WO2013111866A1 - ハイブリッド駆動装置 - Google Patents

ハイブリッド駆動装置 Download PDF

Info

Publication number
WO2013111866A1
WO2013111866A1 PCT/JP2013/051617 JP2013051617W WO2013111866A1 WO 2013111866 A1 WO2013111866 A1 WO 2013111866A1 JP 2013051617 W JP2013051617 W JP 2013051617W WO 2013111866 A1 WO2013111866 A1 WO 2013111866A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
motor
control
tmg
inertia
Prior art date
Application number
PCT/JP2013/051617
Other languages
English (en)
French (fr)
Inventor
耕平 津田
田島 陽一
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112013000244.2T priority Critical patent/DE112013000244T5/de
Priority to US14/359,211 priority patent/US8942879B2/en
Priority to CN201380003993.1A priority patent/CN103958308B/zh
Publication of WO2013111866A1 publication Critical patent/WO2013111866A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • B60L2250/28Accelerator pedal thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a hybrid drive device mounted on a vehicle or the like, and more particularly, to a structure in which a rotation of an input member to which an internal combustion engine and a motor are drivingly connected is shifted by a stepped transmission mechanism, and an inertia shuttle that is being shifted
  • the present invention relates to a hybrid drive device that generates at least part of the motor torque.
  • Patent Document 1 discloses a parallel hybrid drive device having a stepped speed change mechanism, in which an inertia system of an input system member (a member connected to an input shaft) that is required for shifting in the stepped speed change mechanism is a motor. It is proposed that the speed change control is performed so that the rotation speed of the input shaft becomes the set target rotation speed.
  • the motor maximum torque Tmg-max (motor performance limit) decreases, so that the motor torque Tmg is in the inertia phase as indicated by an arrow X. Down slope.
  • the input torque Tin which is the sum of the engine torque Te and the motor torque Tmg, decreases, so that the release-side friction element torque TA also has a downward slope as indicated by the arrow Y, that is, the friction engagement on the release side.
  • the engagement state of the elements is further shifted to the release side, and the torque transmitted to the output side (wheel side) is reduced so that the inertia torque required by the input system member is generated.
  • the output torque Tout also has a downward slope, and the driving force tends to decrease during the shift despite the power-on downshift that the driver requests an increase in the driving force. There is a problem of causing.
  • the motor torque Tmg has a downward slope as indicated by an arrow X, and in order to secure an inertia torque required by the input system member, the release side frictional element torque TA is also indicated by an arrow Y.
  • the engagement hydraulic pressure of the frictional engagement element on the disengagement side is electronically controlled so as to follow the fluctuation of the motor torque Tmg, but the hydraulic response is dull compared to the electronic control Due to these reasons, it is difficult to control the release side frictional element torque TA with good response.
  • the present invention is one in which at least a part of the inertia torque during the shift is generated by the motor torque, preventing the change in the gradient of the input rotation speed change during the shift, and the driving force of the driver during the shift. It is an object of the present invention to provide a hybrid drive device that can output a driving force according to demand and can prevent a sense of incongruity during shifting.
  • the hybrid drive device (5) of the present invention includes an input member (15) that is drivingly connected to the internal combustion engine (2), A motor (3) drivingly connected to the input member (15); A stepped transmission mechanism capable of shifting the rotation of the input member (15) by changing the engagement state of the friction engagement elements (C-1, C-2, C-3, B-1, B-2). (7) and At least the engagement state of the frictional engagement element is controlled during a shift, and an input system member (for example, 2a, 10, K0, 3a, 15, etc.) that is drivingly connected to the input member (15) during the shift.
  • an input system member for example, 2a, 10, K0, 3a, 15, etc.
  • a control device (20) capable of controlling at least a part of the inertia torque (Ti) necessary for the rotation change to be generated by a motor torque (Tmg) output by the motor (3),
  • the control device (20) sets the motor torque (Tmg) in the inertia phase during the shift as the absolute value of the performance limit torque (Tmg-max, Tmg-min) of the motor before and after the shift.
  • a target input rotational speed (Nin-target) of the input member (15) during the speed change is set, and the input system member in the inertia phase is limited to a set value (Tmg-lim) set to a value less than
  • Tmg-lim set to a value less than
  • the engagement state of the frictional engagement element that controls the change in rotation is controlled such that an inertia torque (Ti) calculated from the target input rotational speed (Nin-target) is generated in the input system member.
  • the motor torque in the inertia phase during the shift is limited to a set value that is set to a value smaller than the absolute value of the motor performance limit torque before and after the shift. It is possible to prevent the motor torque from fluctuating due to torque fluctuation.
  • the engagement state of the friction engagement element that controls the rotation change of the input system member in the inertia phase is controlled so that the inertia torque calculated from the target input rotational speed is generated in the input system member, the input system member It is possible to stably control the engagement state of the friction engagement element that controls the rotational change of the input member so that the rotation speed of the input member becomes the target input rotation speed. Therefore, it is possible to prevent the gradient of the input rotation speed change during the shift from fluctuating, and it is possible to prevent the occurrence of uncomfortable feeling during the shift.
  • the engagement state of the frictional engagement element that controls the rotation change of the input system member that is, the fluctuation gradient of the torque transmitted by the frictional engagement element is determined by the output torque to the wheel according to the driver's driving force request. It is possible to set the gradient to be generated. As a result, it is possible to output a driving force in response to a driver's request for driving force during a shift, and to prevent a sense of incongruity during the shift.
  • the control device (20) controls the inertia torque (Ti) at the end of the shift.
  • the smoothing control is executed to moderate the fluctuation, and the smoothing torque sharing rate between the motor (3) and the friction engagement element in the smoothing control is set, and the smoothing torque sharing rate is set based on the smoothing torque sharing rate.
  • the motor (3) and the friction engagement element are controlled so as to distribute the torque shared by the smoothing control.
  • the smoothing torque sharing ratio between the motor and the friction engagement element in the smoothing control is set, and the torque shared by the smoothing control is distributed between the motor and the friction engagement element based on the smoothing torque sharing ratio. Therefore, it is not necessary to change the torque of the internal combustion engine in the smoothing control, and the engine blow and the input rotation speed that may occur when the smoothing control is performed using the internal combustion engine. It is possible to prevent variations such as a drop in the height.
  • the smoothing torque sharing ratio between the motor and the friction engagement element it is possible to prevent the motor torque exceeding the motor performance limit torque from being required, and excessive torque is applied to either one. Good smoothing control can be realized without being required.
  • the control device (20) determines the smoothing torque sharing rate as the inertia phase. Is set based on an engagement state of a friction engagement element that controls a rotation change of the input system member.
  • the smoothing torque sharing ratio is set based on the engagement state of the friction engagement element that controls the rotation change of the input system member in the inertia phase, so that it exceeds the limit of the torque that can be generated by the friction engagement element. This can be prevented and good annealing control can be realized.
  • the control device (20) is in the smoothing control, and the input member Based on the actual rotational speed (Nin) of (15), the engagement state of the motor (3) and the friction engagement element is feedback-controlled with respect to the target input rotational speed (Nin-target), and the feedback control
  • the feedback gain of the motor and the feedback gain of the friction engagement element are set according to the smoothing torque sharing rate.
  • the feedback gain of the motor in the feedback control of the smoothing control and the feedback gain of the friction engagement element are set according to the smoothing torque sharing rate, so that hunting is prevented in the feedback control and the control is diverged. Can be prevented, and good feedback control can be performed.
  • the control device (20) The start timing (for example, t13, t23, t33, t43) of the feedback control of the motor (3) and the start timing (for example, t12, t22, t32, t42) of the feedback control of the engagement state of the friction engagement element are set. It is characterized by doing.
  • the start timing of the feedback control of the motor and the start timing of the feedback control of the engagement state of the friction engagement element are respectively set according to the smoothing torque sharing ratio, and in particular, the hydraulic response of the friction engagement element In consideration of motor control with quicker responsiveness, good feedback control can be performed.
  • the engagement table of a stepped transmission mechanism. The flowchart which shows the inertia calculation control at the time of a power ON downshift.
  • the flowchart which shows annealing control. The time chart which shows each value in a power ON downshift.
  • a hybrid vehicle equipped with a hybrid drive device according to the present invention will be described with reference to FIG.
  • the hybrid drive device is suitable for being mounted on an FF (front engine / front drive) type vehicle, and the left-right direction in the figure corresponds to the left-right direction in an actual vehicle-mounted state.
  • FF front engine / front drive
  • the drive source side of the engine or the like is referred to as “front side”
  • the side opposite to the drive source is referred to as “rear side”.
  • the drive connection refers to a state in which the rotating elements are connected so as to be able to transmit a driving force, and the rotating elements are connected so as to rotate integrally, or the rotating elements are connected via a clutch or the like.
  • it is used as a concept including a state where the driving force is connected so as to be transmitted.
  • the hybrid vehicle 1 has a motor / generator (motor) 3 in addition to the internal combustion engine 2 as a drive source, and a hybrid drive device 5 constituting a power train of the hybrid vehicle 1. Is arranged on a transmission path 30 between the internal combustion engine 2 and the wheel 6, and is disposed between the stepped transmission mechanism 7 and the internal combustion engine 2. Details of the power transmission device 10 that can drive and connect the input shaft (input member) 15 of the mechanism 7 to transmit power, the motor 3 that is drivingly connected to the input shaft 15, and the stepped transmission mechanism 7 will be described later.
  • Control unit is configured to include the (ECU) 20, a.
  • the control unit 20 includes an input shaft rotation sensor 80 that detects the rotation speed (input rotation speed Nin) of the input shaft 15, and more specifically, the rotation speed (output rotation speed Nout) of a counter gear 24 or a counter shaft 28 described later.
  • An output shaft rotation (vehicle speed) sensor 81 to detect and an accelerator opening sensor 82 to detect an accelerator opening which is a depression amount of an accelerator pedal (not shown) are connected.
  • the control unit 20 stores and stores a shift map (not shown), and makes a shift determination by referring to the shift map based on the output rotational speed Nout (that is, the vehicle speed) and the accelerator opening. Shift control (power ON downshift, power OFF upshift, power ON upshift, power OFF downshift) of the stepped transmission mechanism 7 described later is executed.
  • the power transmission device 10 includes a damper 12 connected to the crankshaft 2a of the internal combustion engine 2 via a drive plate 11, a connection shaft 13 to which the damper 12 is connected, and the connection shaft 13 and a stepped gear shift. And a clutch K0 for connecting and disconnecting power transmission to and from the input shaft 15 of the mechanism 7.
  • the clutch K0 is composed of, for example, a multi-plate clutch, and includes an inner friction plate 17 that is drivingly connected to the connection shaft 13 and an outer friction plate 19 that is drivingly connected to the input shaft 15. That is, the clutch K0 has an inner friction plate 17 that is drivingly connected to the transmission path 31 on the engine side of the transmission path 30 and an outer friction plate 19 that is drivingly connected to the transmission path 32 on the wheel side.
  • the motor 3 is disposed on the outer diameter side of the clutch K0 so as to overlap in the axial position.
  • the motor 3 includes a rotor 3a that is drivingly connected to the input shaft 15, and a diameter thereof.
  • the stator 3b is arranged so as to face the outside in the direction.
  • the hybrid drive device 5 controls the hydraulic control device 21 by the control unit (ECU) 20 to engage the clutch K0 when the vehicle is driven mainly using the driving force of the internal combustion engine 2, and the wheels During EV traveling that travels only with the driving force of the motor 3 that is drivingly connected to the transmission path 32 on the side, the clutch K0 is released, and the transmission path 31 on the engine side and the transmission path 32 on the wheel side are disconnected, that is, the internal combustion engine. 2 is separated.
  • ECU control unit
  • the stepped transmission mechanism 7 includes a planetary gear SP and a planetary gear unit PU on the input shaft 15.
  • the planetary gear SP is a so-called single pinion planetary gear that includes a sun gear S1, a carrier CR1, and a ring gear R1, and has a pinion P1 that meshes with the sun gear S1 and the ring gear R1.
  • the planetary gear unit PU has a sun gear S2, a sun gear S3, a carrier CR2, and a ring gear R2 as four rotating elements.
  • the long gearion PL meshed with the sun gear S2 and the ring gear R2 and the sun gear S3.
  • This is a so-called Ravigneaux type planetary gear that has meshing short pinions PS that mesh with each other.
  • the sun gear S1 of the planetary gear SP is fixed to the case 23, and the ring gear R1 is drivingly connected to the input shaft 15 so as to rotate the same as the input shaft 15 (hereinafter referred to as “input rotation”). It is said.) Further, the carrier CR1 is decelerated by reducing the input rotation by the fixed sun gear S1 and the ring gear R1 that rotates, and is connected to the clutch C-1 and the clutch C-3.
  • the sun gear S2 of the planetary gear unit PU is connected to a brake B-1 comprising a band brake so as to be fixed to the case 23, and is connected to the clutch C-3 via the clutch C-3.
  • the sun gear S3 is connected to the clutch C-1, so that the decelerated rotation of the carrier CR1 can be input.
  • the carrier CR2 is connected to a clutch C-2 to which the rotation of the input shaft 15 is input, and the input rotation can be freely input through the clutch C-2, and the one-way clutch F-1 and Connected to the brake B-2, rotation in one direction with respect to the case 23 is restricted via the one-way clutch F-1, and rotation can be fixed via the brake B-2.
  • the ring gear R2 is connected to a counter gear 24.
  • the counter gear 24 is connected to the wheel 6 via a counter shaft 28 and a differential device 29.
  • the clutches C-1 to C-3, the brakes B-1 to B-2, and the one-way clutch F-1 shown in the skeleton of FIG. 1 are shown in the engagement table of FIG.
  • the first forward speed (1ST) to the sixth forward speed (6TH) and the first reverse speed (REV) are achieved.
  • the frictional engagement elements (clutch C-1 to C-3, brake B-1 to B-2) on the release side are released and the engagement side The frictional engagement element is engaged.
  • the power-on downshift is a shift that shifts down while the accelerator is on, and is a shift state such as a kickdown, for example.
  • a member drivingly connected to the input shaft 15, that is, the input shaft 15, the rotor 3 a of the motor 3, the clutch K 0, the connecting shaft 13, the damper 12, the drive plate 11, the internal combustion engine 2.
  • the number of rotations of the same rotating members such as the crankshaft 2a and the like, and the clutch drum of the clutch C-2 and the ring gear R1 in the stepped transmission mechanism 7 increase after shifting.
  • the internal combustion engine 2 In the power ON downshift, the internal combustion engine 2 outputs a driving force based on the accelerator ON, and outputs a torque that increases the rotation of the input system member. Therefore, a friction engagement element (clutch C -1 to C-3, brake B-1 to B-2), the engagement state (release state) of the release side friction engagement element (hereinafter referred to as "release side friction element”) is loosened. (If the torque to be transmitted is reduced), the torque transmitted to the wheel side of the engine torque Te acting on the input system member is reduced, and thereby the rotation of the input system member can be increased. Therefore, in the power-on downshift, an inertia phase is executed in which the rotation change is performed mainly with release control of the release side friction element.
  • the motor torque in the inertia phase is shared by the motor torque Tmg and the release side friction element torque TA in the inertia phase by controlling as follows. It is possible to output stably so that Tmg does not fluctuate as much as possible.
  • the control unit 20 first sets the target input rotation speed Nin-target in the inertia phase to the input rotation speed Nin before the shift, the input rotation speed Nin after the shift (the output rotation speed Nout (that is, the vehicle speed)), and the gear after the shift. And a target shift time tch from the start of the shift to the end of the shift.
  • a value obtained by subtracting the input rotation speed Nin before the shift from the input rotation speed Nin after the shift is set to the target rotation change acceleration ⁇ target which is the acceleration of the target input rotation speed Nin-target. It is calculated by dividing by the target shift time tch (S12).
  • control unit 20 multiplies the calculated target rotational change acceleration ⁇ target by the above-described total inertia amount of the input system member (hereinafter referred to as “input system member inertia”) Iin, thereby obtaining the rotational change of the input system member.
  • input system member inertia total inertia amount of the input system member
  • An inertia torque Ti generated based on the calculated value is calculated (S13).
  • the performance limit of the motor 3 (the motor performance limit torque) is based on the performance characteristics of the motor.
  • the absolute values of the motor maximum torque Tmg-max and the motor minimum torque Tmg-min that are) decrease as the rotation changes. For example, if the motor torque Tmg is output at the maximum motor torque Tmg-max that is the performance limit of the motor 3 in order to generate the inertia torque Ti, the motor torque Tmg falls during the inertia phase. (See FIG. 12).
  • the control unit 20 calculates the maximum motor torque Tmg-max (that is, the speed of the shift) after the shift (time t16) based on the motor rotation speed Nmg before the shift that can be calculated from the post-shift gear ratio Gaf and the output rotation speed Nout.
  • the smaller value (the absolute value of the motor performance limit torque before and after) is set as the set value Tmg-lim so as to be the upper limit value of the motor torque Tmg (S14).
  • the set value Tmg-lim is set to the maximum motor torque Tmg-max after the shift (time point t16). However, if the set value Tmg-lim is set to be less than this, the motor torque Tmg varies in the inertia phase. It goes without saying that it will disappear. However, from the viewpoint of generating the inertia torque Ti, it is preferable that the set value Tmg-lim is as large as possible as an absolute value. In the present embodiment, the set value Tmg-lim is changed to a value after the shift (time point t16). Set the motor maximum torque Tmg-max.
  • the control unit 20 sets the actually output motor torque Tmg to a smaller one of the set value Tmg-lim and the inertia torque Ti (the inertia torque Ti Is smaller than the set value Tmg-lim, it is set by the motor 3 so that all inertia torque Ti is generated) and output (S15).
  • the control unit 20 subtracts the release side frictional element torque TA from the target torque Ttarg, the value obtained by subtracting the motor torque Tmg from the inertia torque Ti, and the smaller of 0 (zero).
  • Ttarget ⁇ Min ((Ti ⁇ Tmg) or0) ⁇ )
  • the inertia torque is generated entirely by the motor 3, the inertia torque is set by the release side friction element. Since it does not need to be generated, the share is set to 0).
  • the torque shared by the disengagement side friction element is set to be a torque obtained by subtracting from the torque required as the driving force output to the wheel indicated by the broken line in FIG.
  • the release side friction element torque TA is set so as to share the inertia torque, and the hydraulic control device 21 commands the engagement pressure of the release side friction element to be adjusted to the release side friction element torque TA. Is output (S16), and the inertia calculation control is terminated (S17).
  • the motor torque Tmg is output as a set value Tmg-lim.
  • the motor torque Tmg is stably output at a constant value without fluctuation as indicated by the arrow A from time t11 to time t13 when the feedback control of the smoothing control motor described later is started.
  • the input torque Tin which is a value obtained by adding the engine torque Te and the motor torque Tmg
  • the input torque Tin is output along the value obtained by adding the set value Tmg-lim to the target torque Ttarget, that is, the target torque Ttarg and the motor maximum torque Tmg- It is in a range between an upper limit value obtained by adding max and a lower limit value obtained by adding the target torque Ttarget and the minimum motor torque Tmg-min, and is stably controlled without exceeding the limit of the motor performance.
  • the release side friction element is controlled to be the release side friction element torque TA set as described above (so as to share the remaining inertia torque after subtracting the motor torque Tmg).
  • the release-side frictional element torque TA is controlled so as to increase as shown by the arrow B, and the driver It is possible to set the gradient according to the driving force requirement. Therefore, the output torque Tout also has a constant rising gradient as shown by the arrow C from the time point t11 to the time point t13, giving the driver who is stepping on the accelerator a feeling that the output torque Tout is increasing. This prevents the driver from feeling uncomfortable during the shift.
  • the motor torque Tmg in the inertia phase during the shift is set to be equal to or less than the smaller value of the motor performance limit torque (motor maximum torque Tmg-max) before and after the shift. Since it is limited to the set value Tmg-lim, it is possible to prevent the motor torque Tmg from fluctuating due to fluctuations in the motor performance limit torque (motor maximum torque Tmg-max) during gear shifting (see FIG. 12). . As a result, the input rotational speed Nin (rotational change of the input system member) increases so as to stably reach the target input rotational speed Nin-target with a constant gradient as indicated by an arrow D. It is possible to prevent the driver from feeling uncomfortable during the shift by preventing fluctuation of the meter.
  • the engine torque Te is stably reduced as compared with motor control or hydraulic control of the friction engagement element.
  • the broken line U the decrease in the engine torque Te is delayed and the input rotational speed Nin temporarily rises, so-called engine blowing occurs, or the engine torque Te decreases as shown by the broken line V.
  • the input rotation speed Nin temporarily drops and stagnates at a relatively high frequency.
  • smoothing control is performed by controlling the motor 3 and controlling the engagement state of the disengagement side friction element, and the smoothing control is completed without using the internal combustion engine 2 (engine torque Te). Make it possible. Less than.
  • the smoothing control according to the present embodiment will be described with reference to FIGS.
  • the control unit 20 starts the smoothing control.
  • S51 feedback control of the disengagement side friction element so that the actual input rotational speed (actual rotational speed of the input shaft) Nin detected by the input shaft rotational sensor 80 becomes the target input rotational speed Nin-target. It is determined whether (FB) is started or feedback control (FB) of the motor 3 is started (S52).
  • the control unit 20 waits until the feedback control of the release side friction element or the feedback control of the motor 3 is started (NO in S52), and when either is started (YES in S52), the motor torque Tmg and the release side are started.
  • Set the sharing ratio of the smoothing torque with the friction element torque TA that is, the sharing ratio of the torque used in the smoothing control of the motor torque and the friction element torque
  • the respective feedback gains that is, the feedback gain of the disengagement side friction element and the feedback gain of the motor 3 are set according to the smoothing torque sharing ratio (S53).
  • the control unit 20 calculates the smoothing torque sharing ratio of the motor 3 by the ratio of the motor maximum torque Tmg-max (or the motor minimum torque Tmg-min) to the inertia torque Ti.
  • the remainder (100% —the smoothing torque sharing ratio of the motor 3) is set as the smoothing torque sharing ratio of the disengagement side friction element.
  • the ratio of the motor torque Tmg output at the set value Tmg-lim can be calculated from the engagement state of the combined element (that is, the release side friction element torque TA), so the smoothing torque based on the release side friction element torque TA
  • the sharing rate can be set.
  • the control unit 20 determines whether or not the shift control is completed (S54), If the control has not ended (NO in S54), the feedback gain sharing rate is output (S55), that is, the feedback control of the disengagement side friction element and the feedback control of the motor 3 are executed with the shared gain.
  • each of the feedback gain of the disengagement side friction element and the feedback gain of the motor 3 set in accordance with the smoothing torque sharing ratio as described above is changed from the target input rotational speed Nin-target to the input rotational speed Nin.
  • the PI feedback proportional-integral control
  • the smoothing control is ended (S56).
  • the release-side frictional element torque TA increases from the time t12, so that the torque transmitted to the wheels is increased and the inertia torque Ti with respect to the input system member is reduced (that is, the rotational change is reduced).
  • the motor torque Tmg input torque Tin
  • the engagement-side friction element is hydraulically controlled to start engagement, and the engagement-side friction element torque TB is increased and the release-side friction element torque TA is decreased, that is, torque transmission is released.
  • the torque phase is shifted from the side friction element to the engagement side friction element.
  • the smoothing torque sharing rate between the motor 3 and the release side frictional engagement element is set, and the motor 3 and the freezing side frictional engagement element are used based on the smoothing torque sharing rate. Since control is performed so that the torque shared by the annealing control is distributed, it is unnecessary to vary the torque of the internal combustion engine 2 in the annealing control, and the annealing control is performed using the internal combustion engine 2 Variations such as engine blowing and a drop in the input rotational speed Nin that may occur are prevented. Further, by setting the smoothing torque sharing ratio between the motor 3 and the friction engagement element, the motor torque Tmg exceeding the performance limit torque (motor maximum torque Tmg-max or motor minimum torque Tmg-min) of the motor 3 can be obtained. It is possible to prevent the requirement, and good smoothing control can be realized without requiring excessive torque on either side.
  • the annealing torque sharing ratio is set based on the engagement state of the release-side friction element in the inertia phase, it is possible to prevent exceeding the limit of the torque that can be generated in the release-side friction element. Annealing control can be realized.
  • start timing of the feedback control of the motor and the start timing of the feedback control of the engagement state of the friction engagement element are respectively set according to the annealing torque sharing ratio, particularly from the hydraulic response of the disengagement side friction element
  • good feedback control can be performed in consideration of motor control with quick response.
  • the smoothing torque sharing rate is defined as the engagement state of the release side friction element in the inertia phase (that is, the sharing rate of the inertia torque between the motor torque Tmg and the release side friction element torque TB in the inertia phase).
  • it may be reset again in consideration of, for example, the end time of the annealing control.
  • it is preferable to set the motor torque Tmg so that it does not exceed the set value Tmg-lim.
  • the power-off upshift is a shift that is upshifted while the accelerator is OFF, and is a so-called off-up shift state.
  • the rotational speed of the input shaft 15 is lowered after the shift.
  • the internal combustion engine 2 outputs a negative torque that lowers the rotation of the input system member due to the non-output state of the driving force based on the accelerator OFF. If the state is loosened (if the torque to be transmitted is reduced), the reverse input of the vehicle inertia torque from the wheels acting on the input system member to the internal combustion engine 2 is reduced, and thereby the rotation of the input system member is reduced. It can be lowered. Therefore, in the power OFF upshift, an inertia phase is executed in which the rotation change is performed mainly with release control of the release side friction element.
  • the inertia torque is shared by the motor torque Tmg and the disengagement side friction element torque TA in the inertia phase. It is possible to output stably so that the motor torque Tmg in the phase does not vary as much as possible.
  • the control unit 20 sets the target input rotation speed Nin-target and sets the target rotation speed that is the acceleration of the target input rotation speed Nin-target, similarly to steps S12 and S13 in the power ON downshift described above.
  • the change acceleration ⁇ targ is calculated by subtracting the input rotation speed Nin before the shift from the input rotation speed Nin after the shift by the target shift time tch (S22), and the calculated target rotation change acceleration ⁇ target is input to the input system member.
  • the inertia Iin is multiplied to calculate the inertia torque Ti generated based on the rotation change of the input system member (S23).
  • the input rotational speed Nin that is, the motor rotational speed Nmg becomes low after the shift as the upshift is performed.
  • the absolute values of the maximum motor torque Tmg-max and the minimum motor torque Tmg-min, which are performance limits of 3, increase as the rotation changes. For example, if the motor torque Tmg is output at the motor minimum torque Tmg-min, which is the performance limit of the motor 3, in order to generate the inertia torque Ti, the motor torque Tmg increases during the inertia phase. .
  • the control unit 20 calculates the minimum motor torque Tmg-min (that is, the speed change) before the shift (time t21) based on the motor rotation speed Nmg before the shift that can be calculated from the gear ratio Gbe before the shift and the output rotation speed Nout.
  • the smaller value (the absolute value of the motor performance limit torque before and after) is set as the set value Tmg-lim so as to be the lower limit value of the motor torque Tmg (S24).
  • the set value Tmg-lim is set to the motor minimum torque Tmg-min before shifting (time t21).
  • the absolute value is set to be lower than this, the motor torque Tmg is set. It goes without saying that no longer fluctuates in the inertia phase.
  • the set value Tmg-lim is as large as possible as an absolute value. Therefore, in the present embodiment, the set value Tmg-lim is changed before the shift (time point t21). Set the motor minimum torque Tmg-min.
  • the control unit 20 determines that the motor torque Tmg that is actually output is the larger one of the set value Tmg-lim and the inertia torque Ti (the smaller absolute value). (When the inertia torque Ti is larger than the set value Tmg-lim, the motor 3 is set so as to generate all the inertia torque Ti) and output (S25).
  • the control unit 20 subtracts the release side frictional element torque TA from the target torque Ttarg, the value obtained by subtracting the motor torque Tmg from the inertia torque Ti, and the smaller of 0 (zero).
  • Ttarget ⁇ Min ((Ti ⁇ Tmg) or0) ⁇ )
  • the inertia torque is set by the release side friction element. Since it does not need to be generated, the share is set to 0). That is, the torque shared by the disengagement side friction element is set to be a torque obtained by subtracting from the torque required as the driving force output to the wheel indicated by the broken line in FIG.
  • the release side friction element torque TA is set so as to share the inertia torque, and the hydraulic control device 21 commands the engagement pressure of the release side friction element to be adjusted to the release side friction element torque TA. Is output (S26), and the inertia calculation control is terminated (S27).
  • the input torque Tin that is a value obtained by adding the engine torque Te and the motor torque Tmg is output along the value obtained by adding the set value Tmg-lim to the target torque Ttarget, that is, the target torque Ttarg and the motor minimum torque Tmg ⁇ .
  • the range is between the upper limit value obtained by adding min and the lower limit value obtained by adding the target torque Ttarg and the motor minimum torque Tmg-min, and is stably controlled without exceeding the limit of the motor performance.
  • the release side friction element is controlled to be the release side friction element torque TA set as described above (so as to share the remaining inertia torque after subtracting the motor torque Tmg).
  • the release-side frictional element torque TA is controlled to increase as shown by the arrow F from the time point t21 to the time point t22 when the feedback control of the frictional element for smoothing control described later is started.
  • the output torque Tout has a downward gradient as shown by the arrow G between the time point t21 and the time point t24, and the output torque Tout decreases for the driver who releases the accelerator (OFF). It is possible to prevent the driver from feeling uncomfortable during the shift by giving a sense.
  • the motor torque Tmg in the inertia phase during the shift is less than the smaller value as the absolute value of the motor performance limit torque (motor minimum torque Tmg-min) before the shift. Therefore, it is possible to prevent the motor torque Tmg from fluctuating due to fluctuations in the motor performance limit torque (motor minimum torque Tmg-min) during the shift.
  • the input rotational speed Nin rotational change of the input system member
  • the target input rotational speed Nin-target with a substantially constant gradient, as indicated by an arrow H. It is possible to prevent the driver from feeling uncomfortable during the shift by preventing fluctuations in the tachometer and the like.
  • the annealing control in this power OFF upshift will be described. Even in this power OFF upshift, the annealing control shown in FIG. 4 is executed in the same manner. That is, when the shift progress rate reaches a predetermined progress rate, the control unit 20 starts the main smoothing control (S51), starts the feedback control (FB) of the disengagement side friction element, or feedback of the motor 3 It is determined whether control (FB) is started (S52). When either feedback control is started (YES in S52), the smoothing torque sharing ratio between the motor torque Tmg and the release side frictional element torque TA is set, and the torque shared by the smoothing control is distributed. The respective feedback gains, that is, the feedback gain of the disengagement side friction element and the feedback gain of the motor 3 are set in accordance with the smoothing torque sharing ratio (S53).
  • the smoothing torque sharing ratio is calculated by calculating the ratio of the smoothing torque of the motor 3 by the ratio of the motor maximum torque Tmg-max (or the motor minimum torque Tmg-min) to the inertia torque Ti, and the remaining (100% -motor 3 (Annealing torque sharing ratio) is an annealing torque sharing ratio of the release side friction element.
  • the control unit 20 determines whether or not the shift control is completed (S54), If the control has not ended (NO in S54), the feedback gain sharing rate is output (S55), that is, the feedback control of the disengagement side friction element and the feedback control of the motor 3 are executed with the shared gain.
  • the control unit 20 determines the end of the shift control at time t26 (YES in S54)
  • the smoothing control is ended (S56).
  • the time t22 is a start timing that takes into account the response delay of the disengagement side friction element and the smoothing torque sharing ratio with respect to the time t23 that is the start timing of the feedback control of the motor 3. Starts the feedback control of the disengagement friction element.
  • the release-side frictional element torque TA increases from the time t22, so that the torque transmitted to the wheel side is increased and the inertia torque Ti with respect to the input system member is reduced (that is, the rotational change is reduced).
  • the motor torque Tmg input torque Tin
  • the engagement side friction element is hydraulically controlled to start engagement, and the engagement side friction element torque TB is increased and the release side friction element torque TA is decreased, that is, the torque transmission is released.
  • the torque phase is shifted from the side friction element to the engagement side friction element.
  • the engagement-side friction element is engaged at time t25, and the release-side friction element is released by time t26, so that the output torque Tout is output according to the gear ratio after the shift,
  • the shift control ends at time t26.
  • the smoothing torque sharing ratio between the motor 3 and the disengagement side frictional engagement element is set, and the motor 3 and the releasing are based on the smoothing torque sharing ratio. Since the torque shared by the smoothing control with the side frictional engagement element is controlled, it is not necessary to change the torque of the internal combustion engine 2 in the smoothing control. Variations such as engine blowing and a drop in the input rotational speed Nin, which may occur when annealing control is performed, are prevented. Further, by setting the smoothing torque sharing ratio between the motor 3 and the friction engagement element, the motor torque Tmg exceeding the performance limit torque (motor maximum torque Tmg-max or motor minimum torque Tmg-min) of the motor 3 can be obtained. It is possible to prevent the requirement, and good smoothing control can be realized without requiring excessive torque on either side.
  • the annealing torque sharing ratio is set based on the engagement state of the release-side friction element in the inertia phase, it is possible to prevent exceeding the limit of the torque that can be generated in the release-side friction element. Annealing control can be realized.
  • start timing of the feedback control of the motor and the start timing of the feedback control of the engagement state of the friction engagement element are respectively set according to the annealing torque sharing ratio, particularly from the hydraulic response of the disengagement side friction element
  • good feedback control can be performed in consideration of motor control with quick response.
  • the shift control at the time of power-on upshift when traveling mainly using the driving force of the internal combustion engine 2 will be described with reference to FIGS.
  • the period from time t31 to time t32 is a “torque phase” period in which the torque sharing of the friction elements is switched, and the period in which the input rotation speed Nin from time t32 to time t36 is changed is “inertia phase”. Is the period.
  • “smoothing control” that moderates the fluctuation of the inertia torque Ti is executed.
  • the power ON upshift is a shift that shifts up while the accelerator is ON, that is, a state that shifts upshift during acceleration.
  • the rotation speed of the input shaft 15 is lowered after the shift.
  • the internal combustion engine 2 outputs a driving torque based on the accelerator ON and outputs a positive torque for increasing the rotation of the input system member. Since the member only rotates and rises, if the engagement state of the engagement side friction element is tightened (if the torque to be transmitted is increased), the internal combustion torque of the vehicle inertia torque from the wheel side acting on the input system member is increased. The reverse input to the engine 2 is increased, whereby the rotation of the input system member can be lowered. Therefore, in the power-on upshift, the torque phase for exchanging the torque sharing between the disengagement side friction element and the engagement side friction element is executed first, and then the rotation change is performed mainly with the engagement control of the engagement side friction element. Execute the inertia phase.
  • the following control is performed so that the engine torque Te (torque reduction), the motor torque Tmg, and the engagement side friction element torque are in the inertia phase. While the inertia torque is shared by the TB, the motor torque Tmg in the inertia phase can be output stably so as not to fluctuate as much as possible.
  • the control unit 20 sets the target input rotation speed Nin-target and sets the target rotation speed that is the acceleration of the target input rotation speed Nin-target, similarly to steps S12 and S13 in the power ON downshift described above.
  • the change acceleration ⁇ targ is calculated by subtracting the input rotation speed Nin before the shift from the input rotation speed Nin after the shift by the target shift time tch (S32), and the calculated target rotation change acceleration ⁇ target is input to the input system member.
  • the inertia Iin is multiplied to calculate the inertia torque Ti generated based on the rotation change of the input system member (S33).
  • the motor rotation speed is reduced based on the performance characteristics of the motor.
  • the control unit 20 is based on the post-shift motor rotation speed Nmg that can be calculated from the pre-shift gear ratio Gbe and the output rotation speed Nout, before the shift (time t31) (or at the time t32 before the start of the inertia phase).
  • the minimum motor torque Tmg-min (that is, the smaller value of the absolute value of the motor performance limit torque before and after shifting) is set as the set value Tmg-lim so as to be the lower limit value of the motor torque Tmg. (S34).
  • the set value Tmg-lim is set to the motor minimum torque Tmg-min before shifting (time point t31).
  • the absolute value is set to be lower than this, the motor torque Tmg is set. It goes without saying that no longer fluctuates in the inertia phase.
  • the set value Tmg-lim is as large as possible as an absolute value. Therefore, in the present embodiment, the set value Tmg-lim is set to the value before the shift (time point t31). Set the motor minimum torque Tmg-min.
  • the control unit 20 determines that the motor torque Tmg that is actually output is the larger one of the set value Tmg-lim and the inertia torque Ti (the smaller absolute value). (When the inertia torque Ti is larger than the set value Tmg-lim, the motor 3 sets the inertia torque T to generate all) and outputs it (S35).
  • the control unit 20 sets the engine torque Te so that the torque is reduced with a maximum torque reduction amount (for example, 50%) determined in advance by the engine performance, and then continues to the engagement side.
  • the friction element torque TB is a value obtained by subtracting the smaller value of 0 (zero) from the value obtained by subtracting the motor torque Tmg and the engine torque Te from the inertia torque Ti from the target torque Ttarg. Min ((Ti ⁇ Tmg ⁇ Te) or0) ⁇ ”) (when all the inertia torque Ti is generated by the motor 3, it is not necessary to generate the inertia torque at the engagement side friction element, so that it is shared. Set to 0).
  • the torque shared by the engagement-side friction element is set so as to be a torque obtained by adding only the amount of the arrow M to the torque transmitted as the driving force to the wheel indicated by the broken line in FIG.
  • the engagement-side friction element torque TB is set so as to share the remaining inertia torque that cannot be generated by the torque Tmg and the engine torque Te, and the engagement-side friction element torque TB is set to be the engagement-side friction element torque TB.
  • a command is output so that the engagement pressure of the friction element is regulated by the hydraulic control device 21 (S36), and the inertia calculation control is terminated (S37).
  • the input torque Tin which is a value obtained by adding the engine torque Te and the motor torque Tmg
  • the input torque Tin is output along the value obtained by adding the engine torque reduction amount and the set value Tmg-lim to the target torque Ttarget, that is, the motor performance. It is controlled stably without exceeding the limit. Further, the torque is reduced so that the engine torque Te is stably and substantially constant.
  • the engagement side friction element is controlled so as to be the engagement side friction element torque TB set as described above (so as to share the remaining inertia torque obtained by subtracting the motor torque Tmg and the engine torque Te).
  • the engagement-side friction element torque TB is controlled to have a constant gradient as indicated by an arrow J from time t32 to time t33 when the feedback control of the frictional control for smoothing control described later is started. Therefore, the output torque Tout has a substantially constant gradient as shown by the arrow K between the time point t32 and the time point t34, and the driver who is stepping on the accelerator feels that the output torque Tout decreases (a feeling of deceleration). This prevents the driver from feeling uncomfortable during the shift.
  • the motor torque Tmg in the inertia phase during the shift is less than the smaller value as the absolute value of the motor performance limit torque (motor minimum torque Tmg-min) before the shift. Therefore, it is possible to prevent the motor torque Tmg from fluctuating due to fluctuations in the motor performance limit torque (motor minimum torque Tmg-min) during the shift. As a result, the input rotational speed Nin (rotational change of the input system member) falls so as to stably reach the target input rotational speed Nin-target with a constant gradient as indicated by an arrow L. It is possible to prevent the driver from feeling uncomfortable during the shift by preventing fluctuation of the meter.
  • the annealing control in the power ON upshift will be described. Even in the power ON upshift, the annealing control shown in FIG. 4 is executed in the same manner. That is, when the shift progress rate reaches a predetermined progress rate, the control unit 20 starts the main smoothing control (S51), starts the feedback control (FB) of the engagement side friction element, or the motor 3 It is determined whether feedback control (FB) has been started (S52). When either feedback control is started (YES in S52), the torque sharing ratio between the motor torque Tmg and the engagement-side friction element torque TB is set, and the torque shared by the annealing control is distributed. Then, the respective feedback gains, that is, the feedback gain of the engagement side friction element and the feedback gain of the motor 3 are set according to the smoothing torque sharing ratio (S53).
  • the torque reduction of the engine torque Te was performed in the inertia phase.
  • the engine torque Te is not used and the motor torque Tmg and the engagement-side friction element torque TB are not used. It is also characterized by setting the torque sharing rate.
  • the smoothing torque sharing ratio is calculated by calculating the ratio of the smoothing torque of the motor 3 by the ratio of the motor maximum torque Tmg-max (or the motor minimum torque Tmg-min) to the inertia torque Ti, and the rest (100% -motor 3 is an annealing torque sharing ratio of the engagement side friction element.
  • the control unit 20 determines whether or not the shift control is finished (S54). If the shift control is not completed (NO in S54), the feedback gain sharing ratio is output (S55), that is, the feedback control of the engagement side friction element and the feedback control of the motor 3 are executed with the shared gains, respectively. To do.
  • the control unit 20 determines the end of the shift control at time t36 (YES in S54), the smoothing control is ended (S56).
  • the engagement-side friction element torque TB decreases from the time t33, so that the torque transmitted to the wheel side is reduced and the inertia torque Ti with respect to the input system member is reduced (that is, the rotational change is reduced).
  • the motor torque Tmg input torque Tin
  • the engagement side friction element torque TB is brought into an engagement state for transmitting the torque to be transmitted to the wheel side, and the inertia phase is almost ended, so that the engagement side friction element of the engagement side friction element is reached by the time point t36. Engagement is completed (complete engagement), and the shift control ends at time t36.
  • the smoothing torque sharing ratio between the motor 3 and the engagement side frictional engagement element is set, and the motor 3 and the motor 3 are controlled based on the smoothing torque sharing ratio. Since the torque shared by the smoothing control is controlled by the engagement side frictional engagement element, it is not necessary to change the torque of the internal combustion engine 2 in the smoothing control. Variations such as engine blowing and a drop in the input rotational speed Nin, which may occur when the annealing control is used, are prevented. Further, by setting the smoothing torque sharing ratio between the motor 3 and the friction engagement element, the motor torque Tmg exceeding the performance limit torque (motor maximum torque Tmg-max or motor minimum torque Tmg-min) of the motor 3 can be obtained. It is possible to prevent the requirement, and good smoothing control can be realized without requiring excessive torque on either side.
  • the annealing torque sharing ratio is set based on the engagement state of the engagement side friction element in the inertia phase, it is possible to prevent exceeding the limit of the torque that can be generated in the engagement side friction element, Good annealing control can be realized.
  • start timing of the feedback control of the motor and the start timing of the feedback control of the engagement state of the friction engagement element are respectively set according to the annealing torque sharing ratio, particularly the hydraulic response of the engagement side friction element In consideration of motor control with quicker responsiveness, good feedback control can be performed.
  • the power OFF downshift is a shift that shifts down while the accelerator is OFF, that is, a state that shifts down during deceleration.
  • the rotational speed of the input shaft 15 increases after the shift.
  • the internal combustion engine 2 outputs a negative torque that lowers the rotation of the input system member by setting the driving force to the non-output state based on the accelerator OFF, so that the input by releasing the disengagement side friction element Since the system member only rotates and descends, if the engagement state of the engagement side friction element is tightened (if the torque to be transmitted is increased), the vehicle inertia torque from the wheel side acting on the input system member, The reverse input to the internal combustion engine 2 is increased, whereby the rotation of the input system member can be increased.
  • the torque phase for exchanging the torque sharing between the disengagement side friction element and the engagement side friction element is executed first, and then the rotational change is performed mainly with the engagement control of the engagement side friction element. Execute the inertia phase.
  • the following control is performed so that the motor torque Tmg and the engagement side friction element torque TB are in the inertia phase. While sharing the inertia torque, the motor torque Tmg in the inertia phase can be output stably so as not to vary as much as possible.
  • the control unit 20 sets the target input rotation speed Nin-target and sets the target rotation speed that is the acceleration of the target input rotation speed Nin-target, similarly to steps S12 and S13 in the power ON downshift described above.
  • the change acceleration ⁇ targ is calculated by subtracting the input rotation speed Nin before the shift from the input rotation speed Nin after the shift by the target shift time tch (S42), and the calculated target rotation change acceleration ⁇ target is input to the input system member.
  • the inertia Iin is multiplied to calculate the inertia torque Ti generated based on the rotation change of the input system member (S43).
  • the input rotation speed Nin that is, the motor rotation speed Nmg becomes high after the shift as the downshift is performed.
  • the control unit 20 calculates the maximum motor torque Tmg-max (that is, the speed change) after the shift (time t46) based on the motor rotation speed Nmg after the shift that can be calculated from the gear ratio Gbe before the shift and the output rotation speed Nout.
  • the smaller value (the absolute value of the motor performance limit torque before and after) is set as the set value Tmg-lim so as to be the upper limit value of the motor torque Tmg (S44).
  • the set value Tmg-lim is set to the motor maximum torque Tmg-max after the shift (time point t46).
  • the absolute value is set to be less than this, the motor torque Tmg is set. It goes without saying that no longer fluctuates in the inertia phase.
  • the set value Tmg-lim is as large as possible as an absolute value. Therefore, in the present embodiment, the set value Tmg-lim is changed after the shift (time point t46). Set the motor maximum torque Tmg-max.
  • the control unit 20 sets the actually output motor torque Tmg to the smaller of the set value Tmg-lim and the inertia torque Ti (the inertia torque Ti is If it is smaller than the set value Tmg-lim, it is set by the motor 3 so that all inertia torque Ti is generated) and output (S45).
  • the control unit 20 sets the engagement side friction element torque TB to a value obtained by subtracting the motor torque Tmg from the inertia torque Ti from the target torque Ttarg, and the smaller of 0 (zero).
  • the engagement side friction element torque TB is set so as to share the remaining inertia torque that cannot be generated by the torque Tmg, and the engagement side friction element torque TB is set so as to be the engagement side friction element torque TB.
  • a command is output so that the combined pressure is regulated by the hydraulic control device 21 (S46), and the inertia calculation control is terminated (S47).
  • the input torque Tin which is a value obtained by adding the engine torque Te and the motor torque Tmg
  • the input torque Tin is output along the value obtained by adding the engine torque reduction amount and the set value Tmg-lim to the target torque Ttarget, that is, the motor performance. It is controlled stably without exceeding the limit.
  • the engagement side friction element is controlled so as to be the engagement side friction element torque TB set as described above (so as to share the remaining inertia torque after subtracting the motor torque Tmg).
  • the engagement side frictional element torque TB is controlled to have a constant gradient as indicated by the arrow O from the time point t42 to the time point t43 when the feedback control of the frictional element for smoothing control described later is started.
  • the output torque Tout has a substantially constant gradient as shown by the arrow P between the time point t42 and the time point t44, and the output torque Tout increases for the driver who releases the accelerator (OFF). A feeling (acceleration feeling) is prevented, and it is possible to prevent the driver from feeling uncomfortable during the shift.
  • the motor torque Tmg in the inertia phase during the shift is less than the smaller value as the absolute value of the motor performance limit torque (motor maximum torque Tmg-max) before the shift. Therefore, it is possible to prevent the motor torque Tmg from fluctuating due to fluctuations in the motor performance limit torque (motor maximum torque Tmg-max) during shifting.
  • the input rotational speed Nin rotational change of the input system member
  • falls so as to stably reach a target input rotational speed Nin-target with a constant gradient as indicated by an arrow Q and therefore, fluctuations in engine sound and rotational speed It is possible to prevent the driver from feeling uncomfortable during the shift by preventing fluctuation of the meter.
  • the annealing control in the power OFF downshift will be described. Even in this power-off downshift, the annealing control shown in FIG. 4 is executed in the same manner. That is, when the shift progress rate reaches a predetermined progress rate, the control unit 20 starts the main smoothing control (S51), starts the feedback control (FB) of the engagement side friction element, or the motor 3 It is determined whether feedback control (FB) has been started (S52). When either feedback control is started (YES in S52), the torque sharing ratio between the motor torque Tmg and the engagement-side friction element torque TB is set, and the torque shared by the annealing control is distributed. Then, the respective feedback gains, that is, the feedback gain of the engagement side friction element and the feedback gain of the motor 3 are set according to the smoothing torque sharing ratio (S53).
  • the smoothing torque sharing ratio is calculated by calculating the ratio of the smoothing torque of the motor 3 by the ratio of the motor maximum torque Tmg-max (or the motor minimum torque Tmg-min) to the inertia torque Ti, and the rest (100% -motor 3 is an annealing torque sharing ratio of the engagement side friction element.
  • the control unit 20 determines whether or not the shift control is finished (S54). If the shift control is not completed (NO in S54), the feedback gain sharing ratio is output (S55), that is, the feedback control of the engagement side friction element and the feedback control of the motor 3 are executed with the shared gains, respectively. To do.
  • the control unit 20 determines the end of the shift control at time t46 (YES in S54), the smoothing control is ended (S56).
  • the engagement-side friction element torque TB decreases from the time t43, so that the torque transmitted to the wheel side is reduced and the inertia torque Ti with respect to the input system member is reduced (that is, the rotational change is reduced). ), And the motor torque Tmg (input torque Tin) also decreases (decreases) from time t44, so that the inertia torque Ti is gradually decreased and finally becomes zero.
  • the engagement side friction element torque TB is brought into an engagement state for transmitting the torque transmitted to the wheel side, and the inertia phase is almost finished, so that the engagement side friction element of the engagement side friction element is reached by the time t46. Engagement is completed (complete engagement), and the shift control ends at time t46.
  • the smoothing torque sharing ratio between the motor 3 and the engagement side frictional engagement element is set, and the motor 3 and the motor 3 are controlled based on the smoothing torque sharing ratio. Since the torque shared by the smoothing control is controlled by the engagement side frictional engagement element, it is not necessary to change the torque of the internal combustion engine 2 in the smoothing control. Variations such as engine blowing and a drop in the input rotational speed Nin, which may occur when the annealing control is used, are prevented. Further, by setting the smoothing torque sharing ratio between the motor 3 and the friction engagement element, the motor torque Tmg exceeding the performance limit torque (motor maximum torque Tmg-max or motor minimum torque Tmg-min) of the motor 3 can be obtained. It is possible to prevent the requirement, and good smoothing control can be realized without requiring excessive torque on either side.
  • the annealing torque sharing ratio is set based on the engagement state of the engagement side friction element in the inertia phase, it is possible to prevent exceeding the limit of the torque that can be generated in the engagement side friction element, Good annealing control can be realized.
  • start timing of the feedback control of the motor and the start timing of the feedback control of the engagement state of the friction engagement element are respectively set according to the annealing torque sharing ratio, particularly the hydraulic response of the engagement side friction element In consideration of motor control with quicker responsiveness, good feedback control can be performed.
  • the motor 3 is directly driven and connected to the input shaft 15.
  • the present invention is not limited to this, and the motor is placed on another parallel shaft.
  • the present invention can be applied even to those arranged and connected by a gear mechanism or a chain.
  • the hybrid drive device according to the present invention can be used for vehicles such as passenger cars, trucks, etc., and particularly those that generate at least a part of the inertia torque during the shift by the motor torque. It is suitable for use where it is required to prevent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 例えばパワーONダウンシフト変速にあって、イナーシャ相における(時点t11から時点t13までの)モータトルク(Tmg)を、変速後におけるモータ最大トルク(Tmg-max)以下に設定された設定値(Tmg-lim)に制限すると共に、解放側摩擦要素の係合状態を、目標入力回転数から算出されるイナーシャトルクが入力系部材に発生するように制御する。変速中に、回転変化に伴うモータ最大トルク(Tmg-max)の変動によってモータトルク(Tmg)が変動してしまうことが防止される。変速中の入力回転数変化の勾配が変動することの防止が図られ、かつ運転者の駆動力要求に応じた駆動力出力が可能となり、違和感発生の防止が図られる。

Description

ハイブリッド駆動装置
 本発明は、車両等に搭載されるハイブリッド駆動装置に係り、詳しくは、内燃エンジン及びモータが駆動連結された入力部材の回転を有段変速機構で変速する構造にあって、変速中のイナーシャトルクの少なくとも一部をモータトルクによって発生するハイブリッド駆動装置に関する。
 近年、内燃エンジンとモータ・ジェネレータ(以下、単に「モータ」という)とを動力源として組合せたハイブリッド車両の開発が進められている。このようなハイブリッド車両に用いられるハイブリッド駆動装置の一形態として、内燃エンジンに駆動連結される入力軸(入力部材)に駆動連結されたモータと、入力軸の回転を有段変速する有段変速機構とを備えて構成された、いわゆるパラレル式(1モータ・有段変速式)のハイブリッド駆動装置が提案されている(特許文献1参照)。
 上記特許文献1には、有段変速機構を有するパラレル式のハイブリッド駆動装置にあって、有段変速機構における変速時に必要な入力系部材(入力軸に駆動連結された部材)のイナーシャトルクをモータにより発生しつつ、入力軸の回転数が設定した目標回転数になるように変速制御することが提案されている。
特開2004-316831号公報
 上記特許文献1のものは、変速中において、モータによりイナーシャトルクを発生しようとしているが、モータの出力トルク性能は回転数によって変動するものであるため、変速中にモータトルクが変動してしまい、そのトルク変動を摩擦係合要素の係合状態(スリップ状態)で対応しようとしてもレスポンスが足りず、変速中に入力回転数変化の勾配が変動してしまったり、加速中(駆動力の上昇を要求している)にも拘らず出力トルクが下り勾配となったりするという問題がある。
 以下、従来の制御の一例として、内燃エンジンによる走行中におけるパワーONダウンシフトの場合を図12に沿って説明する。図12に示すように、変速判断の後、時点taにおいて実際の変速が開始されると、ダウンシフトであるので入力回転数Nin(つまり上記入力系部材の回転数)を上昇させるため、解放側摩擦要素トルクTAを低下させると共に(解放側となる摩擦係合要素(クラッチやブレーキ)の係合状態をスリップ状態まで解放すると共に)、入力系部材の総イナーシャトルクをモータトルクTmgで発生すべく、該モータトルクTmgをモータ性能の限界トルクであるモータ最大トルクTmg-maxで出力する。
 しかしながら、入力回転数Ninの上昇に伴ってモータ回転数も上昇するため、モータ最大トルクTmg-max(モータ性能限界)が低下するため、イナーシャ相にあってモータトルクTmgは矢印Xで示すように下り勾配となる。これにより、エンジントルクTeとモータトルクTmgとの合計である入力トルクTinが低下していくため、解放側摩擦要素トルクTAも矢印Yで示すように下り勾配とし、つまり解放側となる摩擦係合要素の係合状態を更に解放側にシフトして、入力系部材で必要とするイナーシャトルクが発生するように出力側(車輪側)に伝達するトルクを低下させる。これにより、出力トルクToutも下り勾配となり、運転者が駆動力の上昇を要求しているパワーONダウンシフトであるにも拘らず、変速中は駆動力が下降傾向となって、運転者に違和感を生じさせるという問題がある。
 また、上記のようにモータトルクTmgは矢印Xで示すように下り勾配となることに伴って、入力系部材で必要とするイナーシャトルクを確保するため、解放側摩擦要素トルクTAも矢印Yで示すように下り勾配とする必要があるが、モータトルクTmgの変動に追従するように解放側の摩擦係合要素の係合油圧を電子制御するが、油圧応答性が電子制御に比して鈍いことなどに起因して、レスポンス良く解放側摩擦要素トルクTAを制御することは難しい。そのため、入力系部材にイナーシャトルクが発生するタイミングが遅れ、矢印W部分で示すように、入力回転数Ninの上昇が遅れるなどして入力回転数変化の勾配が変動してしまい、エンジン音の変動や回転数計の変動などが生じて、運転者に違和感を生じさせるという問題がある。
 なお、上記従来の制御の一例としてパワーONダウンシフトを説明したが、パワーOFFアップシフト、パワーONアップシフト、パワーOFFダウンシフトにあっても、同様な問題が生じるものである。
 そこで本発明は、変速中のイナーシャトルクの少なくとも一部をモータトルクによって発生するものにあって、変速中の入力回転数変化の勾配が変動することの防止や、変速中の運転者の駆動力要求に応じた駆動力出力を可能とし、もって変速中の違和感発生の防止を図ることが可能なハイブリッド駆動装置を提供することを目的とするものである。
 本発明のハイブリッド駆動装置(5)は(例えば図1乃至図11参照)、内燃エンジン(2)に駆動連結される入力部材(15)と、
 前記入力部材(15)に駆動連結されるモータ(3)と、
 前記入力部材(15)の回転を摩擦係合要素(C-1,C-2,C-3,B-1,B-2)の係合状態を変更することにより変速し得る有段変速機構(7)と、
 少なくとも変速中に前記摩擦係合要素の係合状態を制御すると共に、前記変速中における前記入力部材(15)に駆動連結された入力系部材(例えば2a,10,K0,3a,15等)の回転変化に必要なイナーシャトルク(Ti)の少なくとも一部を、前記モータ(3)により出力するモータトルク(Tmg)によって発生するように制御し得る制御装置(20)と、を備え、
 前記制御装置(20)は、前記変速中のイナーシャ相における前記モータトルク(Tmg)を、前記変速の前後における前記モータの性能限界トルク(Tmg-max,Tmg-min)の絶対値として小さい方の値以下に設定された設定値(Tmg-lim)に制限すると共に、前記変速中における前記入力部材(15)の目標入力回転数(Nin-targ)を設定し、前記イナーシャ相における前記入力系部材の回転変化を制御する摩擦係合要素の係合状態を、前記目標入力回転数(Nin-targ)から算出されるイナーシャトルク(Ti)が前記入力系部材に発生するように制御することを特徴とする。
 これにより、変速中のイナーシャ相におけるモータトルクを、変速の前後におけるモータの性能限界トルクの絶対値として小さい方の値以下に設定された設定値に制限するので、変速中に、モータの性能限界トルクの変動によってモータトルクが変動してしまうことを防止することができる。また、イナーシャ相における入力系部材の回転変化を制御する摩擦係合要素の係合状態を、目標入力回転数から算出されるイナーシャトルクが入力系部材に発生するように制御するので、入力系部材の回転変化を制御する摩擦係合要素の係合状態を、入力部材の回転数が目標入力回転数となるように安定的に制御することができる。従って、変速中の入力回転数変化の勾配が変動することの防止を図ることができ、変速中の違和感発生の防止を図ることができる。
 更に、入力系部材の回転変化を制御する摩擦係合要素の係合状態、即ち当該摩擦係合要素が伝達するトルクの変動勾配を、運転者の駆動力要求に応じた車輪への出力トルクが生じるような勾配に設定することが可能となる。これにより、変速中にあって、運転者の駆動力要求に応じた駆動力出力を可能とすることができ、変速中の違和感発生の防止を図ることができる。
 また、本発明のハイブリッド駆動装置(5)において(例えば図4、図5、図7、図9、図11参照)、前記制御装置(20)は、前記変速の終期にイナーシャトルク(Ti)の変動を緩やかにするなまし制御を実行すると共に、前記なまし制御における前記モータ(3)と前記摩擦係合要素とのなましトルク分担率を設定して、前記なましトルク分担率に基づき前記モータ(3)と前記摩擦係合要素とにより前記なまし制御で分担するトルクを配分するように制御することを特徴とする。
 これにより、なまし制御におけるモータと摩擦係合要素とのなましトルク分担率を設定して、なましトルク分担率に基づきモータと摩擦係合要素とによりなまし制御で分担するトルクを配分するように制御するので、なまし制御において内燃エンジンのトルクを変動させることを不要とすることができ、内燃エンジンを用いてなまし制御を行った場合に発生する虞のあるエンジン吹きや入力回転数の落ち込みなどのバラツキを防止することができる。また、モータと摩擦係合要素とのなましトルク分担率を設定することで、モータの性能限界トルクを越えたモータトルクが要求されることを防ぐことができ、どちらか一方に過大なトルクを要求されることなく、良好ななまし制御を実現することができる。
 さらに、本発明のハイブリッド駆動装置(5)において(例えば図4、図5、図7、図9、図11参照)、前記制御装置(20)は、前記なましトルク分担率を、前記イナーシャ相における前記入力系部材の回転変化を制御する摩擦係合要素の係合状態に基づき設定することを特徴とする。
 これにより、なましトルク分担率を、イナーシャ相における入力系部材の回転変化を制御する摩擦係合要素の係合状態に基づき設定するので、摩擦係合要素で発生できるトルクの限界を超えるようなことを防止することができ、良好ななまし制御を実現することができる。
 また、本発明のハイブリッド駆動装置(5)において(例えば図4、図5、図7、図9、図11参照)、前記制御装置(20)は、前記なまし制御にあって、前記入力部材(15)の実際の回転数(Nin)に基づき前記目標入力回転数(Nin-targ)に対して前記モータ(3)及び前記摩擦係合要素の係合状態をフィードバック制御すると共に、前記フィードバック制御における前記モータのフィードバックゲイン及び前記摩擦係合要素のフィードバックゲインを前記なましトルク分担率に応じて設定することを特徴とする。
 これにより、なまし制御のフィードバック制御におけるモータのフィードバックゲイン及び摩擦係合要素のフィードバックゲインをなましトルク分担率に応じて設定するので、フィードバック制御にてハンチング等を防いで、制御が発散してしまうことを防止することができ、良好なフィードバック制御を行うことができる。
 さらに、本発明のハイブリッド駆動装置(5)において(例えば図4、図5、図7、図9、図11参照)、前記制御装置(20)は、前記なましトルク分担率に応じて、前記モータ(3)のフィードバック制御の開始タイミング(例えばt13,t23,t33,t43)と前記摩擦係合要素の係合状態のフィードバック制御の開始タイミング(例えばt12,t22,t32,t42)とをそれぞれ設定することを特徴とする。
 これにより、なましトルク分担率に応じて、モータのフィードバック制御の開始タイミングと摩擦係合要素の係合状態のフィードバック制御の開始タイミングとをそれぞれ設定するので、特に摩擦係合要素の油圧応答性よりも応答性の早いモータ制御を加味して、良好なフィードバック制御を行うことができる。
 なお、上記カッコ内の符号は、図面と対照するためのものであるが、これは、発明の理解を容易にするための便宜的なものであり、特許請求の範囲の構成に何等影響を及ぼすものではない。
本発明を適用し得るハイブリッド自動車を示す模式図。 有段変速機構の係合表。 パワーONダウンシフト時のイナーシャ計算制御を示すフローチャート。 なまし制御を示すフローチャート。 パワーONダウンシフトにおける各値を示すタイムチャート。 パワーOFFアップシフト時のイナーシャ計算制御を示すフローチャート。 パワーOFFアップシフトにおける各値を示すタイムチャート。 パワーONアップシフト時のイナーシャ計算制御を示すフローチャート。 パワーONアップシフトにおける各値を示すタイムチャート。 パワーOFFダウンシフト時のイナーシャ計算制御を示すフローチャート。 パワーOFFダウンシフトにおける各値を示すタイムチャート。 従来のパワーONダウンシフトにおける各値を示すタイムチャート。
 以下、本発明に係る実施の形態を図1乃至図11に沿って説明する。まず、図1に沿って、本発明に係るハイブリッド駆動装置を搭載したハイブリッド自動車(車両)について説明する。なお、本ハイブリッド駆動装置は、FF(フロントエンジン・フロントドライブ)タイプの車輌に搭載されて好適なものであり、図中における左右方向は実際の車輌搭載状態における左右方向に対応するが、説明の便宜上、エンジン等の駆動源側を「前方側」、駆動源とは反対側を「後方側」というものとする。また、駆動連結とは、互いの回転要素が駆動力を伝達可能に連結された状態を指し、それら回転要素が一体的に回転するように連結された状態、或いはそれら回転要素がクラッチ等を介して駆動力を伝達可能に連結された状態を含む概念として用いる。
 [ハイブリッド駆動装置の概略構成]
 図1に示すように、ハイブリッド車両1は、駆動源として、内燃エンジン2の他に、モータ・ジェネレータ(モータ)3を有しており、このハイブリッド車両1のパワートレーンを構成するハイブリッド駆動装置5は、内燃エンジン2と車輪6との間の伝動経路30上に設けられる有段変速機構7と、該有段変速機構7と内燃エンジン2との間に配置され、内燃エンジン2と有段変速機構7の入力軸(入力部材)15とを駆動連結して動力を伝達し得る動力伝達装置10と、該入力軸15に駆動連結されたモータ3と、有段変速機構7の詳しくは後述する摩擦係合要素(クラッチやブレーキ)を油圧制御する油圧制御装置21と、モータ3及び内燃エンジン2を自在に指令制御し得ると共に油圧制御装置21を電子制御し得る制御装置としての制御部(ECU)20と、を有して構成されている。
 上記制御部20には、上記入力軸15の回転速度(入力回転数Nin)を検出する入力軸回転センサ80、詳しくは後述するカウンタギヤ24或いはカウンタシャフト28の回転速度(出力回転数Nout)を検出する出力軸回転(車速)センサ81、不図示のアクセルペダルの踏込量であるアクセル開度を検出するアクセル開度センサ82が接続されている。なお、制御部20には、図示を省略した変速マップが記録格納されており、出力回転数Nout(即ち車速)とアクセル開度とに基づき変速マップを参照することで変速判断を行い、詳しくは後述する有段変速機構7の変速制御(パワーONダウンシフト、パワーOFFアップシフト、パワーONアップシフト、パワーOFFダウンシフト)を実行する。
 一方、上記動力伝達装置10は、内燃エンジン2のクランク軸2aにドライブプレート11を介して接続されるダンパ12と、該ダンパ12が接続される接続軸13と、この接続軸13と有段変速機構7の入力軸15との間の動力伝達を断接するクラッチK0と、から構成されている。該クラッチK0は、例えば多板式クラッチからなり、上記接続軸13に駆動連結された内摩擦板17と、上記入力軸15に駆動連結された外摩擦板19とによって構成されている。即ち、クラッチK0は、上記伝動経路30のエンジン側の伝動経路31に駆動連結される内摩擦板17と、車輪側の伝動経路32に駆動連結される外摩擦板19とを有している。
 更に、上記クラッチK0の外径側には、モータ3が軸方向位置でオーバーラップするように配設されており、このモータ3は、上記入力軸15に駆動連結されたロータ3aと、その径方向外側にステータ3bとが対向するように配置されて構成されている。
 即ち、ハイブリッド駆動装置5は、主に内燃エンジン2の駆動力を用いて車両を走行させる場合には、制御部(ECU)20によって油圧制御装置21を制御してクラッチK0を係合させ、車輪側の伝動経路32に駆動連結されたモータ3の駆動力だけで走行するEV走行時には、クラッチK0を解放して、エンジン側の伝動経路31と車輪側の伝動経路32とを切離し、つまり内燃エンジン2を切離すようになっている。
 [有段変速機構の構成]
 ついで、有段変速機構7の構成について説明する。有段変速機構7には、入力軸15上において、プラネタリギヤSPと、プラネタリギヤユニットPUとが備えられている。該プラネタリギヤSPは、サンギヤS1、キャリヤCR1、及びリングギヤR1を備えており、該キャリヤCR1に、サンギヤS1及びリングギヤR1に噛合するピニオンP1を有している、いわゆるシングルピニオンプラネタリギヤである。
 また、上記プラネタリギヤユニットPUは、4つの回転要素としてサンギヤS2、サンギヤS3、キャリヤCR2、及びリングギヤR2を有し、該キャリヤCR2に、サンギヤS2及びリングギヤR2に噛合するロングピニオンPLと、サンギヤS3に噛合するショートピニオンPSとを互いに噛合する形で有している、いわゆるラビニヨ型プラネタリギヤである。
 上記プラネタリギヤSPのサンギヤS1は、ケース23に対して固定されており、また、上記リングギヤR1は、上記入力軸15に駆動連結されて、該入力軸15の回転と同回転(以下「入力回転」という。)になっている。更に上記キャリヤCR1は、該固定されたサンギヤS1と該入力回転するリングギヤR1とにより、入力回転が減速された減速回転になると共に、クラッチC-1及びクラッチC-3に接続されている。
 上記プラネタリギヤユニットPUのサンギヤS2は、バンドブレーキからなるブレーキB-1に接続されてケース23に対して固定自在となっていると共に、上記クラッチC-3に接続され、該クラッチC-3を介して上記キャリヤCR1の減速回転が入力自在となっている。また、上記サンギヤS3は、クラッチC-1に接続されており、上記キャリヤCR1の減速回転が入力自在となっている。
 更に、上記キャリヤCR2は、入力軸15の回転が入力されるクラッチC-2に接続され、該クラッチC-2を介して入力回転が入力自在となっており、また、ワンウェイクラッチF-1及びブレーキB-2に接続されて、該ワンウェイクラッチF-1を介してケース23に対して一方向の回転が規制されると共に、該ブレーキB-2を介して回転が固定自在となっている。そして、上記リングギヤR2は、カウンタギヤ24に接続されており、該カウンタギヤ24は、カウンタシャフト28、ディファレンシャル装置29を介して車輪6に接続されている。
 上記構成の有段変速機構7は、図1のスケルトンに示す各クラッチC-1~C-3、ブレーキB-1~B-2、ワンウェイクラッチF-1が、図2の係合表に示すように係脱されることにより、前進1速段(1ST)~前進6速段(6TH)、及び後進1速段(REV)を達成している。変速時にあっては、図2の係合表に従って、解放側となる摩擦係合要素(クラッチC-1~C-3、ブレーキB-1~B-2)が解放されると共に、係合側となる摩擦係合要素が係合される。
 [パワーONダウンシフトの変速制御]
 ついで、本ハイブリッド駆動装置5において、主に内燃エンジン2の駆動力を用いて走行している場合のパワーONダウンシフト時の変速制御について図3乃至図5に沿って説明する。なお、図5において、時点t11から時点t14までの入力回転数Ninが変化する期間が「イナーシャ相」の期間であり、時点t14から時点t16までの期間が摩擦要素のトルク分担が入れ替わる「トルク相」の期間である。また、時点t12から時点t16までの変速の終期において、イナーシャトルクTiの変動を緩やかにする「なまし制御」が実行される。
 ここで、パワーONダウンシフトとは、アクセルがONされている状態でダウンシフトする変速であり、例えばキックダウン等の変速状態である。当該パワーONダウンシフトでは、入力軸15に駆動連結された部材(入力系部材)、即ち入力軸15、モータ3のロータ3a、クラッチK0、接続軸13、ダンパ12、ドライブプレート11、内燃エンジン2のクランク軸2a等や、有段変速機構7の内部におけるクラッチC-2のクラッチドラムやリングギヤR1などの同一回転となる部材の回転数が、変速後に上昇することになる。
 また、当該パワーONダウンシフトでは、内燃エンジン2がアクセルONに基づき駆動力を出力し、入力系部材の回転を上昇させるトルクを出力するので、変速時に掴み換えを行う摩擦係合要素(クラッチC-1~C-3、ブレーキB-1~B-2)のうち、解放側となる摩擦係合要素(以下、「解放側摩擦要素」という)の係合状態(解放状態)を緩めれば(伝達するトルクを小さくすれば)、入力系部材に作用するエンジントルクTeのうち、車輪側に伝達するトルクが減少し、それによって入力系部材の回転を上昇させることが可能となる。従って、当該パワーONダウンシフトでは、解放側摩擦要素の解放制御を主体として回転変化を行うイナーシャ相を実行する。
 しかしながら、単に解放側摩擦要素の係合状態を緩めるだけであると、車輪側に伝達される出力トルク(車両の駆動力)が減少してしまい、アクセルをONしている運転者に違和感を与える虞がある。そのため、イナーシャトルクの少なくとも一部をモータトルクで発生することで、車両の駆動力の落ち込みを防止することが考えられるが、イナーシャ相の間にモータトルクTmgが変動してしまうと、解放側摩擦要素トルクTAもそれに合わせて変動させる必要が生じて、モータ3の電気制御に比して応答性が遅い解放側摩擦要素の油圧制御の応答性を勘案すると、図12の矢印Wで示すように入力回転数Ninがイナーシャ相で変動してしまい、運転者に違和感を与える虞がある。
 そこで、本実施の形態では、以下のように制御することで、イナーシャ相にあって、モータトルクTmgと解放側摩擦要素トルクTAとでイナーシャトルクを分担するものでありながら、イナーシャ相におけるモータトルクTmgがなるべく変動しないように安定的に出力することを可能とするものである。
 [パワーONダウンシフトのイナーシャ計算制御]
 続いて、パワーONダウンシフト時のイナーシャ計算について、図5を参照しつつ図3に沿って説明する。制御部20が、例えばアクセル開度や車速に基づきパワーONダウンシフトを判断すると、図5に示す時点t11までに図3に示すパワーONダウンシフト時イナーシャ計算制御を開始する(S11)。
 すると、まず制御部20は、イナーシャ相における目標入力回転数Nin-targを、変速前の入力回転数Ninと、変速後の入力回転数Nin(出力回転数Nout(即ち車速)と変速後のギヤ比Gafとを乗算した値)と、変速開始から変速終了までの目標変速時間tchと、に基づき設定する。特にここでは、イナーシャトルクTiを算出するため、目標入力回転数Nin-targの加速度である目標回転変化加速度αtargを、変速後の入力回転数Ninから変速前の入力回転数Ninを減算した値を目標変速時間tchで除算して算出する(S12)。
 次に、制御部20は、上記算出した目標回転変化加速度αtargに上述した入力系部材の総イナーシャ量(以下、「入力系部材イナーシャ」という)Iinを乗算して、入力系部材の回転変化に基づき発生するイナーシャトルクTiを算出する(S13)。
 ついで、イナーシャ相におけるモータトルクの制限となる設定値を設定する。即ち、図5に示すように、ダウンシフト変速に伴って入力回転数Nin、即ちモータ回転数Nmgが高回転となるため、モータの性能特性に基づき、モータ3の性能限界(モータの性能限界トルク)であるモータ最大トルクTmg-maxとモータ最小トルクTmg-minは、回転変化に伴ってその絶対値が減少する。例えば上記イナーシャトルクTiを発生するためにモータトルクTmgをモータ3の性能限界であるモータ最大トルクTmg-maxで出力してしまうと、イナーシャ相の間にモータトルクTmgが下降してしまうことになる(図12参照)。
 そこで、制御部20は、変速後ギヤ比Gafと出力回転数Noutとから算出できる、変速前のモータ回転数Nmgに基づいて、変速後(時点t16)のモータ最大トルクTmg-max(即ち変速の前後におけるモータの性能限界トルクの絶対値として小さい方の値)をモータトルクTmgの上限値となるように設定値Tmg-limとして設定する(S14)。
 なお、本実施の形態では、設定値Tmg-limを変速後(時点t16)のモータ最大トルクTmg-maxに設定しているが、これ以下に設定すれば、モータトルクTmgがイナーシャ相において変動しなくなることは、言うまでもない。しかし、イナーシャトルクTiを発生するという観点から、設定値Tmg-limはなるべく絶対値として大きい値であることが好ましいので、本実施の形態では、設定値Tmg-limを変速後(時点t16)のモータ最大トルクTmg-maxに設定する。
 上述のように設定値Tmg-limを設定すると、制御部20は、実際に出力するモータトルクTmgを、上記設定値Tmg-limと、イナーシャトルクTiとのうちの小さい方に設定(イナーシャトルクTiが設定値Tmg-limよりも小さい場合はモータ3によりイナーシャトルクTiを全て発生するように設定)して出力する(S15)。
 更に、モータトルクTmgを設定すると、制御部20は、解放側摩擦要素トルクTAを、目標トルクTtargから、イナーシャトルクTiからモータトルクTmgを減算した値と、0(零)との小さい方を減算した値(数式で示すと、『Ttarg{-Min((Ti-Tmg)or0)}』)になるように設定(モータ3によりイナーシャトルクTiを全て発生する場合は解放側摩擦要素でイナーシャトルクを発生する必要がないので分担する分を0に設定)する。即ち、解放側摩擦要素で分担するトルクを図5中破線で示す車輪に出力する駆動力として必要なトルクから減算したトルクとなるように設定し、つまりモータトルクTmgで発生できなかった分の残りのイナーシャトルク分を分担するように解放側摩擦要素トルクTAを設定して、その解放側摩擦要素トルクTAとなるように解放側摩擦要素の係合圧を油圧制御装置21で調圧するように指令出力し(S16)、本イナーシャ計算制御を終了する(S17)。
 以上のようにイナーシャ計算制御が終了すると、時点t11において実際の変速が開始される。すると、入力系部材のイナーシャトルクTiの一部をモータトルクTmgで補うべく、該モータトルクTmgを設定値Tmg-limとして出力する。これにより、時点t11から後述のなまし制御のモータのフィードバック制御が開始される時点t13までにおいて、モータトルクTmgは矢印Aで示すように変動することなく一定値で安定的に出力される。
 従って、エンジントルクTeとモータトルクTmgとを加算した値である入力トルクTinは、目標トルクTtargに設定値Tmg-limを加算した値に沿って出力され、つまり目標トルクTtarg及びモータ最大トルクTmg-maxを加算した上限値と、目標トルクTtarg及びモータ最小トルクTmg-minを加算した下限値との間の範囲にあって、モータ性能の限界を超えることなく、安定的に制御される。
 また、解放側摩擦要素は、上述のように設定された解放側摩擦要素トルクTAとなるように(モータトルクTmgを減算した残りのイナーシャトルクを分担するように)制御される。これにより、時点t11から後述のなまし制御の摩擦要素のフィードバック制御が開始される時点t12までにおいて、解放側摩擦要素トルクTAは矢印Bで示すように上昇勾配となるように制御され、運転者の駆動力要求に応じた勾配に設定することが可能となる。従って、出力トルクToutも、時点t11から時点t13までの間において矢印Cで示すように一定の上昇勾配となり、アクセルを踏み込んでいる運転者に対し、出力トルクToutが上昇していく感覚を与えて、変速中に運転者に違和感を生じさせることが防止される。
 更に、時点t11から時点t13までの間において、変速中のイナーシャ相におけるモータトルクTmgを、変速の前後におけるモータの性能限界トルク(モータ最大トルクTmg-max)の小さい方の値以下に設定された設定値Tmg-limに制限するので、変速中に、モータの性能限界トルク(モータ最大トルクTmg-max)の変動によってモータトルクTmgが変動してしまうことを防止することができる(図12参照)。これにより、入力回転数Nin(入力系部材の回転変化)が矢印Dで示すように安定的に一定勾配で目標入力回転数Nin-targとなるように上昇するので、エンジン音の変動や回転数計の変動などを防止して、変速中に運転者に違和感を生じさせることが防止される。
 [パワーONダウンシフトのなまし制御]
 ここで、変速の終期におけるイナーシャトルクTiの変動を緩やかにする、なまし制御の従来制御について図12に沿って説明する。図12に示すように、時点tbから時点teまでの変速の終期において、入力系部材の回転上昇が止まっていき、つまり入力系部材の回転加速度を減速方向に転換する状態にあっては、入力系部材の回転上昇を減速させるために、モータトルクTmgを負方向に制御すると共に内燃エンジン2のトルクリダクションを行う必要があった。
 しかしながら、内燃エンジン2のトルクリダクションは、例えば燃料噴射量の調整や点火タイミングの調整などで行われるため、モータ制御や摩擦係合要素の油圧制御に比して安定的にエンジントルクTeを低下させることが容易ではなく、破線Uで示すようにエンジントルクTeの低下が遅れて入力回転数Ninが一時的に上昇する、いわゆるエンジン吹きを生じたり、破線Vで示すようにエンジントルクTeの低下が早くて入力回転数Ninが一時的に落ち込んで停滞したりすることが、比較的頻度が高く発生するという問題があった。
 そこで、本実施の形態では、モータ3の制御と解放側摩擦要素の係合状態の制御とでなまし制御を行い、内燃エンジン2(エンジントルクTe)を用いずに、なまし制御を完了することを可能とする。以下。本実施の形態に係るなまし制御を図4及び図5に沿って説明する。
 図4に示すように、例えば変速比の値(入力回転数Ninと出力回転数Noutとの比)に基づく変速進行率が所定の進行率まで到達すると、制御部20は本なまし制御を開始し(S51)、入力軸回転センサ80により検出される実際の入力回転数(入力軸の実際の回転数)Ninが上記目標入力回転数Nin-targとなるように、解放側摩擦要素のフィードバック制御(FB)を開始したか、或いは、モータ3のフィードバック制御(FB)を開始したかを判定する(S52)。
 制御部20は、解放側摩擦要素のフィードバック制御或いはモータ3のフィードバック制御が開始されるまで待機し(S52のNO)、どちらかが開始されると(S52のYES)、モータトルクTmgと解放側摩擦要素トルクTAとのなましトルク分担率(即ち、モータトルクと摩擦要素トルクとのなまし制御で用いるトルクの分担率)を設定し、なまし制御で分担するトルクを配分されるように、それぞれのフィードバックゲイン、即ち解放側摩擦要素のフィードバックゲイン及びモータ3のフィードバックゲインを上記なましトルク分担率に応じて設定する(S53)。
 即ち、制御部20は、このなましトルク分担率を設定する際、モータ3のなましトルク分担率をイナーシャトルクTiに対するモータ最大トルクTmg-max(又はモータ最小トルクTmg-min)の比率で算出し、残り(100%-モータ3のなましトルク分担率)を解放側摩擦要素のなましトルク分担率とする。言い換えると、変速後はモータ最大トルクTmg-max(又はモータ最小トルクTmg-min)が設定値Tmg-limとなるので、イナーシャ相における解放側摩擦要素(入力系部材の回転変化を制御する摩擦係合要素)の係合状態(つまり解放側摩擦要素トルクTA)から、設定値Tmg-limで出力していたモータトルクTmgとの比率が算出できるので、解放側摩擦要素トルクTAに基づきなましトルク分担率を設定できる。
 このように解放側摩擦要素のフィードバックゲイン及びモータ3のフィードバックゲインがなましトルク分担率に応じて設定されると、制御部20は変速制御が終了したか否かを判定し(S54)、変速制御が終了していない場合は(S54のNO)、フィードバックゲイン分担率を出力して(S55)、つまり解放側摩擦要素のフィードバック制御及びモータ3のフィードバック制御をそれぞれ分担されたゲインで実行する。
 具体的には、上述のようになましトルク分担率に応じて設定された、解放側摩擦要素のフィードバックゲイン及びモータ3のフィードバックゲインのそれぞれに、目標入力回転数Nin-targから入力回転数Ninを減算した偏差を乗算して、それぞれモータ用偏差及び解放側摩擦要素用偏差を求め、それらをPI制御(比例-積分制御)することによってモータフィードバックトルク及び解放側摩擦要素フィードバックトルクを算出し、モータ3の出力及び解放側摩擦要素の油圧制御に反映させる。その後、制御部20が時点t16において変速制御の終了を判定すると(S54のYES)、本なまし制御を終了する(S56)。
 ところで、解放側摩擦要素の油圧応答性とモータ3の出力制御とでは、レスポンスがモータ3の方が早く、同時にフィードバック制御を開始した場合、解放側摩擦要素の応答遅れが生じる虞がある。そこで、図5に示すように、モータ3のフィードバック制御の開始タイミングである時点t13に対して、解放側摩擦要素の応答遅れ分と上記なましトルク分担率とを考慮した開始タイミングである時点t12から解放側摩擦要素のフィードバック制御を開始する。
 従って、図5に示すように、時点t12から解放側摩擦要素トルクTAが上昇することで、車輪側への伝達トルクを大きくして入力系部材に対するイナーシャトルクTiの減少(つまり回転変化を小さく)を開始し、時点t13からモータトルクTmg(入力トルクTin)も減少することで、イナーシャトルクTiが緩やかに減少されて最終的に0にされる。その間、時点t14において係合側摩擦要素が油圧制御されて係合を開始し、係合側摩擦要素トルクTBが大きくされると共に、解放側摩擦要素トルクTAが小さくされて、つまりトルク伝達が解放側摩擦要素から係合側摩擦要素に移行されるトルク相となる。そして、時点t15において係合側摩擦要素が係合状態にされ、さらに時点t16までに解放側摩擦要素が解放されていくことで出力トルクToutが変速後のギヤ比に応じて出力されていき、時点t16において変速制御が終了する。
 以上のように本なまし制御においては、モータ3と解放側摩擦係合要素とのなましトルク分担率を設定して、なましトルク分担率に基づきモータ3と解放側摩擦係合要素とによりなまし制御で分担するトルクを配分するように制御するので、なまし制御において内燃エンジン2のトルクを変動させることを不要とすることができ、内燃エンジン2を用いてなまし制御を行った場合に発生する虞のあるエンジン吹きや入力回転数Ninの落ち込みなどのバラツキが防止される。また、モータ3と摩擦係合要素とのなましトルク分担率を設定することで、モータ3の性能限界トルク(モータ最大トルクTmg-max又はモータ最小トルクTmg-min)を越えたモータトルクTmgが要求されることを防ぐことができ、どちらか一方に過大なトルクを要求されることなく、良好ななまし制御を実現される。
 また、なましトルク分担率を、イナーシャ相における解放側摩擦要素の係合状態に基づき設定するので、解放側摩擦要素で発生できるトルクの限界を超えるようなことを防止することができ、良好ななまし制御を実現することができる。
 更に、なまし制御のフィードバック制御におけるモータのフィードバックゲイン及び解放側摩擦要素のフィードバックゲインをなましトルク分担率に応じて設定するので、フィードバック制御にてハンチング等を防いで、制御が発散してしまうことを防止することができ、良好なフィードバック制御を行うことができる。
 そして、なましトルク分担率に応じて、モータのフィードバック制御の開始タイミングと摩擦係合要素の係合状態のフィードバック制御の開始タイミングとをそれぞれ設定するので、特に解放側摩擦要素の油圧応答性よりも応答性の早いモータ制御を加味して、良好なフィードバック制御を行うことができる。
 なお、本実施の形態では、なましトルク分担率を、イナーシャ相における解放側摩擦要素の係合状態(即ち、イナーシャ相におけるモータトルクTmgと解放側摩擦要素トルクTBとのイナーシャトルクの分担率)に基づき設定しているが、例えばなまし制御の終了時間等を考慮して、新たに再設定してもよい。勿論、この場合でも、モータトルクTmgが設定値Tmg-limを越えないように設定することが好ましい。
 [パワーOFFアップシフトの変速制御]
 ついで、主に内燃エンジン2の駆動力を用いて走行している場合のパワーOFFアップシフト時の変速制御について図6及び図7に沿って説明する。なお、図7において、時点t21から時点t24までの入力回転数Ninが変化する期間が「イナーシャ相」の期間であり、時点t24から時点t26までの期間が摩擦要素のトルク分担が入れ替わる「トルク相」の期間である。また、時点t22から時点t26までの変速の終期において、イナーシャトルクTiの変動を緩やかにする「なまし制御」が実行される。
 ここで、パワーOFFアップシフトとは、アクセルがOFFされている状態でアップシフトする変速であり、いわゆるオフアップ変速状態である。当該パワーOFFアップシフトでは、入力軸15(入力系部材)の回転数が、変速後に下降することになる。
 また、当該パワーOFFアップシフトでは、内燃エンジン2がアクセルOFFに基づき駆動力を非出力状態にし、入力系部材の回転を下降させる負トルクを出力するので、解放側摩擦要素の係合状態(解放状態)を緩めれば(伝達するトルクを小さくすれば)、入力系部材に作用する車輪側からの車両慣性トルクの、内燃エンジン2への逆入力が減少し、それによって入力系部材の回転を下降させることが可能となる。従って、当該パワーOFFアップシフトでは、解放側摩擦要素の解放制御を主体として回転変化を行うイナーシャ相を実行する。
 しかしながら、単に解放側摩擦要素の係合状態を緩めるだけであると、車輪側に伝達される負トルク(エンジンブレーキトルク)が減少してしまうと共にイナーシャトルクTiの発生に基づく加速感が生じて、アクセルをOFFしている運転者に違和感を与える虞がある。そのため、イナーシャトルクの少なくとも一部をモータトルク(負トルク或いは回生トルク)で発生する(或いは打ち消しあう)ことで、車両の駆動力の上昇を防止することが考えられるが、イナーシャ相の間にモータトルクTmgが変動してしまうと、解放側摩擦要素トルクTAもそれに合わせて変動させる必要が生じて、モータ3の電気制御に比して応答性が遅い解放側摩擦要素の油圧制御の応答性を勘案すると、入力回転数Ninがイナーシャ相で変動してしまい、運転者に違和感を与える虞がある。
 そこで、上述したパワーONダウンシフトと同様に、以下のように制御することで、イナーシャ相にあって、モータトルクTmgと解放側摩擦要素トルクTAとでイナーシャトルクを分担するものでありながら、イナーシャ相におけるモータトルクTmgがなるべく変動しないように安定的に出力することを可能とするものである。
 [パワーOFFアップシフトのイナーシャ計算制御]
 続いて、パワーOFFアップシフト時のイナーシャ計算について、図7を参照しつつ図6に沿って説明する。制御部20が、例えばアクセル開度や車速に基づきパワーOFFアップシフトを判断すると、図7に示す時点t21までに図6に示すパワーOFFアップシフト時イナーシャ計算制御を開始する(S21)。
 すると、まず制御部20は、上述したパワーONダウンシフトの際のステップS12,S13と同様に、目標入力回転数Nin-targを設定すると共に、目標入力回転数Nin-targの加速度である目標回転変化加速度αtargを、変速後の入力回転数Ninから変速前の入力回転数Ninを減算した値を目標変速時間tchで除算して算出し(S22)、算出した目標回転変化加速度αtargに入力系部材イナーシャIinを乗算して、入力系部材の回転変化に基づき発生するイナーシャトルクTiを算出する(S23)。
 ここで、本パワーOFFアップシフトでは、図7に示すように、アップシフト変速に伴って入力回転数Nin、即ちモータ回転数Nmgが変速後に低回転となるため、モータの性能特性に基づき、モータ3の性能限界であるモータ最大トルクTmg-maxとモータ最小トルクTmg-minは、回転変化に伴ってその絶対値が増大する。例えば上記イナーシャトルクTiを発生するためにモータトルクTmgをモータ3の性能限界であるモータ最小トルクTmg-minで出力してしまうと、イナーシャ相の間にモータトルクTmgが増大してしまうことになる。
 そこで、制御部20は、変速前ギヤ比Gbeと出力回転数Noutとから算出できる、変速前のモータ回転数Nmgに基づいて、変速前(時点t21)のモータ最小トルクTmg-min(即ち変速の前後におけるモータの性能限界トルクの絶対値として小さい方の値)をモータトルクTmgの下限値となるように設定値Tmg-limとして設定する(S24)。
 なお、本実施の形態では、設定値Tmg-limを変速前(時点t21)のモータ最小トルクTmg-minに設定しているが、絶対値がこれ以下となるように設定すれば、モータトルクTmgがイナーシャ相において変動しなくなることは、言うまでもない。しかし、イナーシャトルクTiを発生するという観点から、設定値Tmg-limはなるべく絶対値として大きい値であることが好ましいので、本実施の形態では、設定値Tmg-limを変速前(時点t21)のモータ最小トルクTmg-minに設定する。
 このように設定値Tmg-limを設定すると、制御部20は、実際に出力するモータトルクTmgを、上記設定値Tmg-limと、イナーシャトルクTiとのうちの大きい方(絶対値で小さい方)に設定(イナーシャトルクTiが設定値Tmg-limよりも大きい場合はモータ3によりイナーシャトルクTiを全て発生するように設定)して出力する(S25)。
 更に、モータトルクTmgを設定すると、制御部20は、解放側摩擦要素トルクTAを、目標トルクTtargから、イナーシャトルクTiからモータトルクTmgを減算した値と、0(零)との小さい方を減算した値(数式で示すと、『Ttarg{-Min((Ti-Tmg)or0)}』)になるように設定(モータ3によりイナーシャトルクTiを全て発生する場合は解放側摩擦要素でイナーシャトルクを発生する必要がないので分担する分を0に設定)する。即ち、解放側摩擦要素で分担するトルクを図7中破線で示す車輪に出力する駆動力として必要なトルクから減算したトルクとなるように設定し、つまりモータトルクTmgで発生できなかった分の残りのイナーシャトルク分を分担するように解放側摩擦要素トルクTAを設定して、その解放側摩擦要素トルクTAとなるように解放側摩擦要素の係合圧を油圧制御装置21で調圧するように指令出力し(S26)、本イナーシャ計算制御を終了する(S27)。
 以上のようにイナーシャ計算制御が終了すると、時点t21において実際の変速が開始される。すると、入力系部材のイナーシャトルクTiの一部をモータトルクTmgで補うべく、該モータトルクTmgを設定値Tmg-limとして出力する。これにより、時点t21から後述のなまし制御のモータのフィードバック制御が開始される時点t23までにおいて、モータトルクTmgは矢印Eで示すように変動することなく一定値で安定的に出力される。
 従って、エンジントルクTeとモータトルクTmgとを加算した値である入力トルクTinは、目標トルクTtargに設定値Tmg-limを加算した値に沿って出力され、つまり目標トルクTtarg及びモータ最小トルクTmg-minを加算した上限値と、目標トルクTtarg及びモータ最小トルクTmg-minを加算した下限値との間の範囲にあって、モータ性能の限界を超えることなく、安定的に制御される。
 また、解放側摩擦要素は、上述のように設定された解放側摩擦要素トルクTAとなるように(モータトルクTmgを減算した残りのイナーシャトルクを分担するように)制御される。これにより、時点t21から後述のなまし制御の摩擦要素のフィードバック制御が開始される時点t22までにおいて、解放側摩擦要素トルクTAは矢印Fで示すように上昇勾配となるように制御される。従って、出力トルクToutは、時点t21から時点t24までの間において矢印Gで示すように下降勾配となり、アクセルを放している(OFFしている)運転者に対し、出力トルクToutが下降していく感覚を与えて、変速中に運転者に違和感を生じさせることが防止される。
 更に、時点t21から時点t23までの間において、変速中のイナーシャ相におけるモータトルクTmgを、変速の前前におけるモータの性能限界トルク(モータ最小トルクTmg-min)の絶対値として小さい方の値以下に設定された設定値Tmg-limに制限するので、変速中に、モータの性能限界トルク(モータ最小トルクTmg-min)の変動によってモータトルクTmgが変動してしまうことを防止することができる。これにより、入力回転数Nin(入力系部材の回転変化)が矢印Hで示すように安定的に略々一定勾配で目標入力回転数Nin-targとなるように下降するので、エンジン音の変動や回転数計の変動などを防止して、変速中に運転者に違和感を生じさせることが防止される。
 [パワーOFFアップシフトのなまし制御]
 ついで、本パワーOFFアップシフトにおける、なまし制御について説明する。本パワーOFFアップシフトにあっても、図4に示すなまし制御を同様に実行する。即ち、変速進行率が所定の進行率まで到達すると、制御部20は本なまし制御を開始し(S51)、解放側摩擦要素のフィードバック制御(FB)を開始したか、或いは、モータ3のフィードバック制御(FB)を開始したかを判定する(S52)。どちらかのフィードバック制御が開始されると(S52のYES)、モータトルクTmgと解放側摩擦要素トルクTAとのなましトルク分担率を設定し、なまし制御で分担するトルクを配分されるように、それぞれのフィードバックゲイン、即ち解放側摩擦要素のフィードバックゲイン及びモータ3のフィードバックゲインを上記なましトルク分担率に応じて設定する(S53)。
 このなましトルク分担率は、モータ3のなましトルク分担率をイナーシャトルクTiに対するモータ最大トルクTmg-max(又はモータ最小トルクTmg-min)の比率で算出し、残り(100%-モータ3のなましトルク分担率)を解放側摩擦要素のなましトルク分担率とする。
 このように解放側摩擦要素のフィードバックゲイン及びモータ3のフィードバックゲインがなましトルク分担率に応じて設定されると、制御部20は変速制御が終了したか否かを判定し(S54)、変速制御が終了していない場合は(S54のNO)、フィードバックゲイン分担率を出力して(S55)、つまり解放側摩擦要素のフィードバック制御及びモータ3のフィードバック制御をそれぞれ分担されたゲインで実行する。そして、制御部20が時点t26において変速制御の終了を判定すると(S54のYES)、本なまし制御を終了する(S56)。
 また同様に、解放側摩擦要素の油圧応答性とモータ3の出力制御とでは、レスポンスがモータ3の方が早く、同時にフィードバック制御を開始した場合、解放側摩擦要素の応答遅れが生じる虞がある。そこで、図7に示すように、モータ3のフィードバック制御の開始タイミングである時点t23に対して、解放側摩擦要素の応答遅れ分と上記なましトルク分担率とを考慮した開始タイミングである時点t22から解放側摩擦要素のフィードバック制御を開始する。
 従って、図7に示すように、時点t22から解放側摩擦要素トルクTAが上昇することで、車輪側への伝達トルクを大きくして入力系部材に対するイナーシャトルクTiの減少(つまり回転変化を小さく)を開始し、時点t23からモータトルクTmg(入力トルクTin)も上昇する(絶対値として減少する)ことで、イナーシャトルクTiが緩やかに減少されて最終的に0にされる。その間、時点t24において係合側摩擦要素が油圧制御されて係合を開始し、係合側摩擦要素トルクTBが大きくされると共に、解放側摩擦要素トルクTAが小さくされて、つまりトルク伝達が解放側摩擦要素から係合側摩擦要素に移行されるトルク相となる。そして、時点t25において係合側摩擦要素が係合状態にされ、さらに時点t26までに解放側摩擦要素が解放されていくことで出力トルクToutが変速後のギヤ比に応じて出力されていき、時点t26において変速制御が終了する。
 以上のように本パワーOFFアップシフトのなまし制御にあっても、モータ3と解放側摩擦係合要素とのなましトルク分担率を設定して、なましトルク分担率に基づきモータ3と解放側摩擦係合要素とによりなまし制御で分担するトルクを配分するように制御するので、なまし制御において内燃エンジン2のトルクを変動させることを不要とすることができ、内燃エンジン2を用いてなまし制御を行った場合に発生する虞のあるエンジン吹きや入力回転数Ninの落ち込みなどのバラツキが防止される。また、モータ3と摩擦係合要素とのなましトルク分担率を設定することで、モータ3の性能限界トルク(モータ最大トルクTmg-max又はモータ最小トルクTmg-min)を越えたモータトルクTmgが要求されることを防ぐことができ、どちらか一方に過大なトルクを要求されることなく、良好ななまし制御を実現される。
 また、なましトルク分担率を、イナーシャ相における解放側摩擦要素の係合状態に基づき設定するので、解放側摩擦要素で発生できるトルクの限界を超えるようなことを防止することができ、良好ななまし制御を実現することができる。
 更に、なまし制御のフィードバック制御におけるモータのフィードバックゲイン及び解放側摩擦要素のフィードバックゲインをなましトルク分担率に応じて設定するので、フィードバック制御にてハンチング等を防いで、制御が発散してしまうことを防止することができ、良好なフィードバック制御を行うことができる。
 そして、なましトルク分担率に応じて、モータのフィードバック制御の開始タイミングと摩擦係合要素の係合状態のフィードバック制御の開始タイミングとをそれぞれ設定するので、特に解放側摩擦要素の油圧応答性よりも応答性の早いモータ制御を加味して、良好なフィードバック制御を行うことができる。
 [パワーONアップシフトの変速制御]
 ついで、主に内燃エンジン2の駆動力を用いて走行している場合のパワーONアップシフト時の変速制御について図8及び図9に沿って説明する。なお、図9において、時点t31から時点t32までの期間が摩擦要素のトルク分担が入れ替わる「トルク相」の期間であり、時点t32から時点t36までの入力回転数Ninが変化する期間が「イナーシャ相」の期間である。また、時点t33から時点t36までの変速の終期において、イナーシャトルクTiの変動を緩やかにする「なまし制御」が実行される。
 ここで、パワーONアップシフトとは、アクセルがONされている状態でアップシフトする変速であり、つまり加速中にアップシフト変速する状態である。当該パワーONアップシフトでは、入力軸15(入力系部材)の回転数が、変速後に下降することになる。
 また、当該パワーONアップシフトでは、内燃エンジン2がアクセルONに基づき駆動力を出力状態にし、入力系部材の回転を上昇させる正トルクを出力するので、解放側摩擦要素を解放することでは入力系部材が回転上昇してしまうだけであるため、係合側摩擦要素の係合状態を締めれば(伝達するトルクを大きくすれば)、入力系部材に作用する車輪側からの車両慣性トルクの、内燃エンジン2への逆入力が増大し、それによって入力系部材の回転を下降させることが可能となる。従って、当該パワーONアップシフトでは、解放側摩擦要素と係合側摩擦要素とのトルク分担を入れ替えるトルク相を先に実行して、その後、係合側摩擦要素の係合制御を主体として回転変化を行うイナーシャ相を実行する。
 なお、入力系部材の回転数を下降させるイナーシャ相においては、係合側摩擦要素による入力系部材の回転制御だけでは、当該係合側摩擦要素に大きな負荷が生じるので、内燃エンジン2のトルクリダクションも併用して、入力系部材の回転数を降下させる。
 更に、イナーシャ相において内燃エンジン2のトルクリダクションだけでは、係合側摩擦要素に大きな負荷が生じる虞もあるので、イナーシャトルクの少なくとも一部をモータトルク(負トルク或いは回生トルク)で発生する(或いは打ち消しあう)ことで、係合側摩擦要素の負荷の低減を図ることが考えられるが、イナーシャ相の間にモータトルクTmgが変動してしまうと、係合側摩擦要素トルクTBもそれに合わせて変動させる必要が生じて、モータ3の電気制御に比して応答性が遅い係合側摩擦要素の油圧制御の応答性を勘案すると、入力回転数Ninがイナーシャ相で変動してしまい、運転者に違和感を与える虞がある。
 そこで、上述したパワーONダウンシフトやパワーOFFアップシフトと同様に、以下のように制御することで、イナーシャ相にあって、エンジントルクTe(トルクリダクション)とモータトルクTmgと係合側摩擦要素トルクTBとでイナーシャトルクを分担するものでありながら、イナーシャ相におけるモータトルクTmgがなるべく変動しないように安定的に出力することを可能とするものである。
 [パワーONアップシフトのイナーシャ計算制御]
 続いて、パワーONアップシフト時のイナーシャ計算について、図9を参照しつつ図8に沿って説明する。制御部20が、例えばアクセル開度や車速に基づきパワーONアップシフトを判断すると、図9に示す時点t31までに図8に示すパワーONアップシフト時イナーシャ計算制御を開始する(S31)。
 すると、まず制御部20は、上述したパワーONダウンシフトの際のステップS12,S13と同様に、目標入力回転数Nin-targを設定すると共に、目標入力回転数Nin-targの加速度である目標回転変化加速度αtargを、変速後の入力回転数Ninから変速前の入力回転数Ninを減算した値を目標変速時間tchで除算して算出し(S32)、算出した目標回転変化加速度αtargに入力系部材イナーシャIinを乗算して、入力系部材の回転変化に基づき発生するイナーシャトルクTiを算出する(S33)。
 ここで、本パワーONアップシフトでは、図9に示すように、アップシフト変速に伴って入力回転数Nin、即ちモータ回転数Nmgが変速後に低回転となるため、モータの性能特性に基づき、モータ3の性能限界であるモータ最大トルクTmg-maxとモータ最小トルクTmg-minは、回転変化に伴ってその絶対値が増大する。例えば上記イナーシャトルクTiを発生するためにモータトルクTmgをモータ3の性能限界であるモータ最小トルクTmg-minで出力してしまうと、イナーシャ相の間にモータトルクTmgが増大してしまうことになる。
 そこで、制御部20は、変速前ギヤ比Gbeと出力回転数Noutとから算出できる、変速後のモータ回転数Nmgに基づいて、変速前(時点t31)(或いはイナーシャ相開始前の時点t32であってもよい)のモータ最小トルクTmg-min(即ち変速の前後におけるモータの性能限界トルクの絶対値として小さい方の値)をモータトルクTmgの下限値となるように設定値Tmg-limとして設定する(S34)。
 なお、本実施の形態では、設定値Tmg-limを変速前(時点t31)のモータ最小トルクTmg-minに設定しているが、絶対値がこれ以下となるように設定すれば、モータトルクTmgがイナーシャ相において変動しなくなることは、言うまでもない。しかし、イナーシャトルクTiを発生するという観点から、設定値Tmg-limはなるべく絶対値として大きい値であることが好ましいので、本実施の形態では、設定値Tmg-limを変速前(時点t31)のモータ最小トルクTmg-minに設定する。
 このように設定値Tmg-limを設定すると、制御部20は、実際に出力するモータトルクTmgを、上記設定値Tmg-limと、イナーシャトルクTiとのうちの大きい方(絶対値で小さい方)に設定(イナーシャトルクTiが設定値Tmg-limよりも大きい場合はモータ3によりイナーシャトルクTiを全て発生するように設定)して出力する(S35)。
 更に、モータトルクTmgを設定すると、制御部20は、エンジントルクTeを、予めエンジン性能で定められた最大トルクダウン量(例えば50%)でトルクリダクションされるように設定し、引き続き、係合側摩擦要素トルクTBを、目標トルクTtargから、イナーシャトルクTiからモータトルクTmg及びエンジントルクTeを減算した値と、0(零)との小さい方を減算した値(数式で示すと、『Ttarg{-Min((Ti-Tmg-Te)or0)}』)になるように設定(モータ3によりイナーシャトルクTiを全て発生する場合は係合側摩擦要素でイナーシャトルクを発生する必要がないので分担する分を0に設定)する。即ち、係合側摩擦要素で分担するトルクを、図9中破線で示す車輪への駆動力として伝達する分のトルクに対し、矢印Mの分だけ加算したトルクとなるように設定し、つまりモータトルクTmg及びエンジントルクTeで発生できなかった分の残りのイナーシャトルク分を分担するように係合側摩擦要素トルクTBを設定して、その係合側摩擦要素トルクTBとなるように係合側摩擦要素の係合圧を油圧制御装置21で調圧するように指令出力し(S36)、本イナーシャ計算制御を終了する(S37)。
 以上のようにイナーシャ計算制御が終了すると、時点t31において実際の変速が開始される。すると、まず解放側摩擦要素から係合側摩擦要素にトルク分担を変更するように、解放側摩擦要素トルクTAを所定勾配で下降させると共に係合側摩擦要素トルクTBを所定勾配で上昇させる(トルク相)。続けて、入力系部材のイナーシャトルクTiをエンジントルクTeとモータトルクTmgとで補うべく、モータトルクTmgを設定値Tmg-limとして出力すると共に、エンジントルクTeを上述のようにトルクリダクションする。これにより、時点t32から後述のなまし制御のモータのフィードバック制御が開始される時点t34までにおいて、モータトルクTmgは矢印Iで示すように変動することなく一定値で安定的に出力される。
 従って、エンジントルクTeとモータトルクTmgとを加算した値である入力トルクTinは、目標トルクTtargにエンジントルクリダクション量と設定値Tmg-limとを加算した値に沿って出力され、つまりモータ性能の限界を超えることなく、安定的に制御される。また、エンジントルクTeも安定的に略々一定トルクとなるようにトルクリダクションされる。
 そして、係合側摩擦要素は、上述のように設定された係合側摩擦要素トルクTBとなるように(モータトルクTmg及びエンジントルクTeを減算した残りのイナーシャトルクを分担するように)制御される。これにより、時点t32から後述のなまし制御の摩擦要素のフィードバック制御が開始される時点t33までにおいて、係合側摩擦要素トルクTBは矢印Jで示すように一定勾配となるように制御される。従って、出力トルクToutは、時点t32から時点t34までの間において矢印Kで示すように略々一定勾配となり、アクセルを踏み込んでいる運転者に対し、出力トルクToutが下降する感覚(減速感)を防止して、変速中に運転者に違和感を生じさせることが防止される。
 更に、時点t32から時点t34までの間において、変速中のイナーシャ相におけるモータトルクTmgを、変速の前前におけるモータの性能限界トルク(モータ最小トルクTmg-min)の絶対値として小さい方の値以下に設定された設定値Tmg-limに制限するので、変速中に、モータの性能限界トルク(モータ最小トルクTmg-min)の変動によってモータトルクTmgが変動してしまうことを防止することができる。これにより、入力回転数Nin(入力系部材の回転変化)が矢印Lで示すように安定的に一定勾配で目標入力回転数Nin-targとなるように下降するので、エンジン音の変動や回転数計の変動などを防止して、変速中に運転者に違和感を生じさせることが防止される。
 [パワーONアップシフトのなまし制御]
 ついで、本パワーONアップシフトにおける、なまし制御について説明する。本パワーONアップシフトにあっても、図4に示すなまし制御を同様に実行する。即ち、変速進行率が所定の進行率まで到達すると、制御部20は本なまし制御を開始し(S51)、係合側摩擦要素のフィードバック制御(FB)を開始したか、或いは、モータ3のフィードバック制御(FB)を開始したかを判定する(S52)。どちらかのフィードバック制御が開始されると(S52のYES)、モータトルクTmgと係合側摩擦要素トルクTBとのなましトルク分担率を設定し、なまし制御で分担するトルクを配分されるように、それぞれのフィードバックゲイン、即ち係合側摩擦要素のフィードバックゲイン及びモータ3のフィードバックゲインを上記なましトルク分担率に応じて設定する(S53)。
 なお、本パワーONアップシフトでは、イナーシャ相においてエンジントルクTeのトルクリダクションを行ったが、なまし制御では、エンジントルクTeを用いずに、モータトルクTmgと係合側摩擦要素トルクTBとでなましトルク分担率を設定することに特徴がある。
 そして、このなましトルク分担率は、モータ3のなましトルク分担率をイナーシャトルクTiに対するモータ最大トルクTmg-max(又はモータ最小トルクTmg-min)の比率で算出し、残り(100%-モータ3のなましトルク分担率)を係合側摩擦要素のなましトルク分担率とする。
 このように係合側摩擦要素のフィードバックゲイン及びモータ3のフィードバックゲインがなましトルク分担率に応じて設定されると、制御部20は変速制御が終了したか否かを判定し(S54)、変速制御が終了していない場合は(S54のNO)、フィードバックゲイン分担率を出力して(S55)、つまり係合側摩擦要素のフィードバック制御及びモータ3のフィードバック制御をそれぞれ分担されたゲインで実行する。そして、制御部20が時点t36において変速制御の終了を判定すると(S54のYES)、本なまし制御を終了する(S56)。
 また同様に、係合側摩擦要素の油圧応答性とモータ3の出力制御とでは、レスポンスがモータ3の方が早く、同時にフィードバック制御を開始した場合、係合側摩擦要素の応答遅れが生じる虞がある。そこで、図9に示すように、モータ3のフィードバック制御の開始タイミングである時点t34に対して、係合側摩擦要素の応答遅れ分と上記なましトルク分担率とを考慮した開始タイミングである時点t33から係合側摩擦要素のフィードバック制御を開始する。
 従って、図9に示すように、時点t33から係合側摩擦要素トルクTBが下降することで、車輪側への伝達トルクを小さくして入力系部材に対するイナーシャトルクTiの減少(つまり回転変化を小さく)を開始し、時点t34からモータトルクTmg(入力トルクTin)も上昇する(絶対値として減少する)ことで、イナーシャトルクTiが緩やかに減少されて最終的に0にされる。そして、時点t35において係合側摩擦要素トルクTBが車輪側に伝達するトルクを伝達する係合状態にされ、イナーシャ相としては略々終了状態となるので、時点t36までに係合側摩擦要素の係合を完了(完全係合)させ、時点t36において変速制御が終了する。
 以上のように本パワーONアップシフトのなまし制御にあっても、モータ3と係合側摩擦係合要素とのなましトルク分担率を設定して、なましトルク分担率に基づきモータ3と係合側摩擦係合要素とによりなまし制御で分担するトルクを配分するように制御するので、なまし制御において内燃エンジン2のトルクを変動させることを不要とすることができ、内燃エンジン2を用いてなまし制御を行った場合に発生する虞のあるエンジン吹きや入力回転数Ninの落ち込みなどのバラツキが防止される。また、モータ3と摩擦係合要素とのなましトルク分担率を設定することで、モータ3の性能限界トルク(モータ最大トルクTmg-max又はモータ最小トルクTmg-min)を越えたモータトルクTmgが要求されることを防ぐことができ、どちらか一方に過大なトルクを要求されることなく、良好ななまし制御を実現される。
 また、なましトルク分担率を、イナーシャ相における係合側摩擦要素の係合状態に基づき設定するので、係合側摩擦要素で発生できるトルクの限界を超えるようなことを防止することができ、良好ななまし制御を実現することができる。
 更に、なまし制御のフィードバック制御におけるモータのフィードバックゲイン及び係合側摩擦要素のフィードバックゲインをなましトルク分担率に応じて設定するので、フィードバック制御にてハンチング等を防いで、制御が発散してしまうことを防止することができ、良好なフィードバック制御を行うことができる。
 そして、なましトルク分担率に応じて、モータのフィードバック制御の開始タイミングと摩擦係合要素の係合状態のフィードバック制御の開始タイミングとをそれぞれ設定するので、特に係合側摩擦要素の油圧応答性よりも応答性の早いモータ制御を加味して、良好なフィードバック制御を行うことができる。
 [パワーOFFダウンシフトの変速制御]
 ついで、主に内燃エンジン2の駆動力を用いて走行している場合のパワーOFFダウンシフト時の変速制御について図10及び図11に沿って説明する。なお、図11において、時点t41から時点t42までの期間が摩擦要素のトルク分担が入れ替わる「トルク相」の期間であり、時点t42から時点t46までの入力回転数Ninが変化する期間が「イナーシャ相」の期間である。また、時点t43から時点t46までの変速の終期において、イナーシャトルクTiの変動を緩やかにする「なまし制御」が実行される。
 ここで、パワーOFFダウンシフトとは、アクセルがOFFされている状態でダウンシフトする変速であり、つまり減速中にダウンシフト変速する状態である。当該パワーOFFダウンシフトでは、入力軸15(入力系部材)の回転数が、変速後に上昇することになる。
 また、当該パワーOFFダウンシフトでは、内燃エンジン2がアクセルOFFに基づき駆動力を非出力状態にし、入力系部材の回転を下降させる負トルクを出力するので、解放側摩擦要素を解放することでは入力系部材が回転下降してしまうだけであるため、係合側摩擦要素の係合状態を締めれば(伝達するトルクを大きくすれば)、入力系部材に作用する車輪側からの車両慣性トルクの、内燃エンジン2への逆入力が増大し、それによって入力系部材の回転を上昇させることが可能となる。従って、当該パワーOFFダウンシフトでは、解放側摩擦要素と係合側摩擦要素とのトルク分担を入れ替えるトルク相を先に実行して、その後、係合側摩擦要素の係合制御を主体として回転変化を行うイナーシャ相を実行する。
 更に、イナーシャ相において係合側摩擦要素による入力系部材の回転上昇だけでは、係合側摩擦要素に大きな負荷が生じる虞もあるので、イナーシャトルクの少なくとも一部をモータトルク(正トルク)で発生することで、係合側摩擦要素の負荷の低減を図ることが考えられるが、イナーシャ相の間にモータトルクTmgが変動してしまうと、係合側摩擦要素トルクTBもそれに合わせて変動させる必要が生じて、モータ3の電気制御に比して応答性が遅い係合側摩擦要素の油圧制御の応答性を勘案すると、入力回転数Ninがイナーシャ相で変動してしまい、運転者に違和感を与える虞がある。
 そこで、上述したパワーONダウンシフト、パワーOFFアップシフト、パワーONアップシフトと同様に、以下のように制御することで、イナーシャ相にあって、モータトルクTmgと係合側摩擦要素トルクTBとでイナーシャトルクを分担するものでありながら、イナーシャ相におけるモータトルクTmgがなるべく変動しないように安定的に出力することを可能とするものである。
 [パワーOFFダウンシフトのイナーシャ計算制御]
 続いて、パワーOFFダウンシフト時のイナーシャ計算について、図11を参照しつつ図10に沿って説明する。制御部20が、例えばアクセル開度や車速に基づきパワーOFFダウンシフトを判断すると、図11に示す時点t41までに図10に示すパワーOFFダウンシフト時イナーシャ計算制御を開始する(S41)。
 すると、まず制御部20は、上述したパワーONダウンシフトの際のステップS12,S13と同様に、目標入力回転数Nin-targを設定すると共に、目標入力回転数Nin-targの加速度である目標回転変化加速度αtargを、変速後の入力回転数Ninから変速前の入力回転数Ninを減算した値を目標変速時間tchで除算して算出し(S42)、算出した目標回転変化加速度αtargに入力系部材イナーシャIinを乗算して、入力系部材の回転変化に基づき発生するイナーシャトルクTiを算出する(S43)。
 ここで、本パワーOFFダウンシフトでは、図11に示すように、ダウンシフト変速に伴って入力回転数Nin、即ちモータ回転数Nmgが変速後に高回転となるため、モータの性能特性に基づき、モータ3の性能限界であるモータ最大トルクTmg-maxとモータ最小トルクTmg-minは、回転変化に伴ってその絶対値が減少する。例えば上記イナーシャトルクTiを発生するためにモータトルクTmgをモータ3の性能限界であるモータ最大トルクTmg-maxで出力してしまうと、イナーシャ相の間にモータトルクTmgが減少してしまうことになる。
 そこで、制御部20は、変速前ギヤ比Gbeと出力回転数Noutとから算出できる、変速後のモータ回転数Nmgに基づいて、変速後(時点t46)のモータ最大トルクTmg-max(即ち変速の前後におけるモータの性能限界トルクの絶対値として小さい方の値)をモータトルクTmgの上限値となるように設定値Tmg-limとして設定する(S44)。
 なお、本実施の形態では、設定値Tmg-limを変速後(時点t46)のモータ最大トルクTmg-maxに設定しているが、絶対値がこれ以下となるように設定すれば、モータトルクTmgがイナーシャ相において変動しなくなることは、言うまでもない。しかし、イナーシャトルクTiを発生するという観点から、設定値Tmg-limはなるべく絶対値として大きい値であることが好ましいので、本実施の形態では、設定値Tmg-limを変速後(時点t46)のモータ最大トルクTmg-maxに設定する。
 このように設定値Tmg-limを設定すると、制御部20は、実際に出力するモータトルクTmgを、上記設定値Tmg-limと、イナーシャトルクTiとのうちの小さい方に設定(イナーシャトルクTiが設定値Tmg-limよりも小さい場合はモータ3によりイナーシャトルクTiを全て発生するように設定)して出力する(S45)。
 更に、モータトルクTmgを設定すると、制御部20は、係合側摩擦要素トルクTBを、目標トルクTtargから、イナーシャトルクTiからモータトルクTmgを減算した値と、0(零)との小さい方を減算した値(数式で示すと、『Ttarg{-Min((Ti-Tmg)or0)}』)になるように設定(モータ3によりイナーシャトルクTiを全て発生する場合は係合側摩擦要素でイナーシャトルクを発生する必要がないので分担する分を0に設定)する。即ち、係合側摩擦要素で分担するトルクを、図11中破線で示す車輪への駆動力として伝達する分のトルクに対し、矢印Rの分だけ加算したトルクとなるように設定し、つまりモータトルクTmgで発生できなかった分の残りのイナーシャトルク分を分担するように係合側摩擦要素トルクTBを設定して、その係合側摩擦要素トルクTBとなるように係合側摩擦要素の係合圧を油圧制御装置21で調圧するように指令出力し(S46)、本イナーシャ計算制御を終了する(S47)。
 以上のようにイナーシャ計算制御が終了すると、時点t41において実際の変速が開始される。すると、まず解放側摩擦要素から係合側摩擦要素にトルク分担を変更するように、解放側摩擦要素トルクTAを所定勾配で下降させると共に係合側摩擦要素トルクTBを所定勾配で上昇させる(トルク相)。続けて、入力系部材のイナーシャトルクTiをモータトルクTmgで補うべく、モータトルクTmgを設定値Tmg-limとして出力する。これにより、時点t42から後述のなまし制御のモータのフィードバック制御が開始される時点t44までにおいて、モータトルクTmgは矢印Nで示すように変動することなく一定値で安定的に出力される。
 従って、エンジントルクTeとモータトルクTmgとを加算した値である入力トルクTinは、目標トルクTtargにエンジントルクリダクション量と設定値Tmg-limとを加算した値に沿って出力され、つまりモータ性能の限界を超えることなく、安定的に制御される。
 また、係合側摩擦要素は、上述のように設定された係合側摩擦要素トルクTBとなるように(モータトルクTmgを減算した残りのイナーシャトルクを分担するように)制御される。これにより、時点t42から後述のなまし制御の摩擦要素のフィードバック制御が開始される時点t43までにおいて、係合側摩擦要素トルクTBは矢印Oで示すように一定勾配となるように制御される。従って、出力トルクToutは、時点t42から時点t44までの間において矢印Pで示すように略々一定勾配となり、アクセルを放している(OFFしている)運転者に対し、出力トルクToutが上昇する感覚(加速感)を防止して、変速中に運転者に違和感を生じさせることが防止される。
 更に、時点t42から時点t44までの間において、変速中のイナーシャ相におけるモータトルクTmgを、変速の前前におけるモータの性能限界トルク(モータ最大トルクTmg-max)の絶対値として小さい方の値以下に設定された設定値Tmg-limに制限するので、変速中に、モータの性能限界トルク(モータ最大トルクTmg-max)の変動によってモータトルクTmgが変動してしまうことを防止することができる。これにより、入力回転数Nin(入力系部材の回転変化)が矢印Qで示すように安定的に一定勾配で目標入力回転数Nin-targとなるように下降するので、エンジン音の変動や回転数計の変動などを防止して、変速中に運転者に違和感を生じさせることが防止される。
 [パワーOFFダウンシフトのなまし制御]
 ついで、本パワーOFFダウンシフトにおける、なまし制御について説明する。本パワーOFFダウンシフトにあっても、図4に示すなまし制御を同様に実行する。即ち、変速進行率が所定の進行率まで到達すると、制御部20は本なまし制御を開始し(S51)、係合側摩擦要素のフィードバック制御(FB)を開始したか、或いは、モータ3のフィードバック制御(FB)を開始したかを判定する(S52)。どちらかのフィードバック制御が開始されると(S52のYES)、モータトルクTmgと係合側摩擦要素トルクTBとのなましトルク分担率を設定し、なまし制御で分担するトルクを配分されるように、それぞれのフィードバックゲイン、即ち係合側摩擦要素のフィードバックゲイン及びモータ3のフィードバックゲインを上記なましトルク分担率に応じて設定する(S53)。
 そして、このなましトルク分担率は、モータ3のなましトルク分担率をイナーシャトルクTiに対するモータ最大トルクTmg-max(又はモータ最小トルクTmg-min)の比率で算出し、残り(100%-モータ3のなましトルク分担率)を係合側摩擦要素のなましトルク分担率とする。
 このように係合側摩擦要素のフィードバックゲイン及びモータ3のフィードバックゲインがなましトルク分担率に応じて設定されると、制御部20は変速制御が終了したか否かを判定し(S54)、変速制御が終了していない場合は(S54のNO)、フィードバックゲイン分担率を出力して(S55)、つまり係合側摩擦要素のフィードバック制御及びモータ3のフィードバック制御をそれぞれ分担されたゲインで実行する。そして、制御部20が時点t46において変速制御の終了を判定すると(S54のYES)、本なまし制御を終了する(S56)。
 また同様に、係合側摩擦要素の油圧応答性とモータ3の出力制御とでは、レスポンスがモータ3の方が早く、同時にフィードバック制御を開始した場合、係合側摩擦要素の応答遅れが生じる虞がある。そこで、図11に示すように、モータ3のフィードバック制御の開始タイミングである時点t44に対して、係合側摩擦要素の応答遅れ分と上記なましトルク分担率とを考慮した開始タイミングである時点t43から係合側摩擦要素のフィードバック制御を開始する。
 従って、図11に示すように、時点t43から係合側摩擦要素トルクTBが下降することで、車輪側への伝達トルクを小さくして入力系部材に対するイナーシャトルクTiの減少(つまり回転変化を小さく)を開始し、時点t44からモータトルクTmg(入力トルクTin)も下降する(減少する)ことで、イナーシャトルクTiが緩やかに減少されて最終的に0にされる。そして、時点t45において係合側摩擦要素トルクTBが車輪側に伝達するトルクを伝達する係合状態にされ、イナーシャ相としては略々終了状態となるので、時点t46までに係合側摩擦要素の係合を完了(完全係合)させ、時点t46において変速制御が終了する。
 以上のように本パワーOFFダウンシフトのなまし制御にあっても、モータ3と係合側摩擦係合要素とのなましトルク分担率を設定して、なましトルク分担率に基づきモータ3と係合側摩擦係合要素とによりなまし制御で分担するトルクを配分するように制御するので、なまし制御において内燃エンジン2のトルクを変動させることを不要とすることができ、内燃エンジン2を用いてなまし制御を行った場合に発生する虞のあるエンジン吹きや入力回転数Ninの落ち込みなどのバラツキが防止される。また、モータ3と摩擦係合要素とのなましトルク分担率を設定することで、モータ3の性能限界トルク(モータ最大トルクTmg-max又はモータ最小トルクTmg-min)を越えたモータトルクTmgが要求されることを防ぐことができ、どちらか一方に過大なトルクを要求されることなく、良好ななまし制御を実現される。
 また、なましトルク分担率を、イナーシャ相における係合側摩擦要素の係合状態に基づき設定するので、係合側摩擦要素で発生できるトルクの限界を超えるようなことを防止することができ、良好ななまし制御を実現することができる。
 更に、なまし制御のフィードバック制御におけるモータのフィードバックゲイン及び係合側摩擦要素のフィードバックゲインをなましトルク分担率に応じて設定するので、フィードバック制御にてハンチング等を防いで、制御が発散してしまうことを防止することができ、良好なフィードバック制御を行うことができる。
 そして、なましトルク分担率に応じて、モータのフィードバック制御の開始タイミングと摩擦係合要素の係合状態のフィードバック制御の開始タイミングとをそれぞれ設定するので、特に係合側摩擦要素の油圧応答性よりも応答性の早いモータ制御を加味して、良好なフィードバック制御を行うことができる。
 [ハイブリッド駆動装置の他の可能性]
 なお、以上説明した本実施の形態においては、例えば前進6速段及び後進段を達成し得る有段変速機構7を備えたものを説明したが、例えば前進3~5速段や前進7速段以上を達成する有段変速機構であってもよく、つまり摩擦係合要素の掴み換え変速を行うものであれば、どのような有段変速機構であっても本発明を適用し得る。
 また、本実施の形態におけるハイブリッド駆動装置5にあっては、モータ3を入力軸15に直接的に駆動連結したものを説明したが、これに限らず、モータを他の平行な別軸上に配置して、歯車機構やチェーン等で連結したようなものでも、本発明を適用し得る。
 本発明に係るハイブリッド駆動装置は、乗用車、トラック等の車両に用いることが可能であり、特に変速中のイナーシャトルクの少なくとも一部をモータトルクによって発生するものにあって、変速中の違和感発生の防止を図ることが求められるものに用いて好適である。
2  内燃エンジン
3  モータ
5  ハイブリッド駆動装置
7  有段変速機構
15  入力部材(入力軸)
20  制御装置(制御部)
C-1  摩擦係合要素(クラッチ)
C-2  摩擦係合要素(クラッチ)
C-3  摩擦係合要素(クラッチ)
B-1  摩擦係合要素(ブレーキ)
B-2  摩擦係合要素(ブレーキ)
Nin  入力部材の実際の回転数(入力回転数)
Nin-targ  目標入力回転数
Ti  イナーシャトルク
Tmg  モータトルク
Tmg-max  モータの性能限界トルク(モータ最大トルク)
Tmg-min  モータの性能限界トルク(モータ最少トルク)
Tmg-lim  設定値

Claims (5)

  1.  内燃エンジンに駆動連結される入力部材と、
     前記入力部材に駆動連結されるモータと、
     前記入力部材の回転を摩擦係合要素の係合状態を変更することにより変速し得る有段変速機構と、
     少なくとも変速中に前記摩擦係合要素の係合状態を制御すると共に、前記変速中における前記入力部材に駆動連結された入力系部材の回転変化に必要なイナーシャトルクの少なくとも一部を、前記モータにより出力するモータトルクによって発生するように制御し得る制御装置と、を備え、
     前記制御装置は、前記変速中のイナーシャ相における前記モータトルクを、前記変速の前後における前記モータの性能限界トルクの絶対値として小さい方の値以下に設定された設定値に制限すると共に、前記変速中における前記入力部材の目標入力回転数を設定し、前記イナーシャ相における前記入力系部材の回転変化を制御する摩擦係合要素の係合状態を、前記目標入力回転数から算出されるイナーシャトルクが前記入力系部材に発生するように制御する、
     ことを特徴とするハイブリッド駆動装置。
  2.  前記制御装置は、前記変速の終期にイナーシャトルクの変動を緩やかにするなまし制御を実行すると共に、前記なまし制御における前記モータと前記摩擦係合要素とのなましトルク分担率を設定して、前記なましトルク分担率に基づき前記モータと前記摩擦係合要素とにより前記なまし制御で分担するトルクを配分するように制御する、
     ことを特徴とする請求項1記載のハイブリッド駆動装置。
  3.  前記制御装置は、前記なましトルク分担率を、前記イナーシャ相における前記入力系部材の回転変化を制御する摩擦係合要素の係合状態に基づき設定する、
     ことを特徴とする請求項2記載のハイブリッド駆動装置。
  4.  前記制御装置は、前記なまし制御にあって、前記入力部材の実際の回転数に基づき前記目標入力回転数に対して前記モータ及び前記摩擦係合要素の係合状態をフィードバック制御すると共に、前記フィードバック制御における前記モータのフィードバックゲイン及び前記摩擦係合要素のフィードバックゲインを前記なましトルク分担率に応じて設定する、
     ことを特徴とする請求項2または3記載のハイブリッド駆動装置。
  5.  前記制御装置は、前記なましトルク分担率に応じて、前記モータのフィードバック制御の開始タイミングと前記摩擦係合要素の係合状態のフィードバック制御の開始タイミングとをそれぞれ設定する、
     ことを特徴とする請求項4記載のハイブリッド駆動装置。
PCT/JP2013/051617 2012-01-27 2013-01-25 ハイブリッド駆動装置 WO2013111866A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112013000244.2T DE112013000244T5 (de) 2012-01-27 2013-01-25 Hybridantriebsvorrichtung
US14/359,211 US8942879B2 (en) 2012-01-27 2013-01-25 Hybrid drive device
CN201380003993.1A CN103958308B (zh) 2012-01-27 2013-01-25 混合动力驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012015992A JP5786734B2 (ja) 2012-01-27 2012-01-27 ハイブリッド駆動装置
JP2012-015992 2012-01-27

Publications (1)

Publication Number Publication Date
WO2013111866A1 true WO2013111866A1 (ja) 2013-08-01

Family

ID=48873577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051617 WO2013111866A1 (ja) 2012-01-27 2013-01-25 ハイブリッド駆動装置

Country Status (5)

Country Link
US (1) US8942879B2 (ja)
JP (1) JP5786734B2 (ja)
CN (1) CN103958308B (ja)
DE (1) DE112013000244T5 (ja)
WO (1) WO2013111866A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160068155A1 (en) * 2013-04-16 2016-03-10 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive system
US11635136B2 (en) 2019-01-17 2023-04-25 Zf Friedrichshafen Ag Method and control unit for operating a power-shift transmission

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10183570B2 (en) * 2013-09-26 2019-01-22 Means Industries, Inc. Drive systems including transmissions for electric and hybrid electric vehicles
US9452748B2 (en) * 2014-07-31 2016-09-27 Ford Global Technologies, Llc Methods and systems for improving hybrid vehicle transmission shifting
JP6361590B2 (ja) * 2015-06-16 2018-07-25 トヨタ自動車株式会社 車両制御装置
FR3038684B1 (fr) * 2015-07-07 2019-06-07 Renault S.A.S Procede de controle de position d'un actionneur de boite de vitesses
KR101756026B1 (ko) * 2016-06-16 2017-07-10 현대자동차주식회사 하이브리드 차량용 변속 제어방법
JP6617732B2 (ja) * 2017-02-17 2019-12-11 トヨタ自動車株式会社 車両の変速制御装置
JP7388213B2 (ja) * 2020-01-31 2023-11-29 トヨタ自動車株式会社 ハイブリッド車両の制御装置
CN111572525B (zh) * 2020-05-28 2021-05-04 合肥工业大学 一种基于换挡品质优化的动力换挡变速器降挡控制方法
KR20230078848A (ko) * 2021-11-26 2023-06-05 현대자동차주식회사 하이브리드 자동차 및 그를 위한 변속 제어 방법
US20240067156A1 (en) * 2022-08-23 2024-02-29 Ford Global Technologies, Llc Method and system for controlling a modular hybrid transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331603A (ja) * 1996-06-11 1997-12-22 Aisin Aw Co Ltd 車両用駆動装置の制御装置
JP2002271912A (ja) * 2001-03-09 2002-09-20 Mitsubishi Motors Corp ハイブリッド車の出力制御装置
JP2004316831A (ja) * 2003-04-18 2004-11-11 Nissan Motor Co Ltd 車両用駆動システムの変速制御装置
JP2011213221A (ja) * 2010-03-31 2011-10-27 Fuji Heavy Ind Ltd 車両の駆動力制御装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231479B1 (en) * 1999-10-27 2001-05-15 Ford Global Technologies, Inc. Closed-loop electronic controller for applying transmission friction clutches
WO2001066971A1 (fr) * 2000-03-10 2001-09-13 Hitachi, Ltd. Transmission automatique, machine dynamoelectrique et voiture
JP3982512B2 (ja) * 2004-03-24 2007-09-26 トヨタ自動車株式会社 ハイブリッド駆動装置の制御装置及びハイブリッド駆動装置の制御方法
JP4192911B2 (ja) * 2005-03-29 2008-12-10 トヨタ自動車株式会社 車両用駆動装置の制御装置
US7909728B2 (en) * 2005-05-19 2011-03-22 Toyota Jidosha Kabushiki Kaisha Vehicle drive device controller
JP4192992B2 (ja) * 2007-02-15 2008-12-10 トヨタ自動車株式会社 動力出力装置及びその動力出力装置を搭載したハイブリッド車
JP2008221879A (ja) * 2007-03-08 2008-09-25 Toyota Motor Corp 車両の制御装置
DE102007038775A1 (de) * 2007-08-16 2009-02-19 Zf Friedrichshafen Ag Verfahren zur Durchführung einer Lastschaltung bei Fahrzeugen mit elektrischem Antrieb
DE102007038774A1 (de) * 2007-08-16 2009-02-19 Zf Friedrichshafen Ag Verfahren zur Durchführung einer Lastschaltung bei parallelen Hybridfahrzeugen im Hybridbetrieb
JP4238927B1 (ja) * 2007-09-07 2009-03-18 トヨタ自動車株式会社 車両用自動変速機の制御装置
DE102007055830A1 (de) * 2007-12-17 2009-06-18 Zf Friedrichshafen Ag Verfahren und Vorrichtung zum Betrieb eines Hybridantriebes eines Fahrzeuges
JP4566233B2 (ja) * 2007-12-25 2010-10-20 トヨタ自動車株式会社 ハイブリッド駆動装置の制御装置
JP4492717B2 (ja) * 2008-03-04 2010-06-30 トヨタ自動車株式会社 車両の制御装置
JP2009227096A (ja) * 2008-03-21 2009-10-08 Toyota Motor Corp 車両用動力伝達装置の制御装置
JP4630355B2 (ja) * 2008-06-19 2011-02-09 ジヤトコ株式会社 自動変速機の変速制御装置
US8328688B2 (en) * 2010-01-25 2012-12-11 Ford Global Technologies, Llc Ratio shift control system and method for a multiple-ratio automatic transmission
JP2011183947A (ja) * 2010-03-09 2011-09-22 Aisin Aw Co Ltd ハイブリッド駆動装置
JP5365889B2 (ja) * 2010-03-30 2013-12-11 アイシン・エィ・ダブリュ株式会社 車両用変速装置
JP5177578B2 (ja) * 2010-03-31 2013-04-03 アイシン・エィ・ダブリュ株式会社 制御装置
JP5083638B2 (ja) * 2010-03-31 2012-11-28 アイシン・エィ・ダブリュ株式会社 制御装置
JP5534512B2 (ja) 2010-03-31 2014-07-02 タカタ株式会社 エアバッグ、エアバッグ装置及びステアリング装置
JP5622038B2 (ja) * 2010-09-06 2014-11-12 アイシン・エィ・ダブリュ株式会社 制御装置
JP5565627B2 (ja) * 2010-09-29 2014-08-06 アイシン・エィ・ダブリュ株式会社 制御装置
US8775044B2 (en) * 2011-06-08 2014-07-08 Ford Global Technologies, Llc Clutch torque trajectory correction to provide torque hole filling during a ratio upshift

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331603A (ja) * 1996-06-11 1997-12-22 Aisin Aw Co Ltd 車両用駆動装置の制御装置
JP2002271912A (ja) * 2001-03-09 2002-09-20 Mitsubishi Motors Corp ハイブリッド車の出力制御装置
JP2004316831A (ja) * 2003-04-18 2004-11-11 Nissan Motor Co Ltd 車両用駆動システムの変速制御装置
JP2011213221A (ja) * 2010-03-31 2011-10-27 Fuji Heavy Ind Ltd 車両の駆動力制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160068155A1 (en) * 2013-04-16 2016-03-10 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive system
US10435013B2 (en) * 2013-04-16 2019-10-08 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive system
US11635136B2 (en) 2019-01-17 2023-04-25 Zf Friedrichshafen Ag Method and control unit for operating a power-shift transmission

Also Published As

Publication number Publication date
DE112013000244T5 (de) 2014-08-21
US20140303825A1 (en) 2014-10-09
CN103958308A (zh) 2014-07-30
US8942879B2 (en) 2015-01-27
JP2013154727A (ja) 2013-08-15
CN103958308B (zh) 2016-07-06
JP5786734B2 (ja) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5786734B2 (ja) ハイブリッド駆動装置
JP5488711B2 (ja) 車両用動力伝達装置の制御装置
JP3293613B2 (ja) 自動車用制御装置,自動車の制御方法,変速機
JP4278665B2 (ja) 自動変速機の変速制御装置及び方法
EP2995836B1 (en) Shift control device for vehicle
JP2009137461A (ja) 車両制御装置及びそれを備える車両
JP2014104776A (ja) ハイブリッド車両の制御装置
JP2019202748A (ja) ハイブリッド車両の制御装置
JP4001013B2 (ja) ハイブリッド駆動装置の制御装置
WO2013084360A1 (ja) 車両用エンジン制御装置
JPWO2014141368A1 (ja) 自動変速機の制御装置
JP2007518012A (ja) 自動変速機内でのオーバーラップシフトの自然発生性を高める方法
JP5880779B2 (ja) 車両の変速制御装置
JP4135022B2 (ja) ハイブリッド駆動装置の制御装置
JP2013022999A (ja) 車両の動力伝達制御装置
JP3852403B2 (ja) ハイブリッド駆動装置の制御装置
JP4492099B2 (ja) 自動変速機の油圧制御装置
JP2012013145A (ja) 自動変速機のニュートラル制御装置
JP2012086763A (ja) 車両用動力伝達装置の制御装置
JP4569513B2 (ja) 車両の制御装置
JP3950459B2 (ja) ハイブリッド車両の駆動装置
JP2013155764A (ja) 動力伝達装置
JP6407780B2 (ja) 車両用駆動装置
JP2019093811A (ja) ハイブリッド車両の制御装置
JP3891209B2 (ja) ハイブリッド駆動装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741646

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14359211

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112013000244

Country of ref document: DE

Ref document number: 1120130002442

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741646

Country of ref document: EP

Kind code of ref document: A1