WO2013114816A1 - 細胞計数方法、細胞計数装置、及び細胞計数プログラム - Google Patents

細胞計数方法、細胞計数装置、及び細胞計数プログラム Download PDF

Info

Publication number
WO2013114816A1
WO2013114816A1 PCT/JP2013/000290 JP2013000290W WO2013114816A1 WO 2013114816 A1 WO2013114816 A1 WO 2013114816A1 JP 2013000290 W JP2013000290 W JP 2013000290W WO 2013114816 A1 WO2013114816 A1 WO 2013114816A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
image
counting
mass
Prior art date
Application number
PCT/JP2013/000290
Other languages
English (en)
French (fr)
Inventor
正弘 國則
亮 末永
恭平 太田
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to KR1020147021240A priority Critical patent/KR101691563B1/ko
Priority to CN201380007099.1A priority patent/CN104080922B/zh
Priority to EP13743827.1A priority patent/EP2811033B1/en
Publication of WO2013114816A1 publication Critical patent/WO2013114816A1/ja
Priority to US14/340,125 priority patent/US9535001B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30242Counting objects in image

Definitions

  • the present invention relates to a method for counting cells, and in particular, when culturing floating cells, a cell counting method, a cell counting device, and a cell for accurately counting the number of cells in the culture without impairing the growth efficiency. It relates to the counting program.
  • the present invention has been considered in view of the above circumstances, acquires an image of a cultured cell during culture, and separates an image of a cell cluster and an image of a single cell from this image, and an image of the cell cluster and a single cell The image of each cell is processed separately, and the number of cells in the cell mass and the number of single cells are calculated, so that even if there is a cell mass, the number of cells can be accurately counted without breaking it.
  • An object of the present invention is to provide a cell counting method, a cell counting apparatus, and a cell counting program capable of performing the above.
  • the cell counting method of the present invention is a method for counting cultured cells, obtaining an image of cultured cells in culture, and from this image, an image of a cell mass and an image of a single cell. This is a method of separating and calculating the number of cells of the cell cluster and the number of single cells based on the image of the cell cluster and the image of the single cell.
  • the cell counting device of the present invention is a cell counting device for counting cultured cells, means for acquiring an image of cultured cells in culture, and from this image, an image of a cell mass and an image of a single cell And a means for calculating the number of cells in the cell cluster and the number of cells in the single cell based on each of the image of the cell cluster and the image of the single cell.
  • the cell counting program according to the present invention is a cell counting program for counting cultured cells.
  • the computer inputs an image of cultured cells in culture, and from this image, an image of a cell mass and an image of a single cell are obtained.
  • the images are separated, and the calculation of the number of cells in the cell cluster and the number of cells in the single cell based on the image of the cell cluster and the image of the single cell is executed.
  • the number of cells in culture can be accurately counted without impairing the growth efficiency.
  • the cell counting method of the present embodiment is a method for counting the number of cultured cells in a culture container, and acquires an image of a predetermined region in the culture container, and from this image, an image of a cell mass and an image of a single cell And the image of the cell cluster and the image of the single cell are separately processed to calculate the number of cells of the cell cluster and the number of cells of the single cell, respectively.
  • the following steps may be provided.
  • an image is acquired by photographing a predetermined region in a culture vessel. Specifically, for example, irradiating light from above a transparent culture vessel, and automatically photographing cultured cells with a camera via a microscope from below to obtain an image of a predetermined region in the culture vessel Can do.
  • this image may be referred to as an “observation image”.
  • FIG. 1 shows an observation image obtained by photographing floating cells in the culture vessel thus obtained. The figure shows that the cell mass 1 and the single cell 2 are present in the culture solution 3.
  • the number of cultured cells in the entire culture container can be calculated based on the ratio of the area in the entire culture container. .
  • a projected area image of a cell as shown in FIG. 2 is created, and the number of cells is calculated by dividing the projected area 11 of the cell by the average area per cell. It was calculated.
  • the cell mass 1 is three-dimensional, the number of cells obtained by such a method is smaller than the actual cell number for the portion corresponding to the cell mass 1.
  • the portion where the single cells 2 are connected in a plane is also included in the cell projection area 11, and as a result, more than the actual number of cells is counted. Therefore, such a conventional method cannot accurately count the number of cultured cells.
  • the cell mass 1 is deleted from the observation image to create an image of a single cell. Then, using this single cell image, a circular approximation process for approximating the single cells 2 in a circle and distinguishing them from each other is performed so that the single cells 2 can be counted individually. Thereby, in the image of a single cell, the single cell 22 approximated by a circle is shown. Then, using this single cell image, the number of single cells 2 is measured and the average area of single cells 2 is measured.
  • the size of the cultured cells during the culture may change depending on the culture time.
  • the figure shows the change in cell diameter when human lymphocyte cells are expanded.
  • the diameter of the cultured cells gradually increases at the beginning of the culture, but after a certain period of time, the diameter tends to decrease. Therefore, since the average area of single cells varies depending on the observation time, it is preferable to measure the average area of single cells at the timing of counting cultured cells as described above.
  • the type of cultured cells for example, certain types of tumor cells, the size during culture does not change much. In the case of such cultured cells, it is not necessary to measure the average area of single cells at the timing of counting the cultured cells.
  • the average area of single cells is used to calculate the number of cells of the cell mass described later.
  • the volume of single cells is set in advance. It is also preferable to use this for counting cultured cells.
  • volume of the cell mass 1 is calculated as a sphere using the cell projection area 21 obtained based on the image of the cell mass. Then, the spherical volume of the cell mass 1 calculated in this way is corrected using a correction coefficient. Specifically, the volume of the cell mass 1 closer to the actual value can be obtained by dividing the spherical volume by the correction coefficient.
  • the volume of the cell mass is corrected in this way.
  • the cell mass When the cell mass is small, it exists in a substantially spherical state, but as the cell mass becomes larger, the cell mass is crushed vertically and the longitudinal section is elliptical. This is because of the shape. That is, as the cell projection area increases, the cell mass becomes a more vertically collapsed shape, which is corrected by the correction coefficient. Since the correction coefficient may vary depending on the cell type and culture conditions, it is desirable to determine in advance according to these.
  • (D) Calculation of the number of cells in the cell cluster Next, the volume of the cell cluster 1 obtained by correction is divided by the volume of the single cell 2 to calculate the number of cells in the cell cluster 1.
  • the volume of the single cell 2 can be calculated based on the average area of the single cell 2.
  • (E) Calculation of cell number of cultured cells As described above, the number of single cells 2 and the number of cells 1 can be obtained, and by adding these, the number of cells in the region of the observation image Can be calculated. Then, the number of cultured cells can be calculated by multiplying the obtained cell number by the ratio of the volume of the culture solution to the region of the observation image.
  • FIG. 7 is a block diagram showing a configuration of a cell counting device according to an embodiment of the present invention
  • FIG. 8 is a flowchart showing a processing procedure by a cell counting program executed by the cell counting device.
  • the cell counting apparatus 100 of this embodiment includes an image input unit 101, an image storage unit 102, an image separation unit 103, a single cell measurement unit 104, a cell mass volume calculation unit 105, and a cell mass.
  • Cell number calculation means 106 and cell number output means 107 are provided.
  • the cell counting apparatus 100 can be configured by using various computers such as a smartphone, a tablet computer, a personal computer, a workstation, and a server, and each of the above-described configurations can be configured by a CPU and a memory in the computer. Moreover, it can also be comprised as a dedicated counting device provided with such each structure.
  • the image input means 101 inputs an image (observation image) obtained by automatically photographing cultured cells in culture with a camera, and stores them in the image storage means 102.
  • the image separation unit 103 separates the cell cluster and the single cell in the observation image, creates a cell cluster image and a single cell image, and stores them in the image storage unit 102, respectively.
  • the single cell measuring means 104 performs circular approximation of single cells using the single cell image, and measures the number of single cells.
  • the single cell measuring means 104 also measures the average area of single cells.
  • the cell mass volume calculating means 105 measures the projected area of the cell mass using the cell mass image.
  • the cell mass volume calculation unit 105 calculates the volume of the cell mass as a sphere based on the projected area of the cell mass.
  • the cell mass volume calculation means 105 calculates the corrected cell mass volume using the correction coefficient for the calculated spherical volume.
  • the cell mass cell number calculation means 106 divides the volume of the cell mass calculated by the cell mass cell number calculation means 105 by the volume of the single cell to calculate the cell number of the cell mass. At this time, the cell mass cell number calculation unit 106 calculates the volume of the single cell based on the average area of the single cell measured by the single cell measurement unit 104.
  • the cell number output means 107 is the number of cells in the area on the observation image, the number of single cells counted by the single cell measurement means 104, and the number of cells in the cell mass calculated by the cell mass cell number calculation means 106. Calculate the sum. Further, the cell number output means 107 can calculate the number of cells in the culture solution by multiplying the cell number in the region on the observation image by the ratio of the volume of the culture solution to the region on the observation image. Then, the cell number output means 107 displays the cell number in the region on the observation image and / or the cell number in the culture solution on a display device (not shown) such as a display connected to the cell counting device 100. Output.
  • FIG. 5 is a flowchart showing a processing procedure by a cell counting program executed by the cell counting apparatus 100 according to an embodiment of the present invention. That is, the cell counting program of the present embodiment causes the cell counting device 100 such as a computer to execute the following processing.
  • the image input means 101 in the cell counting apparatus 100 inputs an observation image taken from a camera and stores it in the image storage means 102 (step 10).
  • the image separating means 13 in the cell counting device 100 separates the image of the cell cluster 1 and the single cell 2 using the observation image, creates an image of the cell cluster and an image of the single cell, and images them. It memorize
  • the single cell measuring means 104 in the cell counting device 100 performs circular approximation of the single cells using the single cell image, and measures the number of single cells. Moreover, the average area of a single cell is measured (step 12). Further, the cell mass volume calculating means 105 in the cell counting device 100 measures the projected area of the cell mass using the image of the cell mass, and uses this projected area to calculate the volume when the cell mass is assumed to be spherical. Calculate (step 13). Further, the cell mass volume calculation means 105 corrects the calculated spherical volume, and calculates a more realistic cell mass volume (step 14).
  • the cell mass cell number calculating means 106 in the cell counting device 100 divides the volume of the cell mass by the volume of the single cell to calculate the number of cells of the cell mass in the region on the observation image (step 15). . As described above, since the number of cells in the cell mass and the number of single cells can be calculated more accurately, the number of cells in the cultured cells can be grasped more accurately.
  • the cell number output means 107 in the cell counting device 100 calculates the number of cells in the region on the observation image by adding up the number of cells in the cell cluster and the number of single cells. Moreover, the obtained cell number is converted into the cell number in the whole culture container. Then, the cell number output means 107 outputs the number of cells in the culture container to the display device (step 16).
  • the conventional technique has a problem that the number of cells cannot be accurately counted, particularly when a cell mass of a certain size or more is formed, and therefore can only be counted substantially after culturing. .
  • single cells can be counted more accurately than in the past. For this reason, it becomes possible to grasp
  • the cell growth history can be recorded, and the state of the cells in culture can be grasped.
  • the number of cells in culture can be grasped by the cell counting device of the present embodiment, variations due to visual observation can be eliminated, and passage timing can be determined more accurately.
  • Example 1 The cultured cells in the culture vessel were counted using the cell counting method, the cell counting apparatus, and the cell counting program of the above-described embodiment. Specifically, an LLDPE bag (thickness 100 ⁇ m, size 230 ⁇ 620 mm) was used as a culture container. As the medium, AlyS505N-7 (Cell Science Laboratory) was used, and 6.4 ⁇ 10 6 cells of human peripheral blood mononuclear cells were seeded as seeded cells. The number of cultured cells was counted 66 hours, 104 hours, 174 hours, 222 hours, and 234 hours after the start of culture. As a result, the cell numbers calculated in Example 1 were 1.60 ⁇ 10 8 cells, 4.07 ⁇ 10 8 cells, 8.41 ⁇ 10 8 cells, and 1.16 ⁇ , respectively, as shown in FIG. 10 9 cells, 1.19 ⁇ 10 9 cells.
  • Comparative Example 1 Using the same culture vessel and cultured cells as used in Example 1, the cultured cells were counted by a conventional method at the same timing as in Example 1. That is, a projected area image of a cell was obtained using an observation image of a cultured cell obtained by photographing a predetermined region in a culture container. Then, the projected area of the cells was measured, and the number of cells was calculated by dividing the obtained projected area by the average area per cell. As a result, the numbers of cells calculated in Comparative Example 1 were 1.12 ⁇ 10 8 cells, 3.79 ⁇ 10 8 cells, 4.34 ⁇ 10 8 cells, and 1.08 ⁇ , respectively, as shown in FIG. 10 9 cells, 1.11 ⁇ 10 9 cells.
  • the present invention is not limited to the above-described embodiments and examples, and it goes without saying that various modifications can be made within the scope of the present invention.
  • the number of single cells and the average area are measured after measuring the cell projection area of only the cell mass.
  • the order of these may be switched.
  • the correction coefficient can be changed as appropriate, for example, depending on the number of cells and the culture conditions.
  • the present invention can be suitably used in the fields of biopharmaceuticals, regenerative medicine, immunotherapy and the like that require culturing a large amount of cells.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Multimedia (AREA)
  • Data Mining & Analysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Medical Informatics (AREA)
  • Quality & Reliability (AREA)
  • Pathology (AREA)
  • Sustainable Development (AREA)
  • Signal Processing (AREA)
  • Dispersion Chemistry (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

【課題】細胞培養中に、細胞が密集して立体的な細胞塊を形成している場合でも、この細胞塊を崩すことなく、培養細胞数を正確に計数することを可能にする。 【解決手段】培養細胞の画像を取得し、この画像から、細胞塊の画像と単独細胞の画像を分離し、細胞塊の画像と単独細胞の画像のそれぞれに基づいて、細胞塊の細胞数と単独細胞の細胞数を算出する細胞計数方法とする。

Description

細胞計数方法、細胞計数装置、及び細胞計数プログラム
 本発明は、細胞を計数する方法に関し、特に浮遊細胞を培養する場合において、培養中の細胞数を、増殖効率を損ねることなく、正確に計数するための細胞計数方法、細胞計数装置、及び細胞計数プログラムに関する。
 近年、医薬品の生産や、遺伝子治療、再生医療、免疫療法等の分野において、細胞や組織、微生物などを人工的な環境下で効率良く大量に培養することが求められている。
 このような細胞の大量培養にあたり、浮遊細胞を培養する場合、培養中の細胞数を計数して、細胞数の経時変化や、増殖効率の変化を把握したいという要請がある。ところが、培養中の細胞数を正確に計数することには、従来様々な問題があった。
 すなわち、浮遊細胞の増殖では、細胞が立体的に集合して形成された細胞塊と、個別に分離している単独細胞とが存在する。
 従来は、これらの培養細胞を上方または下方から撮影し、得られた画像における培養細胞の投影面積に基づいて、細胞塊の投影面積を一個あたりの平均細胞面積により除算し、細胞数を計数することが行われていた。
 しかしながら、細胞塊は立体的であるため、このようにして得られた細胞数は、細胞塊の実際の細胞数よりも少なく計数されてしまう。また、単独細胞が平面的に密集して連なっている場合、単独細胞の投影面積を一個あたりの平均細胞面積により除算して得られた細胞数は、単独細胞の実際の細胞数よりも多く計数されてしまう。このため、培養細胞の投影面積にもとづき計数された細胞数は、正確な値ではないという問題があった。
 一方で、正確な細胞数を得るために、細胞塊を完全に崩して計数することも考えられる。
 しかしながら、一般的に細胞塊の崩し過ぎは、細胞の増幅効率の低下を招くというさらなる問題がある。このため、従来は培養途中に正確な計数を行うことができず、細胞回収時のみにしか正確な計数を行うことができなかった。
 ここで、培養細胞の細胞数を計数する従来の方法として、例えば特許文献1に記載の細胞数計測方法を挙げることができる。この方法では、培養容器内に存在する培養細胞の観察画像を取得し、取得された観察画像内において培養細胞の占有する面積の比率を占有面積率として算出し、算出された占有面積率と所定の関係式とから培養容器内に存在する培養細胞の細胞数を算出している。
特開2007-124913号公報
 しかしながら、この方法は、細胞数を占有面積率から算出する方法であるため、上述した通り、正確な計数を行うことはできない。一方、正確な計数を行うために、細胞塊を崩すと、増殖効率の低下を招いてしまう。
 本発明は、上記の事情にかんがみなされたものであり、培養中の培養細胞の画像を取得し、この画像から、細胞塊の画像と単独細胞の画像を分離し、細胞塊の画像と単独細胞の画像を別個に画像処理して、細胞塊の細胞数と単独細胞の細胞数をそれぞれ算出することで、細胞塊が存在していてもこれを崩すことなく、正確に細胞数を計数することが可能な細胞計数方法、細胞計数装置、及び細胞計数プログラムの提供を目的とする。
 上記目的を達成するため、本発明の細胞計数方法は、培養細胞を計数する方法であって、培養中の培養細胞の画像を取得し、この画像から、細胞塊の画像と単独細胞の画像を分離し、細胞塊の画像と単独細胞の画像のそれぞれに基づいて、細胞塊の細胞数と単独細胞の細胞数を算出する方法としてある。
 また、本発明の細胞計数装置は、培養細胞を計数するための細胞計数装置であって、培養中の培養細胞の画像を取得する手段と、この画像から、細胞塊の画像と単独細胞の画像を分離する手段と、細胞塊の画像と単独細胞の画像のそれぞれに基づいて、細胞塊の細胞数と単独細胞の細胞数を算出する手段とを備えた細胞計数装置としてある。
 また、本発明の細胞計数プログラムは、培養細胞を計数するための細胞計数プログラムであって、コンピュータに、培養中の培養細胞の画像を入力させ、この画像から、細胞塊の画像と単独細胞の画像を分離させ、細胞塊の画像と単独細胞の画像のそれぞれに基づいて、細胞塊の細胞数と単独細胞の細胞数を算出させることを実行させるものとしてある。
 本発明によれば、培養中の細胞数を、増殖効率を損ねることなく、正確に計数することが可能となる。
培養容器で培養中の浮遊細胞を、培養容器の底面方向から撮影して得られた画像を示す図である。 培養容器で培養中の浮遊細胞を、培養容器の底面方向から撮影して得られた画像における細胞の投影面積を示す図である。 培養容器で培養中の浮遊細胞を、培養容器の底面方向から撮影して得られた画像を用いて、単独細胞と細胞塊を分離し、細胞塊の投影面積を表した図である。 培養容器で培養中の浮遊細胞を、培養容器の底面方向から撮影して得られた画像を用いて、単独細胞と細胞塊を分離し、単独細胞の投影面積を表した図である。 培養中の浮遊細胞における単独細胞の直径の変化を示す図である。 培養中の浮遊細胞における細胞塊の体積の補正係数を示す図である。 本発明の細胞計数装置の構成を示すブロック図である。 本発明の細胞計数装置により実行される細胞計数プログラムによる処理手順を示すフローチャートである。 本発明の細胞計数方法と従来の細胞計数方法による培養容器で培養中の浮遊細胞の計数結果を比較したグラフを示す図である。
 以下、本発明の細胞計数方法、細胞計数装置、及び細胞計数プログラムの好ましい実施形態について、図面を参照しつつ説明する。
[細胞計数方法]
 まず、本実施形態の細胞計数方法について、図1~図6を参照して説明する。
 本実施形態の細胞計数方法は、培養容器中の培養細胞数を計数する方法であって、培養容器中の所定の領域の画像を取得し、この画像から、細胞塊の画像と単独細胞の画像を分離し、細胞塊の画像と単独細胞の画像を別個に画像処理して、細胞塊の細胞数と単独細胞の細胞数をそれぞれ算出するものであれば良く、実施形態及び実施例の具体的な構成により限定されるものではないが、例えば以下の工程を備えたものとすることができる。
(A)培養細胞の画像の取得
 まず、培養容器中の所定の領域を撮影して、画像を取得する。具体的には、例えば透明の培養容器の上方から光を照射し、下方から顕微鏡を介してカメラにより、自動的に培養細胞を撮影して、培養容器中の所定の領域の画像を取得することができる。以下、この画像を「観察画像」と称する場合がある。図1は、このようにして得られた培養容器中の浮遊細胞を撮影して得られた観察画像を示している。同図には、細胞塊1、単独細胞2が、培養液3に存在しているようすが示されている。
 なお、培養容器中の所定の領域のみを撮影して、この領域における細胞数を計数した後に、培養容器全体における当該領域の割合に基づいて、培養容器全体の培養細胞数を算出することができる。
 ここで、従来は、この観察画像を用いて、図2に示すような細胞の投影面積画像を作成し、細胞の投影面積11を、細胞一個当たりの平均面積で除算することで、細胞数を算出していた。しかしながら、このような方法で得られた細胞数は、細胞塊1が立体的であるため、細胞塊1に対応する部分については、実際の細胞数よりも少なくなっている。また、単独細胞2に対応する部分については、単独細胞2が平面的に連なっている部分も細胞投影面積11に含まれる結果、実際の細胞数よりも多く計数されてしまう。したがって、このような従来の方法では、培養細胞数を正確に計数することができなかった。
(B)細胞塊と単独細胞の画像分離
 次に、観察画像における細胞塊1と単独細胞2の画像を分離して、細胞塊の画像と、単独細胞の画像をそれぞれ作成する。
 具体的には、まず図3に示すように、細胞塊1のみの細胞投影面積21を表す細胞塊の画像を作成する。そして、この細胞塊の画像を用いて、細胞塊1の細胞投影面積21を計測する。
 また、図4に示すように、観察画像から細胞塊1を削除して、単独細胞の画像を作成する。そして、この単独細胞の画像を用いて、単独細胞2を個別にカウント可能なように、単独細胞2を円形で近似してそれぞれを区別する円形近似処理を行う。これにより、単独細胞の画像において、円形近似された単独細胞22が示される。そして、この単独細胞の画像を用いて、単独細胞2の個数を計測すると共に、単独細胞2の平均面積を計測する。
 ここで、図5に示すように、培養中の培養細胞の大きさは、培養時間によって変化する場合がある。同図は、ヒトのリンパ球細胞を増殖した場合の細胞直径の変化を示している。
 同図に示すように、培養の初期には、培養細胞の直径が次第に増加するが、一定時間経過後は、反対に直径が小さくなる傾向が見られる。したがって、単独細胞の平均面積は、観察時間により変化するため、上記の通り、培養細胞を計数するタイミングで、単独細胞の平均面積を計測することが好ましい。
 一方、例えばある種の腫瘍細胞のように、培養細胞の種類によっては、培養中の大きさがあまり変化しないものもある。このような培養細胞の場合には、培養細胞を計数するタイミングで単独細胞の平均面積を計測する必要はない。すなわち、単独細胞の平均面積は、後述する細胞塊の細胞数の算出に用いられるが、このような培養細胞の場合は、平均面積の計測に変えて、単独細胞の体積を予め設定しておき、これを培養細胞の計数に使用することも好ましい。
(C)細胞塊の体積の計算
 次に、細胞塊の画像にもとづき得られた細胞投影面積21を用いて、細胞塊1の体積を球形として算出する。そして、このようにして算出された細胞塊1の球形の体積を、補正係数を用いて補正する。具体的には、この球形の体積を補正係数で除算して、より実際の値に近い細胞塊1の体積を得ることができる。
 図6に、細胞塊の投影面積と補正係数の関係を表すグラフを示す。同図は、細胞塊の投影面積と実際に測定した細胞塊の体積の関係をプロットし、これに基づいて、細胞塊の投影面積と補正係数の関係を式に示したものである。すなわち、本実施形態においては、補正係数を決定する式は、次の通りである。
[補正係数]=1.1003×[細胞塊の投影面積(×10-5cm)]-0.1885
 ただし、細胞塊の投影面積が、1.0802×10-5cm未満の場合は、補正係数は1となる。
 細胞塊の体積をこのように補正するのは、細胞塊が小さいときは、ほぼ球形の状態で存在しているが、細胞塊が大きくなるにしたがって細胞塊は縦につぶれ、縦断面が楕円形の形状となるためである。すなわち、細胞投影面積が大きくなるにつれて、細胞塊は、より縦につぶれた形状となるため、これを補正係数によって、補正している。なお、補正係数は、細胞の種類や培養条件によって異なる場合があるため、これらに応じて予め決定することが望ましい。
(D)細胞塊の細胞数の算出
 次に、補正して得られた細胞塊1の体積を、単独細胞2の体積で除算して、細胞塊1の細胞数を算出する。単独細胞2の体積は、単独細胞2の平均面積にもとづき算出できる。
(E)培養細胞の細胞数の算出
 以上のようにして、単独細胞2の細胞数と、細胞塊1の細胞数を得ることができ、これらを加算することで、観察画像の領域における細胞数を算出することができる。そして、得られた細胞数に、観察画像の領域に対する培養液の体積の比率を乗算することで、培養細胞の細胞数を算出することができる。
[細胞計数装置、及び細胞計数プログラム]
 次に、本実施形態の細胞計数装置、及び細胞計数プログラムについて、図7~図8を参照して説明する。図7は、本発明の一実施形態に係る細胞計数装置の構成を示すブロック図であり、図8は、この細胞計数装置により実行される細胞計数プログラムによる処理手順を示すフローチャートである。
 まず、図7に示されるように、本実施形態の細胞計数装置100は、画像入力手段101、画像記憶手段102、画像分離手段103、単独細胞計測手段104、細胞塊体積算出手段105、細胞塊細胞数算出手段106、及び細胞数出力手段107を備えている。この細胞計数装置100は、スマートフォン、タブレットコンピュータ、パーソナルコンピュータ、ワークステーション、サーバーなどの各種コンピュータを用いて構成でき、上記各構成は、コンピュータにおけるCPU及びメモリー等から構成することができる。また、このような各構成を備えた専用の計数装置として構成することもできる。
 画像入力手段101は、培養中の培養細胞をカメラで自動撮影して得られた画像(観察画像)を入力して、画像記憶手段102に記憶させる。
 画像分離手段103は、観察画像における細胞塊と単独細胞を分離して、細胞塊画像と、単独細胞画像を作成し、それぞれ画像記憶手段102に記憶させる。
 単独細胞計測手段104は、単独細胞画像を用いて、単独細胞の円形近似を行い、単独細胞数を計測する。また、単独細胞計測手段104は、単独細胞の平均面積も計測する。
 細胞塊体積算出手段105は、細胞塊画像を用いて、細胞塊の投影面積を計測する。また、細胞塊体積算出手段105は、細胞塊の体積を、球形として、細胞塊の投影面積にもとづき算出する。さらに、細胞塊体積算出手段105は、算出された球形の体積に補正係数を用いて、補正後の細胞塊の体積を算出する。
 細胞塊細胞数算出手段106は、細胞塊細胞数算出手段105により算出された細胞塊の体積を、単独細胞の体積で除算して、細胞塊の細胞数を算出する。このとき、細胞塊細胞数算出手段106は、単独細胞の体積を、単独細胞計測手段104により計測された単独細胞の平均面積にもとづき算出する。
 細胞数出力手段107は、観察画像上の領域における細胞数として、単独細胞計測手段104により計数された単独細胞の細胞数と、細胞塊細胞数算出手段106により算出された細胞塊の細胞数の和を算出する。また、細胞数出力手段107は、この観察画像上の領域における細胞数に、観察画像上の領域に対する培養液の体積の比率を乗算し、培養液中の細胞数を算出することができる。
 そして、細胞数出力手段107は、観察画像上の領域における細胞数、及び/又は、培養液中の細胞数を、細胞計数装置100に接続されたディスプレイなどの表示装置(図示していない)に出力する。
 次に、細胞計数装置100における処理手順について、図8を参照して説明する。同図は、本発明の一実施形態に係る細胞計数装置100により実行される細胞計数プログラムによる処理手順を示すフローチャートである。すなわち、本実施形態の細胞計数プログラムは、コンピュータなどの細胞計数装置100に、以下の処理を実行させる。
 まず、細胞計数装置100における画像入力手段101は、カメラから撮影された観察画像を入力し、これを画像記憶手段102に記憶させる(ステップ10)。
 次に、細胞計数装置100における画像分離手段13は、観察画像を用いて、細胞塊1と単独細胞2の画像を分離し、細胞塊の画像と単独細胞の画像を作成して、これらを画像記憶手段102に記憶させる(ステップ11)。
 次に、細胞計数装置100における単独細胞計測手段104は、単独細胞の画像を用いて、単独細胞の円形近似を行い、単独細胞数を計測する。また、単独細胞の平均面積を計測する(ステップ12)。
 また、細胞計数装置100における細胞塊体積算出手段105は、細胞塊の画像を用いて、細胞塊の投影面積を計測し、この投影面積を用いて、細胞塊を球形と仮定した場合の体積を算出する(ステップ13)。
 さらに、この細胞塊体積算出手段105は、算出された球形の体積を補正して、より実際に近い細胞塊の体積を算出する(ステップ14)。
 次に、細胞計数装置100における細胞塊細胞数算出手段106は、細胞塊の体積を、単独細胞の体積で除算して、観察画像上の領域における細胞塊の細胞数を算出する(ステップ15)。
 以上によって、細胞塊の細胞数と、単独細胞の細胞数をそれぞれより正確に算出することができるため、培養細胞の細胞数を一層正確に把握することが可能となる。
 最後に、細胞計数装置100における細胞数出力手段107は、細胞塊の細胞数と単独細胞の細胞数を合計して、観察画像上の領域における細胞数を算出する。また、得られた細胞数を、培養容器全体における細胞数に換算する。そして、細胞数出力手段107は、培養容器中の細胞数等を表示装置に出力する(ステップ16)。
 以上説明したように、従来は、特に一定以上のサイズの細胞塊が形成されると、細胞数を正確に計数することができず、したがって、実質的に培養後にしか計数できないという問題があった。
 しかしながら、本実施形態によれば、細胞塊の細胞数を正確に計数することが可能となる。また、単独細胞についても従来に比較してより正確に計数することができる。このため、培養中の細胞数を一層正確に把握することが可能となる。
 また、その結果、細胞増殖履歴を記録することができ、培養中の細胞の状態を把握することが可能となる。
 さらに、本実施形態の細胞計数装置により培養中の細胞数を把握できるため、目視観察によるバラツキをなくすことができ、継代のタイミングの判断をより正確に行うことが可能となる。
(実施例1)
 上述した実施形態の細胞計数方法、細胞計数装置、及び細胞計数プログラムを用いて、培養容器中の培養細胞を計数した。
 具体的には、培養容器として、LLDPE製バック(厚み100μm,サイズ230×620mm)を用いた。培地には、AlyS505N-7(細胞科学研究所)を使用し、播種細胞としてヒト末梢血単核球細胞を6.4×10cells播種した。そして、培養開始から66時間後、104時間後、174時間後、222時間後、234時間後に、培養細胞数を計数した。
 その結果、実施例1により算出された細胞数は、図9に示すように、それぞれ1.60×10cells、4.07×10cells、8.41×10cells、1.16×10cells、1.19×10cellsであった。
(比較例1)
 実施例1で用いたものと同じ培養容器と培養細胞を使用して、実施例1と同じタイミングで、従来の方法により培養細胞を計数した。すなわち、培養容器中の所定の領域を撮影して得られた培養細胞の観察画像を用い、細胞の投影面積画像を取得した。そして、細胞の投影面積を計測し、得られた投影面積を細胞一個当たりの平均面積で除算して、細胞数を算出した。
 その結果、比較例1により算出された細胞数は、図9に示すように、それぞれ1.12×10cells、3.79×10cells、4.34×10cells、1.08×10cells、1.11×10cellsであった。
(参考例1)
 実施例1と同じ条件で細胞を培養し、培養細胞を計数する際に、細胞塊を崩し、全て単独細胞にしてから計数を行った。このとき、培養容器中の所定の領域を撮影して得られた観察画像を用いて、単独細胞を円形近似し、細胞数を計測した。
 なお、培養容器は計数タイミング毎に個別に準備し、それぞれ一回の計数のみに使用した。したがって、本参考例では、細胞塊を崩すことによる培養効率の低下の影響はなく、かつそれぞれの計数タイミングにおいて、比較的現実の細胞数に近い正確な計数結果が得られていると考えられる。
 その結果、参考例1により算出された細胞数は、図9に示すように、それぞれ1.45×10cells、4.34×10cells、8.48×10cells、1.25×10cells、1.24×10cellsであった。
 以上の通り、比較例1に示される従来の細胞計数方法では、計数値が安定せず、正確な計数が行えていないことがわかる。例えば、174時間後の計数値は、実施例1及び参考例1の結果よりもかなり低くなっている。これは培養細胞の細胞塊が大きくなっているためであると考えられる。
 これに対して、実施例1に示される本実施形態における細胞計数方法、細胞計数装置、及び細胞計数プログラムによれば、細胞塊を崩すことなく細胞数を計数しても、参考例1に示される細胞塊を崩して全て単独細胞にしてから計数を行う場合と、ほぼ同等の正確な計数を行えていることがわかる。
 本発明は、以上の実施形態や実施例に限定されるものではなく、本発明の範囲内において、種々の変更実施が可能であることは言うまでもない。
 例えば、上記実施形態では、細胞塊のみの細胞投影面積を計測してから、単独細胞数と平均面積を計測しているが、これらの順番は入れ替えてもよい。また、補正係数を細胞数や培養条件に応じて変更するなど適宜変更することが可能である。
 本発明は、大量の細胞を培養する必要のあるバイオ医薬や再生医療、免疫療法等の分野において、好適に利用することが可能である。

Claims (7)

  1.  培養細胞を計数する方法であって、
     前記培養細胞の画像を取得し、
     この画像から、細胞塊の画像と単独細胞の画像を分離し、
     前記細胞塊の画像と前記単独細胞の画像のそれぞれに基づいて、前記細胞塊の細胞数と前記単独細胞の細胞数を算出する
     ことを特徴とする細胞計数方法。
  2.  前記単独細胞の画像に基づいて、単独細胞の円形近似を行い、前記単独細胞の細胞数と平均面積を算出することを特徴とする請求項1記載の細胞計数方法。
  3.  前記細胞塊の投影面積に基づいて、前記細胞塊の体積を算出し、
     前記単独細胞の平均面積に基づいて、前記単独細胞の体積を算出し、
     前記細胞塊の体積を前記単独細胞の体積で除算することで、前記細胞塊の細胞数を算出する
     ことを特徴とする請求項2記載の細胞計数方法。
  4.  前記単独細胞の体積を予め設定しておき、
     前記細胞塊の投影面積に基づいて、前記細胞塊の体積を算出し、
     前記細胞塊の体積を予め設定された前記単独細胞の体積で除算することで、前記細胞塊の細胞数を算出する
     ことを特徴とする請求項1又は2記載の細胞計数方法。
  5.  前記細胞塊の体積は、細胞塊の体積を球状として計算した後、補正係数を乗算して算出することを特徴とする請求項3又は4記載の細胞計数方法。
  6.  培養細胞を計数するための細胞計数装置であって、
     前記培養細胞の画像を取得する手段と、
     この画像から、細胞塊の画像と単独細胞の画像を分離する手段と、
     前記細胞塊の画像と前記単独細胞の画像のそれぞれに基づいて、前記細胞塊の細胞数と前記単独細胞の細胞数を算出する手段と、を備えた
     ことを特徴とする細胞計数装置。
  7.  培養細胞を計数するための細胞計数プログラムであって、
     コンピュータに、
     前記培養細胞の画像を入力させ、
     この画像から、細胞塊の画像と単独細胞の画像を分離させ、
     前記細胞塊の画像と前記単独細胞の画像のそれぞれに基づいて、前記細胞塊の細胞数と前記単独細胞の細胞数を算出させる
     ことを実行させることを特徴とする細胞計数プログラム。
PCT/JP2013/000290 2012-01-31 2013-01-22 細胞計数方法、細胞計数装置、及び細胞計数プログラム WO2013114816A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147021240A KR101691563B1 (ko) 2012-01-31 2013-01-22 세포 계수 방법, 세포 계수 장치 및 세포 계수 프로그램
CN201380007099.1A CN104080922B (zh) 2012-01-31 2013-01-22 细胞计数方法、细胞计数装置和细胞计数程序
EP13743827.1A EP2811033B1 (en) 2012-01-31 2013-01-22 Cell counting method, cell counting device, and cell counting program
US14/340,125 US9535001B2 (en) 2012-01-31 2014-07-24 Cell counting method, cell counting device, and computer-readable medium storing cell counting program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-018403 2012-01-31
JP2012018403A JP5447546B2 (ja) 2012-01-31 2012-01-31 細胞計数方法、細胞計数装置、及び細胞計数プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/340,125 Continuation US9535001B2 (en) 2012-01-31 2014-07-24 Cell counting method, cell counting device, and computer-readable medium storing cell counting program

Publications (1)

Publication Number Publication Date
WO2013114816A1 true WO2013114816A1 (ja) 2013-08-08

Family

ID=48904868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000290 WO2013114816A1 (ja) 2012-01-31 2013-01-22 細胞計数方法、細胞計数装置、及び細胞計数プログラム

Country Status (6)

Country Link
US (1) US9535001B2 (ja)
EP (1) EP2811033B1 (ja)
JP (1) JP5447546B2 (ja)
KR (1) KR101691563B1 (ja)
CN (1) CN104080922B (ja)
WO (1) WO2013114816A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013061A (ja) * 2014-06-30 2016-01-28 澁谷工業株式会社 自動培養操作装置
JP2020182412A (ja) * 2019-05-08 2020-11-12 Stemcell株式会社 計数法学習装置、細胞計数装置、計数法学習方法及び細胞計数方法、並びに、計数法学習方法及び細胞計数方法のプログラム及びそれらのプログラムを記録した記録媒体
CN115326685A (zh) * 2022-10-13 2022-11-11 深圳安侣医学科技有限公司 基于显微放大图像的血液目标细胞体积获取方法及系统

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071007B2 (ja) * 2013-08-22 2017-02-01 富士フイルム株式会社 観察画像撮影評価装置および方法並びにプログラム
CN105334191B (zh) * 2014-07-25 2020-09-08 深圳迈瑞生物医疗电子股份有限公司 单个红细胞的血红蛋白浓度、体积修正方法及装置
US9747490B2 (en) * 2014-11-05 2017-08-29 Vanderbilt University Cell size imaging
DE112015006015B4 (de) 2015-01-29 2023-04-27 Evident Corporation Zellanalysevorrichtung und Verfahren
JP6512593B2 (ja) * 2015-02-23 2019-05-15 大日本印刷株式会社 培養液の培養状態解析システム及び培養状態解析方法、並びに、プログラム
JP6505830B2 (ja) * 2015-04-07 2019-04-24 オリンパス株式会社 細胞解析装置および細胞解析方法
CN104794710A (zh) * 2015-04-13 2015-07-22 上海泽煜实验设备有限公司 一种图像处理方法及装置
EP3312605A4 (en) * 2015-06-16 2018-05-30 Konica Minolta, Inc. Image processing device, image processing method and image processing program
CN106022303B (zh) * 2016-06-06 2019-07-19 南昌航空大学 基于无透镜全息成像的淡水藻类粗分类与计数方法
WO2018019383A1 (en) * 2016-07-28 2018-02-01 Curevac Ag Method for analyzing a cell pellet
CN110099995A (zh) * 2017-01-06 2019-08-06 奥林巴斯株式会社 细胞观察系统
CN107219195B (zh) * 2017-05-23 2019-07-23 山东中医药大学附属医院 一种血液白细胞检测装置和方法
CN108693097A (zh) * 2017-12-13 2018-10-23 青岛汉朗智能医疗科技有限公司 红细胞聚集检测方法及系统
TWI717910B (zh) * 2019-11-21 2021-02-01 長庚大學 計算細胞體積之方法
CN114813522B (zh) * 2022-06-29 2022-10-21 深圳安侣医学科技有限公司 基于显微放大数字图像的血液细胞分析方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218995A (ja) * 2000-11-22 2002-08-06 Masahito Taya 細胞増殖能評価方法、装置及びプログラム
JP2003021628A (ja) * 2001-07-06 2003-01-24 Japan Tissue Engineering:Kk 接着細胞選別装置、細胞増殖能評価装置、それらのプログラム及びそれらの方法
WO2006101056A1 (ja) * 2005-03-22 2006-09-28 Medinet Co., Ltd. 細胞培養評価システム、細胞培養評価方法および細胞培養評価プログラム
JP2007124913A (ja) 2005-11-01 2007-05-24 Olympus Corp 細胞数計測方法、細胞数推移計測方法、細胞数計測装置および細胞数推移計測装置
JP2008076088A (ja) * 2006-09-19 2008-04-03 Foundation For Biomedical Research & Innovation 細胞のモニター方法およびモニター装置
JP2008261631A (ja) * 2007-03-19 2008-10-30 Yamaguchi Univ 植物培養細胞塊の状態を判別する方法、そのための装置および植物培養細胞塊の状態を判別するためのプログラム
WO2010103748A1 (ja) * 2009-03-09 2010-09-16 東洋製罐株式会社 細胞培養方法、細胞培養装置、容器内の計数対象物の計数方法、及び計数用装置
WO2010143420A1 (ja) * 2009-06-12 2010-12-16 株式会社ニコン 細胞塊の状態判別手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法
WO2010146802A1 (ja) * 2009-06-19 2010-12-23 株式会社ニコン 細胞塊の状態判別手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法
WO2011013319A1 (ja) * 2009-07-31 2011-02-03 株式会社ニコン 細胞塊の成熟判定手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387707B1 (en) * 1996-04-25 2002-05-14 Bioarray Solutions Array Cytometry
US7374906B2 (en) * 2000-11-08 2008-05-20 Surface Logix, Inc. Biological assays using gradients formed in microfluidic systems
US6982171B2 (en) * 2002-03-12 2006-01-03 Surface Logix, Inc. Cell motility and chemotaxis test device and methods of using same
JP2006523458A (ja) * 2003-04-14 2006-10-19 サーフェイス ロジックス,インコーポレイティド 初代細胞から対象プロフィールを作成するための細胞動態のモニタリング/測定用の装置と測定法
JP4394376B2 (ja) * 2003-05-21 2010-01-06 正仁 田谷 細胞増殖能評価装置及びその方法
EP1865315B1 (en) * 2005-03-29 2019-03-13 Olympus Corporation Cell image analyzing method, cell image analyzing device
CN100495034C (zh) * 2006-04-18 2009-06-03 李奕 基于机器视觉的血细胞分析方法
US8077958B2 (en) * 2006-06-30 2011-12-13 University Of South Florida Computer-aided pathological diagnosis system
CN101668843A (zh) * 2007-04-27 2010-03-10 东洋制罐株式会社 细胞培养装置、细胞培养体系及细胞培养方法
PL2440649T4 (pl) * 2009-06-10 2022-03-28 Universität Zürich Urządzenie do produkcji skupisk komórek o określonych liczbach komórek i rozmiarach skupisk
CN102184420B (zh) * 2011-04-18 2013-04-10 四川大学 一种免疫组化图像处理方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002218995A (ja) * 2000-11-22 2002-08-06 Masahito Taya 細胞増殖能評価方法、装置及びプログラム
JP2003021628A (ja) * 2001-07-06 2003-01-24 Japan Tissue Engineering:Kk 接着細胞選別装置、細胞増殖能評価装置、それらのプログラム及びそれらの方法
WO2006101056A1 (ja) * 2005-03-22 2006-09-28 Medinet Co., Ltd. 細胞培養評価システム、細胞培養評価方法および細胞培養評価プログラム
JP2007124913A (ja) 2005-11-01 2007-05-24 Olympus Corp 細胞数計測方法、細胞数推移計測方法、細胞数計測装置および細胞数推移計測装置
JP2008076088A (ja) * 2006-09-19 2008-04-03 Foundation For Biomedical Research & Innovation 細胞のモニター方法およびモニター装置
JP2008261631A (ja) * 2007-03-19 2008-10-30 Yamaguchi Univ 植物培養細胞塊の状態を判別する方法、そのための装置および植物培養細胞塊の状態を判別するためのプログラム
WO2010103748A1 (ja) * 2009-03-09 2010-09-16 東洋製罐株式会社 細胞培養方法、細胞培養装置、容器内の計数対象物の計数方法、及び計数用装置
WO2010143420A1 (ja) * 2009-06-12 2010-12-16 株式会社ニコン 細胞塊の状態判別手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法
WO2010146802A1 (ja) * 2009-06-19 2010-12-23 株式会社ニコン 細胞塊の状態判別手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法
WO2011013319A1 (ja) * 2009-07-31 2011-02-03 株式会社ニコン 細胞塊の成熟判定手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2811033A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013061A (ja) * 2014-06-30 2016-01-28 澁谷工業株式会社 自動培養操作装置
JP2020182412A (ja) * 2019-05-08 2020-11-12 Stemcell株式会社 計数法学習装置、細胞計数装置、計数法学習方法及び細胞計数方法、並びに、計数法学習方法及び細胞計数方法のプログラム及びそれらのプログラムを記録した記録媒体
CN115326685A (zh) * 2022-10-13 2022-11-11 深圳安侣医学科技有限公司 基于显微放大图像的血液目标细胞体积获取方法及系统

Also Published As

Publication number Publication date
EP2811033B1 (en) 2019-10-09
EP2811033A1 (en) 2014-12-10
JP2013153714A (ja) 2013-08-15
EP2811033A4 (en) 2015-09-16
US9535001B2 (en) 2017-01-03
KR101691563B1 (ko) 2016-12-30
JP5447546B2 (ja) 2014-03-19
US20160025612A1 (en) 2016-01-28
CN104080922B (zh) 2017-07-21
KR20140107653A (ko) 2014-09-04
CN104080922A (zh) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5447546B2 (ja) 細胞計数方法、細胞計数装置、及び細胞計数プログラム
Yamada et al. Mitotic spindle assembly in land plants: molecules and mechanisms
CN110033486B (zh) 透明晶体生长过程边缘及体积实时监测方法及系统
WO2008029635A1 (fr) Processeur d'images de cellules et procédé de traitement d'images de cellules
JP6882713B2 (ja) 細胞品質評価システム、プログラム及び細胞品質評価方法
EP2202506A3 (en) Cell image display apparatus, cell image display method, and computer program product
JP2017077414A5 (ja)
US20160161464A1 (en) Stem cell differentiation determination device, method, and program
WO2015193951A1 (ja) 観察装置、観察方法、観察システム、そのプログラム、および細胞の製造方法
US20160160170A1 (en) Observation image capturing and evaluation device, method, and program
JP2018520710A5 (ja)
JP2013039113A (ja) 細胞品質管理方法及び細胞の生産方法
Rose Contribution of massive mitochondrial fusion and subsequent fission in the plant life cycle to the integrity of the mitochondrion and its genome
JP2007124913A (ja) 細胞数計測方法、細胞数推移計測方法、細胞数計測装置および細胞数推移計測装置
Kim et al. Immunological effects of aster yomena callus-derived extracellular vesicles as potential therapeutic agents against allergic asthma
Liu et al. Studies on pollen morphology, pollen vitality and preservation methods of Gleditsia sinensis Lam.(Fabaceae)
US20190078047A1 (en) Cell culture apparatus
Chang et al. Temporal distinction between male and female floral organ development in Nicotiana tabacum cv. Xanthi (Solanaceae)
CN102911852B (zh) 克隆菌株自动筛选装置及方法
JP2018108064A5 (ja)
CN107341365A (zh) 一种遗传病的筛查方法和试剂盒
Yu et al. Calibration and testing of discrete element modeling parameters for fresh Goji berries
WO2020173072A1 (zh) 一种基于测量质心无损检测鸡蛋新鲜度的方法
Rose et al. High temperature tolerance in a novel, high-quality phaseolus vulgaris breeding line is due to maintenance of pollen viability and successful germination on the stigma
TW201018882A (en) System and method for correcting an image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013743827

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147021240

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE