e3, three cam grooves b3, and three cam grooves. b4 and three cam grooves b5. However, in FIG. 10, two cam grooves b3, cam grooves b4, and cam grooves b5 are shown.
  • the second rotary frame main body 221 is formed in a cylindrical shape and has an inner peripheral surface 220S and an outer peripheral surface 220T.
  • the three rectilinear protrusions A3 are erected at the rear end portion of the outer peripheral surface 220T, and two of the three rectilinear protrusions A3 are close to each other in the circumferential direction, and the other one is substantially from the two adjacent rectilinear protrusions A3. Formed 120 ° or more apart.
  • the three rectilinear protrusions A3 are engaged with the three rectilinear grooves a3 of the first rotating frame 210.
  • the three bayonet protrusions E2 are formed along the circumferential direction at the rear end portion of the outer peripheral surface 220T.
  • the three bayonet protrusions E2 are disposed in front of the three rectilinear protrusions A3.
  • the bayonet protrusion E2 is engaged with the bayonet groove e2 of the second rectilinear frame 120.
  • the bayonet protrusion E2 and the bayonet groove e2 form a bayonet mechanism for rotatably engaging the second rotary frame 220 with the second rectilinear frame 120 and integrally engaging in the optical axis direction. It is composed.
  • the two bayonet grooves e3 are formed in the substantially central portion of the inner peripheral surface 220S along the circumferential direction.
  • the two bayonet grooves e3 are formed in parallel to each other.
  • the two bayonet grooves e3 intersect with the cam groove b4 and the cam groove b5.
  • the three cam grooves b3 are formed on the outer peripheral surface 220T so as to intersect the optical axis direction, and are arranged at substantially equal pitches in the circumferential direction.
  • FIG. 11 is a perspective view of the third rectilinear frame 130.
  • the third rectilinear frame 130 includes a third rectilinear frame main body 131, a flange portion 132, and two locking recesses 133.
  • the third rectilinear frame main body 131 is formed in a cylindrical shape and has an inner peripheral surface 130S and an outer peripheral surface 130T.
  • the flange portion 132 is formed in an annular shape and is erected on the rear end portion of the outer peripheral surface 130T.
  • the two locking recesses 133 are notches formed on the outer edge of the flange portion 132.
  • the two locking recesses 133 are formed at substantially symmetrical positions around the optical axis AX (see FIG. 3), that is, at positions 120 ° to 180 ° apart.
  • FIG. 12 is a schematic diagram showing a state in which the second rectilinear frame 120, the second rotary frame 220, and the third rectilinear frame 130 are assembled. As shown in FIG.
  • the second rectilinear frame of the third rectilinear frame 130 is obtained by the two latching portions 122 of the second rectilinear frame 120 being latched by the two latching recesses 133 of the third rectilinear frame 130. Relative rotation with respect to 120 is suppressed.
  • one of the two locking recesses 133 is formed longer in the circumferential direction than the other, corresponding to one of the two locking portions 122 being longer in the circumferential direction than the other. Thereby, the strength of the two locking recesses 133 is improved.
  • the third rectilinear frame 130 has six bayonet protrusions E3, three rectilinear grooves a5, and three rectilinear grooves a6. However, in FIG. 11, only two bayonet protrusions E3 are shown. Each of the six bayonet protrusions E3 is formed in a trapezoidal shape having a short radial outer side and a long radial inner side in a cross section including the optical axis. Moreover, the bayonet protrusion E3 is formed along the circumferential direction at a substantially central portion of the outer peripheral surface 130T. The two bayonet protrusions E3 are formed in parallel with each other at the same position in the circumferential direction.
  • the two bayonet protrusions E3 are arranged at three locations as a set at a substantially equal pitch in the circumferential direction.
  • three sets of bayonet protrusions E 3 that is, six bayonet protrusions E 3 are arranged on the third rectilinear frame 130.
  • the six bayonet protrusions E3 are engaged with the two bayonet grooves e3 of the second rotation frame 220.
  • the bayonet protrusion E3 and the bayonet groove e3 are configured to rotatably engage the third rectilinear frame 130 with the second rotation frame 220 and to integrally engage with the second rotation frame 220 in the optical axis direction. It constitutes the bayonet mechanism.
  • the three rectilinear grooves a5 penetrate the third rectilinear frame main body 131 from the inner peripheral surface 130S to the outer peripheral surface 130T.
  • the three rectilinear grooves a5 extend along the optical axis direction and are arranged at substantially equal pitches in the circumferential direction.
  • the three rectilinear grooves a6 penetrate the third rectilinear frame main body 131 from the inner peripheral surface 130S to the outer peripheral surface 130T.
  • the three rectilinear grooves a6 extend along the optical axis direction and are arranged at substantially equal pitches in the circumferential direction.
  • FIG. 13 is a perspective view of the first lens group frame 310.
  • the first lens group frame 310 includes a first lens group frame main body 311, three rectilinear projections A4, and three cam projections B3.
  • the first lens group frame body 311 is formed in a cylindrical shape, and has an inner peripheral surface 310S and an outer peripheral surface 310T.
  • the first lens group frame main body 311 is formed with three projecting portions 311a projecting rearward.
  • the three rectilinear protrusions A4 are erected on the outer peripheral surface 310T of the protruding portion 311a, and are arranged at a substantially equal pitch in the circumferential direction.
  • the three rectilinear protrusions A4 are engaged with the three rectilinear grooves a4 of the second rectilinear frame 120.
  • the three cam protrusions B3 are erected on the inner peripheral surface 310S of the protruding portion 311a, and are arranged at a substantially equal pitch in the circumferential direction.
  • the three cam protrusions B3 are engaged with the three cam grooves b3 of the second rotating frame 220.
  • the three rectilinear protrusions A4 and the three cam protrusions B3 are disposed substantially opposite to each other with the protrusion 311a interposed therebetween.
  • FIG. 14 is a perspective view of the second lens group frame 320.
  • the second lens group frame 320 includes a second lens group frame main body 321, three rectilinear projections A5, and three cam projections B4.
  • the second lens group frame main body 321 is formed in a cup shape and has an outer peripheral surface 320T.
  • the three rectilinear protrusions A5 are formed on the rear end portion of the outer peripheral surface 320T, and are arranged at a substantially equal pitch in the circumferential direction.
  • the three rectilinear protrusions A5 are engaged with the three rectilinear grooves a5 of the third rectilinear frame 130.
  • the three cam protrusions B4 are formed on the three rectilinear protrusions A5, that is, radially outside.
  • the three cam protrusions B4 are engaged with the three cam grooves b4 of the second rotating frame 220.
  • FIG. 15 shows a state in which the third lens group frame 330 is housed inside the shutter frame 335.
  • the configuration of the third lens group frame 330 will be described with reference to FIG.
  • the third lens group frame 330 that is, an OIS (Optical Image Stabilizer) unit mainly includes an OIS frame 400, a retractable lens frame 401, and a third lens group L3 for image blur correction.
  • OIS Optical Image Stabilizer
  • the OIS frame 400 is attached to the shutter frame 335. Specifically, the OIS frame 400 is movable in a plane perpendicular to the optical axis. More specifically, a magnet (not shown) is fixed to the OIS frame 400, and a coil (not shown) is fixed to the shutter frame 335 at a position facing the magnet. In this state, when electric power is supplied from a camera circuit (not shown) to the coil of the shutter frame, a current flows through the coil to generate a magnetic field. The magnetic field drives the magnet of the OIS frame 400, and the driving force moves the OIS frame 400 in a plane perpendicular to the optical axis.
  • the retraction lens frame 401 is held by the OIS frame 400 so as to be movable around a retraction axis substantially parallel to the optical axis.
  • the retractable lens frame 401 moves from a correctable position (first posture) where the third lens unit L3 can perform image blur correction to a retracted position (second posture) where the third lens unit L3 is retracted from the optical axis. Its position can be changed.
  • the retractable lens frame 401 holds a third lens unit L3 including at least one lens.
  • the shutter frame 335 includes a shutter frame main body 336, three rectilinear protrusions A6, and three cam protrusions B5.
  • the shutter frame body 336 is formed in a cylindrical shape and has an outer peripheral surface 335T.
  • the three rectilinear protrusions A6 are formed on the outer peripheral surface 335T, and are arranged at a substantially equal pitch in the circumferential direction.
  • the three rectilinear protrusions A6 are engaged with the three rectilinear grooves a6 of the third rectilinear frame 130.
  • the three cam protrusions B5 are erected on the front end portions of the three rectilinear protrusions A6.
  • the three cam protrusions B5 are engaged with the three cam grooves b5 of the second rotating frame 220. 11. Engagement of Frames
  • FIGS. 16 to 18 are sectional views of the lens barrel 20. However, FIGS.
  • 16 to 18 are schematic diagrams in which a plurality of cut surfaces passing through the optical axis AX are combined.
  • 16 shows the retracted state of the lens barrel
  • FIG. 17 shows the wide state of the lens barrel
  • FIG. 18 shows the tele state of the lens barrel 20.
  • the shootable state of the digital camera 1 means the state of the lens barrel 20 from the wide state to the tele state.
  • the gear portion 212 of the first rotating frame 210 is meshed with the zoom gear 242 (not shown).
  • the cam follower B1 of the first rotating frame 210 is engaged with the cam groove b1 of the fixed frame 100. Therefore, the first rotating frame 210 can move in the optical axis direction while rotating in the circumferential direction by the driving force of the zoom motor 241.
  • the rectilinear projection A1 of the first rectilinear frame 110 is engaged with the rectilinear groove a1 of the fixed frame 100.
  • the bayonet protrusion E1 of the first rotating frame 210 is engaged with the bayonet groove e1 of the first rectilinear frame 110. Therefore, the first rectilinear frame 110 can go straight in the optical axis direction together with the first rotating frame 210.
  • the rectilinear cam follower AB2 of the second rectilinear frame 120 is inserted into the cam groove b2 of the first rotating frame 210 and is engaged with the rectilinear groove a2 of the first rectilinear frame 110. Therefore, the second rectilinear frame 120 can go straight in the optical axis direction according to the rotation of the first rotating frame 210.
  • the rectilinear protrusion A3 of the second rotating frame 220 is engaged with the rectilinear groove a3 of the first rotating frame 210.
  • the bayonet protrusion E ⁇ b> 2 of the second rotating frame 220 is engaged with the bayonet groove e ⁇ b> 2 of the second rectilinear frame 120. Therefore, the second rotating frame 220 is movable in the optical axis direction together with the second rectilinear frame 120 while rotating in the circumferential direction together with the first rotating frame 210.
  • the locking portion 122 of the second rectilinear frame 120 is locked to the locking recess 133 of the third rectilinear frame 130. Further, the bayonet protrusion E3 of the third rectilinear frame 130 is engaged with the bayonet groove e3 of the second rotary frame 220.
  • the intervals between the three rectilinear protrusions A3 of the second rotary frame 220 at least two intervals are spaced apart by approximately 120 ° or more, and the interval between the two engaging portions 122 of the second rectilinear frame 120 is also approximately 120 °. They are arranged apart from each other, and their relative rotation angles during zoom driving are set to approximately 120 ° or less.
  • the locking portion 122 and the rectilinear projection A3 are in the same position in the radial direction and the optical axis direction, they are in different positions in the rotational angle direction, that is, the circumferential direction, and the third rectilinear frame 130 is the second rotating frame. Without interfering with the rotation of 220, the second rectilinear frame 120 and the optical axis direction can be traveled straight.
  • one of the two locking recesses 133 is formed longer in the circumferential direction than the other. It is desirable that the rectilinear frame 130 be elongated in the circumferential direction as long as it does not interfere with the rotation of the second rotating frame 220.
  • at least two intervals among the three rectilinear protrusions A3 of the second rotation frame 220 are approximately 150 °, and the interval between the two locking portions 122 of the second rectilinear frame 120 is also approximately 150 °.
  • the relative rotation angle of each other during zoom driving is set to approximately 150 ° or less. Therefore, the third rectilinear frame 130 does not interfere with the rotation of the second rotating frame 220. The same applies to other angles.
  • the rectilinear projection A4 of the first lens group frame 310 is engaged with the rectilinear groove a4 of the second rectilinear frame 120. Further, the cam protrusion B3 of the first lens group frame 310 is engaged with the cam groove b3 of the second rotation frame 220. Therefore, the first lens group frame 310 can go straight in the optical axis direction according to the rotation of the second rotation frame 220.
  • the rectilinear protrusion A5 of the second lens group frame 320 is engaged with the rectilinear groove a5 of the third rectilinear frame 130. Further, the cam protrusion B4 of the second lens group frame 320 is engaged with the cam groove b4 of the second rotation frame 220. Therefore, the second lens group frame 320 can go straight in the optical axis direction according to the rotation of the second rotation frame 220.
  • the rectilinear protrusion A6 of the shutter frame 335 is engaged with the rectilinear groove a6 of the third rectilinear frame 130. Further, the cam projection B5 of the shutter frame 335 is engaged with the cam groove b5 of the second rotation frame 220. Therefore, the shutter frame 335 can go straight in the optical axis direction in accordance with the rotation of the second rotation frame 220.
  • a third lens group frame 330 is attached to the shutter frame 335. When the shutter frame 335 moves straight in the optical axis direction with respect to the third rectilinear frame 130, the retractable lens frame 401 of the third lens group frame 330 is It is rotated by a retracting mechanism (not shown).
  • the retractable lens frame 401 moves from the retracted position to the correctable position. Further, when shifting from the photographing enabled state to the retracted state, the retractable lens frame 401 moves from the correctable position to the retracted position.
  • the third lens unit L3 is movable in a plane perpendicular to the optical axis. That is, in this state, image blur correction can be performed.
  • the first to third rectilinear frames 110 to 130 and the lens group frames 310, 320, and 335 move straight by the rotation of the first rotating frame 210 and the second rotating frame 220 by the driving force of the zoom motor 241. It has been realized.
  • ⁇ Assembly method of lens barrel 20> Hereinafter, a method for assembling the lens barrel 20 will be described.
  • the third rectilinear frame 130 is inserted from the rear of the second rotating frame 220. Subsequently, the third rectilinear frame 130 is rotated in the circumferential direction to be in the tele state. Next, the second lens group frame 320 is inserted from the rear of the third rectilinear frame 130. Next, the retractable lens frame 401 is inserted from the front of the OIS frame 400, and the retractable lens frame 401 is rotatably attached to the OIS frame 400.
  • the OIS frame 400 is inserted from the front of the shutter frame 335.
  • the shutter frame 335 is inserted from the rear of the third rectilinear frame 130.
  • the second rotating frame 220 is rotated in the circumferential direction to be in a retracted state.
  • the second rotating frame 220 is inserted from the rear of the first lens group frame 310.
  • the second rectilinear frame 120 is covered from the front of the first lens group frame 310.
  • the first rotating frame 210 is inserted from the rear of the first rectilinear frame 110.
  • the second rectilinear frame 120 is inserted from the rear of the first rotating frame 210.
  • the first rectilinear frame 110 is inserted from the rear of the fixed frame 100.
  • the first rotating frame 210 is rotated with respect to the fixed frame 100 to be in the retracted state.
  • the lens barrel 20 includes a cylindrical fixed frame 100, a cylindrical first rectilinear frame 110, a cylindrical first rotating frame 210 (an example of a rotating frame), and a cylindrical second rectilinear frame. 120.
  • the fixed frame 100 includes a rectilinear groove a1 (an example of a first rectilinear groove) and three cam grooves b1 (an example of at least two first cam grooves) formed on the inner peripheral surface 100S.
  • the first rectilinear frame 110 is disposed on the inner side in the radial direction of the fixed frame 100.
  • the first rectilinear frame 110 is formed on the outer circumferential surface 110T, and the rectilinear projection A1 (an example of the first rectilinear projection) engaged with the rectilinear groove a1, and the rectilinear groove a2 (second rectilinear advance) formed on the inner peripheral surface 110S.
  • An example of a groove) and a bayonet groove e1 an example of a bayonet groove formed along the circumferential direction on the inner peripheral surface 110S.
  • the first rotating frame 210 is disposed on the radially inner side of the first rectilinear frame 110.
  • the first rotating frame 210 is formed on the outer peripheral surface 210T, and is formed along the circumferential direction on the outer peripheral surface 210T with three cam followers B1 (an example of at least two cam followers) engaged with the three cam grooves b1.
  • the second rectilinear frame 120 is disposed on the radially inner side of the first rotating frame 210.
  • the second rectilinear frame 120 has a rectilinear cam follower AB2 (an example of a second rectilinear projection) that is formed on the outer peripheral surface 120T and is engaged with the rectilinear groove a2 via the cam groove b2.
  • the cam follower B1 of the first rotating frame 210 is located behind the first rectilinear protrusion A1 of the first rectilinear frame 110 in the optical axis direction. Can be placed.
  • the overall length of the lens barrel 20 in the optical axis direction is not increased, and the cam follower B1 of the first rotating frame 210 is engaged.
  • the wall of the front end portion in the optical axis direction of the first rectilinear groove a1 of the fixed frame 100 to be combined can be thickened. Accordingly, the lens barrel 20 can be made compact while maintaining the amount of movement of the first rotating frame 210 relative to the fixed frame 100, that is, maintaining the zoom magnification, and the strength against external force such as dropping can be improved.
  • the gear portion 212 of the first rotating frame 210 can be disposed behind the rectilinear protrusion A1 of the first rectilinear frame 110, the zoom gear support portion 102 of the fixed frame 100 protrudes from the housing 10 as shown in FIG. Can be suppressed. Therefore, the design of the camera can be improved. Furthermore, a part of each of the cam groove b2 and the bayonet protrusion E1 is located between two cam followers B1 out of the three cam followers B1 in the circumferential direction around the axis P of the first rotating frame 210.
  • the cam groove b2 is a through groove, so that the first rotation is performed so that the width of the cam groove b2 is widened.
  • the frame 210 may be bent.
  • the three cam followers B1 of the first rotating frame 210 are supported by the three cam grooves b1 of the fixed frame 100, the first rotating frame 210 is camped between the three cam followers B1, that is, in the circumferential direction. It is easy to bend around the middle of B1.
  • the bayonet protrusion E1 is located between the two cam followers B1 in the circumferential direction.
  • the bayonet protrusion E1 includes an intermediate portion in the circumferential direction of the two cam followers B1. That is, the bayonet protrusion E1 is located between the two cam followers B1. Accordingly, the strength of the first rotating frame 210 itself can be improved by causing the bayonet protrusion E1 to function as a rib. Further, by using the rigidity of the first rectilinear frame 110 having the bayonet groove e1 engaged with the bayonet protrusion E1, it is possible to suppress the first rotating frame 210 from being bent.
  • the cam follower B1 is formed on the image plane side so as not to overlap with the cam groove in the circumferential direction.
  • the root strength of the cam follower B1 can be improved.
  • the guide groove g is formed inside the cam follower B1.
  • the center position of the cam follower B1 in the circumferential direction around the axis P is different from the center position of the opening 213 in the circumferential direction, that is, the center positions are shifted from each other.
  • the cam follower B1 since the cam follower B1 is connected to the first rotation frame main body 211 across the opening 213, the width in the circumferential direction at the base of the cam follower B1 is not equal on both sides, and the width on one side can be increased. As a result, the root strength of the cam follower B1 can be increased.
  • the cam groove b2, the bayonet protrusion E1, and the two cam followers B1 are arranged in order from the front in the axial direction (coincident with the front-rear direction) along the axial center P.
  • the bayonet protrusion E1 is disposed so as to face the cam groove b2 range used in the cam groove b2 range used in the photographable section, that is, in any section from the wide angle to the telephoto. That is, the bayonet protrusion E1 is arrange
  • the image surface side end surface of the cam groove b2 tends to be deformed to the image surface side.
  • the bayonet protrusion E1 is on the image plane side of the cam groove b2, the deformation can be suppressed.
  • the bayonet protrusion E1 is rib shape, the intensity
  • the cam groove b2 and at least a part of the bayonet protrusion E1 are disposed between the two cam followers B1 in the circumferential direction. Further, the cam groove b2, the bayonet protrusion E1, and the two cam followers B1 are arranged in order from the front in the axial direction along the axis P (matching the front-rear direction). In this way, the strength of the first rotating frame 210 can be increased as described above.
  • the first rotating frame 210 having the cam groove b2 and the first rectilinear frame 110 arranged outside thereof have a configuration in which the bayonet is coupled.
  • the rectilinear cam follower AB2 of the second rectilinear frame 120 is engaged with the cam groove b2 of the first rotating frame 210. Therefore, for example, when an external force is input from the subject side to the first lens group frame 310 and / or the second rectilinear frame 120, the external force is applied to the first lens group frame 310 and / or the second rectilinear frame. 120 is transmitted to the first rotating frame 210.
  • this force is directly transmitted from the cam follower B1 of the first rotating frame 210 to the fixed frame 100 (first transmission path).
  • this force is transmitted from the bayonet protrusion E1 of the first rotating frame 210 to the first rectilinear frame 110. Since the first rectilinear frame 110 is in contact with the cam follower B1 of the first rotating frame 210 at the end on the image sensor 245 side, this force is indirectly applied to the fixed frame 100 via the cam follower B1. Is also transmitted (second transmission path).
  • this force is transmitted by two transmission paths (first and second transmission paths).
  • first and second transmission paths can be transmitted to the fixed frame 100. That is, this configuration is a member that transmits force compared to the conventional configuration in which external force is transmitted to the fixed frame by only one of the first and second transmission paths, for example, the second transmission path, for example, The force can be transmitted to the fixed frame 100 without concentrating stress on the bayonet protrusion E1 or the cam follower B1.
  • the lens barrel 20 disclosed herein can also be described as follows.
  • the lens barrel includes a cylindrical fixed frame, a cylindrical first rectilinear frame, a cylindrical rotating frame, and a cylindrical second rectilinear frame.
  • the fixed frame has at least one first rectilinear groove and at least one first cam groove on the inner peripheral surface.
  • the first rectilinear frame is disposed on the radially inner side of the fixed frame, and has at least one first rectilinear projection engaged with the first rectilinear groove on the outer peripheral surface and at least one second rectilinear advance on the inner peripheral surface. And a groove.
  • the rotating frame is disposed radially inward of the first rectilinear frame, and has at least one cam follower engaged with the first cam groove on the outer peripheral surface and at least one first penetrating from the inner peripheral surface to the outer peripheral surface.
  • the second rectilinear frame has at least one second rectilinear protrusion that is disposed on the radially inner side of the rotating frame and that is engaged with the second rectilinear groove on the outer peripheral surface via the second cam groove.
  • the communication groove opens at the end face of the rotating frame.
  • a cam follower is arrange
  • the lens barrel 20 includes a cylindrical fixed frame 100, a cylindrical first rectilinear frame 110, a cylindrical first rotating frame 210 (an example of a rotating frame), a cylindrical second rectilinear frame 120, Is provided.
  • the fixed frame 100 has a rectilinear groove a1 (an example of a first rectilinear groove) and a cam groove b1 (an example of a first cam groove) formed on the inner peripheral surface 100S.
  • the first rectilinear frame 110 is disposed on the radially inner side of the fixed frame 100.
  • the first rectilinear frame 110 is formed on the outer circumferential surface 110T, and the rectilinear projection A1 (an example of the first rectilinear projection) engaged with the rectilinear groove a1, and the rectilinear groove a2 (second rectilinear advance) formed on the inner peripheral surface 110S.
  • An example of a groove An example of a groove.
  • the first rotating frame 210 is disposed on the radially inner side of the first rectilinear frame 110.
  • the first rotating frame 210 is formed on the outer peripheral surface 210T and is engaged with the cam groove b1, and the cam groove b2 (second second) penetrating the first rotating frame main body 211 from the inner peripheral surface 210S to the outer peripheral surface 210T.
  • the second rectilinear frame 120 is disposed on the radially inner side of the first rotating frame 210.
  • the second rectilinear frame 120 has a rectilinear cam follower AB2 (an example of a second rectilinear projection) that is formed on the outer peripheral surface 120T and is engaged with the rectilinear groove a2 via the cam groove b2.
  • the cam follower B1 of the first rotating frame 210 is located behind the first rectilinear protrusion A1 of the first rectilinear frame 110 in the optical axis direction. Can be placed.
  • the overall length of the lens barrel 20 in the optical axis direction is not increased, and the cam follower B1 of the first rotating frame 210 is engaged.
  • the wall of the front end portion in the optical axis direction of the first rectilinear groove a1 of the fixed frame 100 to be combined can be thickened. Accordingly, the lens barrel 20 can be made compact while maintaining the amount of movement of the first rotating frame 210 relative to the fixed frame 100, that is, maintaining the zoom magnification, and the strength against external force such as dropping can be improved.
  • the gear portion 212 of the first rotating frame 210 can be disposed behind the rectilinear protrusion A1 of the first rectilinear frame 110, the zoom gear support portion 102 of the fixed frame 100 protrudes from the housing 10 as shown in FIG. Can be suppressed. Therefore, the design of the camera can be improved.
  • the guide groove g has an opening 213 formed in the rear end face 210R.
  • the cam follower B ⁇ b> 1 is disposed outside the opening 213 in the radial direction centered on the axis P (coincidence with the optical axis AX) of the first rotation frame 210.
  • the cam follower B1 since the cam follower B1 is disposed outside the opening 213, the guide groove g can be prevented from penetrating the first rotary frame main body 211.
  • the portion of the rear end portion of the first rotating frame main body 211 that is notched by the guide groove g can be reinforced by the cam follower B1, the strength of the first rotating frame 210 can be improved.
  • a lens barrel including a first frame and a second frame that is rotatably supported inside the first frame is known (see, for example, JP-A-2009-134160).
  • the first frame has a cam groove formed on the inner peripheral surface
  • the second frame is formed on the outer peripheral surface, and moves along the inner peripheral surface of the first frame, the cam follower being engaged with the cam groove.
  • the inner peripheral surface of the first frame includes a first region facing the gear portion and a second region not facing the gear portion. The first region is formed on the opposite side of the second region across the cam groove.
  • the cam groove of the first frame has a rectangular shape in a cut surface perpendicular to the axis of the first frame, the distance from the axis of each of the first region and the second region is the same. Therefore, although it is not necessary to consider the interference with the gear portion, the second region cannot be provided inside the first region, so that the outer shape of the first frame cannot be designed in accordance with the peripheral members. As described above, when the cam groove having the rectangular cross section is formed in the first frame, there is a problem that the degree of freedom in design inside the lens barrel is low.
  • the technology disclosed herein has been made in view of the above-described situation, and an object thereof is to provide a lens barrel capable of improving design freedom.
  • the lens barrel disclosed herein is disposed on the inner side in the radial direction of the first frame having at least one cam groove on the inner peripheral surface, and engages with the cam groove on the outer peripheral surface.
  • a cylindrical second frame having at least one cam follower.
  • the cam groove is formed along the movement track of the cam follower, and has at least one first cam surface and at least one second cam surface that are different in the radial direction from the optical axis.
  • the cam follower has at least one first side surface that contacts the first cam surface and at least one second side surface that contacts the second cam surface.
  • the lens barrel 20 includes a fixed frame 100 (an example of a first frame) having a cam groove b1 and a first frame having a cam follower B1 that is disposed on the radially inner side of the fixed frame 100 and is engaged with the cam groove b1.
  • a rotation frame 210 (an example of a second frame).
  • the cam groove b1 has a first cam surface 104 and a second cam surface 105 that are different in distance from the axis P in the radial direction.
  • the cam follower B ⁇ b> 1 has a first side surface 214 that contacts the first cam surface 104 and a second side surface 215 that contacts the second cam surface 105.
  • the second region Sb on the inner peripheral surface 100S of the fixed frame 100 radially inward from the first region Sa. can be formed. Therefore, it is possible to avoid the fixed frame 100 from interfering with the peripheral members by cutting the outside of the second region Sb to form the flat portion Ta. Further, since the first region Sa is formed on the radially outer side than the second region Sb, it is possible to avoid the gear portion 212 of the first rotating frame 210 from interfering with the inner peripheral surface 100S. Therefore, since the space of the fixed frame 100 can be efficiently used in the radial direction, the degree of freedom in design inside the lens barrel 20 can be improved.
  • the lens barrel 20 is a three-stage retractable type including the first rectilinear frame 110, the second rectilinear frame 120, and the first lens group frame 310. is not.
  • the lens barrel 20 may be a two-stage collapsible type including a first rectilinear frame 110 and a second rectilinear frame 120. In this case, the lens barrel 20 may not include the second rotating frame 220 and the third rectilinear frame 130.
  • the lens barrel 20 may be a retractable type having four or more stages.
  • the cam groove b is formed in one of the two frames and the cam protrusion B is formed in the other frame, but the present invention is not limited to this.
  • the cam projection B may be formed on one of the two frames, and the cam groove b may be formed on the other frame.
  • the cam groove b and the cam protrusion B may be formed in each of the two frames.
  • the rectilinear groove a is formed in one of the two frames and the rectilinear protrusion A is formed in the other frame, but the present invention is not limited to this.
  • the rectilinear protrusion A may be formed on one of the two frames, and the rectilinear groove a may be formed on the other frame.
  • channel a and the rectilinear advance protrusion A may be formed in each of two frames.
  • the bayonet groove e is formed in one of the two frames and the bayonet protrusion E is formed in the other frame, but this is not restrictive.
  • the bayonet protrusion E may be formed in one of the two frames, and the bayonet groove e may be formed in the other frame.
  • channel e and the bayonet protrusion E may be formed in each of two frames.
  • the third lens group frame 330 is retracted to the side of the second lens group frame 320 in the retracted state, but the present invention is not limited to this.
  • the third lens group frame 330 may be disposed behind the second lens group frame 320 in the retracted state.
  • the cam groove b2 and the bayonet protrusion E1 are partly located between the two cam followers B1, but the present invention is not limited to this. All of the cam groove b2 and the bayonet protrusion E1 may be located between the two cam followers B1.
  • the three openings 213 are formed inside the three cam followers B.
  • the present invention is not limited to this. If one opening 213 is formed inside one cam follower B among the three cam followers B, a desired effect can be obtained.
  • the three cam followers B and the three guide grooves g are formed, but the present invention is not limited to this.
  • One cam follower B and one guide groove g may be formed.
  • the fixed frame 100 has the cam groove b1 including the first and second cam surfaces 104 and 105, and the first rotating frame 210 includes the first and second side surfaces 214 and 215.
  • the cam follower B1 is provided, the present invention is not limited to this.
  • the present invention can be suitably applied to a lens barrel including a first frame having a cam groove and a second frame engaged with the first frame via a cam mechanism inside the first frame. .
  • only one of the three cam grooves b has the first and second cam surfaces 104 and 105, and only one of the three cam followers B1 is the first and second side surfaces.
  • the present invention is not limited to this. Two or more of the three cam grooves b may have the first and second cam surfaces 104 and 105, and two or more of the three cam followers B1 have the first and second side surfaces 214 and 215. You may have.
  • a lens barrel that can be made compact can be provided, and can be applied to, for example, a camera, a mobile phone with a camera, a portable terminal with a camera, and the like.
  • a lens barrel capable of improving the degree of freedom in design can be provided, and can be applied to, for example, a camera, a mobile phone with a camera, a portable terminal with a camera, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Lens Barrels (AREA)

Abstract

 コンパクト化可能なレンズ鏡筒を提供する。レンズ鏡筒(20)は、円筒状の固定枠(100)と、円筒状の第1直進枠(110)と、円筒状の第1回転枠(210)と、円筒状の第2直進枠(120)と、を備える。第1回転枠(210)において、カム溝(b2)及びバヨネット突起(E1)それぞれの一部は、第1回転枠(210)の軸心(P)を中心とする周方向において、3つのカムフォロア(B1)のうちの、2つのカムフォロア(B1)の間に、位置している。

Description

レンズ鏡筒
 ここに開示される技術は、光学系を備えるレンズ鏡筒に関する。
 従来、固定枠の内側において第1回転枠、第1直進枠、第2直進枠および第2回転枠が外側から順次配置されたレンズ鏡筒が知られている(例えば、特許文献1参照)。
特開2011-13613号公報
 しかしながら、特許文献1に記載のレンズ鏡筒では、第1直進枠の外側に第1回転枠が配置されているので、固定枠に対する第1回転枠の係合位置を、固定枠に対する第1直進枠の係合位置より前方に設ける必要がある。この場合、第1回転枠と直進枠が固定枠に対して最も前側に繰り出した状態で、固定枠と第1回転枠の係合部の強度を上げるには、固定枠の前端部を係合部よりも前側に設ける必要がある。
 従って、固定枠のサイズを大きくする必要があるので、レンズ鏡筒をコンパクト化するにも限界がある。
 ここに開示される技術は、上述のような状況に鑑みてなされたものであり、落下等の外力に強く、コンパクト化可能なレンズ鏡筒を提供することを目的とする。
 ここに開示されるレンズ鏡筒は、円筒状の固定枠と、円筒状の第1直進枠と、円筒状の回転枠と、円筒状の第2直進枠と、第2回転枠220と、第3直進枠130と、を備える。固定枠は、内周面に少なくとも1本の第1直進溝と少なくとも2本の第1カム溝とを有する。第1直進枠は、固定枠の径方向内側に配置され、かつ、外周面に第1直進溝に係合される少なくとも1つの第1直進突起と、内周面に少なくとも1つの第2直進溝と、内周面に周方向に沿って形成される少なくとも1つのバヨネット溝と、を有する。回転枠は、第1直進枠の径方向内側に配置され、かつ、外周面に少なくとも2本の第1カム溝に係合される少なくとも2つのカムフォロアと、外周面に周方向に沿って形成され、前記少なくとも1つのバヨネット溝に係合される少なくとも1つのバヨネット突起と、内周面から外周面に貫通した少なくとも1つの第2カム溝と、を有する。第2直進枠は、回転枠の径方向内側に配置され、かつ、外周面に少なくとも1つの第2カム溝を介して少なくとも1つの第2直進溝に係合される少なくとも1つの第2直進突起を有する。バヨネット突起の少なくとも一部は、回転枠の軸心を中心とする周方向において、少なくとも2つのカムフォロアの間に位置する。
 ここに開示される技術によれば、落下等の外力に強く、コンパクト化可能なレンズ鏡筒を提供することができる。
デジタルカメラの斜視図 レンズ鏡筒の斜視図 レンズ鏡筒の分解斜視図 固定枠の斜視図 固定枠の背面斜視図 固定枠の拡大断面図 第1直進枠の斜視図 第1回転枠の斜視図 第1回転枠の背面斜視図 第1回転枠の背面図 第1回転枠の正面図 第1回転枠の背面図 第1回転枠の側面図 第2直進枠の斜視図 第2回転枠の斜視図 第3直進枠の斜視図 第2直進枠と第2回転枠と第3直進枠とを組み付けた模式図 第1レンズ群枠の斜視図 第2レンズ群枠の斜視図 シャッター枠の斜視図 レンズ鏡筒の模式断面図(沈胴状態) レンズ鏡筒の模式断面図(ワイド状態) レンズ鏡筒の模式断面図(テレ状態)
 次に、図面を用いて、本発明の実施形態について説明する。以下の図面の記載において、同一又は類似の部分には、同一又は類似の符号を付している。ただし、図面は模式的なものであり、各寸法の比率等は現実のものとは異なっている場合がある。従って、具体的な寸法等は以下の説明を参酌して判断すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 なお、以下の実施形態では、撮像装置としてデジタルカメラを例に挙げて説明する。以下の説明では、横撮り姿勢のデジタルカメラを基準として、被写体側を「前」、被写体の反対側を「後」、鉛直上側を「上」、鉛直下側を「下」、被写体に向かって右側を「右」、被写体に向かって左側を「左」と表現する。横撮り姿勢とは、デジタルカメラの姿勢の一種であり、横撮り姿勢で撮影する場合、横長矩形画像の長辺方向は画像内における水平方向に略一致する。
 〈デジタルカメラ1の構成〉
 デジタルカメラ1の構成について、図面を参照しながら説明する。図1は、デジタルカメラ1の斜視図である。図2は、レンズ鏡筒20の斜視図である。
 デジタルカメラ1は、図1に示すように、筐体10と、レンズ鏡筒20と、を備える。
 筐体10は、前板11と、後板12と、側板13と、によって構成される。前板11には、開口10Sが形成されている。
 レンズ鏡筒20は、3段沈胴式のズーム機構を備える。レンズ鏡筒20は、非撮影時には筐体10に収容されており、撮影時には開口10Sから前方に繰り出される。具体的に、レンズ鏡筒20は、図2に示すように、第1移動鏡筒部21と、第2移動鏡筒部22と、第3移動鏡筒部23と、固定鏡筒部24と、を有している。
 第1移動鏡筒部21は、固定鏡筒部24に対して繰り出し可能である。第2移動鏡筒部22は、第1移動鏡筒部21に対して繰り出し可能である。第3移動鏡筒部23は、第2移動鏡筒部22に対して繰り出し可能である。固定鏡筒部24は、筐体10内に固定される。レンズ鏡筒20が繰り出される場合、第1乃至第3移動鏡筒部21~23のうち第3移動鏡筒部23が最も前方に位置する。
 〈レンズ鏡筒20の詳細構成〉
 次に、レンズ鏡筒20の詳細構成について、図面を参照しながら説明する。図3は、レンズ鏡筒20の分解斜視図である。
 レンズ鏡筒20の第1乃至第3移動鏡筒部21~23は、光学系の光軸AXに沿って固定鏡筒部24から繰り出される。光学系には、第1乃至第4レンズ群L1~L4が含まれる。なお、以下の説明では、光軸AXに平行な方向を「光軸方向」、光軸方向に垂直な方向を「径方向」、光軸AXを中心とする円に沿った方向を「周方向」と称する。光軸AXは、レンズ鏡筒20を構成する各枠の軸心と略一致する。
 また、本実施形態において、「直進枠」とは、周方向に回転することなく光軸方向に移動する枠を、意味する。「回転枠」とは、周方向に回転する枠を、意味する。また、「回転枠」は、光軸方向に移動する枠と光軸方向に移動しない枠との両方の意味を、含んでいる。「直進溝」とは、光軸方向に沿って設けられた溝を、意味する。「直進溝」は、直進枠と回転枠との両方に設けられる。
 「直進」とは、周方向に回転することなく、光軸方向に移動することを意味する。「回転」とは、周方向に回転することを意味する。また、「回転」は、光軸方向に移動する場合と光軸方向に移動しない場合の両方の意味に、用いられる。「移動」は、周方向に回転しながら光軸方向に移動することも含む概念である。
 「バヨネット」または「バヨネット機構」とは、周方向に沿って設けられる「バヨネット突起」および「バヨネット溝」をそれぞれ有する枠同士が、回転自在に係合する機構、かつ光軸方向に一体的に係合する機構を、意味する。
 1.第1移動鏡筒部21
 第1移動鏡筒部21は、第1直進枠110、第1回転枠210及び第1化粧枠301を有する。第1直進枠110は、後述する固定枠100の径方向内側に配置される円筒状の樹脂部材である。第1回転枠210は、第1直進枠110の径方向内側に配置される円筒状の樹脂部材である。第1化粧枠301は、第1直進枠110の外周を覆う円筒状の板金部材である。
 2.第2移動鏡筒部22
 第2移動鏡筒部22は、第2直進枠120、第2回転枠220、第3直進枠130、第2レンズ群枠320、第2レンズ群L2、第3レンズ群枠330、第3レンズ群L3、シャッター枠335および第2化粧枠302を有する。
 第2直進枠120は、第1回転枠210の径方向内側に配置される円筒状の樹脂部材である。第2回転枠220は、第2直進枠120の径方向内側に配置される円筒状の樹脂部材である。第3直進枠130は、第2回転枠220の径方向内側に配置される円筒状の樹脂部材である。第2レンズ群枠320は、第3直進枠130の径方向内側に配置されており、ズーム用の第2レンズ群L2を支持する。第3レンズ群枠330は、シャッター枠335に収容され、像ぶれ補正用の第3レンズ群L3を支持する。第3レンズ群枠330は、径方向において揺動自在にシャッター枠335によって支持されており、第3レンズ群L3とともに像ぶれ補正機構を構成している。シャッター枠335は、第3直進枠130の径方向内側に配置されており、シャッター機構を内蔵する。シャッター枠335は、第3レンズ群枠330を径方向において揺動自在に支持する。シャッター枠335には、制御用フレキシブル配線335aが接続されている。制御用フレキシブル配線335aは、固定枠100の内周面に沿って配置され、図示しない制御装置に接続されている。制御用フレキシブル配線335aは、後述するシャッター機構や像ぶれ補正機構に制御信号を伝達する。第2化粧枠302は、第2直進枠120の外周を覆う円筒状の板金部材である。
 3.第3移動鏡筒部23
 第3移動鏡筒部23は、第1レンズ群枠310、第1レンズ群L1および第3化粧枠303を有する。
 第1レンズ群枠310は、第2直進枠120と第2回転枠220との間に配置される。第1レンズ群枠310は、レンズ鏡筒20内に光を取り込むための第1レンズ群L1を支持する。第3化粧枠303は、第1レンズ群枠310の外周を覆う円筒状の板金部材である。
 4.固定鏡筒部24
 固定鏡筒部24は、固定枠100、第4レンズ群枠340、第4レンズ群L4、ズームモータ241、ズームギア242、フォーカスモータ243、マスターフランジ244、撮像素子245および撮像素子フレキシブル配線245aを有する。
 固定枠100は、第1直進枠110および第1回転枠210の径方向外側に配置される円筒状の樹脂部材である。第4レンズ群枠340は、マスターフランジ244に取り付けられ、フォーカスモータ243によって光軸方向に駆動される。第4レンズ群枠340は、フォーカス調整用の第4レンズ群L4を支持する。
 ズームモータ241は、第1乃至第3移動鏡筒部21~23を繰り出すための駆動源であり、固定枠100の側面に取り付けられる。ズームギア242は、ズームモータ241の駆動力を第1回転枠210に伝達する。ズームギア242の前端は、固定枠100によって支持され、ズームギア242の後端は、マスターフランジ244によって支持される。フォーカスモータ243は、第4レンズ群枠340を光軸方向に駆動するための駆動源であり、マスターフランジ244に取り付けられる。マスターフランジ244は、固定枠100の後方を覆う板状の樹脂部材である。撮像素子245は、マスターフランジ244の中央に嵌め込まれる。撮像素子フレキシブル配線245aと、撮像素子245とが電気的に接続がされた状態で、撮像素子フレキシブル配線245aは、マスターフランジ244の後面に貼り付けられる。撮像素子フレキシブル配線245aは、図示しない制御装置に接続されており、撮像素子245からの信号を伝達する。
 〈各枠の構成〉
 以下において、レンズ鏡筒20を構成する枠について、図面を参照しながら説明する。具体的には、固定枠100、第1直進枠110、第1回転枠210、第2直進枠120、第2回転枠220、第3直進枠130、第1レンズ群枠310、第2レンズ群枠320、第3レンズ群枠330、およびシャッター枠335の構成について順次説明した後に、枠どうしの係合状態について説明する。
 1.固定枠100の構成
 図4Aは、固定枠100の正面斜視図である。図4Bは、固定枠100の背面斜視図である。
 固定枠100は、固定枠本体101と、ズームギア支持部102と、3つの取付け部103a~103cと、を有する。
 固定枠本体101は、略円筒状に形成され、内周面100Sと外周面100Tを有する。外周面100Tは、後述する取付け部103cが配置される平面部Taを有する。従って、外周面100Tは、全体的に曲面で構成されているが、平面部Taにおいて内側に凹まされている。
 ズームギア支持部102は、外周面100Tから突出するように設けられる。ズームギア支持部102は、ズームギア242の前端を回転自在に支持する。本実施形態において、ズームギア支持部102は、前板11によって覆われるため、筐体10の外部に露出しない(図1参照)。なお、ズームギア242の歯部は、固定枠本体101の内側に突出している。
 3つの取付け部103a~103cは、外周面100T上に配置される。3つの取付け部103a~103cがビスを介して筐体10の内部に取り付けられることによって、固定枠100が筐体10に固定される。3つのうちズームギア242に隣接する取付け部103cは、外周面100Tのうち平面部Ta上に配置されている。
 また、固定枠100は、5本の直進溝a1と、3本のカム溝b1と、を有する。ただし、図4Aでは、3本の直進溝a1と2本のカム溝b1が図示されている。
 5本の直進溝a1は、光軸方向に沿って内周面100Sに形成されており、周方向において適宜間隔をあけて配置される。
 3本のカム溝b1は、光軸方向と交差するように内周面100Sに形成される。3本のカム溝b1は、周方向において略等ピッチで配置される。3本のカム溝b1は、後述する第1回転枠210が有する3つのカムフォロアB1の移動軌跡に沿って形成されている。
 ここで、図4Cは、固定枠100の軸心P(図7A参照。光軸AXと一致する。)に垂直な平面による固定枠100の拡大断面図である。図4Cでは、外周面100Tの平面部Ta周辺が模式的に図示されている。
 図4Cに示すように、固定枠100の内周面100Sは、第1領域Saと第2領域Sbとを含む。第1領域Saは、第1回転枠210が回転しながら移動する際に、後述するギア部212(図6C参照)と対向する領域である。一方で、第2領域Sbは、第1回転枠210が回転しながら移動する際においても、ギア部212と対向しない領域である。
 第1領域Saは、第2領域Sbよりも固定枠100の軸心から離れている。これによって、第1回転枠210のギア部212が内周面100Sに干渉することが回避されている。
 第2領域Sbは、第1領域Saよりも径方向内側に位置している。これによって、固定枠本体101の十分な厚みが確保された結果、第2領域Sbの反対側において平面部Taを形成できている。
 カム溝b1は、第1カム溝部b11と第2カム溝部b12とを含む。第1カム溝部b11は、内周面100Sのうち第1領域Saに形成される。第2カム溝部b12は、第1カム溝部b11の底面に形成される。すなわち、第1カム溝部b11は、第2カム溝部b12よりも径方向内側に形成されている。なお、本実施形態において、第1カム溝部b11の底面の軸心からの距離は、第1領域Saの軸心からの距離と同じである。
 また、第1カム溝部b11は、第1回転枠210が回転しながら移動する際に、後述するカムフォロアB1(図6C参照)が当接される第1カム面104を有する。同様に、第2カム溝部b12は、第1回転枠210が回転しながら移動する際に、カムフォロアB1が当接される第2カム面105を有する。第1カム面104および第2カム面105それぞれの軸心からの距離は互いに異なっており、第1カム面104の軸心からの距離は、第2カム面105の軸心からの距離よりも短い。すなわち、第1カム面104は、第2カム面105よりも径方向内側に位置している。
 このように、本実施形態では、カム溝b1を2段構成にすることによって、第2領域Sbを第1領域Saよりも径方向内側にすることが実現され、平面部Taによって形成される新たな空間を、レンズ鏡筒20の外部に構成できている。
 2.第1直進枠110の構成
 図5は、第1直進枠110の斜視図である。
 第1直進枠110は、第1直進枠本体111と、5本の直進突起A1と、3本の直進溝a2と、バヨネット溝e1と、バヨネット突起E0と、を有する。
 直進枠本体111は、円筒状に形成され、内周面110Sと外周面110Tを有する。
 5つの直進突起A1は、外周面110Tの後端部に立設される。5つの直進突起A1は、固定枠100の5本の直進溝a1に係合される。
 3本の直進溝a2は、光軸方向に沿って内周面110Sに形成される。
 バヨネット溝e1は、内周面110Sの後端部において周方向に沿って円弧状に形成される。バヨネット溝e1は、3本の直進溝a2と交差している。
 バヨネット突起E0は、内周面110Sの前端部に配置される。バヨネット突起E0は、周方向に沿って円弧状に形成される。本実施形態では、複数のバヨネット突起E0が、周方向に用意されている。
 3.第1回転枠210の構成
 図6Aは、第1回転枠210の斜視図である。図6Bは、第1回転枠210の背面斜視図である。図6Cは、第1回転枠210の背面図である。
 第1回転枠210は、第1回転枠本体211と、ギア部212と、を有する。
 第1回転枠本体211は、円筒状に形成され、内周面210Sと外周面210T及び後端面210Rを、有する。
 ギア部212は、外周面210Tの後端部に立設されており、周方向に沿って形成される。ギア部212がズームギア242に噛合することによって、第1回転枠210は、ズームモータ241の駆動力によって周方向に回転される。なお、図示しないが、ギア部212は、第1直進枠110の直進突起A1よりも後方に位置している。
 また、第1回転枠210は、3つのカムフォロアB1と、3つのバヨネット突起E1と、3本のカム溝b2と、3本のガイド溝gと、バヨネット溝e0と、3本の直進溝a3と、を有する。ただし、図6A及び図6Bでは、直進溝a3は1本だけ図示されている。
 3つのカムフォロアB1は、外周面210Tの後端部に立設される。3つのうち2つのカムフォロアB1は、ギア部212の両端に配置されている。3つのカムフォロアB1は、固定枠100の3つのカム溝b1に係合される。
 ここで、図7Bは、第1回転枠210の背面図である。図7Bに示すように、3つのカムフォロアB1のうち1つは、第1カムフォロア部B11と第2カムフォロア部B12とによって構成されている。第1カムフォロア部B11の軸心Pから距離は、第2カムフォロア部B12の軸心Pから距離よりも小さい。すなわち、第2カムフォロア部B12は、第1カムフォロア部B11よりも径方向外側に配置されている。
 第1カムフォロア部B11は、固定枠100が有するカム溝b1のうち第1カム溝部b11に係合される。また、第1カムフォロア部B11は、第1カム溝部b11の第1カム面104(図4C参照)に当接される第1側面214を有している。
 第2カムフォロア部B12は、カム溝b1のうち第2カム溝部b12に係合される。また、第2カムフォロア部B12は、第2カム溝部b12の第2カム面105(図4C参照)に当接される第2側面215を有している。
 なお、第1側面214および第2側面215は、カムフォロアB1の周方向における両側端部に、形成されている。本実施形態では、第1側面214に隣接してフランジ部213が形成されるとともに、第2側面215に隣接してギア部212が形成されている。フランジ部213は、固定枠100の内周面100Sのうち第2領域Sbと対向し、ギア部212は、内周面100Sのうち第1領域Saと対向する(図4C参照)。
 バヨネット突起E1は、外周面210Tの後端部において周方向に沿って形成される。バヨネット突起E1は、ギア部212の前方に配置される。バヨネット突起E1は、第1直進枠110のバヨネット溝e1に係合される。本実施形態において、バヨネット突起E1とバヨネット溝e1とは、第1回転枠210を第1直進枠110に回転自在に係合し、かつ光軸方向に一体的に係合するためのバヨネット機構を構成している。なお、3つのバヨネット突起E1は、周方向に形成されている。
 3本のカム溝b2は、内周面210Sから外周面210Tまで第1回転枠本体211を貫通している。
 3本のガイド溝gは、後述する第2直進枠120の3つの直進カムフォロアAB2(図9参照)を3本のカム溝b2へとガイドするための溝である。3本のガイド溝gは、内周面210Sに形成される。3本のガイド溝gそれぞれは、3本のカム溝b2それぞれと後端面210Rとに連通している。そのため、3本のガイド溝gそれぞれは、後端面210Rに開口している。なお、ガイド溝gの径方向深さは、カム溝b2の径方向深さ、すなわち、第1回転枠本体211の厚みと略同等である。ガイド溝gは、カム溝b2の光軸方向後側端部に、接続される。本開示例では、カム溝b2の光軸方向後側端部には、レンズ鏡筒が沈胴状態の時に使用される部分、すなわち、カムフォロアB1が存在する部分が、形成されている。
 ここで、図6Cは、第1回転枠210の背面図である。図6Cに示すように、3本のガイド溝gそれぞれは、後端面210Rに形成される開口213を有している。カムフォロアB1は、第1回転枠210の軸心P(光軸AXと一致)を中心とする径方向において、開口213の外側に配置されている。従って、軸心Pを中心とする周方向におけるカムフォロアB1の位置は、周方向における開口213の位置と少なくとも一部が重なっている。このように、本実施形態では、ガイド溝gは、カムフォロアB1の内側に形成されている。
 開口213には、ガイド溝gが形成される為、薄肉となる、又は肉がなくなる。しかし、開口213の径方向外側にカムフォロアB1を設けることで、肉厚が確保できる。ここでは、開口213を挟んでカムフォロアB1を構成してる。言い換えると、開口213をまたいでカムフォロアB1と第1回転枠本体211とが、結合されている。これにより、第1回転枠本体211の強度を、上げることができる。更に、軸心Pを中心とする周方向におけるカムフォロアB1の中心位置は、周方向における開口213の中心位置とは、異なっている。言い換えると、カムフォロワB1は、開口213をまたいで、第1回転枠本体211と結合しているので、カムフォロアB1の根元の周方向幅を、両側均等ではなく、片側の幅を大きくできる。この結果、カムフォロアB1の根元強度を、上げることが出きる。
 バヨネット溝e0は、外周面210Tの前端部に形成される。バヨネット溝e0は、周方向に沿って円弧状に形成される。バヨネット溝e0は、3本のカム溝b2と交差している。バヨネット溝e0には、バヨネット突起E0が係合される。
 3本の直進溝a3は、内周面210Sにおいて光軸方向に沿って形成される。3本の直進溝a3のうち2つは近接しており、残り一つは120°~180°離れて形成される。
 ここで、図7Aは、第1回転枠210の正面図であり、図8は、第1回転枠210の側面図である。
 図7Aに示すように、3本のカム溝b2のそれぞれの一部は、第1回転枠210の軸心P(光軸AXと一致)を中心とする周方向において、3つのカムフォロアB1のうち2つのカムフォロアB1の間に位置している。同様に、バヨネット突起E1の一部は、周方向において、2つのカムフォロアB1の間に位置している。具体的には、バヨネット突起E1は3つ存在している。バヨネット突起E1の各部分の一部は、2つのカムフォロアB1の間に位置する。
 従って、図8に示すように、カム溝b2及びバヨネット突起E1それぞれの少なくとも一部の周方向における位置は、2つのカムフォロアB1それぞれの周方向における位置と重なっていない。
 また、図8に示すように、カム溝b2、バヨネット突起E1および2つのカムフォロアB1は、軸心Pに沿った軸心方向(前後方向と一致)において前から順に配置されている。ここで、バヨネット突起E1は、撮影可能区間、本開示例では広角から中焦点距離範囲で使用されるカム溝b2範囲と対向して、配置されている。また、バヨネット突起E1は、周方向で略同じ位置に、配置されている。これにより、第1回転枠210の強度を、上げることができる。直進カムフォロアAB2からカム溝b2に被写体側からの外力が掛かると、カム溝b2の像面側端面は、像面側に変形しようとする。しかし、カム溝b2の像面側にバヨネット突起E1があるため、その変形を抑止することができる。また、バヨネット突起E1は、リブ状のため、リブ効果として、第1回転枠210の強度を上げることができる。
 2つのカムフォロアB1は、第1回転枠210の後端部210a上に配置されている。従って、カム溝b2の少なくとも一部は、軸心方向において、バヨネット突起E1と後端部210aとの間に配置されている。
 また、図8に示すように、カム溝b2は、周方向に沿って形成される直線溝部b2stを有する。バヨネット突起E1の一部は、直線溝部b2stの一部に沿って形成されている。
 4.第2直進枠120の構成
 図9は、第2直進枠120の斜視図である。
 第2直進枠120は、第2直進枠本体121と、2つの係止部122と、を有する。
 第2直進枠本体121は、円筒状に形成され、内周面120Sと外周面120Tを有する。
 2つの係止部122は、第2直進枠本体121の後端面上に立設され、後方に向かって突出している。また、2つの係止部122は、光軸AX(図3参照)を中心として略対称な位置、すなわち、120°~180°離れた位置に、形成される。後述するように、2つの係止部122が第3直進枠130に係止されることによって、第3直進枠130の第2直進枠120に対する相対回転が抑止される。なお、本実施形態では、2つの係止部122のうち一方が他方よりも周方向に長く形成されている。
 また、第2直進枠120は、3つの直進カムフォロアAB2と、3本の直進溝a4と、バヨネット溝e2と、を有する。
 3つの直進カムフォロアAB2は、外周面120Tの後端部に立設され、周方向において略等ピッチで配置される。3つの直進カムフォロアAB2は、第1回転枠210の3本のカム溝b2に係合される。また、3つの直進カムフォロアAB2は、3本のカム溝b2に挿通され、かつ、第1直進枠110の3本の直進溝a2に係合される。
 3本の直進溝a4は、光軸方向に沿って内周面120Sに形成される。3本の直進溝a4は、周方向において略等ピッチで配置される。
 バヨネット溝e2は、周方向に沿って内周面120Sの後端部に形成される。バヨネット溝e2は、3本の直進溝a4と交差している。
 5.第2回転枠220の構成
 図10は、第2回転枠220の斜視図である。
 第2回転枠220は、第2回転枠本体221と、3つの直進突起A3と、3つのバヨネット突起E2と、2本のバヨネット溝e3と、3本のカム溝b3と、3本のカム溝b4と、3本のカム溝b5と、を有する。ただし、図10では、カム溝b3、カム溝b4、カム溝b5が各々2本ずつ図示されている。
 第2回転枠本体221は、円筒状に形成され、内周面220Sと外周面220Tを有する。
 3つの直進突起A3は、外周面220Tの後端部に立設され、周方向において3つの直進突起A3のうち2つは近接しており、残り一つは近接する2つの直進突起A3から略120°以上離れて形成される。3つの直進突起A3は、第1回転枠210の3つの直進溝a3に係合される。
 3つのバヨネット突起E2は、外周面220Tの後端部において周方向に沿って形成される。3つのバヨネット突起E2は、3つの直進突起A3より前方に配置される。バヨネット突起E2は、第2直進枠120のバヨネット溝e2に係合される。本実施形態において、バヨネット突起E2とバヨネット溝e2とは、第2回転枠220を第2直進枠120に回転自在に係合し、かつ光軸方向に一体的に係合するためのバヨネット機構を構成している。
 2本のバヨネット溝e3は、周方向に沿って内周面220Sの略中央部に形成される。2本のバヨネット溝e3は、互いに平行に形成される。2本のバヨネット溝e3は、カム溝b4およびカム溝b5と交差する。
 3本のカム溝b3は、光軸方向と交差するように外周面220Tに形成され、周方向において略等ピッチで配置される。
 カム溝b4およびカム溝b5は、内周面220Sに形成される。カム溝b4およびカム溝b5は、互いに交差する。
 6.第3直進枠130の構成
 図11は、第3直進枠130の斜視図である。
 第3直進枠130は、第3直進枠本体131と、フランジ部132と、2つの係止凹部133と、を有する。
 第3直進枠本体131は、円筒状に形成され、内周面130Sと外周面130Tを有する。
 フランジ部132は、円環状に形成され、外周面130Tの後端部上に立設されている。
 2つの係止凹部133は、フランジ部132の外縁に形成される切り欠きである。2つの係止凹部133は、光軸AX(図3参照)を中心として略対称な位置、すなわち、120°~180°離れた位置に形成される。ここで、図12は、第2直進枠120と第2回転枠220と第3直進枠130とを組み付けた状態を示す模式図である。図12に示すように、第2直進枠120の2つの係止部122が第3直進枠130の2つの係止凹部133に係止されることによって、第3直進枠130の第2直進枠120に対する相対回転が抑止される。なお、2つの係止部122の一方が他方よりも周方向に長く形成されているのに対応して、2つの係止凹部133の一方が他方よりも周方向に長く形成されている。これによって、2つの係止凹部133の強度が向上されている。
 また、第3直進枠130は、6つのバヨネット突起E3と、3つの直進溝a5と、3つの直進溝a6と、を有する。ただし、図11では、バヨネット突起E3は2つだけ図示されている。
 6つのバヨネット突起E3それぞれは、光軸を含む断面での形状が、径方向外側の辺が短く、かつ径方向内側の辺が長い台形形状に、形成されている。また、バヨネット突起E3は、外周面130Tの略中央部において周方向に沿って形成される。2つのバヨネット突起E3は、周方向において同じ位置で、互いに平行に形成されている。この2つのバヨネット突起E3が、1セットとして、周方向において略等ピッチで、3箇所に配置されている。言い換えると、3セットのバヨネット突起E3、すなわち6つのバヨネット突起E3が、第3直進枠130に配置されている。6つのバヨネット突起E3は、第2回転枠220の2本のバヨネット溝e3に係合される。本実施形態において、バヨネット突起E3とバヨネット溝e3とは、第3直進枠130を、第2回転枠220に対して、回転自在に係合し、かつ光軸方向一体的に係合するためのバヨネット機構を、構成している。
 3つの直進溝a5は、内周面130Sから外周面130Tまで第3直進枠本体131を貫通している。3つの直進溝a5は、光軸方向に沿って延びており、周方向において略等ピッチで配置される。
 3つの直進溝a6は、内周面130Sから外周面130Tまで第3直進枠本体131を貫通している。3つの直進溝a6は、光軸方向に沿って延びており、周方向において略等ピッチで配置される。
 本実施形態において、3つの直進溝a5と3つの直進溝a6とは、周方向において交互に配置されている。
 7.第1レンズ群枠310の構成
 図13は、第1レンズ群枠310の斜視図である。
 第1レンズ群枠310は、第1レンズ群枠本体311と、3つの直進突起A4と、3つのカム突起B3と、を有する。
 第1レンズ群枠本体311は、円筒状に形成され、内周面310Sと外周面310Tを有する。第1レンズ群枠本体311には、後方に向かって突出する3つの突出部311aが形成されている。
 3つの直進突起A4は、突出部311aの外周面310Tに立設され、周方向において略等ピッチで配置される。3つの直進突起A4は、第2直進枠120の3本の直進溝a4に係合される。
 3つのカム突起B3は、突出部311aの内周面310Sに立設され、周方向において略等ピッチで配置される。3つのカム突起B3は、第2回転枠220の3本のカム溝b3に係合される。
 本実施形態において、3つの直進突起A4と3つのカム突起B3とは、突出部311aを挟んで略反対に配置されている。
 8.第2レンズ群枠320の構成
 図14は、第2レンズ群枠320の斜視図である。
 第2レンズ群枠320は、第2レンズ群枠本体321と、3つの直進突起A5と、3つのカム突起B4と、を有する。
 第2レンズ群枠本体321は、コップ状に形成され、外周面320Tを有する。
 3つの直進突起A5は、外周面320Tの後端部上に形成され、周方向において略等ピッチで配置される。3つの直進突起A5は、第3直進枠130の3本の直進溝a5に係合される。
 3つのカム突起B4は、3つの直進突起A5上、すなわち、径方向外側、に形成される。3つのカム突起B4は、第2回転枠220の3本のカム溝b4に係合される。
 9.第3レンズ群枠330の構成
 図15では、シャッター枠335の内部に第3レンズ群枠330が収容された状態が図示されている。図15を用いて、第3レンズ群枠330の構成を説明する。
 第3レンズ群枠330すなわちOIS(Optical Image Stabilizer)ユニットは、主に、OIS枠400と、退避レンズ枠401と、像ぶれ補正用の第3レンズ群L3と、を有している。
 OIS枠400は、シャッター枠335に装着されている。具体的には、OIS枠400は、光軸と垂直な面内で移動可能である。より具体的には、図示しないマグネットが、OIS枠400に固定されており、図示しないコイルが、マグネットに対向する位置においてシャッター枠335に固定されている。この状態において、電力が、図示しないカメラ回路からシャッター枠のコイルに供給されると、コイルに電流が流れ磁界が発生する。この磁界によってOIS枠400のマグネットが駆動され、この駆動力によりOIS枠400が光軸と垂直な面内で移動する。
 退避レンズ枠401は、光軸と略平行な退避軸回りに移動可能に、OIS枠400に保持されている。退避レンズ枠401は、第3レンズ群L3が像ぶれ補正を実行可能な補正可能位置(第1姿勢)から、第3レンズ群L3が光軸から退避した退避位置(第2姿勢)へと、その位置を変更可能である。退避レンズ枠401は、少なくとも1つのレンズから構成される第3レンズ群L3を、保持している。
 10.シャッター枠335の構成
 続いて、図15を参照しながら、シャッター枠335の構成について説明する。
 シャッター枠335は、シャッター枠本体336と、3つの直進突起A6と、3つのカム突起B5と、を有する。
 シャッター枠本体336は、円筒状に形成され、外周面335Tを有する。
 3つの直進突起A6は、外周面335T上に形成され、周方向において略等ピッチで配置される。3つの直進突起A6は、第3直進枠130の3本の直進溝a6に係合される。
 3つのカム突起B5は、3つの直進突起A6の前端部に立設される。3つのカム突起B5は、第2回転枠220の3本のカム溝b5に係合される。
 11.枠どうしの係合
 図16乃至図18は、レンズ鏡筒20の断面図である。ただし、図16乃至図18は、光軸AXを通る複数の切断面が組み合わされた模式図である。なお、図16では、レンズ鏡筒20の沈胴状態が図示され、図17では、レンズ鏡筒20のワイド状態が図示され、図18では、レンズ鏡筒20のテレ状態が図示されている。本実施形態において、デジタルカメラ1の撮影可能状態とは、レンズ鏡筒20のワイド状態からテレ状態までの状態を意味する。
 第1回転枠210のギア部212は、ズームギア242に噛合される(不図示)。第1回転枠210のカムフォロアB1は、固定枠100のカム溝b1に係合される。従って、第1回転枠210は、ズームモータ241の駆動力によって周方向に回転しながら光軸方向に移動可能である。
 第1直進枠110の直進突起A1は、固定枠100の直進溝a1に係合される。第1直進枠110のバヨネット溝e1には、第1回転枠210のバヨネット突起E1が係合される。従って、第1直進枠110は、第1回転枠210とともに光軸方向に直進可能である。
 第2直進枠120の直進カムフォロアAB2は、第1回転枠210のカム溝b2に挿通され、かつ、第1直進枠110の直進溝a2に係合される。従って、第2直進枠120は、第1回転枠210の回転に応じて、光軸方向に直進可能である。
 第2回転枠220の直進突起A3は、第1回転枠210の直進溝a3に係合される。また、第2回転枠220のバヨネット突起E2は、第2直進枠120のバヨネット溝e2に係合される。従って、第2回転枠220は、第1回転枠210とともに周方向に回転しながら、第2直進枠120とともに光軸方向に移動可能である。
 第3直進枠130の係止凹部133には、第2直進枠120の係止部122が係止される。また、第3直進枠130のバヨネット突起E3は、第2回転枠220のバヨネット溝e3に係合される。第2回転枠220の3つの直進突起A3同士の間隔のうち少なくとも2つ間隔が略120°以上離れて配置され、第2直進枠120の2つの係止部122同士の間隔も同じく略120°以上離れて配置されており、ズーム駆動時の互いの相対回転角が略120°以下にされている。そのため、係止部122と直進突起A3は、径方向及び光軸方向においては同じ位置にいるが、回転角度方向、すなわち周方向においては異なる位置となり、第3直進枠130は、第2回転枠220の回転に干渉することなく、第2直進枠120とともに光軸方向に直進可能である。
 2つの係止部122の一方が他方よりも周方向に長く形成されているのに対応して、2つの係止凹部133の一方が他方よりも周方向に長く形成されているが、第3直進枠130が、第2回転枠220の回転に干渉しない範囲で周方向に長くすることが望ましい。
 また、第2回転枠220の3つの直進突起A3同士の間隔のうち少なくとも2つの間隔が略150°で、第2直進枠120の2つの係止部122の間隔も同じく略150°であり、ズーム駆動時の互いの相対回転角が略150°以下とされている。そのため、第3直進枠130が第2回転枠220の回転に干渉することはない。さらに、他の角度でも同様である。
 第1レンズ群枠310の直進突起A4は、第2直進枠120の直進溝a4に係合される。また、第1レンズ群枠310のカム突起B3は、第2回転枠220のカム溝b3に係合される。従って、第1レンズ群枠310は、第2回転枠220の回転に応じて、光軸方向に直進可能である。
 第2レンズ群枠320の直進突起A5は、第3直進枠130の直進溝a5に係合される。また、第2レンズ群枠320のカム突起B4は、第2回転枠220のカム溝b4に係合される。従って、第2レンズ群枠320は、第2回転枠220の回転に応じて、光軸方向に直進可能である。
 シャッター枠335の直進突起A6は、第3直進枠130の直進溝a6に係合される。また、シャッター枠335のカム突起B5は、第2回転枠220のカム溝b5に係合される。従って、シャッター枠335は、第2回転枠220の回転に応じて、光軸方向に直進可能である。
 シャッター枠335には、第3レンズ群枠330が装着されており、シャッター枠335が第3直進枠130に対して光軸方向に直進すると、第3レンズ群枠330の退避レンズ枠401が、図示しない退避機構によって回動させられる。これにより、沈胴状態から撮影可能状態に移行する際には、退避レンズ枠401は、退避位置から補正可能位置へと移動する。また、撮影可能状態から沈胴状態に移行する際には、退避レンズ枠401は、補正可能位置から退避位置へと移動する。退避レンズ枠401が補正可能位置に配置された場合、第3レンズ群L3は、光軸と垂直な面内で移動可能である。すなわち、この状態では、像ぶれ補正が可能である。
 以上のように、ズームモータ241の駆動力による第1回転枠210および第2回転枠220の回転によって、第1乃至第3直進枠110~130と各レンズ群枠310,320,335の直進が実現されている。
 〈レンズ鏡筒20の組立て方法〉
 以下において、レンズ鏡筒20の組立て方法について説明する。
 まず、第2回転枠220の後方から第3直進枠130を挿入する。続いて、第3直進枠130を周方向に回転させてテレ状態にする。
 次に、第3直進枠130の後方から第2レンズ群枠320を挿入する。
 次に、OIS枠400の前方から退避レンズ枠401を挿入し、OIS枠400に退避レンズ枠401を回動可能に取り付ける。
 次に、シャッター枠335の前方からOIS枠400を挿入する。
 次に、第3直進枠130の後方からシャッター枠335を挿入する。
続いて、第2回転枠220を周方向に回転させて沈胴状態にする。
 次に、第1レンズ群枠310の後方から第2回転枠220を挿入する。
 次に、第1レンズ群枠310の前方から第2直進枠120を被せる。
 次に、第1直進枠110の後方から第1回転枠210を挿入する。続いて、第1回転枠210の後方から第2直進枠120を挿入する。
 次に、固定枠100の後方から第1直進枠110を挿入する。
 最後に、固定枠100に対して第1回転枠210を回転させることによって沈胴状態にする。
 〈作用及び効果〉
 (1)レンズ鏡筒20は、円筒状の固定枠100と、円筒状の第1直進枠110と、円筒状の第1回転枠210(回転枠の一例)と、円筒状の第2直進枠120と、を備える。
 固定枠100は、内周面100Sに形成される直進溝a1(第1直進溝の一例)と3本のカム溝b1(少なくとも二本の第1カム溝の一例)とを有する。
 第1直進枠110は、固定枠100の径方向内側に配置される。第1直進枠110は、外周面110Tに形成され、直進溝a1に係合される直進突起A1(第1直進突起の一例)と、内周面110Sに形成される直進溝a2(第2直進溝の一例)と、内周面110Sにおいて周方向に沿って形成されるバヨネット溝e1(バヨネット溝の一例)と、を有する。
 第1回転枠210は、第1直進枠110の径方向内側に配置される。第1回転枠210は、外周面210Tに形成され、3本のカム溝b1に係合される3つのカムフォロアB1(少なくとも2つのカムフォロアの一例)と、外周面210Tにおいて周方向に沿って形成され、バヨネット溝e1に係合されるバヨネット突起E1と、内周面210Sから外周面210Tに第1回転枠本体211を貫通するカム溝b2(第2カム溝の一例)と、を有する。
 第2直進枠120は、第1回転枠210の径方向内側に配置される。第2直進枠120は、外周面120Tに形成され、カム溝b2を介して直進溝a2に係合される直進カムフォロアAB2(第2直進突起の一例)を有する。
 このように、第1回転枠210の外側に第1直進枠110が配置されているので、第1回転枠210のカムフォロアB1を第1直進枠110の第1直進突起A1より光軸方向後ろ側に配置できる。そのため、第1直進枠110の外側に第1回転枠210が配置される場合に比べて、レンズ鏡筒20の光軸方向における全長を大きくすることなく、第1回転枠210のカムフォロアB1と係合する固定枠100の第1直進溝a1の光軸方向前側端部の壁を分厚くすることができる。従って、第1回転枠210の固定枠100に対する移動量を維持しつつ、すなわちズーム倍率を維持しつつ、レンズ鏡筒20をコンパクト化できるとともに、落下等の外力に対する強度を向上させることができる。
 また、第1回転枠210のギア部212を第1直進枠110の直進突起A1の後方に配置できるので、図1に示すとおり、筐体10から固定枠100のズームギア支持部102が突出することを抑制できる。従って、カメラのデザイン性も向上できる。
 さらに、カム溝b2及びバヨネット突起E1それぞれの一部は、第1回転枠210の軸心Pを中心とする周方向において、3つのカムフォロアB1のうち2つのカムフォロアB1の間に位置している。
 (2)ここで、カム溝b2に挿通される直進カムフォロアAB2からカム溝b2に対して力が掛かると、カム溝b2が貫通溝であるため、カム溝b2の幅が広がるように第1回転枠210が撓んでしまうおそれがある。特に、第1回転枠210の3つのカムフォロアB1が固定枠100の3本のカム溝b1によって支持されるため、第1回転枠210は、3つのカムフォロアB1どうしの間、すなわち、周方向でカムフォロアB1どうしの中間付近、で撓みやすい。
 そこで、本実施形態では、バヨネット突起E1の少なくとも一部は、周方向において、2つのカムフォロアB1の間に位置している。言い換えると、バヨネット突起E1は、2つのカムフォロアB1の周方向における中間部を含んで構成されている。すなわち、バヨネット突起E1が、2つのカムフォロアB1の間に位置している。これによって、バヨネット突起E1をリブとして機能させることで第1回転枠210自身の強度を向上することができる。また、バヨネット突起E1に係合されるバヨネット溝e1を有する第1直進枠110の剛性を利用することによって、第1回転枠210が撓むことを抑制できる。
 また、本実施形態では、カムフォロアB1の少なくとも一部は、像面側において、カム溝と周方向で重ならないように、形成されている。カムフォロアB1の根元強度を、向上できる。
 また、本実施形態では、ガイド溝gは、カムフォロアB1の内側に形成されている。開口213の径方向外側にカムフォロアB1を、設けることで、肉厚が確保できる。これにより、開口213を挟んで、カムフォロアB1を構成できる。言い換えると、開口213をまたいで、カムフォロアB1と第1回転枠本体211とを結合できるので、第1回転枠本体211の強度を上げることができる。
 また、本実施形態では、軸心Pを中心とする周方向におけるカムフォロアB1の中心位置は、周方向における開口213の中心位置とは異なっている、すなわち、中心位置同士がずれている。言い換えると、カムフォロワB1は、開口213をまたいで、第1回転枠本体211と結合しているので、カムフォロアB1の根元の周方向幅を、両側均等ではなく、片側の幅を大きくできる。これによって、カムフォロアB1の根元強度を上げることができる。
 また、本実施形態では、カム溝b2、バヨネット突起E1および2つのカムフォロアB1は、軸心Pに沿った軸心方向(前後方向と一致)において、前から順に配置されている。ここで、バヨネット突起E1は、撮影可能区間で使用されるカム溝b2範囲、すなわち広角から望遠にかけてのどこかの区間で、使用されるカム溝b2範囲と対向して、配置されている。すなわち、バヨネット突起E1は、周方向で略同じ位置に、配置されている。このようにすれば、第1回転枠210の強度を、上げることができる。直進カムフォロアAB2からカム溝b2に被写体側からの外力が掛かると、カム溝b2の像面側端面は像面側に変形しようとする。しかし、カム溝b2の像面側にバヨネット突起E1があるので、その変形を抑止することができる。また、バヨネット突起E1は、リブ状のため、リブ効果として、第1回転枠210の強度を上げることができる。
 また、カム溝b2の少なくとも一部とバヨネット突起E1の少なくとも一部とが、周方向において、2つのカムフォロアB1の間に配置されている。更に、カム溝b2、バヨネット突起E1、および2つのカムフォロアB1は、軸心Pに沿った軸心方向(前後方向と一致)において、前から順に配置されている。このようにすれば、上記と同様に、第1回転枠210の強度を上げることができる。
 また、本実施形態では、カム溝b2を有する第1回転枠210と、その外側に配置される第1直進枠110とが、バヨネット結合された構成を、有している。そして、第2直進枠120の直進カムフォロワAB2が、第1回転枠210のカム溝b2に係合している。このため、例えば、第1レンズ群枠310及び/又は第2直進枠120に対して、被写体側から外力が入力された場合、この外力は、第1レンズ群枠310及び/又は第2直進枠120から、第1回転枠210へと伝達される。
 すると、この力は、第1回転枠210のカムフォロワB1から、固定枠100へと、直接的に伝達される(第1の伝達経路)。一方で、この力は、第1回転枠210のバヨネット突起E1から、第1直進枠110に伝達される。第1直進枠110は、撮像素子245側の端部において、第1回転枠210のカムフォロアB1に当接しているので、この力は、カムフォロワB1を介して、固定枠100へと、間接的にも伝達される(第2の伝達経路)。
 このように、外力が、第1レンズ群枠310及び/又は第2直進枠120に対して、入力されたとしても、この力を、2つの伝達経路(第1及び第2の伝達経路)によって、固定枠100に伝達することができる。すなわち、本構成は、第1及び第2の伝達経路のいずれか一方、例えば第2の伝達経路だけで、外力を固定枠に伝達する従来の構成と比較して、力を伝達する部材、例えばバヨネット突起E1又はカムフォロワB1に応力を集中させることなく、固定枠100に力を伝達することができる。
 (3)ここに開示されるレンズ鏡筒20は、次のように記載することもできる。レンズ鏡筒は、円筒状の固定枠と、円筒状の第1直進枠と、円筒状の回転枠と、円筒状の第2直進枠と、を備える。固定枠は、内周面に少なくとも1本の第1直進溝と、少なくとも1本の第1カム溝と、を有する。第1直進枠は、固定枠の径方向内側に配置され、かつ、外周面に第1直進溝に係合される少なくとも1つの第1直進突起と、内周面に少なくとも1本の第2直進溝と、を有する。回転枠は、第1直進枠の径方向内側に配置され、かつ、外周面に第1カム溝に係合される少なくとも1つのカムフォロアと、内周面から外周面に貫通した少なくとも1本の第2カム溝と、内周面に形成され前記第2カム溝と連なる少なくとも1つの連通溝と、を有する。第2直進枠は、回転枠の径方向内側に配置され、かつ、外周面に第2カム溝を介して第2直進溝に係合される少なくとも1つの第2直進突起を有する。連通溝は、回転枠の端面に開口する。カムフォロアは、端面に形成される連通溝の開口の径方向外側に配置される。
 以下では、上記の構成及び効果を具体的に説明する。
 レンズ鏡筒20は、円筒状の固定枠100と、円筒状の第1直進枠110と、円筒状の第1回転枠210(回転枠の一例)と、円筒状の第2直進枠120と、を備える。
 固定枠100は、内周面100Sに形成される直進溝a1(第1直進溝の一例)とカム溝b1(第1カム溝の一例)とを有する。
 第1直進枠110は、固定枠100の径方向内側に配置される。第1直進枠110は、外周面110Tに形成され、直進溝a1に係合される直進突起A1(第1直進突起の一例)と、内周面110Sに形成される直進溝a2(第2直進溝の一例)と、を有する。
 第1回転枠210は、第1直進枠110の径方向内側に配置される。第1回転枠210は、外周面210Tに形成され、カム溝b1に係合されるカムフォロアB1と、内周面210Sから外周面210Tに第1回転枠本体211を貫通するカム溝b2(第2カム溝の一例)と、内周面210Sに形成されカム溝b2と連なるガイド溝gと、を有する。
 第2直進枠120は、第1回転枠210の径方向内側に配置される。第2直進枠120は、外周面120Tに形成され、カム溝b2を介して直進溝a2に係合される直進カムフォロアAB2(第2直進突起の一例)を有する。
 このように、第1回転枠210の外側に第1直進枠110が配置されているので、第1回転枠210のカムフォロアB1を第1直進枠110の第1直進突起A1より光軸方向後ろ側に配置できる。そのため、第1直進枠110の外側に第1回転枠210が配置される場合に比べて、レンズ鏡筒20の光軸方向における全長を大きくすることなく、第1回転枠210のカムフォロアB1と係合する固定枠100の第1直進溝a1の光軸方向前側端部の壁を分厚くすることができる。従って、第1回転枠210の固定枠100に対する移動量を維持しつつ、すなわちズーム倍率を維持しつつ、レンズ鏡筒20をコンパクト化できるとともに、落下等の外力に対する強度を向上させることができる。
 また、第1回転枠210のギア部212を第1直進枠110の直進突起A1の後方に配置できるので、図1に示すとおり、筐体10から固定枠100のズームギア支持部102が突出することを抑制できる。従って、カメラのデザイン性も向上できる。
 さらに、ガイド溝gは、後端面210Rに形成される開口213を有している。カムフォロアB1は、第1回転枠210の軸心P(光軸AXと一致)を中心とする径方向において、開口213の外側に配置されている。
 このように、開口213の外側にカムフォロアB1が配置されるので、ガイド溝gが第1回転枠本体211を貫通することを回避できる。また、第1回転枠本体211の後端部のうちガイド溝gで切り欠かれる部分をカムフォロアB1によって補強できるので、第1回転枠210の強度を向上させることができる。
 (4)従来、第1枠と、第1枠の内側において回転可能に支持された第2枠と、を備えるレンズ鏡筒が知られている(例えば、特開2009-134160号公報を参照)。第1枠は、内周面に形成されるカム溝を有し、第2枠は、外周面に形成され、カム溝に係合されるカムフォロアと、第1枠の内周面に沿って移動するギヤ部と、を有する。第1枠の内周面は、ギヤ部と対向する第1領域と、ギヤ部と対向しない第2領域と、を含んでいる。第1領域は、カム溝を挟んで第2領域の反対側に形成されている。
 ここで、第1枠のカム溝は、第1枠の軸心に垂直な切断面において矩形状であるので、第1領域および第2領域それぞれの軸心からの距離は同等である。そのため、ギヤ部との干渉を考慮する必要がないにもかかわらず、第2領域を第1領域よりも内側に設けることができないので、第1枠の外形を周辺部材に合わせて設計できない。このように、矩形断面のカム溝が第1枠に形成される場合には、レンズ鏡筒の内部における設計自由度が低いという問題がある。
 ここに開示される技術は、上述のような状況に鑑みてなされたものであり、設計自由度を向上可能なレンズ鏡筒を提供することを目的とする。
 ここに開示されるレンズ鏡筒は、内周面に少なくとも1つのカム溝を有する円筒状の第1枠と、第1枠の径方向内側に配置され、かつ、外周面にカム溝に係合される少なくとも1つのカムフォロアを有する円筒状の第2枠と、を備える。カム溝は、カムフォロアの移動軌跡に沿って形成され、径方向において光軸からの距離が異なる少なくとも1つの第1カム面と少なくとも1つの第2カム面を有する。カムフォロアは、第1カム面と当接する少なくとも1つの第1側面と、第2カム面と当接する少なくとも1つの第2側面と、を有する。
 ここに開示される技術によれば、設計自由度を向上可能なレンズ鏡筒を提供することができる。
 以下では、上記の構成及び効果を具体的に説明する。
 レンズ鏡筒20は、カム溝b1を有する固定枠100(第1枠の一例)と、固定枠100の径方向内側に配置され、かつ、カム溝b1に係合されるカムフォロアB1を有する第1回転枠210(第2枠の一例)と、を備える。カム溝b1は、径方向において軸心Pからの距離が異なる第1カム面104と第2カム面105とを有する。カムフォロアB1は、第1カム面104と当接する第1側面214と、第2カム面105と当接する第2側面215と、を有する。
 このように、カム溝b1とカムフォロアB1とが互いに当接する部分の径方向における高さをずらすことによって、固定枠100の内周面100Sにおいて第1領域Saよりも径方向内側に第2領域Sbを形成することができる。そのため、第2領域Sbの外側を削って平面部Taを形成することで、固定枠100が周辺部材と干渉することを回避できる。また、第1領域Saが第2領域Sbよりも径方向外側に形成されているので、第1回転枠210のギア部212が内周面100Sに干渉することが回避できる。従って、径方向において固定枠100のスペースを効率的に利用できるので、レンズ鏡筒20の内部における設計自由度を向上させることができる。
 〈その他の実施形態〉
 (A)上記実施形態において、レンズ鏡筒20は、第1直進枠110と第2直進枠120と第1レンズ群枠310とによる3段沈胴式であることとしたが、これに限られるものではない。レンズ鏡筒20は、第1直進枠110と第2直進枠120とによる2段沈胴式であってもよい。この場合、レンズ鏡筒20は、第2回転枠220および第3直進枠130を備えていなくてもよい。さらに、レンズ鏡筒20は、4段以上の沈胴式であってもよい。
 (B)上記実施形態では、2つの枠のうち一方の枠にカム溝bが形成され、他方の枠にカム突起Bが形成されているが、これに限られるものではない。2つの枠のうち一方の枠にカム突起Bが形成され、他方の枠にカム溝bが形成されていてもよい。また、2つの枠のそれぞれにカム溝bとカム突起Bとが形成されていてもよい。
 (C)上記実施形態では、2つの枠のうち一方の枠に直進溝aが形成され、他方の枠に直進突起Aが形成されているが、これに限られるものではない。2つの枠のうち一方の枠に直進突起Aが形成され、他方の枠に直進溝aが形成されていてもよい。また、2つの枠のそれぞれに直進溝aと直進突起Aとが形成されていてもよい。
 (D)上記実施形態では、2つの枠のうち一方の枠にバヨネット溝eが形成され、他方の枠にバヨネット突起Eが形成されているが、これに限られるものではない。2つの枠のうち一方の枠にバヨネット突起Eが形成され、他方の枠にバヨネット溝eが形成されていてもよい。また、2つの枠のそれぞれにバヨネット溝eとバヨネット突起Eとが形成されていてもよい。
 (E)上記実施形態では、第3レンズ群枠330が沈胴状態において第2レンズ群枠320の側方に退避することとしたが、これに限られるものではない。第3レンズ群枠330は、沈胴状態において第2レンズ群枠320の後方に配置されてもよい。
 (F)上記実施形態において、カム溝b2及びバヨネット突起E1それぞれの一部が2つのカムフォロアB1の間に位置することとしたが、これに限られるものではない。カム溝b2及びバヨネット突起E1それぞれの全部が2つのカムフォロアB1の間に位置していてもよい。
 (G)上記実施形態において、カム溝b2及びバヨネット突起E1がそれぞれ3つずつ形成されることとしたが、これに限られるものではない。カム溝b2及びバヨネット突起E1は、それぞれ1つずつ形成されていればよい。
 (H)上記実施形態において、カムフォロアB1が3つ形成されることとしたが、これに限られるものではない。2つのカムフォロアB1が形成されていればよい。
 (I)上記実施形態において、3つのカムフォロアBそれぞれの内側に3つの開口213それぞれが形成されることとしたが、これに限られるものではない。3つのカムフォロアBのうち1つのカムフォロアBの内側に1つの開口213が形成されていれば所望の効果を奏することができる。
 (J)上記実施形態において、3つのカムフォロアBと3本のガイド溝gが形成されることとしたが、これに限られるものではない。カムフォロアBとガイド溝gは、それぞれ1つずつ形成されていればよい。
 (K)上記実施形態では、固定枠100が、第1及び第2カム面104,105を含むカム溝b1を有し、第1回転枠210が、第1及び第2側面214,215を含むカムフォロアB1を有することとしたが、これに限られるものではない。本発明は、カム溝を有する第1枠と、第1枠の内側にカム機構を介して第1枠に係合される第2枠と、を備えるレンズ鏡筒に好適に適用することができる。
 (L)上記実施形態では、3本のカム溝bのうち1本だけが第1及び第2カム面104,105を有し、3つのカムフォロアB1のうち1つだけが第1及び第2側面214,215を有することとしたが、これに限られるものではない。3本のカム溝bのうち2本以上が第1及び第2カム面104,105を有していてもよいし、3つのカムフォロアB1のうち2つ以上が第1及び第2側面214,215を有していてもよい。
 ここに開示された技術によれば、コンパクト化可能なレンズ鏡筒を提供することができるので、例えば、カメラ、カメラ付き携帯電話、カメラ付きポータブル端末等に適用できる。
 また、ここに開示された技術によれば、設計自由度を向上可能なレンズ鏡筒を提供することができるので、例えば、カメラ、カメラ付き携帯電話、カメラ付きポータブル端末等に適用できる。
1  …デジタルカメラ
10 …筐体
20 …レンズ鏡筒
21 …第1移動鏡筒部
22 …第2移動鏡筒部
23 …第3移動鏡筒部
24 …固定鏡筒部
100…固定枠
110…第1直進枠
120…第2直進枠
122…係止部
130…第3直進枠
133…係止凹部
210…第1回転枠
212…ギア部
220…第2回転枠
241…ズームモータ
242…ズームギア
310…第1レンズ群枠
320…第2レンズ群枠
330…第3レンズ群枠
335…シャッター枠
a1~a6     …直進溝
A1,A3~A6 …直進突起
b1~b5     …カム溝
B1,B3~B5 …カムフォロア
AB2       …直進カムフォロア
e1~e3     …バヨネット溝
E1~E3     …バヨネット突起

Claims (8)

  1.  内周面に少なくとも1本の第1直進溝と少なくとも2本の第1カム溝とを有する円筒状の固定枠と、
     前記固定枠の径方向内側に配置され、かつ、外周面に前記少なくとも1本の第1直進溝に係合される少なくとも1つの第1直進突起と、内周面に少なくとも1つの第2直進溝と、内周面に周方向に沿って形成される少なくとも1つのバヨネット溝と、を有する円筒状の第1直進枠と、
     前記第1直進枠の径方向内側に配置され、かつ、外周面に前記少なくとも2本の第1カム溝に係合される少なくとも2つのカムフォロアと、外周面に周方向に沿って形成され、前記少なくとも1つのバヨネット溝に係合される少なくとも1つのバヨネット突起と、内周面から外周面に貫通した少なくとも1つの第2カム溝と、を有する円筒状の回転枠と、
     前記回転枠の径方向内側に配置され、かつ、外周面に前記第2カム溝を介して前記第2直進溝に係合される少なくとも1つの第2直進突起を有する円筒状の第2直進枠と、
    を備え、
     前記バヨネット突起の少なくとも一部は、前記回転枠の軸心を中心とする周方向において、前記少なくとも2つのカムフォロアの間に位置する、
    レンズ鏡筒。
  2.  前記バヨネット突起の少なくとも一部は、前記回転枠の前記軸心に沿った軸心方向において、前記第2カム溝と前記回転枠の一端部との間に配置される、
    請求項1に記載のレンズ鏡筒。
  3.  撮像素子、
    をさらに備え、
     前記前記回転枠の一端部は、前記撮像素子側の端部である、
    請求項2に記載のレンズ鏡筒。
  4.  前記バヨネット突起の少なくとも一部は、前記回転枠の前記軸心に沿った軸心方向において、ズーム領域に対応する前記第2カム溝と、前記回転枠の一端部との間に、配置される、
    請求項2又は3に記載のレンズ鏡筒。
  5.  前記円筒状の回転枠は、内周面から外周面に貫通した少なくとも1本の第2カム溝と、内周面に形成され前記第2カム溝と連なる少なくとも1つのガイド溝と、をさらに有し、
    を備え、
     前記ガイド溝は、前記回転枠の端面に開口しており、
     前記カムフォロアは、前記端面に形成される前記ガイド溝の開口の径方向外側に配置される、
    請求項1から4のいずれかに記載のレンズ鏡筒。
  6.  前記カム溝は、前記カムフォロアの移動軌跡に沿って形成され、径方向において光軸からの距離が異なる少なくとも1つの第1カム面と少なくとも1つの第2カム面とを、有し、
     前記カムフォロアは、前記第1カム面と当接する少なくとも1つの第1側面と、前記第2カム面と当接する少なくとも1つの第2側面と、を有する、
    請求項1から5いずれかに記載のレンズ鏡筒。
  7.  レンズの光軸方向に沿って内周面に形成される第1直進溝と、内周面に形成される第1カム溝と、を有する円筒状の固定枠と、
     前記固定枠の径方向内側に配置され、周方向に沿って内周面に形成されるバヨネット溝と、光軸方向に沿って内周面に形成される第2直進溝と、を有する円筒状の第1直進枠と、
     前記第1直進枠の径方向内側に配置され、かつ、前記第1カム溝に係合される第1カムフォロアと、前記バヨネット溝に係合されるバヨネット突起と、内周面から外周面に貫通した第2カム溝と、を有する円筒状の回転枠と、
     前記回転枠の径方向内側に配置され、かつ、外周面に前記第2カム溝を介して前記直進溝に係合される第2直進突起と、を有する円筒状の第2直進枠と、
    を備える、
    レンズ鏡筒。
  8.  前記回転枠において、前記バヨネット突起は、前記貫通溝よりも像面側に配置され、前記第1カムフォロアは、前記バヨネット突起よりも像面側に配置される、
    請求項7に記載のレンズ鏡筒。
PCT/JP2013/000590 2012-02-02 2013-02-01 レンズ鏡筒 WO2013114903A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013556283A JP6057258B2 (ja) 2012-02-02 2013-02-01 レンズ鏡筒

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012-021383 2012-02-02
JP2012021381 2012-02-02
JP2012-021382 2012-02-02
JP2012-021381 2012-02-02
JP2012021382 2012-02-02
JP2012021383 2012-02-02

Publications (1)

Publication Number Publication Date
WO2013114903A1 true WO2013114903A1 (ja) 2013-08-08

Family

ID=48904947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000590 WO2013114903A1 (ja) 2012-02-02 2013-02-01 レンズ鏡筒

Country Status (2)

Country Link
JP (1) JP6057258B2 (ja)
WO (1) WO2013114903A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010395A (ja) * 1996-06-19 1998-01-16 Minolta Co Ltd レンズ鏡胴
JP2005234259A (ja) * 2004-02-20 2005-09-02 Chinontec Kk 光学鏡筒
JP2008139802A (ja) * 2006-12-05 2008-06-19 Olympus Imaging Corp レンズ鏡枠
JP2009042639A (ja) * 2007-08-10 2009-02-26 Canon Inc レンズ鏡筒および撮像装置
JP2009069218A (ja) * 2007-09-10 2009-04-02 Olympus Imaging Corp 焦点距離変更可能なレンズ鏡筒
JP2010049022A (ja) * 2008-08-21 2010-03-04 Ricoh Co Ltd レンズ駆動装置、レンズ鏡胴およびカメラ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010395A (ja) * 1996-06-19 1998-01-16 Minolta Co Ltd レンズ鏡胴
JP2005234259A (ja) * 2004-02-20 2005-09-02 Chinontec Kk 光学鏡筒
JP2008139802A (ja) * 2006-12-05 2008-06-19 Olympus Imaging Corp レンズ鏡枠
JP2009042639A (ja) * 2007-08-10 2009-02-26 Canon Inc レンズ鏡筒および撮像装置
JP2009069218A (ja) * 2007-09-10 2009-04-02 Olympus Imaging Corp 焦点距離変更可能なレンズ鏡筒
JP2010049022A (ja) * 2008-08-21 2010-03-04 Ricoh Co Ltd レンズ駆動装置、レンズ鏡胴およびカメラ

Also Published As

Publication number Publication date
JP6057258B2 (ja) 2017-01-11
JPWO2013114903A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP4996269B2 (ja) レンズ鏡筒用支持枠、レンズ保持構造、レンズ鏡筒およびカメラ
JP2019113878A (ja) レンズ鏡筒
JP2008185786A5 (ja)
JP2011154347A (ja) レンズ鏡筒
WO2013114907A1 (ja) レンズ鏡筒
WO2013114518A1 (ja) レンズ鏡筒
JP2015083999A (ja) レンズ鏡筒
US10877236B2 (en) Lens barrel and camera
WO2013114905A1 (ja) レンズ鏡筒
JP5245256B2 (ja) カメラ
JP6057258B2 (ja) レンズ鏡筒
JP6544598B2 (ja) レンズ鏡筒
JP4710340B2 (ja) レンズ鏡筒
JP6078926B2 (ja) レンズ鏡筒
JP5573026B2 (ja) レンズ鏡筒及びカメラ
JP6229163B2 (ja) レンズ鏡筒
WO2013114904A1 (ja) レンズ鏡筒
JP5958773B2 (ja) レンズ鏡筒
JP6108277B2 (ja) レンズ鏡筒
JP6124080B2 (ja) レンズ鏡筒
JP2018180357A (ja) レンズ鏡筒
EP3388879B1 (en) Lens barrel
JP2014145881A (ja) 監視カメラ
JP2015079026A (ja) レンズ鏡筒
WO2013027309A1 (ja) レンズ鏡筒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743154

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556283

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743154

Country of ref document: EP

Kind code of ref document: A1