WO2013111882A1 - 着色ガラス板およびその製造方法 - Google Patents

着色ガラス板およびその製造方法 Download PDF

Info

Publication number
WO2013111882A1
WO2013111882A1 PCT/JP2013/051659 JP2013051659W WO2013111882A1 WO 2013111882 A1 WO2013111882 A1 WO 2013111882A1 JP 2013051659 W JP2013051659 W JP 2013051659W WO 2013111882 A1 WO2013111882 A1 WO 2013111882A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
terms
converted
colored glass
total
Prior art date
Application number
PCT/JP2013/051659
Other languages
English (en)
French (fr)
Inventor
勇也 嶋田
近藤 裕己
小林 友幸
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2013555334A priority Critical patent/JP5999112B2/ja
Priority to CN201380006735.9A priority patent/CN104080750A/zh
Publication of WO2013111882A1 publication Critical patent/WO2013111882A1/ja
Priority to US14/444,362 priority patent/US9206073B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the present invention relates to a colored glass plate having a green color tone while simultaneously satisfying low solar transmittance, high visible light transmittance and low ultraviolet transmittance, and a method for producing the same.
  • a colored glass plate for example, a heat ray absorbing glass plate, an ultraviolet absorbing glass plate having a color tone of green or blue transmitted light by containing a coloring component is known.
  • the colored glass plate is required to have low solar transmittance (for example, the 4 mm thickness equivalent value of solar transmittance (hereinafter also referred to as Te) defined in JIS R3106 (1998) is 55% or less).
  • the visible light transmittance is high (for example, JIS R3106 (1998) -defined visible light transmittance (A light source, 2 ° visual field) (hereinafter also referred to as Tv)
  • the 4 mm thickness conversion value is 70% or more. Is required).
  • the ultraviolet transmittance is low (for example, the 4 mm thickness converted value of the ultraviolet transmittance defined by ISO-9050 (hereinafter also referred to as Tuv) is 12% or less).
  • the colored glass plate has a green color tone, which is a more natural color tone of the transmitted light when the passenger views the scenery through the glass plate (for example, the main color of transmitted light defined in JIS Z8701 (1982)).
  • Glass plates having a wavelength (hereinafter also referred to as Dw) of 540 to 570 nm tend to be preferred.
  • Dw a wavelength of 540 to 570 nm
  • the following (1) to (3) have been proposed as the colored glass plate having a green color of transmitted light.
  • Total iron converted to Fe 2 O 3 0.5 to 2.0 parts by mass
  • Total titanium converted to TiO 2 more than 1.0 part by weight and 3.0 parts by weight or less
  • CoO 0.003 to 0.02 parts by mass
  • Se 0 to 0.0008 parts by mass
  • Total chromium converted to Cr 2 O 3 0 to 0.05 parts by mass
  • Vanadium converted to V 2 O 5 0 to 0.5 parts by mass
  • Total cerium converted to CeO 2 0 to 0.5 parts by mass
  • the green glass of (1) has a problem that Tv is low and Dw is short (transmitted light is bluish green) because of the large CoO content.
  • the ultraviolet absorbing green glass of (2) and (3) has a low CoO content and a high content of total cerium converted to CeO 2 , so that Tv is high and Tuv is sufficiently low.
  • the present invention is a colored glass whose transmitted light has a color tone of green while simultaneously satisfying low solar transmittance, high visible light transmittance and low ultraviolet transmittance even though the content of expensive cerium is kept low. Provide a board.
  • the colored glass plate of the present invention is an oxide-based mass percentage display, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 6%, MgO: 0-6%, CaO: 5 to 15%, Total iron converted to Fe 2 O 3 : 0.3-1.2% Total titanium converted to TiO 2 : 0.2 to 1.1%, Vanadium converted to V 2 O 5 : 0.02 to 0.3%, Total cerium converted to CeO 2 : 0.01 to 0.5%, And is substantially free of cobalt, chromium and manganese.
  • the colored glass plate of the present invention preferably further contains 5 to 18% of Na 2 O in terms of mass percentage based on oxide.
  • the colored glass plate of the present invention is The solar transmittance (Te) defined in JIS R3106 (1998) is 55% or less in terms of 4 mm thickness conversion value, Visible light transmittance (Tv) defined in JIS R3106 (1998) (A light source, 2 degree visual field) is 70% or more in terms of 4 mm thickness conversion value, The UV transmittance (Tuv) specified by ISO-9050 is 12% or less in terms of 4 mm thickness conversion, The dominant wavelength (Dw) of transmitted light as defined in JIS Z8701 (1982) is preferably 540 to 570 nm.
  • the method for producing a colored glass plate of the present invention is the production of a glass plate for melting and forming a glass raw material, and the composition component of the glass plate after molding is expressed in mass percentage on an oxide basis, SiO 2 : 65 to 75%, Al 2 O 3 : 0 to 6%, MgO: 0-6%, CaO: 5 to 15%, Total iron converted to Fe 2 O 3 : 0.3-1.2% Total titanium converted to TiO 2 : 0.2 to 1.1%, Vanadium converted to V 2 O 5 : 0.02 to 0.3%, Total cerium converted to CeO 2 : 0.01 to 0.5%, And a colored glass plate substantially free of cobalt, chromium and manganese.
  • the solar transmittance (Te) defined in JIS R3106 (1998) is 55% or less in terms of 4 mm thickness conversion value
  • the visible light transmittance (Tv) defined in JIS R3106 (1998) (A light source 2 degree visual field) is 70% or more in terms of 4 mm thickness conversion value
  • the UV transmittance (Tuv) specified by ISO-9050 is 12% or less in terms of 4 mm thickness conversion
  • It is preferable to obtain a colored glass plate in which the principal wavelength (Dw) of transmitted light defined by JIS Z8701 (1982) is 540 to 570 nm.
  • the term “to” indicating the above numerical range is used in the sense that the numerical values described before and after it are used as the lower limit value and the upper limit value. Unless otherwise specified, “to” is the same in the following specification. Used with meaning.
  • the colored glass plate of the present invention has a low content of expensive cerium, the color of the transmitted light is green while simultaneously satisfying low solar transmittance, high visible light transmittance and low ultraviolet transmittance.
  • the colored glass plate of the present invention is preferably composed of so-called soda lime silica glass containing SiO 2 as a main component and further containing Na 2 O, CaO and the like.
  • the colored glass plate of the present invention has the following composition (I).
  • the colored glass plate of the present invention preferably has the following composition (II), more preferably has the following composition (III), and further preferably has the following composition (IV).
  • the colored glass plate of the present invention maintains the low Tuv by replacing a part of cerium with vanadium, while lowering Te by including iron, the total iron content converted to Fe 2 O 3 , TiO
  • the target Dw is 540 to 570 nm while increasing Tv. It is characterized by that.
  • the total iron content converted to Fe 2 O 3 is 0.3 to 1.2% in terms of mass percentage based on the oxide. If the total iron content converted to Fe 2 O 3 is 0.3% or more, Te can be kept low. Te decreases as the total iron content converted to Fe 2 O 3 decreases, but Tv also decreases. If the total iron content converted to Fe 2 O 3 is 1.2% or less, a decrease in Tv can be prevented, and Tv can be made 70% (4 mm thickness conversion) or more.
  • the total iron content converted to Fe 2 O 3 is preferably 0.5 to 0.9%, more preferably 0.6 to 0.8% in terms of mass percentage based on oxide.
  • the total titanium content converted to TiO 2 is 0.2 to 1.1% in terms of mass percentage based on the oxide. If the content of TiO 2 is 0.2% or more, Dw can be adjusted to 540 nm or more. Also, Tuv can be kept low. If the content of TiO 2 is 1.1% or less, Dw can be adjusted to 570 nm or less. Also, Tv can be increased.
  • the total titanium content in terms of TiO 2 is preferably 0.5 to 1.0%, more preferably 0.7 to 0.9% in terms of mass percentage based on oxide.
  • the total vanadium content converted to V 2 O 5 is 0.02 to 0.3% in terms of mass percentage based on the oxide. If the content of V 2 O 5 is 0.02% or more, Tuv can be kept low. If the content of V 2 O 5 is 0.3% or less, Tv can be increased.
  • the total vanadium content converted to V 2 O 5 is preferably 0.05 to 0.20%, more preferably 0.06 to 0.09% in terms of mass percentage based on oxide.
  • the total cerium content in terms of CeO 2 is 0.01 to 0.5% in terms of mass percentage based on the oxide. If the CeO 2 content is 0.01% or more, Tuv can be kept low. If the content of CeO 2 is 0.5% or less, the cost of the colored glass plate can be suppressed, and Tv can be increased.
  • the content of total cerium in terms of CeO 2 is preferably 0.05 to 0.30%, more preferably 0.08 to 0.20%, and more preferably 0.09 to 0.000 in terms of mass percentage based on oxide. 13% is more preferable.
  • the colored glass plate of the present invention is substantially free of cobalt, chromium and manganese, which are typical coloring components in the past. “Substantially free of cobalt, chromium and manganese” means that cobalt, chromium and manganese are not contained at all, or cobalt, chromium and manganese may be contained as impurities inevitably mixed in production. . If cobalt, chromium, and manganese are not substantially contained, Tv can be increased, contamination of impurities during substrate replacement can be suppressed, and the cost of the colored glass plate can be suppressed.
  • the content of the impurities described above varies depending on the glass raw material used, but in the case of a glass plate for automobiles or buildings, it is preferable to be less than 0.1% in terms of mass percentage, 0.05 More preferably, the content is less than 0.01%, and still more preferably less than 0.01%.
  • the mixing of impurities at the time of substrate replacement means the following.
  • glass may be switched (ie, replaced) to a glass variety having a different glass composition.
  • the mixing of impurities when changing the substrate means that the components of the glass before switching are mixed into the glass after switching when switching to another glass type.
  • impurities such as cobalt, chromium and manganese occur, the color tone of the glass after switching is greatly affected.
  • SiO 2 is a main component of glass.
  • the content of SiO 2 is 65 to 75% in terms of mass percentage based on oxide. When the content of SiO 2 is 65% or more, the weather resistance is good. If the content of SiO 2 is 75% or less, devitrification becomes difficult.
  • the content of SiO 2 is preferably 68 to 73%, more preferably 70 to 72% in terms of mass percentage based on oxide.
  • Al 2 O 3 is a component that improves weather resistance.
  • the content of Al 2 O 3 is 0 to 6% in terms of mass percentage based on oxide. If the content of Al 2 O 3 is 6% or less, the meltability will be good.
  • the content of Al 2 O 3 is preferably from 0.5 to 3.5%, more preferably from 1.5 to 2.0%, expressed as a mass percentage based on oxide.
  • MgO is a component that promotes melting of the glass raw material and improves weather resistance.
  • the content of MgO is 0 to 6% in terms of mass percentage based on oxide. If the content of MgO is 6% or less, devitrification is difficult.
  • the content of MgO is preferably 2 to 6%, preferably 2.5 to 5% in terms of oxide-based mass percentage, since the glass matrix composition raw material is easily available and the cost of the colored glass plate can be kept low. More preferred is 3 to 4%.
  • a colored glass plate having an MgO content of less than 2% has a low Te when compared with the same Tv as a colored glass plate having an MgO content of 2% or more. Therefore, if the content of MgO is less than 2%, the heat ray absorptivity can be easily improved without impairing the visible light transmittance.
  • the content of MgO is preferably 0% or more and less than 2% in terms of oxide-based mass percentage from the viewpoint that Te can be sufficiently lowered while suppressing a decrease in Tv due to the addition of a coloring component. % Is more preferable, and 0 to 0.5% is more preferable.
  • CaO is a component that promotes the melting of the glass raw material and improves the weather resistance.
  • the content of CaO is 5 to 15% in terms of mass percentage based on oxide. When the content of CaO is 5% or more, meltability and weather resistance are good. If the content of CaO is 15% or less, devitrification becomes difficult.
  • the content of CaO is preferably 6 to 11%, more preferably 7 to 9% in terms of mass percentage based on oxide.
  • the colored glass plate of the present invention may contain SrO in order to promote melting of the glass raw material.
  • the content of SrO is preferably 0 to 5%, more preferably 0 to 3% in terms of mass percentage based on oxide. If the SrO content is 5% or less, the melting of the glass raw material can be sufficiently promoted.
  • the colored glass plate of the present invention may contain BaO in order to promote melting of the glass raw material.
  • the content of BaO is preferably 0 to 5%, more preferably 0 to 3% in terms of mass percentage based on oxide. If the content of BaO is 5% or less, melting of the glass raw material can be sufficiently promoted.
  • the colored glass plate of the present invention preferably contains Na 2 O and K 2 O, or Na 2 O in order to promote melting of the glass raw material.
  • the total content of Na 2 O and K 2 O is preferably 10 to 18%, more preferably 11 to 16%, and still more preferably 12 to 14% in terms of mass percentage based on oxide. If Na 2 O + K 2 O content of 10% or more, a good meltability. When the content of Na 2 O + K 2 O is 18% or less, the weather resistance is good.
  • the content of Na 2 O is preferably 5 to 18%, more preferably 10 to 16%, and further preferably 12 to 15% in terms of mass percentage based on oxide.
  • the content of K 2 O is preferably from 0 to 5%, more preferably from 0.2 to 1%, and further preferably from 0.2 to 0.4%, expressed as a mass percentage based on oxide.
  • the colored glass plate of the present invention may contain SO 3 used as a fining agent.
  • the SO 3 content is preferably 0 to 1%, more preferably 0.01 to 0.5%, and even more preferably 0.05 to 0.2% in terms of mass percentage based on oxide. If the SO 3 content is 1% or less, the SO 2 gas component is unlikely to remain in the glass as bubbles.
  • the colored glass plate of the present invention may contain SnO 2 used as a fining agent.
  • the content of SnO 2 is preferably from 0 to 0.5%, more preferably from 0 to 0.3%, and even more preferably from 0 to 0.1% in terms of mass percentage based on oxide. If the content of SnO 2 is 0.5% or less, the volatilization of SnO 2 is small and the cost can be kept low.
  • the specific gravity of the colored glass plate of the present invention is preferably 2.49 to 2.55, more preferably 2.50 to 2.52.
  • the specific gravity of the colored glass plate of the present invention can be adjusted by adjusting the glass matrix composition.
  • the mass ratio of SiO 2 / (MgO + CaO + SrO + BaO) is preferably 5.0 to 8.0, and more preferably 5.5 to 6.5.
  • (MgO + CaO + SrO + BaO) indicates the total content of MgO, CaO, SrO and BaO contained.
  • Te The Te (4 mm thickness conversion) of the colored glass plate of the present invention is 55% or less, preferably 52% or less, and more preferably 50% or less.
  • Te is the solar radiation transmittance calculated by measuring the transmittance with a spectrophotometer according to JIS R3106 (1998) (hereinafter simply referred to as JIS R3106).
  • Tv (4 mm thickness conversion) of the colored glass plate of the present invention is 70% or more, and preferably 71.5% or more.
  • Tv is the visible light transmittance calculated by measuring the transmittance with a spectrophotometer according to JIS R3106. As a coefficient, a standard A light source and a value of a 2-degree visual field are used.
  • Tuv (4 mm thickness conversion) of the colored glass plate of the present invention is 12% or less, preferably 10% or less.
  • Tuv is the ultraviolet transmittance calculated by measuring the transmittance with a spectrophotometer according to ISO-9050.
  • the dominant wavelength (Dw) of the transmitted light of the colored glass plate of the present invention is 540 to 570 nm, preferably 550 to 560 nm. If the dominant wavelength is within this range, a colored glass plate having a green color tone of transmitted light can be obtained.
  • the dominant wavelength is calculated by measuring the transmittance with a spectrophotometer according to JIS Z8701 (1982). As the coefficient, a standard light C, a value of a 2-degree field of view is used.
  • the colored glass plate of the present invention can be used for both vehicles and buildings, and is particularly suitable as a windshield or side glass for automobiles.
  • a window glass for automobiles it is used as necessary, as laminated glass in which a plurality of glass plates are sandwiched between interlayer films, glass obtained by processing a flat glass into a curved surface, or glass that has been tempered.
  • a multilayer glass for construction it is used as a multilayer glass composed of two colored glass plates of the present invention, or a multilayer glass of the colored glass plate of the present invention and another glass plate.
  • the colored glass plate of the present invention is produced, for example, through the following steps (i) to (iv) in order, and further through step (v) as necessary.
  • (I) Glass mother composition raw materials such as silica sand, coloring component raw materials such as iron source, titanium source, vanadium source, cerium source, oxidizing agent, reducing agent, refining agent, etc. are mixed appropriately so as to achieve the target glass composition Then, a glass raw material is prepared.
  • a glass raw material is continuously supplied to a melting furnace, heated to about 1400 to 1600 ° C. (for example, about 1500 ° C.) with heavy oil or the like, and melted to obtain molten glass.
  • the molten glass is clarified, it is formed into a glass plate having a predetermined thickness by a float method or the like.
  • the glass plate After slowly cooling the glass plate, it is cut into a predetermined size to obtain the colored glass plate of the present invention.
  • the cut glass plate may be tempered, processed into a laminated glass, or processed into a multilayer glass.
  • glass matrix composition raw material examples include those used as raw materials for ordinary soda lime silica glass such as silica sand, alumina source, magnesia source, calcia source, and alkali oxide source.
  • the iron source examples include iron powder, iron oxide powder, and bengara.
  • the titanium source examples include titanium oxide.
  • the vanadium source examples include vanadium oxide.
  • the oxidizing agent examples include sodium nitrate. The oxidizing agent is for promoting the oxidation of iron in the molten glass.
  • cerium source examples include cerium oxide.
  • the reducing agent include carbon and coke. The reducing agent is for suppressing oxidation of iron in the molten glass.
  • SnO 2 may be used as a reducing agent or a clarifying agent
  • SO 3 may be used as an oxidizing agent or a clarifying agent.
  • the total iron converted to Fe 2 O 3 is 0.3 to 1.2% in terms of oxide-based mass percentage, and the total converted to TiO 2 Titanium is 0.2 to 1.1%, all vanadium converted to V 2 O 5 is 0.02 to 0.3%, and all cerium converted to CeO 2 is 0.01 to 0.5%. Therefore, Te ⁇ 55% (4 mm thickness conversion), Tv ⁇ 70% (in terms of 4 mm thickness conversion) despite the fact that the content of expensive cerium is kept low and other coloring components (such as cobalt) are substantially not included. 4 mm thickness conversion) and Tuv ⁇ 12% (4 mm thickness conversion), and the transmitted light has a green color tone.
  • Examples 1 to 3 are examples, and example 4 is a comparative example.
  • the ultraviolet transmittance (Tuv) defined by ISO-9050 was determined in terms of 4 mm thickness.
  • Example 1 Each raw material so as to have the composition shown in Table 1 were mixed, further over Na 2 SO 4 were mixed so that the amounts shown in Table 1 converted to SO 3 as an oxidizing agent, to prepare a glass raw material.
  • the glass raw material was put in a crucible and heated to 1500 ° C. in an electric furnace to obtain molten glass.
  • Molten glass was poured onto a carbon plate and cooled. Both surfaces were polished to obtain a glass plate having a thickness of 4 mm.
  • permeability was measured for every 1 nm using the spectrophotometer (The Perkin Elmer company make, Lambda950), and Te, Tv, Tuv, and Dw were calculated
  • the colored glass plates of the present invention of Examples 1 to 3 transmit while satisfying Te ⁇ 55% (4 mm thickness conversion), Tv ⁇ 70% (4 mm thickness conversion) and Tuv ⁇ 12% (4 mm thickness conversion).
  • the light had a green color tone with a dominant wavelength in the range of 540 to 570 nm. Since the colored glass plate of Example 4 does not contain V 2 O 5 , the Tuv is high.
  • the colored glass plate of the present invention is useful as a glass plate for vehicles and buildings, and is particularly suitable as a glass plate for automobiles.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2012-015562 filed on Jan. 27, 2012 are incorporated herein by reference. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

 高価なセリウムの含有量を低く抑えているにも関わらず、低い日射透過率、高い可視光透過率および低い紫外線透過率を同時に満足しつつ透過光がグリーンの色調を有する着色ガラス板を提供する。 酸化物基準の質量百分率表示で、SiO:65~75%、Al:0~6%、MgO:0~6%、CaO:5~15%、Feに換算した全鉄:0.3~1.2%、TiOに換算した全チタン:0.2~1.1%、Vに換算した全バナジウム:0.02~0.3%、CeOに換算した全セリウム:0.01~0.5%、を含み、コバルト、クロムおよびマンガンを実質的に含まない着色ガラス板。

Description

着色ガラス板およびその製造方法
 本発明は、低い日射透過率、高い可視光透過率および低い紫外線透過率を同時に満足しつつ透過光がグリーンの色調を有する着色ガラス板およびその製造方法に関する。
 自動車用のガラス板としては、着色成分を含むことによって透過光がグリーンまたはブルーの色調を有する着色ガラス板(たとえば、熱線吸収ガラス板、紫外線吸収ガラス板)が知られている。
 着色ガラス板には、日射透過率が低いこと(たとえば、JIS R3106(1998)規定の日射透過率(以下、Teとも記す。)の4mm厚さ換算値が55%以下であること)が求められる。また、可視光透過率が高いこと(たとえば、JIS R3106(1998)規定の可視光透過率(A光源、2度視野)(以下、Tvとも記す。)の4mm厚さ換算値が70%以上であること)が求められる。また、紫外線透過率が低いこと(たとえば、ISO-9050規定の紫外線透過率(以下、Tuvとも記す。)の4mm厚さ換算値が12%以下であること)が求められる。
 また、着色ガラス板は、搭乗者がガラス板を通して景色を見た場合にその透過光の色調がより自然な色調であるグリーンの色調を有する(たとえば、JIS Z8701(1982)規定の透過光の主波長(以下、Dwとも記す。)が、540~570nmである)ガラス板が好まれる傾向にある。
 また、着色ガラス板には、ガラスの製造に用いる溶融窯における素地替え(すなわち、品種替え)の際の不純物の混入を抑える点およびコストの点から、着色成分の種類を極力減らすことや、着色成分の原料の単価が安いことが望まれている。
 透過光がグリーンの色調を有する着色ガラス板としては、たとえば、下記の(1)~(3)が提案されている。
 (1)ソーダライムシリカガラス母組成の100質量部に対し、
  Feに換算した全鉄  :0.5~2.0質量部、
  TiOに換算した全チタン :1.0質量部超3.0質量部以下、
  CoO      :0.003~0.02質量部、
  Se       :0~0.0008質量部、
  Crに換算した全クロム :0~0.05質量部、
  Vに換算した全バナジウム:0~0.5質量部、
  CeOに換算した全セリウム :0~0.5質量部、
  Feに換算した全鉄中のFeに換算した2価の鉄の質量割合が31~50%であるグリーンガラス。
 (2)ソーダライムシリカガラスから実質的になり、
 酸化物基準の質量百分率表示で、
  Feに換算した全鉄  :0.45~0.491%、
  CeOに換算した全セリウム :1.09~1.2%、
  TiOに換算した全チタン :0.3~0.39%、
  CoO      :0~0.0003%、
 を含み、
 Feに換算した全鉄中のFeに換算した2価の鉄の質量割合が30.5~32.0%である紫外線吸収グリーンガラス。
 (3)ソーダライムシリカガラスから実質的になり、
 酸化物基準の質量百分率表示で、
  Feに換算した全鉄  :0.52~0.63%、
  CeOに換算した全セリウム :0.9~2%、
  TiOに換算した全チタン :0.2~0.6%、
  CoO      :0~0.002%、
 を含み、
 Feに換算した全鉄中のFeに換算した2価の鉄の質量割合が31~38%である紫外線吸収グリーンガラス。
 しかし、(1)のグリーンガラスは、CoOの含有量が多いため、Tvが低く、Dwも短い(透過光が青みがかったグリーンである)という問題がある。一方、(2)、(3)の紫外線吸収グリーンガラスは、CoOの含有量が少なく、CeOに換算した全セリウムの含有量が多いため、Tvが高く、かつTuvは充分に低い。
 しかし、最近、セリウム原料の価格が高騰しているため、CeOに換算した全セリウムの含有量が多いグリーンガラスのコストが高くなっている。そのため、セリウムの含有量を低く抑えても、低い日射透過率、高い可視光透過率および低い紫外線透過率を同時に満足しつつ透過光がグリーンの色調を有する着色ガラス板が求められている。
日本特許第3256243号公報 日本特許第3900550号公報 日本特許第3190965号公報
 本発明は、高価なセリウムの含有量を低く抑えているにも関わらず、低い日射透過率、高い可視光透過率および低い紫外線透過率を同時に満足しつつ透過光がグリーンの色調を有する着色ガラス板を提供する。
 本発明の着色ガラス板は、酸化物基準の質量百分率表示で、
  SiO      :65~75%、
  Al     :0~6%、
  MgO      :0~6%、
  CaO      :5~15%、
  Feに換算した全鉄  :0.3~1.2%、
  TiOに換算した全チタン :0.2~1.1%、
  Vに換算した全バナジウム:0.02~0.3%、
  CeOに換算した全セリウム :0.01~0.5%、
 を含み、コバルト、クロムおよびマンガンを実質的に含まないことを特徴とする。
 本発明の着色ガラス板は、さらに、酸化物基準の質量百分率表示でNaOを5~18%を含むことが好ましい。
 本発明の着色ガラス板は、
 JIS R3106(1998)規定の日射透過率(Te)が、4mm厚さ換算値で55%以下であり、
 JIS R3106(1998)規定の可視光透過率(Tv)(A光源、2度視野)が、4mm厚さ換算値で70%以上であり、
 ISO-9050規定の紫外線透過率(Tuv)が、4mm厚さ換算値で12%以下であり、
 JIS Z8701(1982)規定の透過光の主波長(Dw)が、540~570nmであることが好ましい。
 本発明の着色ガラス板の製造方法は、ガラス原料を溶融し、成形するガラス板の製造において、成形後の該ガラス板の組成成分が、酸化物基準の質量百分率表示で、
  SiO      :65~75%、
  Al     :0~6%、
  MgO      :0~6%、
  CaO      :5~15%、
  Feに換算した全鉄  :0.3~1.2%、
  TiOに換算した全チタン :0.2~1.1%、
  Vに換算した全バナジウム:0.02~0.3%、
  CeOに換算した全セリウム :0.01~0.5%、
 を含み、コバルト、クロムおよびマンガンを実質的に含まない着色ガラス板を得ることを特徴とする。
 本発明の着色ガラス板の製造方法においては、前記ガラス板の組成成分として、さらに酸化物基準の質量百分率表示でNaOを5~18%を含むことが好ましい。
 本発明の着色ガラス板の製造方法においては、
 JIS R3106(1998)規定の日射透過率(Te)が、4mm厚さ換算値で55%以下であり、
 JIS R3106(1998)規定の可視光透過率(Tv)(A光源2度視野)が、4mm厚さ換算値で70%以上であり、
 ISO-9050規定の紫外線透過率(Tuv)が、4mm厚さ換算値で12%以下であり、
 JIS Z8701(1982)規定の透過光の主波長(Dw)が、540~570nmである着色ガラス板を得ることが好ましい。
 上記した数値範囲を示す「~」とは、その前後に記載された数値を下限値および上限値として含む意味で使用され、特段の定めがない限り、以下本明細書において「~」は、同様の意味をもって使用される。
 本発明の着色ガラス板は、高価なセリウムの含有量を低く抑えているにも関わらず、低い日射透過率、高い可視光透過率および低い紫外線透過率を同時に満足しつつ透過光がグリーンの色調を有する。
 本発明の着色ガラス板は、SiOを主成分とするものであり、さらにNaO、CaO等を含む、いわゆるソーダライムシリカガラスからなるものが好ましい。
 本発明の着色ガラス板は、下記の組成(I)を有する。本発明の着色ガラス板は、下記の組成(II)を有することが好ましく、下記の組成(III)を有することがより好ましく、また下記の組成(IV)を有することがさらに好ましい。
 (I)下記酸化物基準の質量百分率表示で、
  SiO      :65~75%、
  Al     :0~6%、
  MgO      :0~6%、
  CaO      :5~15%、
  Feに換算した全鉄  :0.3~1.2%、
  TiOに換算した全チタン :0.2~1.1%、
  Vに換算した全バナジウム:0.02~0.3%、
  CeOに換算した全セリウム :0.01~0.5%、
 を含み、
 コバルト、クロムおよびマンガンを実質的に含まない。
 (II)下記酸化物基準の質量百分率表示で、
  SiO      :65~75%、
  Al     :0~6%、
  MgO      :0~6%、
  CaO      :5~15%、
  NaO          :5~18%、
  Feに換算した全鉄  :0.3~1.2%、
  TiOに換算した全チタン :0.2~1.1%、
  Vに換算した全バナジウム:0.02~0.3%、
  CeOに換算した全セリウム :0.01~0.5%、
 を含み、
 コバルト、クロムおよびマンガンを実質的に含まない。
 (III)下記酸化物基準の質量百分率表示で、
  SiO      :68~73%、
  Al     :0.5~3.5%、
  MgO      :2~6%、
  CaO      :6~11%、
  NaO+KO    :10~18%、
  Feに換算した全鉄  :0.5~0.9%、
  TiOに換算した全チタン :0.5~1.0%、
  Vに換算した全バナジウム:0.05~0.20%、
  CeOに換算した全セリウム :0.05~0.30%、
 を含み、
 コバルト、クロムおよびマンガンを実質的に含まない。
 (IV)下記酸化物基準の質量百分率表示で、
  SiO      :70~72%、
  Al     :1.5~2.0%、
  MgO      :2.5~5%、
  CaO      :7~9%、
  NaO+KO    :11~16%、
  Feに換算した全鉄  :0.6~0.8%、
  TiOに換算した全チタン :0.7~0.9%、
  Vに換算した全バナジウム:0.06~0.09%、
  CeOに換算した全セリウム :0.08~0.20%、
 を含み、
 コバルト、クロムおよびマンガンを実質的に含まない。
 本発明の着色ガラス板は、セリウムの一部をバナジウムに置き換えることによって低いTuvを維持しつつ、鉄を含ませることによってTeを低くし、Feに換算した全鉄の含有量、TiOに換算した全チタンの含有量、Vに換算した全バナジウムの含有量およびCeOに換算した全セリウムの含有量を調整することによってTvを高くしつつDwを目的の540~570nmとしていることに特徴がある。
 Feに換算した全鉄の含有量は、当該酸化物基準の質量百分率表示で、0.3~1.2%である。Feに換算した全鉄の含有量が0.3%以上であれば、Teを低く抑えることができる。Feに換算した全鉄の含有量の増加に伴いTeが低くなるがTvも低下する。Feに換算した全鉄の含有量を1.2%以下にすれば、Tvの低下を防ぎ、Tvを70%(4mm厚さ換算)以上にできる。Feに換算した全鉄の含有量は、酸化物基準の質量百分率表示で、0.5~0.9%が好ましく、0.6~0.8%がより好ましい。
 TiOに換算した全チタンの含有量は、当該酸化物基準の質量百分率表示で、0.2~1.1%である。TiOの含有量が0.2%以上であれば、Dwを540nm以上に調整できる。また、Tuvを低く抑えることができる。TiOの含有量が1.1%以下であれば、Dwを570nm以下に調整できる。また、Tvを高くできる。TiOに換算した全チタンの含有量は、酸化物基準の質量百分率表示で、0.5~1.0%が好ましく、0.7~0.9%がより好ましい。
 Vに換算した全バナジウムの含有量は、当該酸化物基準の質量百分率表示で、0.02~0.3%である。Vの含有量が0.02%以上であれば、Tuvを低く抑えることができる。Vの含有量が0.3%以下であれば、Tvを高くできる。Vに換算した全バナジウムの含有量は、酸化物基準の質量百分率表示で、0.05~0.20%が好ましく、0.06~0.09%がより好ましい。
 CeOに換算した全セリウムの含有量は、当該酸化物基準の質量百分率表示で、0.01~0.5%である。CeOの含有量が0.01%以上であれば、Tuvを低く抑えることができる。CeOの含有量が0.5%以下であれば、着色ガラス板のコストが抑えられ、また、Tvを高くできる。CeOに換算した全セリウムの含有量は、酸化物基準の質量百分率表示で、0.05~0.30%が好ましく、0.08~0.20%がより好ましく、0.09~0.13%がさらに好ましい。
 本発明の着色ガラス板は、従来において代表的な着色成分であるコバルト、クロムおよびマンガンを実質的に含まない。コバルト、クロムおよびマンガンを実質的に含まないとは、コバルト、クロムおよびマンガンをまったく含まない、または、コバルト、クロムおよびマンガンを製造上不可避的に混入した不純物として含んでいてもよいことを意味する。コバルト、クロムおよびマンガンを実質的に含まなければ、Tvを高くでき、素地替えの際の不純物の混入が抑えられ、また、着色ガラス板のコストも抑えられる。上記した不純物の含有量は、使用されるガラス原料によって異なるが、自動車用、あるいは建築用のガラス板の場合には、質量百分率表示で、0.1%未満とすることが好ましく、0.05%未満とすることがより好ましく、0.01%未満とすることがさらに好ましい。
 ここで、素地替えの際の不純物の混入とは、下記のことを意味する。
 ガラスは製造中に別のガラス組成を有するガラス品種へ切換え(すなわち、素地替え)を行うことがある。素地替えの際の不純物の混入とは、別のガラス品種への切換えの際に、切換え前のガラスの成分が切換え後のガラス中に混入することを意味する。コバルト、クロムおよびマンガン等の不純物の混入が起きると、切換え後ガラスの色調は大きく影響を受ける。
 SiOは、ガラスの主成分である。
 SiOの含有量は、酸化物基準の質量百分率表示で、65~75%である。SiOの含有量が65%以上であれば、耐候性が良好となる。SiOの含有量が75%以下であれば、失透しにくくなる。SiOの含有量は、酸化物基準の質量百分率表示で、68~73%が好ましく、70~72%がより好ましい。
 Alは、耐候性を向上させる成分である。
 Alの含有量は、酸化物基準の質量百分率表示で、0~6%である。Alの含有量が6%以下であれば、溶融性が良好となる。Alの含有量は、酸化物基準の質量百分率表示で、0.5~3.5%が好ましく、1.5~2.0%がより好ましい。
 MgOは、ガラス原料の溶融を促進し、耐候性を向上させる成分である。
 MgOの含有量は、酸化物基準の質量百分率表示で、0~6%である。MgOの含有量が6%以下であれば、失透しにくくなる。
 MgOの含有量は、ガラス母組成原料が入手しやすく、着色ガラス板のコストが低く抑えられる点から、酸化物基準の質量百分率表示で、2~6%が好ましく、2.5~5%がより好ましく、3~4%がさらに好ましい。
 一方、MgOの含有量が2%未満の着色ガラス板は、MgOの含有量が2%以上の着色ガラス板と同一のTvで比較した場合、Teが低い。したがって、MgOの含有量が2%未満であれば、可視光透過性を損なわずに熱線吸収性を容易に向上させることができる。MgOの含有量は、着色成分の添加によるTvの低下を抑えつつ、Teを充分に低くできる点から、酸化物基準の質量百分率表示で、0%以上2%未満が好ましく、0~1.0%がより好ましく、0~0.5%がさらに好ましい。
 CaOはガラス原料の溶融を促進し、耐候性を向上させる成分である。
 CaOの含有量は、酸化物基準の質量百分率表示で、5~15%である。CaOの含有量が5%以上であれば、溶融性、耐候性が良好となる。CaOの含有量が15%以下であれば、失透しにくくなる。CaOの含有量は、酸化物基準の質量百分率表示で、6~11%が好ましく、7~9%がより好ましい。
 本発明の着色ガラス板は、ガラス原料の溶融を促進するために、SrOを含んでもよい。SrOの含有量は、酸化物基準の質量百分率表示で、0~5%が好ましく、0~3%がより好ましい。SrOの含有量が5%以下であれば、ガラス原料の溶融を充分に促進できる。
 本発明の着色ガラス板は、ガラス原料の溶融を促進するために、BaOを含んでもよい。BaOの含有量は、酸化物基準の質量百分率表示で、0~5%が好ましく、0~3%がより好ましい。BaOの含有量が5%以下であれば、ガラス原料の溶融を充分に促進できる。
 本発明の着色ガラス板は、ガラス原料の溶融を促進するために、NaOおよびKO、またはNaOを含んでいることが好ましい。NaOとKOの合計の含有量は、酸化物基準の質量百分率表示で、10~18%が好ましく、11~16%がより好ましく、12~14%がさらに好ましい。NaO+KOの含有量が10%以上であれば、溶融性が良好となる。NaO+KOの含有量が18%以下であれば、耐候性が良好となる。
 NaOの含有量は、酸化物基準の質量百分率表示で、5~18%が好ましく、10~16%がより好ましく、さらには12~15%が好ましい。
 KOの含有量は、酸化物基準の質量百分率表示で、0~5%が好ましく、0.2~1%がより好ましく、さらには0.2~0.4%が好ましい。
 本発明の着色ガラス板は、清澄剤として用いたSOを含んでいてもよい。SOの含有量は、酸化物基準の質量百分率表示で、0~1%が好ましく、0.01~0.5%がより好ましく、0.05~0.2%がさらに好ましい。SOの含有量が1%以下であれば、SOのガス成分が気泡としてガラス中に残りにくい。
 本発明の着色ガラス板は、清澄剤として用いたSnOを含んでいてもよい。SnOの含有量は、酸化物基準の質量百分率表示で、0~0.5%が好ましく、0~0.3%がより好ましく、0~0.1%がさらに好ましい。SnOの含有量が0.5%以下であれば、SnOの揮散が少なく、コストを低く抑えることができる。
 本発明の着色ガラス板の比重は、2.49~2.55が好ましく、2.50~2.52がより好ましい。本発明の着色ガラス板の比重を、通常のソーダライムシリカガラスと同等にすることによって、製造時の組成変更(すなわち、素地替え)の効率を向上できる。
 本発明の着色ガラス板の比重は、ガラス母組成を調整することによって調整できる。前記比重にするためには、SiO/(MgO+CaO+SrO+BaO)の質量比を、5.0~8.0にすることが好ましく、5.5~6.5にすることがより好ましい。なお、(MgO+CaO+SrO+BaO)は、含有されるMgO、CaO、SrOおよびBaOの合計の含有量を示す。
 本発明の着色ガラス板のTe(4mm厚さ換算)は、55%以下であり、52%以下が好ましく、50%以下がより好ましい。Teは、JIS R3106(1998)(以下、単にJIS R3106と記す。)にしたがい分光光度計によって透過率を測定し算出された日射透過率である。
 本発明の着色ガラス板のTv(4mm厚さ換算)は、70%以上であり、71.5%以上が好ましい。Tvは、JIS R3106にしたがい分光光度計によって透過率を測定し算出された可視光透過率である。係数は標準のA光源,2度視野の値を用いる。
 本発明の着色ガラス板のTuv(4mm厚さ換算)は、12%以下であり、10%以下が好ましい。Tuvは、ISO-9050にしたがい分光光度計によって透過率を測定し算出された紫外線透過率である。
 本発明の着色ガラス板の透過光の主波長(Dw)は、540~570nmであり、550~560nmが好ましい。主波長が該範囲であれば、透過光が目的とするグリーンの色調を有する着色ガラス板が得られる。主波長は、JIS Z8701(1982)にしたがい分光光度計によって透過率を測定し算出されたものである。係数は標準の光C,2度視野の値を用いる。
 本発明の着色ガラス板は、車両用、建築用のいずれにも用いることができ、特に自動車用のフロントガラスやサイドガラスとして好適である。自動車用の窓ガラスとして用いる場合は必要に応じて、複数のガラス板を中間膜で挟んだ合せガラス、平面状のガラスを曲面に加工したガラス、強化処理をしたガラスとして用いる。また、建築用の複層ガラスとして用いる場合、2枚の本発明の着色ガラス板からなる複層ガラス、または本発明の着色ガラス板と他のガラス板との複層ガラスとして用いる。
 本発明の着色ガラス板は、たとえば、下記の工程(i)~(iv)を順に経て、必要に応じてさらに工程(v)を経て、製造される。
 (i)目標とするガラス組成になるように、珪砂等のガラス母組成原料、鉄源、チタン源、バナジウム源、セリウム源等の着色成分原料、酸化剤、還元剤、清澄剤等を適宜混合し、ガラス原料を調製する。
 (ii)ガラス原料を連続的に溶融窯に供給し、重油等によって約1400~1600℃(たとえば約1500℃)に加熱し溶融させて溶融ガラスとする。
 (iii)溶融ガラスを清澄した後、フロート法等によって所定の厚さのガラス板に成形する。
 (iv)ガラス板を徐冷した後、所定の大きさに切断し、本発明の着色ガラス板とする。
 (v)必要に応じて、切断したガラス板を強化処理してもよく、合せガラスに加工してもよく、複層ガラスに加工してもよい。
 ガラス母組成原料としては、珪砂、アルミナ源、マグネシア源、カルシア源、アルカリ酸化物源等の通常のソーダライムシリカガラスの原料として用いられているものが挙げられる。
 鉄源としては、鉄粉、酸化鉄粉、ベンガラ等が挙げられる。
 チタン源としては、酸化チタン等が挙げられる。
 バナジウム源としては、酸化バナジウム等が挙げられる。
 酸化剤としては、硝酸ナトリウム等が挙げられる。酸化剤は、溶融ガラス中の鉄の酸化を促進するためのものである。
 セリウム源としては、酸化セリウム等が挙げられる。
 還元剤としては、炭素、コークス等が挙げられる。還元剤は、溶融ガラス中の鉄の酸化を抑制するためのものである。
 この他に、還元剤や清澄剤としてSnOを用いてもよく、酸化剤や清澄剤としてSOを用いてもよい。
 以上説明した本発明の着色ガラス板にあっては、酸化物基準の質量百分率表示で、Feに換算した全鉄が0.3~1.2%であり、TiOに換算した全チタンが0.2~1.1%であり、Vに換算した全バナジウムが0.02~0.3%であり、CeOに換算した全セリウムが0.01~0.5%であるため、高価なセリウムの含有量を低く抑え、かつ他の着色成分(コバルト等)を実質的に含まないにも関わらず、Te≦55%(4mm厚さ換算)、Tv≧70%(4mm厚さ換算)、およびTuv≦12%(4mm厚さ換算)を満足しつつ透過光がグリーンの色調を有する。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例に限定されない。
 例1~3は実施例であり、例4は比較例である。
(Te)
 得られたガラス板について、JIS R3106規定の日射透過率(Te)を4mm厚さ換算値で求めた。
(Tv)
 得られたガラス板について、JIS R3106規定の可視光透過率(Tv)(A光源、2度視野)を4mm厚さ換算値で求めた。
(Tuv)
 得られたガラス板について、ISO-9050規定の紫外線透過率(Tuv)を4mm厚さ換算値で求めた。
(Dw)
 得られたガラス板について、JIS Z8701(1982)規定の透過光の主波長(Dw)を求めた。
〔例1~4〕
 表1に示す組成となるように各原料を混合し、さらに酸化剤としてNaSOをSO換算で表1に示す量となるように混合し、ガラス原料を調製した。ガラス原料をるつぼに入れ、電気炉中で1500℃に加熱し、溶融ガラスとした。溶融ガラスをカーボン板上に流し出し、冷却した。両面を研磨し、厚さ4mmのガラス板を得た。得られたガラス板について、分光光度計(Perkin Elmer社製、Lambda950)を用いて1nmごとに透過率を測定し、Te、Tv、Tuv、Dwを求めた。結果を表1に示す。
 

Figure JPOXMLDOC01-appb-T000001
 例1~3の本発明の着色ガラス板は、Te≦55%(4mm厚さ換算)、Tv≧70%(4mm厚さ換算)およびTuv≦12%(4mm厚さ換算)を満足しつつ透過光は、その主波長が540~570nmの範囲にあり、グリーンの色調を有していた。
 例4の着色ガラス板は、Vを含有していないため、Tuvが高い。
 本発明の着色ガラス板は、車両用、建築用のガラス板として有用であり、特に自動車用のガラス板として好適である。
 なお、2012年1月27日に出願された日本特許出願2012-015562号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。

Claims (6)

  1.  酸化物基準の質量百分率表示で、
      SiO      :65~75%、
      Al     :0~6%、
      MgO      :0~6%、
      CaO      :5~15%、
      Feに換算した全鉄  :0.3~1.2%、
      TiOに換算した全チタン :0.2~1.1%、
      Vに換算した全バナジウム:0.02~0.3%、
      CeOに換算した全セリウム :0.01~0.5%、
     を含み、
     コバルト、クロムおよびマンガンを実質的に含まない、着色ガラス板。
  2.  前記着色ガラス板は、さらに酸化物基準の質量百分率表示でNaOを5~18%を含む、請求項1に記載の着色ガラス板。
  3.  JIS R3106(1998)規定の日射透過率が、4mm厚さ換算値で55%以下であり、
     JIS R3106(1998)規定の可視光透過率(A光源、2度視野)が、4mm厚さ換算値で70%以上であり、
     ISO-9050規定の紫外線透過率が、4mm厚さ換算値で12%以下であり、
     JIS Z8701(1982)規定の透過光の主波長が、540~570nmである、請求項1または請求項2に記載の着色ガラス板。
  4.  ガラス原料を溶融し、成形するガラス板の製造において、
     成形後の該ガラス板の組成成分が、酸化物基準の質量百分率表示で、
      SiO      :65~75%、
      Al     :0~6%、
      MgO      :0~6%、
      CaO      :5~15%、
      Feに換算した全鉄  :0.3~1.2%、
      TiOに換算した全チタン :0.2~1.1%、
      Vに換算した全バナジウム:0.02~0.3%、
      CeOに換算した全セリウム :0.01~0.5%、
     を含み、
     コバルト、クロムおよびマンガンを実質的に含まない着色ガラス板を得る、着色ガラス板の製造方法。
  5.  前記ガラス板は、その組成成分として、さらに酸化物基準の質量百分率表示でNaOを5~18%を含む、請求項4に記載の着色ガラス板の製造方法。
  6.  JIS R3106(1998)規定の日射透過率が、4mm厚さ換算値で55%以下であり、
     JIS R3106(1998)規定の可視光透過率(A光源、2度視野)が、4mm厚さ換算値で70%以上であり、
     ISO-9050規定の紫外線透過率が、4mm厚さ換算値で12%以下であり、
     JIS Z8701(1982)規定の透過光の主波長が、540~570nmである着色ガラス板を得る、請求項4または請求項5に記載の着色ガラス板の製造方法。
PCT/JP2013/051659 2012-01-27 2013-01-25 着色ガラス板およびその製造方法 WO2013111882A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013555334A JP5999112B2 (ja) 2012-01-27 2013-01-25 着色ガラス板およびその製造方法
CN201380006735.9A CN104080750A (zh) 2012-01-27 2013-01-25 着色玻璃板及其制造方法
US14/444,362 US9206073B2 (en) 2012-01-27 2014-07-28 Colored glass plate and method for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-015562 2012-01-27
JP2012015562 2012-01-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/444,362 Continuation US9206073B2 (en) 2012-01-27 2014-07-28 Colored glass plate and method for its production

Publications (1)

Publication Number Publication Date
WO2013111882A1 true WO2013111882A1 (ja) 2013-08-01

Family

ID=48873593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051659 WO2013111882A1 (ja) 2012-01-27 2013-01-25 着色ガラス板およびその製造方法

Country Status (4)

Country Link
US (1) US9206073B2 (ja)
JP (1) JP5999112B2 (ja)
CN (1) CN104080750A (ja)
WO (1) WO2013111882A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999110B2 (ja) * 2012-01-27 2016-09-28 旭硝子株式会社 着色ガラス板およびその製造方法
CN104080748A (zh) * 2012-01-27 2014-10-01 旭硝子株式会社 着色玻璃板及其制造方法
WO2018022493A1 (en) * 2016-07-25 2018-02-01 Graphic Packaging International, Inc. Dispensing carton

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656467A (ja) * 1992-08-07 1994-03-01 Nippon Electric Glass Co Ltd 紫外線吸収性ガラス
JPH09328331A (ja) * 1996-04-02 1997-12-22 Asahi Glass Co Ltd 紫外線吸収着色ガラス
JPH11217234A (ja) * 1998-01-30 1999-08-10 Asahi Glass Co Ltd 濃グレー色ガラス
JP2000103639A (ja) * 1998-07-30 2000-04-11 Central Glass Co Ltd 紫外線吸収ガラス
JP2006089342A (ja) * 2004-09-24 2006-04-06 Asahi Techno Glass Corp 蛍光ランプ用ガラス

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240886A (en) * 1990-07-30 1993-08-31 Ppg Industries, Inc. Ultraviolet absorbing, green tinted glass
AU696443B2 (en) 1994-10-26 1998-09-10 Asahi Glass Company Limited Glass having low solar radiation and ultraviolet ray transmittance
JP3256243B2 (ja) 1995-11-10 2002-02-12 旭硝子株式会社 濃グリーン色ガラス
US5747398A (en) 1995-12-11 1998-05-05 Libbey-Owens-Ford Co. Neutral colored glass compositions
US5908702A (en) * 1996-04-02 1999-06-01 Asahi Glass Company Ltd. Ultraviolet ray absorbing colored glass
JP3900550B2 (ja) 1996-04-26 2007-04-04 旭硝子株式会社 紫外線吸収グリーンガラス
FR2774679B1 (fr) * 1998-02-11 2000-04-14 Saint Gobain Vitrage Compositions de verre de type silico-sodo-calcique
BE1012997A5 (fr) 1998-06-30 2001-07-03 Glaverbel Verre sodo-calcique vert.
JP2000103640A (ja) * 1998-09-30 2000-04-11 Central Glass Co Ltd 可視光透過率の高い紫外線吸収ガラス
JP4209544B2 (ja) * 1999-05-21 2009-01-14 日本板硝子株式会社 着色ガラス
US6624102B2 (en) * 2000-09-18 2003-09-23 Nippon Sheet Glass Co., Ltd. Ultraviolet and infrared radiation absorbing green glass
FR2826649B1 (fr) * 2001-07-02 2003-09-19 Saint Gobain Composition de verre gris destinee a la fabrication de vitrage
FR2837817B1 (fr) * 2002-03-27 2005-02-11 Saint Gobain Composition de verre destinee a la fabrication de vitrage
US7560404B2 (en) * 2005-09-08 2009-07-14 Ppg Industries Ohio, Inc. UV absorbing gray glass composition
US7666806B2 (en) * 2005-11-02 2010-02-23 Ppg Industries Ohio, Inc. Gray glass composition
JP5853700B2 (ja) 2009-10-22 2016-02-09 旭硝子株式会社 熱線吸収ガラス板およびその製造方法
KR20140009219A (ko) 2011-01-25 2014-01-22 아사히 가라스 가부시키가이샤 열선 흡수 유리판 및 그 제조 방법
CN104080748A (zh) * 2012-01-27 2014-10-01 旭硝子株式会社 着色玻璃板及其制造方法
JP5999110B2 (ja) * 2012-01-27 2016-09-28 旭硝子株式会社 着色ガラス板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656467A (ja) * 1992-08-07 1994-03-01 Nippon Electric Glass Co Ltd 紫外線吸収性ガラス
JPH09328331A (ja) * 1996-04-02 1997-12-22 Asahi Glass Co Ltd 紫外線吸収着色ガラス
JPH11217234A (ja) * 1998-01-30 1999-08-10 Asahi Glass Co Ltd 濃グレー色ガラス
JP2000103639A (ja) * 1998-07-30 2000-04-11 Central Glass Co Ltd 紫外線吸収ガラス
JP2006089342A (ja) * 2004-09-24 2006-04-06 Asahi Techno Glass Corp 蛍光ランプ用ガラス

Also Published As

Publication number Publication date
US20150008378A1 (en) 2015-01-08
US9206073B2 (en) 2015-12-08
CN104080750A (zh) 2014-10-01
JPWO2013111882A1 (ja) 2015-05-11
JP5999112B2 (ja) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5867415B2 (ja) 熱線吸収ガラス板およびその製造方法
JP5853700B2 (ja) 熱線吸収ガラス板およびその製造方法
WO2016171141A1 (ja) 熱線および紫外線吸収ガラス板、ならびにその製造方法
JP5999111B2 (ja) 着色ガラス板およびその製造方法
CN106458710B (zh) 热线吸收玻璃板及其制造方法
CN108025954B (zh) 紫外线吸收性玻璃物品
JP5999112B2 (ja) 着色ガラス板およびその製造方法
JP5999110B2 (ja) 着色ガラス板およびその製造方法
WO2017065160A1 (ja) 紫外線吸収性ガラス物品
WO2016039251A1 (ja) 紫外線吸収性ガラス物品
JP6561983B2 (ja) 熱線吸収ガラス板およびその製造方法
WO2015163412A1 (ja) 熱線吸収ガラス板およびその製造方法
JP6589860B2 (ja) 熱線吸収ガラス板およびその製造方法
WO2016039252A1 (ja) 紫外線吸収性ガラス物品
JP7127654B2 (ja) ガラス板
WO2018117193A1 (ja) 紫外線吸収性ガラス
JP2018043926A (ja) 紫外線吸収性ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741643

Country of ref document: EP

Kind code of ref document: A1