WO2023284780A1 - 中子捕获治疗系统 - Google Patents

中子捕获治疗系统 Download PDF

Info

Publication number
WO2023284780A1
WO2023284780A1 PCT/CN2022/105433 CN2022105433W WO2023284780A1 WO 2023284780 A1 WO2023284780 A1 WO 2023284780A1 CN 2022105433 W CN2022105433 W CN 2022105433W WO 2023284780 A1 WO2023284780 A1 WO 2023284780A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
charged particle
neutron
shielding
therapy system
Prior art date
Application number
PCT/CN2022/105433
Other languages
English (en)
French (fr)
Inventor
舒迪昀
贡秋平
Original Assignee
中硼(厦门)医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中硼(厦门)医疗器械有限公司 filed Critical 中硼(厦门)医疗器械有限公司
Priority to EP22841413.2A priority Critical patent/EP4371609A1/en
Publication of WO2023284780A1 publication Critical patent/WO2023284780A1/zh
Priority to US18/399,913 priority patent/US20240139546A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1094Shielding, protecting against radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges

Definitions

  • the invention relates to a radiation irradiation system, in particular to a neutron capture therapy system.
  • chemotherapy In order to reduce radiation damage to normal tissues around the tumor, the concept of target therapy in chemotherapy (chemotherapy) has been applied to radiation therapy; and for tumor cells with high radiation resistance, it is also actively developing tumor cells with high relative biological effects (relative biological effects).
  • Biological effectiveness (RBE) radiation sources such as proton therapy, heavy particle therapy, neutron capture therapy, etc.
  • neutron capture therapy is a combination of the above two concepts, such as boron neutron capture therapy, through the specific accumulation of boron-containing drugs in tumor cells, combined with precise neutron beam regulation, it provides better treatment than traditional radiation. Cancer treatment options.
  • the present invention provides a neutron capture therapy system, which includes an accelerator, a beam transmission part, and a neutron beam generation part.
  • the accelerator accelerates charged particles to generate a charged particle beam
  • the beam The transmission part transmits the charged particle beam generated by the accelerator to the neutron beam generation part, and the neutron beam generation part generates a therapeutic neutron beam
  • the neutron capture therapy system includes part of the beam transmission shield assembly.
  • the beam transmission shielding component can reduce secondary radiation and radiation damage caused by recoil neutrons generated during the process of generating neutron beams by the beam transmission part and the neutron beam generating part.
  • the material of the beam transmission shielding component is boron-containing PE.
  • At least part of the beam transmission shielding assembly is movable or detachable.
  • the beam transmission part includes a transmission tube for accelerating or transmitting the charged particle beam
  • the beam transmission shielding assembly includes a first shielding member surrounding the transmission tube.
  • the first shielding member may be an annular shielding sleeve surrounding the transmission pipe.
  • the beam transmission part includes a transmission tube for accelerating or transporting the charged particle beam and a beam adjustment part arranged on the transmission tube for adjusting the charged particle beam
  • the The beam transmission shield assembly includes a second shield disposed on the transmission pipe, and the second shield is located on the downstream side of the beam adjustment part along the transmission direction of the charged particle beam.
  • the second shielding member may be a shielding plate whose plate surface is perpendicular to the transmission direction of the charged particle beam.
  • the beam transmission shield assembly includes third shields arranged on both sides of the transmission tube along the transmission direction of the charged particle beam, and the third shield may be parallel to the transmission direction of the charged particle beam Shielding plates arranged on both sides of the transfer tube. Furthermore, the second and third shielding elements are connected together and at least partially surround the beam adjustment part and the transmission pipe, so as to achieve a better shielding effect.
  • the beam adjusting part includes an X-Y magnet for adjusting the axis of the charged particle beam or a quadrupole magnet for suppressing the divergence of the charged particle beam or a four-way cutting magnet for shaping the charged particle beam P
  • the second shielding member includes at least one shielding plate located on the downstream side of the magnet along the transmission direction of the charged particle beam.
  • the neutron capture therapy system includes an irradiation room and a charged particle beam generating room, in which the object to be irradiated is treated with the neutron beam irradiation, and the charged particle beam generating room houses The accelerator and at least part of the beam transmission part, the beam transmission shielding assembly is arranged in the charged particle beam generating chamber.
  • the beam transmission part includes a first transmission part connected to the accelerator, a beam direction switcher for switching the traveling direction of the charged particle beam, and a beam direction switcher for switching the charged particle beam from the beam direction switcher a second transport section for transport to the neutron beam generation section, the charged particle beam generation chamber comprising an accelerator chamber and a beam delivery chamber, the first transport section extending from the accelerator chamber to the beam delivery chamber , the second transmission part extends from the beam transmission chamber to the neutron beam generation part, and the neutron beam generation part is at least partially arranged in the partition wall between the beam transmission chamber and the irradiation chamber , the beam transmission shielding assembly is arranged in the beam transmission chamber.
  • the beam transmission shielding assembly includes a shielding cover surrounding the beam direction switcher.
  • the beam transmission part further includes a beam dumper, and the beam direction switcher can selectively transmit the charged particle beam to the neutron beam generation part or the beam dumper
  • the beam transmission shielding assembly includes a first shielding plate arranged at the end of the beam collector, or a shielding cover arranged at the top of the beam collector, or a shielding sleeve surrounding the beam collector.
  • the first and second transmission parts include a transmission tube for accelerating or transporting the charged particle beam and a beam adjustment part arranged on the transmission tube for adjusting the charged particle beam, so
  • the beam transmission shielding assembly includes a second shielding plate that is respectively arranged on the transmission tubes of the first and second transmission parts and whose plate surface is perpendicular to the transmission direction of the charged particle beam.
  • the second shielding plate is located at the The beam adjustment part is on the downstream side of the transmission direction of the charged particle beam, and the beam transmission shielding assembly further includes two sides arranged on both sides of the first and second transmission parts along the transmission direction of the charged particle beam.
  • the third shielding plate, at least part of the second shielding plate and the first and third shielding plates are connected together and form a closure with the partition wall between the accelerator chamber and the beam transmission chamber, and the closed space The entire beam transmission part is shielded.
  • the beam transmission part includes a transmission auxiliary device
  • the transmission auxiliary device includes but not limited to a vacuum pump, a cooling medium control mechanism, and an argon gas control mechanism
  • the beam transmission shielding assembly includes at least partially surrounding or A fourth shield covering the transmission aid.
  • the beam transmission shielding assembly further includes a portable shielding plate.
  • the beam transmission shielding component can reduce secondary radiation and radiation damage caused by recoil neutrons generated during neutron beam generation by the beam transmission part and the neutron beam generation part.
  • Fig. 1 is a schematic structural diagram of a neutron capture therapy system in an embodiment of the present invention
  • FIG. 2 is a schematic layout diagram of a neutron capture therapy system in an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of an embodiment of the transmission tube shield of the neutron capture therapy system in the embodiment of the present invention.
  • the neutron capture therapy system in this embodiment is preferably a boron neutron capture therapy system 100
  • the boron neutron capture therapy system 100 is a device for cancer treatment using boron neutron capture therapy.
  • Boron neutron capture therapy performs cancer treatment by irradiating a neutron beam N to a patient 200 injected with boron (B-10), which is selectively aggregated after the patient 200 takes or injects a drug containing boron (B-10)
  • B-10 boron
  • B-10 boron-containing boron
  • boron-containing (B-10) drugs have a high capture cross-section for thermal neutrons, and 4 He and 7 Li are produced by 10 B(n, ⁇ ) 7 Li neutron capture and nuclear fission reaction Two heavily charged particles.
  • the average energy of the two charged particles is about 2.33MeV , which has the characteristics of high linear energy transfer (Linear Energy Transfer, LET) and short range. 175keV/ ⁇ m, 5 ⁇ m, the total range of the two particles is about the size of a cell, so the radiation damage to the organism can be limited to the cell level, and it can achieve local killing without causing too much damage to normal tissues. The purpose of dead tumor cells.
  • the boron neutron capture therapy system 100 includes an accelerator 10 , a beam transmission part 20 , a neutron beam generation part 30 and a treatment table 40 .
  • the accelerator 10 accelerates the charged particles (such as protons, deuterium nuclei, etc.) to produce a charged particle beam P such as a proton beam;
  • the beam transmission part 20 transmits the charged particle beam P generated by the accelerator 10 to the neutron beam generation part 30;
  • the neutron beam generator 30 generates a therapeutic neutron beam N and irradiates the patient 200 on the treatment table 40 .
  • the neutron beam generating part 30 includes a target T, a beam shaper 31, and a collimator 32.
  • the charged particle beam P generated by the accelerator 10 is irradiated to the target T through the beam transmission part 20 and interacts with the target T to generate neutrons. , the generated neutrons sequentially pass through the beam shaper 31 and the collimator 32 to form a therapeutic neutron beam N and irradiate the patient 200 on the treatment table 40 .
  • the target T is preferably a metal target. Select the appropriate nuclear reaction based on the required neutron yield and energy, the available accelerated charged particle energy and current, and the physical and chemical properties of the metal target.
  • the nuclear reactions that are often discussed are 7 Li(p,n) 7 Be and 9 Be(p,n) 9 B, both reactions are endothermic reactions.
  • the energy thresholds of the two nuclear reactions are 1.881MeV and 2.055MeV respectively. Since the ideal neutron source for boron neutron capture therapy is epithermal neutrons at the energy level of keV, in theory, if proton bombardment with energy only slightly higher than the threshold is used Lithium metal targets can produce relatively low-energy neutrons, and can be used clinically without too much retardation treatment. Not high, in order to generate enough neutron flux, usually choose higher energy protons to initiate nuclear reactions.
  • the target T may also be made of metal materials other than Li and Be, for example, Ta or W and alloys thereof.
  • the accelerator 10 may be a linear accelerator, a cyclotron, a synchrotron, or a synchrocyclotron.
  • the beam shaper 31 can adjust the beam quality of the neutron beam N generated by the interaction between the charged particle beam P and the target T, and the collimator 32 is used to converge the neutron beam N so that the neutron beam N can Has high targeting.
  • the beam shaping body 31 further includes a reflector 311, a slowing body 312, a thermal neutron absorber 313, a radiation shielding body 314, and a beam outlet 315.
  • the neutrons generated by the interaction between the charged particle beam P and the target material T are due to the large energy spectrum.
  • the retarder 312 is made of D 2 O, AlF 3 , Fluental TM , CaF 2 , Li 2 CO 3 , MgF 2 and Al 2 O 3 At least one is made; the reflector 311 surrounds the slowing body 312, and reflects the neutrons diffused around the slowing body 312 back to the neutron beam N to improve the utilization of neutrons, by having neutron reflection ability Strong material is made, and in the present embodiment, reflector 311 is made by at least one in Pb or Ni; There is a thermal neutron absorber 313 at the retardation body 312 rear portion, is made of large cross-section with thermal neutron In this embodiment, the thermal neutron absorber 313 is made of Li-6, and the thermal neutron absorber 313 is used to absorb the thermal neutrons passing through the slowing body 312 to reduce the heat in the neutron beam N neutron content to avoid excessive doses caused by superficial normal tissues during treatment.
  • the thermal neutron absorber can also be integrated with the retarder, and the retarder material contains Li-6; the radiation shield 314 is used
  • the material of the radiation shield 314 includes at least one of a photon shielding material and a neutron shielding material.
  • the material of the radiation shield 314 includes Photon shielding material lead (Pb) and neutron shielding material polyethylene (PE).
  • the beam shaper 31 can also have other structures, as long as the epithermal neutron beam required for treatment can be obtained.
  • the collimator 32 is arranged at the rear of the beam exit 315, and the epithermal neutron beam coming out of the collimator 32 is irradiated to the patient 200, and after passing through the shallow normal tissue, it is slowed down as thermal neutrons to reach the tumor cell M, understandably , the collimator 32 can also be canceled or replaced by other structures, and the neutron beam comes out from the beam outlet 315 to irradiate the patient 200 directly.
  • a radiation shielding device 50 is also provided between the patient 200 and the beam outlet 315 to shield the radiation from the beam coming out of the beam outlet 315 to the patient's normal tissues. It is understandable that the radiation shielding device 50 may not be provided .
  • the target T is arranged between the beam transmission part 20 and the beam shaper 31.
  • the beam transmission part 20 has a transmission tube C for accelerating or transmitting the charged particle beam P.
  • the transmission tube C is along the charged particle beam P.
  • the beam P extends into the beam shaping body 31, and passes through the reflector 311 and the slowing body 312 in sequence.
  • the target T is arranged in the slowing body 312 and is located at the end of the transmission tube C, so as to obtain better neutron radiation. beam quality. It can be understood that the target can be arranged in other ways, and can also be movable relative to the accelerator or the beam shaper, so as to facilitate changing the target or make the charged particle beam interact with the target uniformly.
  • the boron neutron capture therapy system 100 is housed in a concrete building as a whole, including an irradiation room 101 and a charged particle beam generation room 102, and the patient 200 on the treatment table 40 performs neutron beam N irradiation treatment in the irradiation room 101,
  • the charged particle beam generation chamber 102 accommodates the accelerator 10 and at least part of the beam transmission unit 20 .
  • the beam transmission part 20 includes: a first transmission part 21, which is connected with the accelerator 10; a beam direction switcher 22, which switches the traveling direction of the charged particle beam P; a second transmission part 23, which transfers the charged particle beam P from The beam direction switcher 22 transmits to the neutron beam generating unit 30 , and the generated neutron beam N is irradiated to the patient 200 in the irradiation chamber 101 .
  • the beam transmission part 20 may also include a beam collector 24, which collects the beam when the beam is not needed or confirms the output of the charged particle beam P before treatment, etc., and the beam direction switcher 22 can make the charged particle beam P break away.
  • the beam dump 24 is guided to the beam dump 24 by a normal trajectory, and the beam direction switcher 22 can selectively transmit the charged particle beam P to the neutron beam generating part 30 or the beam dump 24 .
  • the charged particle beam generation chamber 102 may include an accelerator chamber 1021 and a beam transmission chamber 1022, the first transmission part 21 extends from the accelerator chamber 1021 to the beam transmission chamber 1022, and the second transmission part 23 extends from the beam transmission chamber 1022 to the neutron beam transmission chamber 1022.
  • the beam generating part 30 , the neutron beam generating part 30 is at least partially disposed in the partition wall W1 of the beam transmission chamber 1022 and the irradiation chamber 101 .
  • the beam dump 24 is arranged in the beam transmission chamber 1022, it can be understood that it can also be arranged in other locations, such as inside a concrete wall.
  • the beam direction switcher 22 may include a deflection electromagnet for deflecting the direction of the charged particle beam P and a switch electromagnet for controlling the traveling direction of the charged particle beam P.
  • the first transmission part 21 and the second transmission part 23 are constructed by the transmission tube C, and can also include a beam adjustment part 25 arranged on the transmission tube C and used to adjust the charged particle beam P.
  • the beam adjustment part 25 includes a beam adjustment part for adjusting The X-Y magnet 251 for the axis of the charged particle beam P, the quadrupole magnet 252 for suppressing the divergence of the charged particle beam P, and the four-way cutting magnet 253 (not shown) for shaping the charged particle beam P, etc.
  • the beam adjustment unit 25 of the second transmission unit 23 may also include a charged particle beam scanning magnet 254 as required to scan the charged particle beam P to control the irradiation of the charged particle beam P relative to the target T, such as controlling the charged particle beam P relative to the target T.
  • the irradiation position of target T may also include a charged particle beam scanning magnet 254 as required to scan the charged particle beam P to control the irradiation of the charged particle beam P relative to the target T, such as controlling the charged particle beam P relative to the target T.
  • the concrete forming at least part of the space (such as the beam transmission chamber 1022 and the irradiation chamber 101 ) is concrete added with neutron shielding materials, such as boron-containing barite concrete, to form a neutron shielding space.
  • a neutron shielding plate (not shown), such as a boron-containing PE plate, is provided on the concrete surface of the room (such as the beam transmission chamber 1022, the ceiling, the floor, and the wall of the irradiation chamber 101) to form a neutron shielding space.
  • the emission direction of the neutrons produced by the interaction between the charged particle beam P and the target T is almost uniformly distributed in space, and a large amount of recoil neutrons will be generated during the "shaping" process of the neutrons by the beam shaping body 31, which results in Part of the recoil neutrons is a part that needs to be considered in the design of radiation shielding.
  • the recoil neutrons are more concentrated around the beam transmission part 20 of the beam transmission chamber 1022, and the beam transmission part 20 (such as the transmission tube C and the The material of the magnet on the transmission tube C) generally contains steel, which will produce radioactive isotopes with longer half-lives after being irradiated by neutrons to cause secondary radiation. Therefore, the beam transmission shielding assembly 60 used for the beam transmission part 20 is arranged to reduce Secondary radiation and radiation damage caused by recoil neutrons generated during neutron beam generation by the beam transmission unit 20 and the neutron beam generation unit 30 .
  • the beam transmission shield assembly 60 is disposed in the beam transmission chamber 1022 and includes a magnet shield 61 and a transmission tube shield 62 .
  • the magnet shield 61 is arranged on the transmission pipe C, and is located on the downstream side of the beam adjustment part 25 along the transmission direction of the charged particle beam P; direction, one shielding plate can be set for each magnet, and one shielding plate can also be set on the downstream side of the most downstream magnet in the transmission direction of the charged particle beam P of each transmission tube C, and the magnet shielding member 61
  • the material is boron-containing PE.
  • the beam adjustment part 25 of the first transmission part 21 includes one X-Y magnet 251 and two quadrupole magnets 252, and the beam adjustment part 25 of the second transmission part 23 includes two quadrupole magnets 252 and one quadrupole magnet 252.
  • a charged particle beam scanning magnet 254, the magnet shield 61 includes a shielding plate 611 arranged on the transmission tube C between the X-Y magnet 251 of the first transmission part 21 and the beam direction switcher 22, and a shield plate 611 on the transmission tube C of the second transmission part 23.
  • the distance between the beamlet transmission parts 30 is relatively short, therefore, more magnet shields 61 are provided.
  • the transmission tube shield 62 is an annular shielding sleeve 621 surrounding the transmission tube C (as shown in FIG. 3 ) or shielding plates 622, 623 arranged on both sides of the transmission tube C parallel to the transmission direction of the charged particle beam P, in order to reduce costs , the material of the transmission pipe shield 62 may be boron-free PE.
  • the transmission tube shield 62 is the shielding plates 622 and 623 arranged on both sides of the transmission tube C parallel to the direction of transmission of the charged particle beam P, the transmission tube shield 62 is simultaneously a magnet and other components on the beam transmission part 20
  • at least part of the magnet shield 61 and the transmission tube shield 62 can be connected together and at least partly surround the beam adjustment part 25 and the transmission tube C to achieve a better shielding effect.
  • the beam transmission shield assembly 60 also includes a shielding plate 63 arranged at the end of the beam collector 24, the shielding plate 63 at least partially surrounds the opposite end of the end of the beam collector 24 connected to the beam direction switcher 22, the shielding plate
  • the cross-sectional shape of 63 can be] shape or zigzag.
  • the transmission pipe shield 62 is the shielding plates 622, 623 arranged on both sides of the transmission pipe C parallel to the transmission direction of the charged particle beam P, in one embodiment, at least part of the magnet shield 61, the transmission pipe shield 62,
  • the shielding plate 63 is connected together and forms a closure with the partition wall W2 of the accelerator chamber 1021 and the beam transmission chamber 1022 , and shields the entire beam transmission part 20 in the closed space.
  • the shielding plate 622 arranged on one side of the transmission pipe C, the shielding plate 63 arranged at the end of the beam collector 24, the charged particle beam scanning magnet 254 of the second transmission part 23, and the neutron beam generating part The shielding plate 614 provided between 30, the shielding plate 623 provided on the other side of the transmission pipe C, the partition wall W2 of the accelerator chamber 1021 and the beam transmission chamber 1022 are sequentially connected to form a closure, the X-Y magnet 251 of the first transmission part 21 and the
  • the shielding plates 611 provided between the beam direction switchers 22 are connected to the shielding plates 622 and 623 provided on both sides of the transmission tube C respectively.
  • a shielding cover (not shown) can also be set on the top of the beam dumper 24, and a shielding can also be set on the beam dumper 24 periphery.
  • a sleeve (not shown) surrounds the beam dump 24 .
  • the beam direction switcher 22 may also be surrounded by a shield 64 to prevent the beam direction switcher 22 from interacting with recoil neutrons to generate secondary radiation, and the material of the shield 64 may be boron-containing PE.
  • the beam transmission shielding assembly 60 can also include a portable shielding plate 65 (not shown), which is carried by the operator and moves along with it, and is used for the operator to enter the beam transmission chamber 1022 for target replacement, etc.
  • the portable shielding plate 65 can further To reduce the radiation damage to the operator caused by the secondary radiation generated by the beam transmission part 20, the material of the portable shielding plate 65 is lead. It can be understood that it can also be other photon shielding materials, and can also include neutron shielding materials.
  • the beam transmission part 20 includes a transmission auxiliary device, and the beam transmission shielding assembly 60 may further include an auxiliary shield 66 at least partially surrounding or covering the transmission auxiliary device.
  • the auxiliary shield 66 is a shielding box surrounding the transmission auxiliary device , can also be a shielding cover or a shielding sleeve that covers or surrounds the transmission auxiliary device.
  • the transmission auxiliary device includes but not limited to the first vacuum pump 71 and the second vacuum pump 72 for vacuuming, the control mechanism 73 for controlling the opening and closing and flow of the cooling medium (specifically, it can be a water distribution tank), and the control mechanism for controlling the argon gas.
  • the control mechanism 74 of opening and closing and flow (specifically can be an argon gas tank).
  • the material of the auxiliary shielding member 66 may be boron-containing polyethylene, other neutron shielding materials, or photon shielding materials.
  • the beam transmission unit 20 may be one or more neutron beam generating units 30 to generate one or more therapeutic neutron beams N, and the beam transmission unit 20 correspondingly includes the transmission of charged particle beams P to a plurality of neutron beam generating units 30 sections, meanwhile, the same beam transmission shield assembly 60 may be provided for each transmission section.
  • the boron neutron capture therapy system 100 may also include a preparation room, a control room and other spaces for auxiliary treatment.
  • the materials of concrete, partition walls, shielding plates, shielding covers, shielding sleeves and shielding covers in this embodiment can be replaced with other neutron shielding materials, and can also include photon shielding materials; shielding plates, shielding covers, shielding The cover and the shielding cover can be installed through aluminum profiles.
  • the half-life of the radioactive isotope produced after the activation of aluminum by neutrons is relatively short, it can be understood that it can also be made of other materials; the shielding plate, shielding cover, shielding cover and shielding cover can also be at least partially Removable or detachable, convenient for equipment maintenance.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

一种中子捕获治疗系统(100),能够降低射束传输部(20)与中子束生成部(30)产生中子束过程中生成的反冲中子作用造成的二次辐射及辐射损伤。中子捕获治疗系统(100)包括加速器(10)、射束传输部(20)、中子束生成部(30),加速器(10)对带电粒子进行加速产生带电粒子束,射束传输部(20)将加速器产生的带电粒子束传输至中子束生成部(30),中子束生成部(30)产生治疗用中子束,中子捕获治疗系统(100)包括用于射束传输部(20)的束流传输屏蔽组件(60)。

Description

中子捕获治疗系统 技术领域
本发明涉及一种辐射线照射系统,尤其涉及一种中子捕获治疗系统。
背景技术
随着原子科学的发展,例如钴六十、直线加速器、电子射束等放射线治疗已成为癌症治疗的主要手段之一。然而传统光子或电子治疗受到放射线本身物理条件的限制,在杀死肿瘤细胞的同时,也会对射束途径上大量的正常组织造成伤害;另外由于肿瘤细胞对放射线敏感程度的不同,传统放射治疗对于较具抗辐射性的恶性肿瘤(如:多行性胶质母细胞瘤(glioblastoma multiforme)、黑色素细胞瘤(melanoma))的治疗成效往往不佳。
为了减少肿瘤周边正常组织的辐射伤害,化学治疗(chemotherapy)中的标靶治疗概念便被应用于放射线治疗中;而针对高抗辐射性的肿瘤细胞,目前也积极发展具有高相对生物效应(relative biological effectiveness,RBE)的辐射源,如质子治疗、重粒子治疗、中子捕获治疗等。其中,中子捕获治疗便是结合上述两种概念,如硼中子捕获治疗,借由含硼药物在肿瘤细胞的特异性集聚,配合精准的中子射束调控,提供比传统放射线更好的癌症治疗选择。
放射线治疗过程中会产生各种放射线,如硼中子捕获治疗过程产生低能至高能的中子、光子,这些放射线可能会对人体正常组织造成不同程度的损伤。因此在放射线治疗领域,如何在达到有效治疗的同时减少对外界环境、医务人员或患者正常组织的辐射污染是一个极为重要的课题。
因此,有必要提出一种新的技术方案以解决上述问题。
发明内容
为了解决上述问题,本发明一方面提供了一种中子捕获治疗系统,包括加速器、射束传输部、中子束生成部,所述加速器对带电粒子进行加速产生带电粒子束,所述射束传输部将所述加速器产生的带电粒子束传输至所述中子束生成部,所述中子束生成部产生治疗用中子束,所述中子捕获治疗系统包括用于所述射束传输部的束流传输屏蔽组件。束流传输屏蔽组件能够降低射束传输部与中子束生成部产生中子束过程中生成的反冲中子作用造成的二次辐射及辐射损伤。
作为一种优选地,所述束流传输屏蔽组件的材料为含硼的PE。
作为一种优选地,所述束流传输屏蔽组件至少部分为可移动或可拆卸的。
作为一种优选地,所述射束传输部包括对所述带电粒子束进行加速或传输的传输管,所述束流传输屏蔽组件包括包围所述传输管的第一屏蔽件。第一屏蔽件可以为包围传输管的环形屏蔽套。
作为一种优选地,所述射束传输部包括对所述带电粒子束进行加速或传输的传输管和设置在所述传输管上并用于调整所述带电粒子束的射束调整部,所述束流传输屏蔽组件包括设置在所述传输管上的第二屏蔽件,所述第二屏蔽件位于所述射束调整部沿所述带电粒子束的传输方向的下游侧。第二屏蔽件可以为板面垂直于带电粒子束的传输方向的屏蔽板。
进一步地,所述述束流传输屏蔽组件包括沿所述带电粒子束的传输方向设置在所述传输管两侧的第三屏蔽件,第三屏蔽件可以为平行于带电粒子束的传输的方向设置在传输管两侧的屏蔽板。更进一步地,所述第二、第三屏蔽件连接在一起并至少部分包围所述射束调整部及所述传输管,起到更好的屏蔽效果。
进一步地,所述射束调整部包括用于调整所述带电粒子束的轴的X-Y磁铁或用于抑制带电粒子束的发散的四极磁铁或用于带电粒子束P的整形的四向切割磁铁或带电粒子束扫描磁铁,所述第二屏蔽件包括至少一个沿所述带电粒子束的传输方向位于所述磁铁的下游侧的屏蔽板。
作为一种优选地,所述中子捕获治疗系统包括照射室和带电粒子束生成室,被照射体在所述照射室中进行所述中子束照射的治疗,所述带电粒子束生成室容纳所述加速器及至少部分所述射束传输部,所述束流传输屏蔽组件设置在所述带电粒子束生成室内。
进一步地,所述射束传输部包括与所述加速器连接第一传输部、切换所述带电粒子束的行进方向的射束方向切换器、将所述带电粒子束从所述射束方向切换器传输到所述中子束生成部的第二传输部,所述带电粒子束生成室包括加速器室和射束传输室,所述第一传输部从所述加速器室延伸到所述射束传输室,所述第二传输部从所述射束传输室延伸到所述中子束生成部,所述中子束生成部至少部分设置在所述射束传输室和所述照射室的分隔壁内,所述束流传输屏蔽组件设置在所述射束传输室内。
更进一步地,所述束流传输屏蔽组件包括包围所述射束方向切换器的屏蔽罩。
更进一步地,所述射束传输部还包括射束收集器,所述射束方向切换器可选择地将所述带电粒子束传输到所述中子束生成部或所述射束收集器,所述束流传输屏蔽组件包括设置在所述射束收集器的端部的第一屏蔽板或设置在所述射束收集器的顶部的屏蔽盖或包围所述射束收集器的屏蔽套。更进一步地,所述第一、第二传输部包括对所述带电粒子束进行加速或传输的传输管和设置在所述传输管上并用于调整所述带电粒子束的射束调整部,所述束流传 输屏蔽组件包括分别设置在所述第一、第二传输部的传输管上且板面垂直于所述带电粒子束的传输方向的第二屏蔽板,所述第二屏蔽板位于所述射束调整部在所述带电粒子束的传输方向的下游侧,所述束流传输屏蔽组件还包括沿所述带电粒子束的传输方向设置在所述第一、第二传输部两侧的第三屏蔽板,至少部分所述第二屏蔽板和所述第一、第三屏蔽板连接在一起并与所述加速器室和所述射束传输室的分隔壁形成闭合,将闭合空间内的射束传输部整体进行屏蔽。
作为一种优选地,所述射束传输部包括传输辅助装置,所述传输辅助装置包括但不限于真空泵、冷却介质控制机构、氩气控制机构;所述束流传输屏蔽组件包括至少部分包围或覆盖所述传输辅助装置的第四屏蔽件。
作为一种优选地,所述束流传输屏蔽组件还包括便携屏蔽板。
本发明的中子捕获治疗系统,设置束流传输屏蔽组件能够降低射束传输部与中子束生成部产生中子束过程中生成的反冲中子作用造成的二次辐射及辐射损伤。
附图说明
图1为本发明实施例中的中子捕获治疗系统结构示意图;
图2为本发明实施例中的中子捕获治疗系统的布局示意图;
图3为本发明实施例中的中子捕获治疗系统的传输管屏蔽件的一实施例的示意图。
具体实施方式
下面结合附图对本发明的实施例做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
参阅图1,本实施例中的中子捕获治疗系统优选为硼中子捕获治疗系统100,硼中子捕获治疗系统100是利用硼中子捕获疗法进行癌症治疗的装置。硼中子捕获疗法通过对注射有硼(B-10)的患者200照射中子束N来进行癌症治疗,患者200服用或注射含硼(B-10)药物后,含硼药物选择性地聚集在肿瘤细胞M中,然后利用含硼(B-10)药物对热中子具有高捕获截面的特性,借由 10B(n,α) 7Li中子捕获及核分裂反应产生 4He和 7Li两个重荷电粒子。两荷电粒子的平均能量约为2.33MeV,具有高线性转移(Linear Energy Transfer,LET)、短射程特征,α粒子的线性能量转移与射程分别为150keV/μm、8μm,而 7Li重荷粒子则为175keV/μm、5μm,两粒子的总射程约相当于一个细胞大小,因此对于生物体造成的辐射伤害能局限在细胞层级,便能在不对正常组织造成太大伤害的前提下,达到局部杀死肿瘤细胞的目的。
硼中子捕获治疗系统100包括加速器10、射束传输部20、中子束生成部30和治疗台40。加速器10对带电粒子(如质子、氘核等)进行加速,产生如质子束的带电粒子束P;射束传 输部20,将加速器10产生的带电粒子束P传输至中子束生成部30;中子束生成部30产生治疗用中子束N并照射向治疗台40上的患者200。
中子束生成部30包括靶材T、射束整形体31、准直器32,加速器10产生的带电粒子束P经射束传输部20照射到靶材T并与靶材T作用产生中子,产生的中子依次通过射束整形体31和准直器32形成治疗用中子束N并照射向治疗台40上的患者200。靶材T优选为金属靶材。依据所需的中子产率与能量、可提供的加速带电粒子能量与电流大小、金属靶材的物化性等特性来挑选合适的核反应,常被讨论的核反应有 7Li(p,n) 7Be及 9Be(p,n) 9B,这两种反应皆为吸热反应。两种核反应的能量阀值分别为1.881MeV和2.055MeV,由于硼中子捕获治疗的理想中子源为keV能量等级的超热中子,理论上若使用能量仅稍高于阀值的质子轰击金属锂靶材,可产生相对低能的中子,不需太多的缓速处理便可用于临床,然而锂金属(Li)和铍金属(Be)两种靶材与阀值能量的质子作用截面不高,为产生足够大的中子通量,通常选用较高能量的质子来引发核反应。理想的靶材应具备高中子产率、产生的中子能量分布接近超热中子能区(将在下文详细描述)、无太多强穿辐射产生、安全便宜易于操作且耐高温等特性,但实际上并无法找到符合所有要求的核反应。本领域技术人员熟知的,靶材T也可以由Li、Be之外的金属材料制成,例如由Ta或W及其合金等形成。加速器10可以是直线加速器、回旋加速器、同步加速器、同步回旋加速器。
射束整形体31能够调整带电粒子束P与靶材T作用产生的中子束N的射束品质,准直器32用以汇聚中子束N,使中子束N在进行治疗的过程中具有较高的靶向性。射束整形体31进一步包括反射体311、缓速体312、热中子吸收体313、辐射屏蔽体314和射束出口315,带电粒子束P与靶材T作用生成的中子由于能谱很广,除了超热中子满足治疗需要以外,需要尽可能的减少其他种类的中子及光子含量以避免对操作人员或患者造成伤害,因此从靶材T出来的中子需要经过缓速体312将其中的快中子能量(>40keV)调整到超热中子能区(0.5eV-40keV)并尽可能减少热中子(<0.5eV),缓速体312由与快中子作用截面大、超热中子作用截面小的材料制成,本实施例中,缓速体312由D 2O、AlF 3、Fluental TM、CaF 2、Li 2CO 3、MgF 2和Al 2O 3中的至少一种制成;反射体311包围缓速体312,并将穿过缓速体312向四周扩散的中子反射回中子射束N以提高中子的利用率,由具有中子反射能力强的材料制成,本实施例中,反射体311由Pb或Ni中的至少一种制成;缓速体312后部有一个热中子吸收体313,由与热中子作用截面大的材料制成,本实施例中,热中子吸收体313由Li-6制成,热中子吸收体313用于吸收穿过缓速体312的热中子以减少中子束N中热中子的含量,避免治疗时与浅层正常组织造成过多剂量,可以理解,热中子吸收体也可以是和缓速体一体的,缓速体的材料中含有Li-6;辐射屏蔽体314用于屏蔽从射束出口315以外部分渗漏的中子和光 子,辐射屏蔽体314的材料包括光子屏蔽材料和中子屏蔽材料中的至少一种,本实施例中,辐射屏蔽体314的材料包括光子屏蔽材料铅(Pb)和中子屏蔽材料聚乙烯(PE)。可以理解,射束整形体31还可以有其他的构造,只要能够获得治疗所需超热中子束即可。准直器32设置在射束出口315后部,从准直器32出来的超热中子束向患者200照射,经浅层正常组织后被缓速为热中子到达肿瘤细胞M,可以理解,准直器32也可以取消或由其他结构代替,中子束从射束出口315出来直接向患者200照射。本实施例中,患者200和射束出口315之间还设置了辐射屏蔽装置50,屏蔽从射束出口315出来的射束对患者正常组织的辐射,可以理解,也可以不设置辐射屏蔽装置50。
靶材T设置在射束传输部20和射束整形体31之间,射束传输部20具有对带电粒子束P进行加速或传输的传输管C,本实施例中,传输管C沿带电粒子束P方向伸入射束整形体31,并依次穿过反射体311和缓速体312,靶材T设置在缓速体312内并位于传输管C的端部,以得到较好的中子射束品质。可以理解,靶材可以有其他的设置方式,还可以相对加速器或射束整形体是可运动的,以方便换靶或使带电粒子束与靶材均匀作用。
硼中子捕获治疗系统100整体容纳在混凝土构造的建筑物中,包括照射室101和带电粒子束生成室102,治疗台40上的患者200在照射室101中进行中子束N照射的治疗,带电粒子束生成室102容纳加速器10及至少部分射束传输部20。结合图2,射束传输部20包括:第一传输部21,与加速器10连接;射束方向切换器22,切换带电粒子束P的行进方向;第二传输部23,将带电粒子束P从射束方向切换器22传输到中子束生成部30,生成的中子束N照射向照射室101内的患者200。射束传输部20还可以包括射束收集器24,在不需要射束时收集射束或在治疗前进行带电粒子束P的输出确认等,射束方向切换器22能够使带电粒子束P脱离正规轨道而引向射束收集器24,射束方向切换器22可选择地将带电粒子束P传输到中子束生成部30或所述射束收集器24。
带电粒子束生成室102可以包括加速器室1021和射束传输室1022,第一传输部21从加速器室1021延伸到射束传输室1022,第二传输部23从射束传输室1022延伸到中子束生成部30,中子束生成部30至少部分设置在射束传输室1022和照射室101的分隔壁W1内。射束收集器24设置在射束传输室1022内,可以理解,也可以设置在其他位置,如混凝土壁内。
射束方向切换器22可以包括使带电粒子束P方向偏转的偏转电磁铁及控制带电粒子束P行进方向的开关电磁铁。第一传输部21、第二传输部23由传输管C构造,还可以分别包括设置在传输管C上并用于调整带电粒子束P的射束调整部25,射束调整部25包括用于调整带电粒子束P的轴的X-Y磁铁251、用于抑制带电粒子束P的发散的四极磁铁252、以及用 于带电粒子束P的整形的四向切割磁铁253(图未示)等。第二传输部23的射束调整部25还可根据需要包括带电粒子束扫描磁铁254,扫描带电粒子束P,进行带电粒子束P相对于靶T的照射控制,如控制带电粒子束P相对于靶T的照射位置。
由于中子捕获治疗过程中会产生大量的中子,尤其是产生中子的靶材T附近,需尽量避免中子的泄漏。一实施例中,形成至少部分空间(如射束传输室1022、照射室101)的混凝土为添加了中子屏蔽材料的混凝土,如含硼重晶石混凝土,以形成中子屏蔽空间。另一实施例中,室内(如射束传输室1022、照射室101的天花板、地板、墙壁)混凝土表面设置中子屏蔽板(图未示),如含硼的PE板,以形成中子屏蔽空间。同时,带电粒子束P与靶材T作用产生的中子的出射方向在空间中几乎均有分布,射束整形体31对中子“整形”过程中,会产生大量的反冲中子,这部分反冲中子是辐射屏蔽设计中需重点考虑的部分,反冲中子在射束传输室1022的射束传输部20周围较为集中,而射束传输部20(如传输管C及设置在传输管C上的磁铁)的材料一般含有钢,被中子照射后会产生半衰期较长的放射性同位素造成二次辐射,因此,设置用于射束传输部20的束流传输屏蔽组件60,降低射束传输部20与中子束生成部30产生中子束过程中生成的反冲中子作用造成的二次辐射及辐射损伤。
束流传输屏蔽组件60设置在射束传输室1022内,包括磁铁屏蔽件61和传输管屏蔽件62。磁铁屏蔽件61设置在传输管C上,且沿带电粒子束P的传输方向位于射束调整部25的下游侧;一实施例中,磁铁屏蔽件61为板面垂直于带电粒子束P的传输方向的屏蔽板,可以为每个磁铁设置1个屏蔽板,也可以在每个传输管C的带电粒子束P的传输方向的最下游的磁铁下游侧设置1个屏蔽板,磁铁屏蔽件61的材料为含硼的PE。本实施例中,第一传输部21的射束调整部25包括1个X-Y磁铁251和2个四极磁铁252,第二传输部23的射束调整部25包括2个四极磁铁252和1个带电粒子束扫描磁铁254,磁铁屏蔽件61包括在第一传输部21的X-Y磁铁251和射束方向切换器22之间的传输管C上设置的屏蔽板611、在第二传输部23的每两个磁铁之间设置的屏蔽板612、613、在第二传输部23的带电粒子束扫描磁铁254和中子束生成部30之间设置的屏蔽板614,由于第二传输部23距离中子束传输部30距离较近,因此,设置了更多的磁铁屏蔽件61。
传输管屏蔽件62为包围传输管C的环形屏蔽套621(如图3所示)或平行于带电粒子束P的传输的方向设置在传输管C两侧的屏蔽板622、623,为降低成本,传输管屏蔽件62的材料可以为不含硼的PE。当传输管屏蔽件62为平行于带电粒子束P的传输的方向设置在传输管C两侧的屏蔽板622、623时,传输管屏蔽件62同时为磁铁及射束传输部20上的其他部件提供附加屏蔽,一实施例中,至少部分磁铁屏蔽件61与传输管屏蔽件62可以连接在一起并至少部分包围射束调整部25及传输管C,起到更好的屏蔽效果。
束流传输屏蔽组件60还包括设置在射束收集器24的端部的屏蔽板63,屏蔽板63至少部分包围射束收集器24与射束方向切换器22相连的一端的相反端,屏蔽板63的横截面形状可以是]形或折线形。当传输管屏蔽件62为平行于带电粒子束P的传输的方向设置在传输管C两侧的屏蔽板622、623时,一实施例中,至少部分磁铁屏蔽件61、传输管屏蔽件62、屏蔽板63连在一起并与加速器室1021和射束传输室1022的分隔壁W2形成闭合,将闭合空间内的射束传输部20整体进行屏蔽。本实施例中,设置在传输管C一侧的屏蔽板622、设置在射束收集器24的端部的屏蔽板63、第二传输部23的带电粒子束扫描磁铁254和中子束生成部30之间设置的屏蔽板614、设置在传输管C另一侧的屏蔽板623、加速器室1021和射束传输室1022的分隔壁W2依次连接形成闭合,第一传输部21的X-Y磁铁251和射束方向切换器22之间设置的屏蔽板611分别与设置在传输管C两侧的屏蔽板622、623连接。由于射束收集器24含钢材的质量较大,为进一步降低二次辐射,还可以在射束收集器24的顶部设置屏蔽盖(图未示),也可以在射束收集器24外周设置屏蔽套(图未示)将射束收集器24包围。
射束方向切换器22也可以由屏蔽罩64包围,防止射束方向切换器22与反冲中子作用产生二次辐射,屏蔽罩64的材料可以为含硼的PE。
束流传输屏蔽组件60还可以包括便携屏蔽板65(图未示),由操作者携带随之一起移动,用于操作者进入射束传输室1022进行靶材更换等,便携屏蔽板65可以进一步降低射束传输部20产生的二次辐射对操作者造成的辐射损伤,便携屏蔽板65的材料为铅,可以理解,也可以为其他光子屏蔽材料,还可以包括中子屏蔽材料。
射束传输部20包括传输辅助装置,束流传输屏蔽组件60还可以包括至少部分包围或覆盖传输辅助装置的辅助屏蔽件66,在本实施例中辅助屏蔽件66为包围传输辅助装置的屏蔽盒,也可以为覆盖或包围传输辅助装置的屏蔽罩或屏蔽套。其中,传输辅助装置包括但不限于用于抽真空的第一真空泵71及第二真空泵72、控制冷却介质的启闭和流量的控制机构73(具体可以是配水箱)、用于控制氩气的启闭和流量的控制机构74(具体可以是氩气箱)。辅助屏蔽件66的材料可以为含硼聚乙烯,也可以是其他中子屏蔽材料,还可以包括光子屏蔽材料。
中子束生成部30可以有一个或多个,以生成一个或多个治疗用中子束N,射束传输部20相应的包括向多个中子束生成部30传输带电粒子束P的传输部,同时,可以为每个传输部设置同样的束流传输屏蔽组件60。
硼中子捕获治疗系统100还可以包括准备室、控制室和其他用于辅助治疗的空间。
可以理解,本实施例中的混凝土、分隔壁、屏蔽板、屏蔽盖、屏蔽套、屏蔽罩的材料均可以替换为其他中子屏蔽材料,还可以包括光子屏蔽材料;屏蔽板、屏蔽盖、屏蔽套、屏蔽罩可以通过铝型材进行安装,铝被中子活化后产生的放射性同位素半衰期较短,可以理解,也可以为其他材料;屏蔽板、屏蔽盖、屏蔽套、屏蔽罩还可以至少部分为可移动或可拆卸的,方便设备维护。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,都在本发明要求保护的范围之内。

Claims (15)

  1. 一种中子捕获治疗系统,包括加速器、射束传输部、中子束生成部,所述加速器对带电粒子进行加速产生带电粒子束,所述射束传输部将所述加速器产生的带电粒子束传输至所述中子束生成部,所述中子束生成部产生治疗用中子束,其特征在于,所述中子捕获治疗系统包括用于所述射束传输部的束流传输屏蔽组件。
  2. 如权利要求1所述的中子捕获治疗系统,其特征在于,所述束流传输屏蔽组件至少部分为可移动或可拆卸的。
  3. 如权利要求1所述的中子捕获治疗系统,其特征在于,所述射束传输部包括对所述带电粒子束进行加速或传输的传输管,所述束流传输屏蔽组件包括包围所述传输管的第一屏蔽件。
  4. 如权利要求1所述的中子捕获治疗系统,其特征在于,所述射束传输部包括对所述带电粒子束进行加速或传输的传输管和设置在所述传输管上并用于调整所述带电粒子束的射束调整部,所述束流传输屏蔽组件包括设置在所述传输管上的第二屏蔽件,所述第二屏蔽件位于所述射束调整部沿所述带电粒子束的传输方向的下游侧。
  5. 如权利要求4所述的中子捕获治疗系统,其特征在于,所述第二屏蔽件为板面垂直于带电粒子束传输方向的屏蔽板。
  6. 如权利要求4所述的中子捕获治疗系统,其特征在于,所述束流传输屏蔽组件包括沿所述带电粒子束的传输方向设置在所述传输管两侧的第三屏蔽件,所述第二、第三屏蔽件连接在一起并至少部分包围所述射束调整部及所述传输管。
  7. 如权利要求6所述的中子捕获治疗系统,其特征在于,所述第三屏蔽件为平行于带电粒子束的传输方向并设置在所述传输管的两侧的屏蔽板。
  8. 如权利要求4所述的中子捕获治疗系统,其特征在于,所述射束调整部包括用于调整所述带电粒子束的轴的X-Y磁铁或用于抑制带电粒子束的发散的四极磁铁或用于带电粒子束P的整形的四向切割磁铁或带电粒子束扫描磁铁,所述第二屏蔽件包括至少一个沿所述带电粒子束的传输方向位于所述磁铁的下游侧的屏蔽板。
  9. 如权利要求1所述的中子捕获治疗系统,其特征在于,所述中子捕获治疗系统包括照射室和带电粒子束生成室,被照射体在所述照射室中进行所述中子束照射的治疗,所述带电粒子束生成室容纳所述加速器及至少部分所述射束传输部,所述束流传输屏蔽组件设置在所述带电粒子束生成室内。
  10. 如权利要求9所述的中子捕获治疗系统,其特征在于,所述射束传输部包括与所述加速器连接的第一传输部、切换所述带电粒子束的行进方向的射束方向切换器、将所述带电 粒子束从所述射束方向切换器传输到所述中子束生成部的第二传输部;所述带电粒子束生成室包括加速器室和射束传输室,所述第一传输部从所述加速器室延伸到所述射束传输室,所述第二传输部从所述射束传输室延伸到所述中子束生成部,所述中子束生成部至少部分设置在所述射束传输室和所述照射室的分隔壁内,所述束流传输屏蔽组件设置在所述射束传输室内。
  11. 如权利要求10所述的中子捕获治疗系统,其特征在于,所述束流传输屏蔽组件包括包围所述射束方向切换器的屏蔽罩。
  12. 如权利要求10所述的中子捕获治疗系统,其特征在于,所述射束传输部还包括射束收集器,所述射束方向切换器可选择地将所述带电粒子束传输到所述中子束生成部或所述射束收集器,所述束流传输屏蔽组件包括设置在所述射束收集器的端部的第一屏蔽板或设置在所述射束收集器的顶部的屏蔽盖或包围所述射束收集器的屏蔽套。
  13. 如权利要求12所述的中子捕获治疗系统,其特征在于,所述第一、第二传输部包括对所述带电粒子束进行加速或传输的传输管和设置在所述传输管上并用于调整所述带电粒子束的射束调整部,所述束流传输屏蔽组件包括分别设置在所述第一、第二传输部的传输管上且板面垂直于所述带电粒子束的传输方向的第二屏蔽板,所述第二屏蔽板位于所述射束调整部在所述带电粒子束的传输方向的下游侧;所述束流传输屏蔽组件还包括沿所述带电粒子束的传输方向设置在所述第一、第二传输部两侧的第三屏蔽板,至少部分所述第二屏蔽板和所述第一、第三屏蔽板连接在一起并与所述加速器室和所述射束传输室的分隔壁形成闭合。
  14. 如权利要求1所述的中子捕获治疗系统,其特征在于,所述射束传输部还包括传输辅助装置,所述束流传输屏蔽组件包括至少部分包围或覆盖所述传输辅助装置的第四屏蔽件。
  15. 如权利要求1所述的中子捕获治疗系统,其特征在于,所述束流传输屏蔽组件还包括便携屏蔽板。
PCT/CN2022/105433 2021-07-16 2022-07-13 中子捕获治疗系统 WO2023284780A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22841413.2A EP4371609A1 (en) 2021-07-16 2022-07-13 Neutron capture therapy system
US18/399,913 US20240139546A1 (en) 2021-07-16 2023-12-29 Neutron capture therapy system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110807235 2021-07-16
CN202110807235.1 2021-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/399,913 Continuation US20240139546A1 (en) 2021-07-16 2023-12-29 Neutron capture therapy system

Publications (1)

Publication Number Publication Date
WO2023284780A1 true WO2023284780A1 (zh) 2023-01-19

Family

ID=84856526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105433 WO2023284780A1 (zh) 2021-07-16 2022-07-13 中子捕获治疗系统

Country Status (5)

Country Link
US (1) US20240139546A1 (zh)
EP (1) EP4371609A1 (zh)
CN (2) CN219481344U (zh)
TW (1) TWI818626B (zh)
WO (1) WO2023284780A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116981150B (zh) * 2023-08-01 2024-01-23 迈胜医疗设备有限公司 射程移位器、控制方法和放射治疗设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289194A1 (en) * 2008-05-20 2009-11-26 Hitachi, Ltd. Particle beam therapy system
CN102695544A (zh) * 2009-10-23 2012-09-26 离子束应用公司 用于粒子治疗的包括束分析仪的机架
CN104039391A (zh) * 2012-02-03 2014-09-10 住友重机械工业株式会社 带电粒子束照射装置
CN104780975A (zh) * 2013-02-27 2015-07-15 住友重机械工业株式会社 中子捕捉疗法系统
CN105120952A (zh) * 2013-03-29 2015-12-02 住友重机械工业株式会社 中子捕捉疗法装置
CN109464752A (zh) * 2017-09-07 2019-03-15 南京中硼联康医疗科技有限公司 中子捕获治疗系统
CN213159020U (zh) * 2020-03-18 2021-05-11 中硼(厦门)医疗器械有限公司 中子捕获治疗系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108066901B (zh) * 2016-11-14 2024-04-12 南京中硼联康医疗科技有限公司 基于医学影像的辐射屏蔽装置及方法
CA3135517C (en) * 2019-04-17 2023-12-19 Wei-Lin Chen Neutron capture therapy system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090289194A1 (en) * 2008-05-20 2009-11-26 Hitachi, Ltd. Particle beam therapy system
CN102695544A (zh) * 2009-10-23 2012-09-26 离子束应用公司 用于粒子治疗的包括束分析仪的机架
CN104039391A (zh) * 2012-02-03 2014-09-10 住友重机械工业株式会社 带电粒子束照射装置
CN104780975A (zh) * 2013-02-27 2015-07-15 住友重机械工业株式会社 中子捕捉疗法系统
CN105120952A (zh) * 2013-03-29 2015-12-02 住友重机械工业株式会社 中子捕捉疗法装置
CN109464752A (zh) * 2017-09-07 2019-03-15 南京中硼联康医疗科技有限公司 中子捕获治疗系统
CN213159020U (zh) * 2020-03-18 2021-05-11 中硼(厦门)医疗器械有限公司 中子捕获治疗系统

Also Published As

Publication number Publication date
EP4371609A1 (en) 2024-05-22
CN219481344U (zh) 2023-08-08
TW202304559A (zh) 2023-02-01
US20240139546A1 (en) 2024-05-02
CN115607850A (zh) 2023-01-17
TWI818626B (zh) 2023-10-11

Similar Documents

Publication Publication Date Title
TWI686225B (zh) 中子捕獲治療系統
US11583702B2 (en) Neutron capture therapy system
JP2014115122A (ja) 中性子速度調整装置および中性子発生装置
US11813483B2 (en) Neutron capture therapy system
WO2020187193A1 (zh) 中子捕获治疗系统
US20240139546A1 (en) Neutron capture therapy system
CN109464752B (zh) 中子捕获治疗系统
CN213159020U (zh) 中子捕获治疗系统
CN208372313U (zh) 中子捕获治疗系统
CN208114946U (zh) 中子捕获治疗系统
CN207856093U (zh) 中子捕获治疗系统
CN113491840A (zh) 中子捕获治疗系统
TWI824743B (zh) 中子捕獲治療系統以及用於粒子束産生裝置的靶材的安裝方法
CN109464750B (zh) 中子捕获治疗系统
CN109464751B (zh) 中子捕获治疗系统
CN210302075U (zh) 中子捕获治疗系统及用于支撑射束整形体的支撑模块
JP2024524357A (ja) 中性子捕捉療法システム
CN208114947U (zh) 中子捕获治疗系统
TWI809851B (zh) 中子捕獲治療系統
TWI839257B (zh) 中子捕獲治療系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023580383

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022841413

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022841413

Country of ref document: EP

Effective date: 20240216