WO2013114619A1 - 荷電粒子線照射装置 - Google Patents

荷電粒子線照射装置 Download PDF

Info

Publication number
WO2013114619A1
WO2013114619A1 PCT/JP2012/052528 JP2012052528W WO2013114619A1 WO 2013114619 A1 WO2013114619 A1 WO 2013114619A1 JP 2012052528 W JP2012052528 W JP 2012052528W WO 2013114619 A1 WO2013114619 A1 WO 2013114619A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle beam
charged particle
gantry
accelerator
shielding member
Prior art date
Application number
PCT/JP2012/052528
Other languages
English (en)
French (fr)
Inventor
暁 矢島
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2013556170A priority Critical patent/JP5902205B2/ja
Priority to CN201280064231.8A priority patent/CN104039391A/zh
Priority to PCT/JP2012/052528 priority patent/WO2013114619A1/ja
Priority to TW101126635A priority patent/TW201332604A/zh
Publication of WO2013114619A1 publication Critical patent/WO2013114619A1/ja
Priority to US14/444,008 priority patent/US20140343346A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1078Fixed beam systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation

Definitions

  • the present invention relates to a charged particle beam irradiation apparatus that irradiates a charged particle beam toward an irradiated object.
  • Such a charged particle beam irradiation apparatus includes an accelerator that accelerates charged particles and emits a charged particle beam, an irradiation unit that irradiates a patient with a charged particle beam, a gantry in which the irradiation unit is disposed, and an accelerator. And a transport line for transporting the emitted charged particle beam to the irradiation unit.
  • the transport line of the charged particle beam irradiation apparatus has an energy selection system for adjusting the energy of the charged particle beam emitted from the accelerator.
  • the energy selection system is generally disposed in an irradiation chamber in which a gantry is disposed and a separate chamber (for example, an accelerator chamber in which an accelerator is disposed) across a wall.
  • an object of the present invention is to provide a charged particle beam irradiation apparatus capable of appropriately shielding radiation directed from an energy selection system toward an irradiation target while achieving downsizing.
  • the present invention relates to a charged particle beam irradiation apparatus that irradiates an object to be irradiated with a charged particle beam, an accelerator that accelerates the charged particles and emits the charged particle beam, and an irradiation unit that irradiates the object to be irradiated with the charged particle beam Is equipped with an gantry where the object is placed, an irradiation table where the irradiated object is placed, and an energy selection system for adjusting the energy of the charged particle beam emitted from the accelerator, and transporting the charged particle beam from the accelerator to the irradiation unit
  • the transportation line is formed in a straight line from the accelerator to the gantry, and at least a part of the energy selection system is disposed in the gantry, and the energy selection system disposed in the gantry and the irradiation table
  • a shielding member that shields radiation directed toward the irradiation table is provided between them.
  • the transport line since the transport line is formed in a straight line from the accelerator to the gantry, the transport line can be shortened compared to the case where the transport line is formed to be curved, The size of the apparatus can be reduced. Moreover, in the charged particle beam irradiation apparatus, by arranging at least a part of the energy selection system in the gantry, compared to the conventional case where the entire energy selection system is arranged in a separate chamber with a wall separated from the irradiation chamber, The transport line can be made shorter and further miniaturization of the device can be achieved.
  • the shielding member is provided between the energy selection system arranged in the gantry and the irradiation table, radiation from the energy selection system toward the irradiation table is appropriately blocked. be able to.
  • the shielding member may be fixed to the gantry. According to this configuration, when the gantry rotates, the shielding member also rotates integrally with the energy selection system. Therefore, even when the shielding member is provided separately from the gantry, the shielding member is directed toward the irradiation table. Radiation shielding can be achieved. Therefore, this configuration is advantageous for downsizing and cost reduction of the shielding member.
  • the said shielding member may be provided so that the irradiation stand side of an energy selection system may be covered. According to this configuration, since radiation emitted from the energy selection system can be shielded before spreading to the irradiation table side, it is possible to secure a region where radiation does not reach over a wide range even with a small shielding member. This contributes to improving the safety of patients, doctors, and maintenance workers.
  • the shielding member may be installed separately from the gantry. According to this configuration, it is not necessary for the gantry to support the shielding member as compared with the case where the shielding member is fixed to the gantry, which is advantageous in reducing the size and weight of the gantry.
  • the said shielding member may be provided so that the energy selection system side of an irradiation stand may be covered. According to this structure, the radiation which goes to an irradiation stand from an energy selection system can be shielded more appropriately and reliably.
  • the present invention it is possible to shield the radiation from the energy selection system toward the irradiated object while reducing the size.
  • FIG. 1 is a schematic plan view showing a charged particle beam irradiation apparatus according to a first embodiment. It is a schematic side view which shows the state which rotated the gantry of FIG. 1 90 degrees. It is a schematic plan view which shows the charged particle beam irradiation apparatus which concerns on 2nd Embodiment.
  • FIG. 4 is an end view taken along line IV-IV in FIG. 3. It is a schematic plan view which shows the charged particle beam irradiation apparatus which concerns on 3rd Embodiment. It is a schematic side view which shows the state which rotated the gantry of FIG. 5 90 degrees.
  • FIG. 1 is a schematic plan view showing a charged particle beam irradiation apparatus 1 according to the first embodiment.
  • the charged particle beam irradiation apparatus 1 is an apparatus used for radiotherapy that irradiates a tumor (irradiation object) of a patient A with a charged particle beam.
  • the charged particle beam irradiation apparatus 1 is accommodated in a building having a plurality of rooms.
  • the charged particle beam irradiation apparatus 1 includes an accelerator 2 that accelerates charged particles and emits a charged particle beam, a gantry 4 in which an irradiation unit 3 that irradiates a tumor of the patient A with a charged particle beam, and a patient A Are disposed, and a transport line 6 for transporting the charged particle beam emitted from the accelerator 2 to the irradiation unit 3.
  • the accelerator 2 emits a proton beam, a heavy particle (heavy ion) beam or the like as a charged particle beam.
  • a cyclotron, a synchrotron, a synchrocyclotron, or a linear accelerator can be used as the accelerator 2, for example, a cyclotron, a synchrotron, a synchrocyclotron, or a linear accelerator can be used.
  • the accelerator 2 is disposed at a position separating the building wall 7 from the gantry 4, and the wall 7 shields radiation emitted from the accelerator 2.
  • the room in which the gantry 4 is arranged is called an irradiation room
  • the room in which the accelerator 2 is arranged is called an accelerator room.
  • the gantry 4 is configured to be able to rotate 360 degrees about the central axis CL, and is provided so as to surround the treatment table 5 around the central axis CL.
  • An irradiation unit 3 is attached inside the gantry 4 so as to irradiate a charged particle beam toward the treatment table 5.
  • the irradiation unit 3 rotates integrally with the gantry 4 so that the irradiation angle with respect to the patient A on the treatment table 5 can be freely changed.
  • the treatment table 5 on which the patient A is placed is movably supported by the robot arm 5a.
  • the robot arm 5 a moves the treatment table 5 in the horizontal direction and the vertical direction during treatment, and places the treatment table 5 in the gantry 4.
  • the base portion of the robot arm 5a is installed outside the gantry 4 and is fixed to the floor of the building.
  • the transport line 6 is formed so as to connect the accelerator 2 and the irradiation unit 3.
  • the transport line 6 is formed in a straight line from the accelerator 2 to the gantry 4 and is connected to the irradiation unit 3 through the inside of the gantry 4.
  • the transport line 6 is provided through a wall 7 that separates the accelerator chamber and the irradiation chamber, and extends linearly between the accelerator 2 and the gantry 4.
  • the transport line 6 includes a vacuum duct 8 that serves as a path for charged particle beams.
  • Two accelerator-side converging magnets 9 for converging the beam diameter of the charged particle beam emitted from the accelerator 2 are arranged upstream of the vacuum duct 8 (accelerator 2 side).
  • a degrader 10 for attenuating the energy of the charged particle beam is disposed downstream of the accelerator-side focusing magnet 9 (on the irradiation unit 3 side).
  • the accelerator-side focusing magnet 9 and the degrader 10 are arranged in the same accelerator chamber as the accelerator 2.
  • the transportation line 6 has an energy selection system [ESS (Energy selection system)] 11 having the degrader 10 as a constituent element.
  • the energy selection system 11 is for adjusting a charged energy beam emitted from the accelerator 2 to a desired energy according to the treatment plan by attenuating the charged particle beam having a constant energy.
  • the energy selection system 11 selects the energy range of the charged particle beam transported by the transport line 6 according to the treatment plan.
  • the energy selection system 11 includes a gantry-side converging magnet 12, a first deflection magnet 13, a slit 14, and a second deflection magnet 15 in addition to the degrader 10.
  • the energy selection system 11 is all disposed in the gantry 4 except for the degrader 10.
  • the gantry-side converging magnets 12 are converging magnets arranged in the irradiation chamber, and a total of seven gantry-side converging magnets 12 are provided. Two of the seven gantry side converging magnets 12 are arranged side by side downstream of the degrader 10, and the first deflection magnet 13 is arranged further downstream of the two gantry side converging magnets 12. Yes. The remaining gantry-side converging magnets 12 are arranged side by side on the downstream side of the first deflection magnet 13.
  • the first deflection magnet 13 is an electromagnet for deflecting the traveling direction of the charged particle beam.
  • the first deflecting magnet 13 deflects the charged particle beam, which has traveled linearly along the central axis CL, so as to be inclined to the outside of the gantry 4.
  • the slits 14 are arranged on the downstream side of the five gantry side converging magnets 12 arranged side by side.
  • the slit 14 selects the energy of the charged particle beam by shielding a part of the charged particle beam that passes therethrough.
  • a second deflection magnet 15 is disposed on the downstream side of the slit 14. The second deflection magnet 15 deflects the charged particle beam that has traveled along the outside of the gantry 4 in a direction approaching the central axis CL.
  • a scanning magnet 16 is disposed downstream of the second deflection magnet 15.
  • the scanning magnet 16 performs scanning control of the charged particle beam according to the treatment plan.
  • a third deflection magnet 17 is disposed on the downstream side of the scanning magnet 16. The third deflection magnet 17 deflects the charged particle beam toward the irradiation unit 3.
  • These scanning magnet 16 and third deflection magnet 17 are also members constituting the transport line 6.
  • FIG. 2 is a schematic side view showing a state in which the gantry 4 is rotated by 90 °.
  • the gantry 4 is rotated so that the irradiation unit 3 comes above the patient A.
  • the charged particle beam irradiation apparatus 1 includes an L-shaped shielding member 18 that shields radiation toward the patient A (treatment table 5).
  • the L-shaped shielding member 18 is fixed to the gantry 4 and rotates integrally with the gantry 4. For this reason, the positional relationship between the energy selection system 11 and the shielding member 18 in the gantry 4 is not changed by the rotation of the gantry 4.
  • the L-shaped shielding member 18 has a sufficient width for shielding the radiation emitted from the energy selection system 11.
  • the shielding member 18 is made of, for example, lead, iron, or tungsten.
  • the transport line 6 is formed in a straight line from the accelerator 2 to the gantry 4, the transport line 6 is formed to be curved. Compared to the case, the transport line 6 can be shortened, and the apparatus can be miniaturized.
  • a part of the energy selection system 11 is arranged in the gantry 4, so that the transport line 6 can be made more than in the conventional case where the entire energy selection system 11 is arranged in the accelerator chamber. It can be shortened, and further downsizing of the apparatus can be realized.
  • the shielding member 18 is provided between the energy selection system 11 disposed in the gantry 4 and the treatment table 5. The radiation toward the patient A can be appropriately shielded.
  • the shielding member 18 since the shielding member 18 also rotates integrally with the energy selection system 11 when the gantry 4 rotates, compared with the case where the shielding member 18 is provided separately from the gantry 4. Thus, even the small shielding member 18 can achieve shielding of radiation toward the treatment table 5. Therefore, according to the charged particle beam irradiation apparatus 1, the shielding member 18 can be reduced in size and cost.
  • FIG. 3 is a schematic plan view showing the charged particle beam irradiation apparatus 20 according to the second embodiment.
  • FIG. 4 is an end view taken along line IV-IV in FIG.
  • the charged particle beam irradiation apparatus 20 according to the second embodiment is different in the shape and position of the shielding member from the first embodiment.
  • the charged particle beam irradiation apparatus 20 includes a bowl-shaped shielding member 21 that extends along the transport line 6 in the gantry 4.
  • the bowl-shaped shielding member 21 is formed to be entirely curved along the transport line 6 in the gantry 4. Note that the bowl-shaped shielding member 21 may be formed not only on the entire transportation line 6 but along only the portion of the energy selection system 11.
  • the bowl-shaped shielding member 21 is provided so as to cover the treatment table 5 side of the energy selection system 11 in the gantry 4.
  • the shielding member 21 is a pair of bottom parts 21a located on the treatment table 5 side when viewed from the energy selection system 11 (convergence magnet 12) and a pair of positions located so as to sandwich the energy selection system 11 (convergence magnet 12).
  • the side wall portions 21b and 21c are configured in a bowl shape.
  • 12a shown in FIG. 4 is a magnetic pole
  • 12b is a coil.
  • the shielding member 21 is small. However, it is possible to secure an area where radiation does not reach over a wide range. Therefore, according to the charged particle beam irradiation apparatus 20, the safety of patients, doctors, and maintenance workers can be improved.
  • FIG. 5 is a schematic plan view showing a charged particle beam irradiation apparatus 30 according to the third embodiment.
  • FIG. 6 is a schematic side view showing a state where the gantry 4 of FIG. 5 is rotated by 90 °.
  • the charged particle beam irradiation apparatus 30 according to the third embodiment is different from the first embodiment in the shape and position of the shielding member and the support structure of the shielding member. Yes.
  • the charged particle beam irradiation apparatus 30 includes a shielding member 31 installed separately from the gantry 4.
  • the shielding member 31 is separated from the gantry 4 that can rotate 360 degrees, and the position does not change due to the rotation of the gantry 4.
  • the shielding member 31 is fixed to the building that houses the charged particle beam irradiation device 30.
  • the shielding member 31 is connected to the building via a connecting member (not shown) extending from the front surface of the charged particle beam irradiation device 30 along the central axis CL.
  • the shielding member 31 is formed so as to cover the energy selection system 11 side of the treatment table 5.
  • the shielding member 31 is formed in a box shape that opens toward the front side of the gantry 4 (the treatment table 5 side), and the inside thereof is a space for the treatment table 5 to move.
  • the shielding member 31 is configured in a box shape by the side wall 31a on the back side as viewed from the front of the gantry 4, the left and right side walls 31b and 31c of the treatment table 5, the ceiling 31d, and the floor surface 31e.
  • the shielding member 31 is formed so as to reliably shield radiation toward the patient A on the treatment table 5 while ensuring a sufficient space for the treatment table 5 to move.
  • the gantry 4 does not need to support the shielding member 31 as compared with the case where the shielding member is fixed to the gantry 4. This is advantageous in reducing the size and weight. Moreover, in the charged particle beam irradiation apparatus 30, since the shielding member 31 is provided so as to cover the energy selection system 11 side of the treatment table 5, more radiation directed toward the patient A on the treatment table 5 from the energy selection system 11 is obtained. It can be reliably shielded.
  • the present invention is not limited to the embodiment described above.
  • the position and shape of the shielding member are not limited to those described above, and any member that can shield radiation toward the patient may be used.
  • the shielding member when the shielding member is fixed to the gantry 4, the shielding member may function as a frame of the gantry 4. That is, the shielding member may also be used as the gantry 4 frame. Further, the shielding member is not necessarily limited to a rigid member, and may be a sheet-like member or may be composed of a plurality of sheet-like members.
  • the present invention can be effectively applied regardless of whether the charged particle beam irradiation method is a wobbler method or a scanning method.
  • the gantry 4 is not limited to one that can rotate 360 degrees around the central axis CL, and may be configured to be able to swing at less than 360 degrees (for example, 200 degrees).
  • the floor of the building can be formed in a space outside the moving range of the gantry 4 around the central axis CL.
  • the shielding member 31 according to the third embodiment may be configured to be directly provided on the floor of the building around the central axis CL.
  • the base portion of the robot arm 5a can be provided on the floor portion.
  • the floor surface 31e can be dispensed with.
  • the present invention can be used in a charged particle beam irradiation apparatus that irradiates an irradiated object with a charged particle beam.

Abstract

 本発明は、荷電粒子線を被照射体へ照射する荷電粒子線照射装置1であって、荷電粒子を加速して荷電粒子線を出射する加速器2と、荷電粒子線を被照射体に照射する照射部が配置されたガントリ4と、被照射体が配置される治療台5と、加速器2から出射された荷電粒子線のエネルギーを調整するためのエネルギー選択システム11を有し、加速器2から照射部3へ荷電粒子線を輸送する輸送ライン6と、を備え、輸送ライン6は、加速器2からガントリ4にかけて直線状に形成されると共に、エネルギー選択システム11の少なくとも一部がガントリ4に配置され、ガントリ4に配置されたエネルギー選択システム11と治療台5との間には、治療台5へ向かう放射線を遮蔽する遮蔽部材18が設けられている。

Description

荷電粒子線照射装置
 本発明は、被照射体に向けて荷電粒子線を照射する荷電粒子線照射装置に関する。
 従来、がんに対する放射線治療等に用いられる荷電粒子線照射装置として、例えば国際公開第2011/036254号パンフレットに記載のものが知られている。このような荷電粒子線照射装置は、荷電粒子を加速して荷電粒子線を出射する加速器と、荷電粒子線を患者に対して照射する照射部と、照射部が配置されたガントリと、加速器から出射された荷電粒子線を照射部へ輸送する輸送ラインと、を備えている。
 また、荷電粒子線照射装置の輸送ラインは、加速器から出射される荷電粒子線のエネルギーを調整するためのエネルギー選択システムを有している。エネルギー選択システムは、放射線の悪影響を避けるために、ガントリが配置される照射室と壁を挟んだ別室(例えば、加速器が配置された加速器室)に配置されることが一般的である。
国際公開第2011/036254号パンフレット
 ところで、上述した荷電粒子線照射装置においては、コスト削減や敷地面積縮小の観点から小型化が強く望まれている。一方で、エネルギー選択システム等から生じる放射線が患者に悪影響を与えることを避けるため、適切な対策を行う必要がある。
 そこで、本発明は、小型化を図りつつ、エネルギー選択システムから被照射体へ向かう放射線を適切に遮蔽することができる荷電粒子線照射装置を提供することを目的とする。
 本発明は、荷電粒子線を被照射体へ照射する荷電粒子線照射装置であって、荷電粒子を加速して荷電粒子線を出射する加速器と、荷電粒子線を被照射体に照射する照射部が配置されたガントリと、被照射体が配置される照射台と、加速器から出射された荷電粒子線のエネルギーを調整するためのエネルギー選択システムを有し、加速器から照射部へ荷電粒子線を輸送する輸送ラインと、を備え、輸送ラインは、加速器からガントリにかけて直線状に形成されると共に、エネルギー選択システムの少なくとも一部がガントリに配置され、ガントリに配置されたエネルギー選択システムと照射台との間には、照射台へ向かう放射線を遮蔽する遮蔽部材が設けられていることを特徴とする。
 上記荷電粒子線照射装置によれば、加速器からガントリにかけて輸送ラインが直線状に形成されているので、輸送ラインが湾曲するように形成される場合と比べて、輸送ラインを短くすることができ、装置の小型化を図ることができる。しかも、上記荷電粒子線照射装置では、エネルギー選択システムの少なくとも一部をガントリに配置することで、エネルギー選択システムの全体が照射室と壁を隔てた別室に配置される従来の場合と比べて、輸送ラインをより短くすることができ、装置の更なる小型化を達成することができる。更に、上記荷電粒子線照射装置によれば、ガントリに配置されたエネルギー選択システムと照射台との間に遮蔽部材が設けられているので、エネルギー選択システムから照射台に向かう放射線を適切に遮蔽することができる。
 上記遮蔽部材は、ガントリに対して固定されていても良い。
 この構成によれば、ガントリが回転する際にエネルギー選択システムと一体となって遮蔽部材も回転するので、ガントリとは別体で遮蔽部材を設ける場合と比べて小型の遮蔽部材でも照射台に向かう放射線の遮蔽を達成することができる。従って、この構成によれば、遮蔽部材の小型化及びコスト低減に有利である。
 上記遮蔽部材は、エネルギー選択システムの照射台側を覆うように設けられていても良い。
 この構成によれば、エネルギー選択システムから出る放射線が照射台側へ拡がる前に遮蔽することができるので、小型の遮蔽部材であっても広範囲にわたって放射線の届かない領域を確保することができる。このことは、患者や医者、及びメンテナンス作業者の安全性の向上に寄与する。
 或いは、上記遮蔽部材は、ガントリとは別体で設置されていても良い。
 この構成によれば、遮蔽部材がガントリに固定される場合と比べて、ガントリが遮蔽部材を支持する必要がないので、ガントリの小型化及び軽量化に有利である。
 上記遮蔽部材は、照射台のエネルギー選択システム側を覆うように設けられていても良い。
 この構成によれば、エネルギー選択システムから照射台に向かう放射線を適切により確実に遮蔽することができる。
 本発明によれば、小型化を図りつつ、エネルギー選択システムから被照射体へ向かう放射線を遮蔽することができる。
第1の実施形態に係る荷電粒子線照射装置を示す概略平面図である。 図1のガントリを90°回転した状態を示す概略側面図である。 第2の実施形態に係る荷電粒子線照射装置を示す概略平面図である。 図3のIV-IV線に沿った端面図である。 第3の実施形態に係る荷電粒子線照射装置を示す概略平面図である。 図5のガントリを90°回転した状態を示す概略側面図である。
 以下、本発明に係る荷電粒子線照射装置について、図面を参照して詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
[第1の実施形態]
 図1は、第1の実施形態に係る荷電粒子線照射装置1を示す概略平面図である。図1に示されるように、荷電粒子線照射装置1は、患者Aの腫瘍(被照射体)に対して荷電粒子線を照射する放射線治療に利用される装置である。荷電粒子線照射装置1は、複数の部屋を有する建屋内に収容されている。
 荷電粒子線照射装置1は、荷電粒子を加速して荷電粒子線を出射する加速器2と、荷電粒子線を患者Aの腫瘍に向けて照射する照射部3が配置されたガントリ4と、患者Aが配置される治療台(照射台)5と、加速器2から出射された荷電粒子線を照射部3へ輸送する輸送ライン6と、を備えている。
 加速器2は、荷電粒子線として陽子線、重粒子(重イオン)線等を出射する。加速器2としては、例えばサイクロトロン、シンクロトロン、シンクロサイクロトロン、線形加速器を用いることができる。加速器2は、ガントリ4に対して建屋の壁7を隔てた位置に配置されており、壁7は加速器2から出る放射線を遮蔽している。以下の説明において、ガントリ4が配置された部屋を照射室、加速器2が配置された部屋を加速器室と呼ぶ。
 ガントリ4は、中心軸線CLを中心として360度回転可能に構成されており、中心軸線CL周りで治療台5を囲むように設けられている。ガントリ4の内側には、治療台5に向けて荷電粒子線を照射するように照射部3が取り付けられている。照射部3は、ガントリ4と一体となって回転することで、治療台5上の患者Aに対する照射角度を自在に変更することができる。
 患者Aが配置される治療台5は、ロボットアーム5aによって移動可能に支持されている。ロボットアーム5aは、治療時に治療台5を水平方向及び鉛直方向に移動させ、治療台5をガントリ4内に配置する。ロボットアーム5aの根本部分は、ガントリ4の外側に設置されており、建屋の床面に対して固定されている。
 輸送ライン6は、加速器2と照射部3とを繋ぐように形成されている。輸送ライン6は、加速器2からガントリ4にかけて直線状に形成され、ガントリ4の内部を通って照射部3に接続されている。輸送ライン6は、加速器室と照射室とを隔てる壁7を貫いて設けられ、加速器2とガントリ4との間で直線状に延在している。
 輸送ライン6は、荷電粒子線の通り道となる真空ダクト8を備えている。真空ダクト8の上流側(加速器2側)には、加速器2から出射された荷電粒子線のビーム径を収束させる加速器側収束磁石9が二つ配置されている。加速器側収束磁石9の下流側(照射部3側)には、荷電粒子線のエネルギーを減衰させるためのデグレーダ10が配置されている。加速器側収束磁石9及びデグレーダ10は、加速器2と同じ加速器室内に配置されている。
 輸送ライン6は、デグレーダ10を構成要素とするエネルギー選択システム[ESS(Energy selection system)]11を有している。エネルギー選択システム11は、加速器2から出射される一定エネルギーの荷電粒子線を減衰させることで、治療計画に応じた所望のエネルギーとなるように調整するためのものである。エネルギー選択システム11は、治療計画に応じて輸送ライン6の輸送する荷電粒子線のエネルギー範囲を選択する。
 エネルギー選択システム11には、デグレーダ10の他、ガントリ側収束磁石12、第一偏向磁石13、スリット14、第二偏向磁石15が含まれる。エネルギー選択システム11は、デグレーダ10を除いて、全てガントリ4内に配置されている。
 ガントリ側収束磁石12は、照射室内に配置された収束磁石であり、合計七つ設けられている。七つのガントリ側収束磁石12のうちの二つは、デグレーダ10の一つ下流側に並んで配置されており、二つのガントリ側収束磁石12の更に下流側に第一偏向磁石13が配置されている。残りのガントリ側収束磁石12は、第一偏向磁石13の下流側に五つ並んで配置されている。
 第一偏向磁石13は、荷電粒子線の進行方向を偏向するための電磁石である。第一偏向磁石13は、中心軸線CLに沿って直線状に進んで来た荷電粒子線をガントリ4の外側へ傾けるように偏向させる。
 スリット14は、五つ並んだガントリ側収束磁石12の下流側に配置されている。スリット14は、通過する荷電粒子線の一部を遮蔽することで、荷電粒子線のエネルギーを選択する。スリット14の下流側には、第二偏向磁石15が配置されている。第二偏向磁石15は、ガントリ4の外側に沿って進んで来た荷電粒子線を中心軸線CLに近づく方向へと偏向させる。
 第二偏向磁石15の下流側には、スキャニングマグネット16が配置されている。スキャニングマグネット16は、治療計画に応じて荷電粒子線の走査制御を行う。スキャニングマグネット16の下流側には、第三偏向磁石17が配置されている。第三偏向磁石17は、荷電粒子線を照射部3に向かって偏向させる。これらのスキャニングマグネット16及び第三偏向磁石17も輸送ライン6を構成する部材である。
 図2は、ガントリ4を90°回転した状態を示す概略側面図である。図2では、照射部3が患者Aの上方に来るようにガントリ4を回転させている。図1及び図2に示されるように、荷電粒子線照射装置1は、患者A(治療台5)へ向かう放射線を遮蔽するL字板状の遮蔽部材18を備えている。
 L字板状の遮蔽部材18は、ガントリ4に対して固定されており、ガントリ4と一体的に回転する。このため、ガントリ4内のエネルギー選択システム11と遮蔽部材18との位置関係は、ガントリ4の回転により変化しない。L字板状の遮蔽部材18は、エネルギー選択システム11から出た放射線が遮るための十分な幅を有している。遮蔽部材18は、例えば鉛や鉄やタングステンから形成されている。
 以上説明した第1の実施形態に係る荷電粒子線照射装置1によれば、加速器2からガントリ4にかけて輸送ライン6が直線状に形成されているので、輸送ライン6が湾曲するように形成される場合と比べて、輸送ライン6を短くすることができ、装置の小型化を図ることができる。しかも、荷電粒子線照射装置1では、エネルギー選択システム11の一部をガントリ4に配置することで、エネルギー選択システム11の全体を加速器室に配置する従来の場合と比べて、輸送ライン6をより短くすることができ、装置の更なる小型化を実現することができる。更に、荷電粒子線照射装置1によれば、ガントリ4に配置されたエネルギー選択システム11と治療台5との間に遮蔽部材18が設けられているので、エネルギー選択システム11から治療台5上の患者Aに向かう放射線を適切に遮蔽することができる。
 また、荷電粒子線照射装置1によれば、ガントリ4が回転する際に遮蔽部材18もエネルギー選択システム11と一体となって回転するので、遮蔽部材18をガントリ4と別体で設ける場合と比べて、小型の遮蔽部材18でも治療台5に向かう放射線の遮蔽を達成することができる。従って、荷電粒子線照射装置1によれば、遮蔽部材18の小型化及びコスト低減を図ることができる。
[第2の実施形態]
 図3は、第2の実施形態に係る荷電粒子線照射装置20を示す概略平面図である。図4は、図3のIV-IV線に沿った端面図である。
 図3及び図4に示されるように、第2の実施形態に係る荷電粒子線照射装置20は、第1の実施形態と比べて、遮蔽部材の形状及び位置が異なっている。
 具体的には、第2の実施形態に係る荷電粒子線照射装置20は、ガントリ4内の輸送ライン6に沿って延在する樋状の遮蔽部材21を備えている。樋状の遮蔽部材21は、ガントリ4内の輸送ライン6に沿って全体的に湾曲するように形成されている。なお、樋状の遮蔽部材21は、輸送ライン6全体ではなく、エネルギー選択システム11の部分にのみ沿うように形成されていても良い。
 図4に示されるように、樋状の遮蔽部材21は、ガントリ4内のエネルギー選択システム11の治療台5側を覆うように設けられている。具体的には、遮蔽部材21は、エネルギー選択システム11(収束磁石12)から見て治療台5側に位置する底部21aと、エネルギー選択システム11(収束磁石12)を挟むように位置する一対の側壁部21b、21cと、によって樋状に構成されている。なお、図4に示す12aは磁極であり、12bはコイルである。
 以上説明した第2の実施形態に係る荷電粒子線照射装置20によれば、エネルギー選択システム11から出る放射線が治療台5側へ拡がる前に遮蔽することができるので、遮蔽部材21が小型であっても広範囲にわたって放射線の届かない領域を確保することができる。従って、荷電粒子線照射装置20によれば、患者や医者、メンテナンス作業者の安全性の向上を図ることができる。
[第3の実施形態]
 図5は、第3の実施形態に係る荷電粒子線照射装置30を示す概略平面図である。図6は、図5のガントリ4を90°回転させた状態を示す概略側面図である。
 図5及び図6に示されるように、第3の実施形態に係る荷電粒子線照射装置30は、第1の実施形態と比べて、遮蔽部材の形状及び位置、遮蔽部材の支持構造が異なっている。
 具体的には、第3の実施形態に係る荷電粒子線照射装置30は、ガントリ4とは別体に設置された遮蔽部材31を備えている。遮蔽部材31は、360度回転可能なガントリ4と切り離されており、ガントリ4の回転により位置が変化することはない。遮蔽部材31は、荷電粒子線照射装置30を収容する建屋に対して固定されている。遮蔽部材31は、荷電粒子線照射装置30の正面から中心軸線CLに沿って延びる連結部材(図示せず)を介して建屋に連結されている。
 遮蔽部材31は、治療台5のエネルギー選択システム11側を覆うように形成されている。遮蔽部材31は、ガントリ4の正面側(治療台5側)に向かって開口する箱形状に構成され、その内側は治療台5が移動するためのスペースとなっている。具体的には、遮蔽部材31は、ガントリ4の正面から見て奥側の側壁31aと、治療台5の左右の側壁31b,31cと、天井31dと、床面31eと、によって箱形状に構成されている。遮蔽部材31は、治療台5が移動するためのスペースを十分に確保しつつ、治療台5上の患者Aに向かう放射線を確実に遮蔽するように形成されている。
 以上説明した第3の実施形態に係る荷電粒子線照射装置30によれば、遮蔽部材がガントリ4に固定される場合と比べて、ガントリ4が遮蔽部材31を支持する必要がないので、ガントリ4の小型化及び軽量化に有利である。しかも、荷電粒子線照射装置30では、遮蔽部材31が治療台5のエネルギー選択システム11側を覆うように設けられているので、エネルギー選択システム11から治療台5上の患者Aに向かう放射線をより確実に遮蔽することができる。
 本発明は、上述した実施形態に限定されるものではない。例えば、遮蔽部材の位置や形状は上述したものに限られず、患者へ向かう放射線を遮蔽できるものであれば良い。
 また、遮蔽部材をガントリ4に固定する場合には、遮蔽部材がガントリ4のフレームとして機能する態様であっても良い。すなわち、遮蔽部材がガントリ4のフレームと兼用であっても良い。また、遮蔽部材は必ずしも剛性のあるものに限られず、シート状のものであっても良く、複数枚のシート状部材から構成されても良い。
 なお、本発明は、荷電粒子線の照射方式がワブラー方式であるかスキャニング方式であるかに関わらず有効に適用することができる。
 また、ガントリ4は、中心軸線CLを中心として360度回転可能なものに限られず、360度未満(例えば200度)で揺動可能な構成であってもよい。この構成においては、中心軸線CLの周囲でガントリ4の移動範囲外となったスペースに建屋の床部を形成することができる。この場合、第3の実施形態に係る遮蔽部材31は、中心軸線CLの周囲の建屋の床部に直接設けられる構成であってもよい。また、この床部にはロボットアーム5aの根本部分を設けることもできる。また、床面31eも不要とすることができる。
 本発明は、被照射体に対して荷電粒子線を照射する荷電粒子線照射装置に利用可能である。
 1,20,30…荷電粒子線照射装置 2…加速器 3…照射部 4…ガントリ 5…治療台(照射台) 5a…ロボットアーム 6…輸送ライン 7…壁 8…真空ダクト 9…加速器側収束磁石 10…デグレーダ 11…エネルギー選択システム 12…ガントリ側収束磁石 13…第一偏向磁石 14…スリット 15…第二偏向磁石 16…スキャニングマグネット 17…第三偏向磁石 18,21,31…遮蔽部材 A…患者 CL…中心軸線
 
 

Claims (5)

  1.  荷電粒子線を被照射体へ照射する荷電粒子線照射装置であって、
     荷電粒子を加速して前記荷電粒子線を出射する加速器と、
     前記荷電粒子線を前記被照射体に照射する照射部が配置されたガントリと、
     前記被照射体が配置される照射台と、
     前記加速器から出射された前記荷電粒子線のエネルギーを調整するためのエネルギー選択システムを有し、前記加速器から前記照射部へ前記荷電粒子線を輸送する輸送ラインと、
     を備え、
     前記輸送ラインは、前記加速器から前記ガントリにかけて直線状に形成されると共に、前記エネルギー選択システムの少なくとも一部が前記ガントリに配置され、
     前記ガントリに配置された前記エネルギー選択システムと前記照射台との間には、前記照射台へ向かう放射線を遮蔽する遮蔽部材が設けられていることを特徴とする荷電粒子線照射装置。
  2.  前記遮蔽部材は、前記ガントリに対して固定されている請求項1に記載の荷電粒子線照射装置。
  3.  前記遮蔽部材は、前記エネルギー選択システムの前記照射台側を覆うように設けられている請求項2に記載の荷電粒子線照射装置。
  4.  前記遮蔽部材は、前記ガントリとは別体で設置されている請求項1に記載の荷電粒子線照射装置。
  5.  前記遮蔽部材は、前記照射台の前記エネルギー選択システム側を覆うように設けられている請求項4に記載の荷電粒子線照射装置。
PCT/JP2012/052528 2012-02-03 2012-02-03 荷電粒子線照射装置 WO2013114619A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013556170A JP5902205B2 (ja) 2012-02-03 2012-02-03 荷電粒子線照射装置
CN201280064231.8A CN104039391A (zh) 2012-02-03 2012-02-03 带电粒子束照射装置
PCT/JP2012/052528 WO2013114619A1 (ja) 2012-02-03 2012-02-03 荷電粒子線照射装置
TW101126635A TW201332604A (zh) 2012-02-03 2012-07-24 帶電粒子束照射裝置
US14/444,008 US20140343346A1 (en) 2012-02-03 2014-07-28 Charged particle beam irradiation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/052528 WO2013114619A1 (ja) 2012-02-03 2012-02-03 荷電粒子線照射装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/444,008 Continuation US20140343346A1 (en) 2012-02-03 2014-07-28 Charged particle beam irradiation device

Publications (1)

Publication Number Publication Date
WO2013114619A1 true WO2013114619A1 (ja) 2013-08-08

Family

ID=48904695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052528 WO2013114619A1 (ja) 2012-02-03 2012-02-03 荷電粒子線照射装置

Country Status (5)

Country Link
US (1) US20140343346A1 (ja)
JP (1) JP5902205B2 (ja)
CN (1) CN104039391A (ja)
TW (1) TW201332604A (ja)
WO (1) WO2013114619A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069085A (ja) * 2018-10-31 2020-05-07 株式会社日立製作所 粒子線照射システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102695544B (zh) * 2009-10-23 2016-05-11 离子束应用公司 用于粒子治疗的包括束分析仪的机架
CN111686377A (zh) * 2020-06-16 2020-09-22 中国科学院近代物理研究所 一种碳离子束超导旋转Gantry
WO2023284780A1 (zh) * 2021-07-16 2023-01-19 中硼(厦门)医疗器械有限公司 中子捕获治疗系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326699A (ja) * 1997-03-28 1998-12-08 Mitsubishi Electric Corp 荷電粒子照射装置
JP2000202047A (ja) * 1999-01-13 2000-07-25 Hitachi Ltd 荷電粒子ビ―ム照射方法及び装置
JP2003503120A (ja) * 1999-06-25 2003-01-28 パウル・シェラー・インスティトゥート 陽子療法を実施する装置
JP2005538785A (ja) * 2002-09-18 2005-12-22 パウル・シェラー・インスティトゥート 陽子療法を実施するための装置
JP2007512897A (ja) * 2003-12-02 2007-05-24 ラディノバ アクテボラゲット 多重部屋照射治療システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1421833A4 (en) * 2001-08-30 2006-04-05 Tolemac Llc ANTIPROTONE PRODUCTION AND RELEASE FOR THE PRESENTATION AND TERMINATION OF UNWANTED CELLS
CN102695544B (zh) * 2009-10-23 2016-05-11 离子束应用公司 用于粒子治疗的包括束分析仪的机架
JP5744578B2 (ja) * 2011-03-10 2015-07-08 住友重機械工業株式会社 荷電粒子線照射システム、及び中性子線照射システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326699A (ja) * 1997-03-28 1998-12-08 Mitsubishi Electric Corp 荷電粒子照射装置
JP2000202047A (ja) * 1999-01-13 2000-07-25 Hitachi Ltd 荷電粒子ビ―ム照射方法及び装置
JP2003503120A (ja) * 1999-06-25 2003-01-28 パウル・シェラー・インスティトゥート 陽子療法を実施する装置
JP2005538785A (ja) * 2002-09-18 2005-12-22 パウル・シェラー・インスティトゥート 陽子療法を実施するための装置
JP2007512897A (ja) * 2003-12-02 2007-05-24 ラディノバ アクテボラゲット 多重部屋照射治療システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069085A (ja) * 2018-10-31 2020-05-07 株式会社日立製作所 粒子線照射システム
JP7169163B2 (ja) 2018-10-31 2022-11-10 株式会社日立製作所 粒子線照射システム

Also Published As

Publication number Publication date
JPWO2013114619A1 (ja) 2015-05-11
US20140343346A1 (en) 2014-11-20
TW201332604A (zh) 2013-08-16
JP5902205B2 (ja) 2016-04-13
CN104039391A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
US9687680B2 (en) Accelerated particle irradiation equipment
EP2612692B1 (en) Neutron beam irradiation system
JP6275804B2 (ja) 荷電粒子線照射装置
JP5710374B2 (ja) 荷電粒子線照射装置
US20140319383A1 (en) Charged particle beam irradiation system
JP2012187269A (ja) 荷電粒子線照射システム、及び中性子線照射システム
JP5902205B2 (ja) 荷電粒子線照射装置
US10874878B2 (en) Particle therapy apparatus comprising an MRI
US8878142B2 (en) Charged particle beam irradiation apparatus
CN111246914A (zh) 放射治疗系统
TWI598128B (zh) 粒子線治療系統
US10179252B2 (en) Irradiation device and method
JP2004065808A (ja) 放射線治療装置
JP5680510B2 (ja) 荷電粒子線照射装置
US20220288421A1 (en) Particle beam irradiation system and particle beam irradiation facility
JP2022113920A (ja) 荷電粒子線照射設備
JP2020096647A (ja) 荷電粒子線治療装置
JP2015173706A (ja) 荷電粒子線治療装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12867166

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013556170

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12867166

Country of ref document: EP

Kind code of ref document: A1