WO2013108883A1 - 無機酸化物粉末および無機酸化物含有スラリーならびに該スラリーを使用したリチウムイオン二次電池およびその製造方法 - Google Patents

無機酸化物粉末および無機酸化物含有スラリーならびに該スラリーを使用したリチウムイオン二次電池およびその製造方法 Download PDF

Info

Publication number
WO2013108883A1
WO2013108883A1 PCT/JP2013/050954 JP2013050954W WO2013108883A1 WO 2013108883 A1 WO2013108883 A1 WO 2013108883A1 JP 2013050954 W JP2013050954 W JP 2013050954W WO 2013108883 A1 WO2013108883 A1 WO 2013108883A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic oxide
alumina
lithium ion
slurry
oxide powder
Prior art date
Application number
PCT/JP2013/050954
Other languages
English (en)
French (fr)
Inventor
裕謙 尾崎
靖治 小橋
健 島田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201380005971.9A priority Critical patent/CN104040777B/zh
Priority to KR1020147019979A priority patent/KR101704154B1/ko
Priority to EP13738268.5A priority patent/EP2806493B1/en
Priority to US14/371,203 priority patent/US9577237B2/en
Publication of WO2013108883A1 publication Critical patent/WO2013108883A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • C01F7/36Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts from organic aluminium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0416Methods of deposition of the material involving impregnation with a solution, dispersion, paste or dry powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an inorganic oxide powder used for forming an insulating inorganic oxide porous film on at least one surface of a positive electrode, a negative electrode or a separator constituting a lithium ion secondary battery.
  • the present invention also relates to a slurry containing the inorganic oxide powder, a lithium ion secondary battery using the slurry, and a method for producing the same.
  • lithium ion secondary batteries Since lithium ion secondary batteries have high energy density, they are used in small consumer devices such as mobile phones and personal computers. Recently, in addition to these small devices, application to automobiles has been accelerated.
  • a lithium ion secondary battery has a positive electrode and a negative electrode, and a separator is generally disposed for the purpose of electrically insulating these electrode plates.
  • a separator for a lithium ion secondary battery for example, a microporous sheet made of a polyolefin resin is used.
  • the separator made of this microporous sheet blocks the separator hole due to the shutdown function of the separator, making it impossible for lithium ions to move in the shorted part. It is responsible for maintaining the safety of the lithium ion secondary battery.
  • the separator may contract rapidly and the short-circuited portion between the positive electrode and the negative electrode may expand. In this case, the battery temperature may reach a state where it is abnormally heated to several hundred degrees C or more, which is a problem in terms of safety.
  • Patent Document 1 discloses an inorganic oxide porous film containing an inorganic oxide filler having insulating properties on the surface of a positive electrode, a negative electrode, or a separator constituting a lithium ion secondary battery. A forming technique has been proposed.
  • Patent Document 2 discloses that an inorganic oxide filler used for such an inorganic oxide porous membrane is made of ⁇ -alumina particles having an average particle diameter of 0.1 to 5 ⁇ m and high heat resistance, and having a thickness.
  • a lithium ion secondary battery having a porous film of 0.5 to 20 ⁇ m is disclosed.
  • the inorganic oxide porous film disclosed in the above-mentioned patent document has high heat resistance and excellent dimensional stability, rapid contraction of the separator can be suppressed.
  • an inorganic oxide porous film is formed using an inorganic oxide powder satisfying various physical properties such as a BET specific surface area and an average particle diameter described in these patent documents, the resulting inorganic oxide porous film
  • the average pore radius and porosity of the membrane were not sufficient, and as a result of insufficient ion permeability, there was a problem that the load characteristics of the lithium ion secondary battery including the inorganic oxide porous membrane became insufficient.
  • the inorganic oxide powder disclosed in the above patent document is not necessarily satisfactory as a powder for forming an inorganic porous film of a lithium ion secondary battery.
  • an object of the present invention is to have an average pore radius and porosity that can give sufficient ion permeability to at least one surface of the positive electrode, negative electrode, or separator constituting the lithium ion secondary battery.
  • the inorganic oxide powder suitable for forming the inorganic oxide porous film which has the outstanding heat resistance and insulation is provided.
  • the present inventor obtained the average shape of the inorganic oxide porous film in which the shape of the inorganic oxide powder constituting the inorganic oxide porous film (degree of unevenness of three-dimensional particles) was obtained. It has been found that it greatly affects the pore radius and porosity. And it discovered that the following invention matched the said objective, and came to this invention.
  • the present invention relates to the following inventions.
  • ⁇ 3> The inorganic oxide powder according to ⁇ 1> or ⁇ 2>, wherein the BET specific surface area is 1 m 2 / g or more and 20 m 2 / g or less.
  • ⁇ 4> The inorganic oxide powder according to any one of ⁇ 1> to ⁇ 3>, wherein the inorganic oxide is ⁇ -alumina.
  • ⁇ 5> An inorganic oxide slurry comprising the inorganic oxide powder according to any one of ⁇ 1> to ⁇ 4>, a binder, and a solvent.
  • a lithium ion secondary battery including a step of applying the inorganic oxide slurry according to the above ⁇ 5> to the surface of the positive electrode and / or the negative electrode and then drying the slurry to form an inorganic oxide porous film Manufacturing method.
  • a method for producing a lithium ion secondary battery comprising: applying the inorganic oxide slurry according to ⁇ 5> to a surface of a separator and then drying the slurry to form an inorganic oxide porous film.
  • an inorganic oxide porous film having an average pore radius and porosity that can provide sufficient ion permeability, and having excellent heat resistance and insulation.
  • Inorganic oxide powder is provided. Since the inorganic oxide porous film formed of the inorganic oxide powder is excellent in lithium ion conductivity, a lithium ion secondary battery provided with the inorganic oxide porous film on at least one surface of a positive electrode, a negative electrode, or a separator is The secondary battery is excellent in load characteristics.
  • the present invention is an inorganic oxide powder used for forming an inorganic oxide porous film having insulation on at least one surface of a positive electrode, a negative electrode or a separator constituting a lithium ion secondary battery, 1) Oxide purity is 90% by weight or more, 2) The average particle size is 1 ⁇ m or less, And, 3) It relates to an inorganic oxide powder having an average three-dimensional particle irregularity of 3.0 or more (hereinafter sometimes referred to as “inorganic oxide powder of the present invention” or simply “inorganic oxide powder”). is there.
  • the inorganic oxide powder of the present invention is not particularly limited as long as it is an electrically insulating substance, and aluminum oxide, titanium oxide, magnesium oxide, silicon oxide, or the like can be used as the oxide component. These may be used alone or in combination of two or more. Among these, aluminum oxide (alumina) is preferable, and ⁇ -alumina which is excellent in insulation and heat resistance and chemically stable is particularly preferable.
  • the oxide purity of the inorganic oxide powder of the present invention is 90% by weight or more, preferably 99% by weight or more, more preferably 99.9% by weight or more, and most preferably 99.99% by weight or more.
  • Oxide purity means the ratio of oxide components as a reference when the total of all components in the inorganic oxide powder of the present invention is 100% by weight. The measuring method will be described later in Examples with reference to the case where the reference oxide component is ⁇ -alumina.
  • the inorganic oxide powder of the present invention is an ⁇ -alumina powder, if its purity is less than 90% by weight, impurities such as Si, Na or Fe contained in the ⁇ -alumina powder increase, and good electrical insulation is obtained. Not only can it be obtained, but the amount of metallic foreign matter that causes a short circuit increases, which is not preferable.
  • the shape (three-dimensional particle unevenness) of the inorganic oxide particles constituting the inorganic oxide powder is within a predetermined range.
  • the “three-dimensional particle unevenness degree” is a shape parameter of one inorganic oxide particle constituting the inorganic oxide powder, and the particle volume V ( ⁇ m 3 ) and the volume La ⁇ Lb of the cuboid circumscribing the particle. It is a value prescribed
  • average (three-dimensional particle unevenness) of (powder) means an average value of three-dimensional particle unevenness calculated by the formula (1) for any 100 or more inorganic oxide particles contained in the powder. It is.
  • Three-dimensional particle irregularity La ⁇ Lb ⁇ Lc / V (1)
  • La means the long diameter of the particle
  • Lb means the medium diameter of the particle
  • Lc means the short diameter of the particle
  • La, Lb, and Lc are orthogonal to each other.
  • FIG. 1 is a schematic diagram for explaining the three-dimensional particle unevenness.
  • the particle volume V, the particle major diameter La, the particle middle diameter Lb, and the particle minor diameter Lc are obtained by analyzing a continuous slice image of the target particle with three-dimensional quantitative analysis software (for example, TRI / 3D-PRT manufactured by Rattok System Engineering). Can be obtained by analysis.
  • three-dimensional quantitative analysis software for example, TRI / 3D-PRT manufactured by Rattok System Engineering.
  • a continuous slice image of particles is obtained by slicing an evaluation sample obtained by curing a particle fixing resin (epoxy resin or the like) in which a predetermined amount of inorganic oxide powder is dispersed at a predetermined interval by FIB processing, and performing a cross-sectional SEM
  • a predetermined number of cross-sectional SEM images are obtained by repeating obtaining an image, and then the obtained cross-sectional SEM images are synthesized with an appropriate image analysis software (for example, Aviso ver. 6.0 manufactured by Visualization Sciences Group). Can be obtained.
  • an appropriate image analysis software for example, Aviso ver. 6.0 manufactured by Visualization Sciences Group.
  • the average three-dimensional particle unevenness degree of the inorganic oxide powder of the present invention defined by the above-described method is 3.0 or more, preferably 3.5 or more. Further, the upper limit of the average three-dimensional particle unevenness is preferably 10.0 or less, and more preferably 6.0 or less.
  • the average three-dimensional particle irregularity is less than 3.0, the inorganic oxide powder is slurried and applied to the surface of the electrode mixture layer containing the electrode active material (positive electrode active material or negative electrode active material) and binder and dried. As a result, the porosity of the inorganic oxide porous film obtained is lowered, and as a result, the amount of the electrolyte solution retained in the inorganic oxide porous film decreases, which is not preferable.
  • the inorganic oxide powder of this invention is made into a slurry, and the electrode which consists of an electrode mixture layer containing an electrode active material and a binder (The porosity of the inorganic oxide porous film made of the inorganic oxide powder of the present invention obtained by coating and drying on the surface of the positive electrode or the negative electrode) is increased, and the strength of the inorganic oxide porous film may be lowered.
  • the inorganic oxide powder of the present invention preferably contains 5% or more, more preferably 20% or more of particles having a three-dimensional particle irregularity greater than 4.0 based on the total number of particles constituting the inorganic oxide powder. Is more preferable.
  • the inorganic oxide powder is slurried and applied to the surface of the electrode mixture layer containing the electrode active material and the binder, and dried.
  • the porosity of the inorganic oxide porous film obtained in this manner is in an optimal range, and the amount of the electrolyte solution retained in the inorganic oxide porous film and the strength of the inorganic oxide porous film are improved.
  • the upper limit of the ratio of the number of particles having a three-dimensional particle roughness greater than 4.0 contained in the inorganic oxide powder of the present invention is not particularly limited, but is usually 90% or less.
  • ⁇ -alumina is suitable as the oxide component of the inorganic oxide powder of the present invention.
  • the inorganic oxide powder of the present invention is ⁇ -alumina
  • an ⁇ -alumina powder, a binder and a solvent are mixed to prepare an ⁇ -alumina slurry, and a positive electrode or a negative electrode composed of an electrode mixture layer containing an electrode active material.
  • ⁇ -alumina slurry is applied to the surface or the surface of the separator to form a coating film and further subjected to consolidation treatment such as rolling, the porosity and pores of the ⁇ -alumina porous membrane suitable for lithium ion conductivity A sufficient radius can be secured, and at the same time, the porosity can be arbitrarily controlled within a preferable range, which is preferable.
  • the average particle diameter of the inorganic oxide powder of the present invention is 1 ⁇ m or less.
  • the “average particle size” defined here means a particle size corresponding to a cumulative percentage of 50% on a mass basis obtained by a laser diffraction method.
  • BET specific surface area is preferably not more than 1 m 2 / g or more 20 m 2 / g, more preferably not more than 1 m 2 / g or more 10 m 2 / g, more preferably 1 m 2 / g or more 5 m 2 / g It is as follows. When the BET specific surface area is in the above range, the amount of adsorbed water is reduced.
  • the production method of the ⁇ -alumina powder that is suitable as the inorganic oxide powder of the present invention is not particularly limited.
  • Examples of the production method of the ⁇ -alumina powder include a method of firing aluminum hydroxide produced by an aluminum alkoxide method; A method of synthesizing using aluminum; a method of firing a raw material of transition alumina or an alumina powder which becomes transition alumina by heat treatment in an atmosphere gas containing hydrogen chloride; JP 2010-150090 A, JP 2008 And the methods described in JP-A No. 19033, JP-A No. 2002-047009, JP-A No. 2001-354413, and the like.
  • aluminum alkoxide method for example, aluminum alkoxide is hydrolyzed with water to obtain slurry, sol, or gel aluminum hydroxide, and dried to obtain dry powdered aluminum hydroxide.
  • the method of obtaining is mentioned.
  • the powdered aluminum hydroxide obtained by drying is a bulky powder whose light bulk density is usually about 0.1 to 0.4 g / cm 3 , preferably 0.1 to 0.2 g / cm 3 . Has light bulk density.
  • the cumulative pore volume of aluminum hydroxide (in the range where the pore radius is 0.01 ⁇ m or more and 1 ⁇ m or less) is not particularly limited, but preferably has a cumulative pore volume of 0.6 mL / g or more.
  • the primary particles are small, the dispersibility is excellent, and the aggregated particles are few, the alumina sintered body obtained by firing can prevent generation of alumina aggregated particles that are firmly bonded and difficult to pulverize.
  • the desired ⁇ -alumina powder can be obtained by firing the dry powdered aluminum hydroxide obtained by the aluminum alkoxide method.
  • the baking of aluminum hydroxide is usually performed by filling a baking container.
  • a baking container a sheath etc. are mentioned, for example.
  • the material of the firing container is preferably alumina from the viewpoint of preventing contamination of the ⁇ -alumina powder to be obtained, and particularly preferably high-purity ⁇ -alumina.
  • the method of filling aluminum hydroxide into the baking container is not particularly limited, but it is preferable that the aluminum hydroxide is filled with its own weight and not excessively compacted.
  • a firing furnace used for firing aluminum hydroxide for example, a stationary material firing furnace represented by a tunnel kiln, a batch-type aerated flow box firing furnace, a batch parallel flow box firing furnace, a rotary kiln, and the like Can be mentioned.
  • the calcining temperature of aluminum hydroxide, the heating rate up to the calcining temperature, and the calcining time are appropriately selected so as to obtain ⁇ -alumina having desired physical properties.
  • the calcining temperature of aluminum hydroxide is, for example, 1100 ° C. or higher and 1450 ° C. or lower, preferably 1200 ° C. or higher and 1350 ° C. or lower.
  • the rate of temperature rise when heating to this calcining temperature is usually 30 ° C./hour or higher and 500 ° C./hour.
  • the baking time of aluminum hydroxide is usually 0.5 hours or more and 24 hours or less, preferably 1 hour or more and 10 hours or less.
  • aluminum hydroxide may be baked in an air atmosphere or an inert gas atmosphere such as nitrogen gas or argon gas. May be fired in a high atmosphere.
  • an inert gas atmosphere such as nitrogen gas or argon gas. May be fired in a high atmosphere.
  • the obtained ⁇ -alumina powder may be agglomerated in a state where the average particle diameter exceeds 10 ⁇ m. In that case, it is preferable to grind
  • the ⁇ -alumina powder can be pulverized using a known apparatus such as a vibration mill, a ball mill, or a jet mill, and any of a dry pulverization method and a wet pulverization method can be adopted.
  • a method of pulverizing while maintaining the purity for example, pulverizing with a jet mill is preferable. It is done.
  • the content of coarse particles of 10 ⁇ m or more contained in the obtained ⁇ -alumina powder is preferably 10 ppm or less, and more preferably 3 ppm or less.
  • the content of coarse particles is within the above range, a uniform inorganic oxide porous film can be obtained, the reduction of the porosity due to the coarse particles is suppressed, and a porous film having a high porosity can be obtained.
  • the average particle diameter of (alpha) alumina powder can be measured by the evaluation method as described in an Example, for example.
  • [(d100 ⁇ d5) / average particle size] is 30 or less. Preferably, it is 10 or less, and most preferably 5 or less. In this case, the variation in particle size is reduced, and a uniform inorganic oxide porous film can be obtained.
  • the surface in contact with ⁇ -alumina is made of a high-purity ⁇ -alumina material or is resin-lined in that the resulting ⁇ -alumina powder is less contaminated.
  • the pulverizing medium used for the pulverization is also made of a high-purity ⁇ -alumina material.
  • the inorganic oxide slurry of the present invention comprises the above-described inorganic oxide powder of the present invention, a binder and a solvent.
  • a binder known ones can be used, and specifically, fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and the like.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • Polyacrylic acid derivatives such as polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, polyacrylic acid hexyl ester; polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester
  • Polymethacrylic acid derivatives such as polyamide, polyimide, polyamideimide, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexafluoropolypropylene, styrene butadiene rubber, polycarbonate Bo-cellulose, polyacrylonitrile and its derivatives, may be used polyethylene, polypropylene, aramid resin or the like.
  • a copolymer of the above materials may be used.
  • the solvent known solvents can be used.
  • the binder content in the inorganic oxide slurry of the present invention is not particularly limited.
  • the binder content is 0.1 to 20 parts by weight with respect to 100 parts by weight of the inorganic oxide powder of the present invention.
  • the content of the solvent in the inorganic oxide slurry of the present invention is not particularly limited.
  • it is 10 to 500 parts by weight with respect to 100 parts by weight of the inorganic oxide powder of the present invention. preferable.
  • the inorganic oxide slurry of the present invention can be prepared by mixing and dispersing the inorganic oxide powder, binder and solvent of the present invention.
  • the dispersion method of the inorganic oxide slurry is not particularly limited, and a stirring method using a known planetary mixer or a dispersion method using ultrasonic irradiation can be used. At this time, the lower the viscosity of the slurry at a shear rate of 100S- 1 , the better the workability of the steps such as dispersion, mixing, and transfer.
  • the inorganic oxide porous film produced from the inorganic oxide slurry thus obtained has high heat resistance and is insulating.
  • This inorganic oxide porous film is formed on at least one surface of a positive electrode, a negative electrode or a separator, and is formed by stacking together with a positive electrode, a negative electrode and a separator (stacked battery group), or an inorganic oxide porous film, It is suitably used for a lithium ion secondary battery including an electrode group (a wound battery group) formed by stacking and winding together with a positive electrode, a negative electrode, and a separator, and an electrolytic solution.
  • the surface of the positive electrode and / or the negative electrode composed of an electrode mixture layer containing an electrode active material (positive electrode active material or negative electrode active material) and a binder is used.
  • coating and drying an inorganic oxide slurry and forming an inorganic oxide porous film is mentioned.
  • coating and drying said inorganic oxide slurry on the surface of a separator instead of the surface of a positive electrode and / or a negative electrode, and forming an inorganic oxide porous film may be sufficient.
  • a lithium ion secondary battery including a wound battery group in which an inorganic oxide porous film is formed on a negative electrode, negative electrode lead bonding with an inorganic oxide porous film provided on the surface
  • One end of the negative electrode lead is joined to the part, and one end of the negative electrode lead is joined to the positive electrode lead joint part, and the positive electrode and the negative electrode are stacked and wound via a separator to form a wound electrode group.
  • the battery can be stored in a battery can sandwiched between the lower insulating rings, filled with an electrolyte, and then closed with a battery lid.
  • the method of applying the inorganic oxide slurry to the surface of the electrode mixture layer containing the positive or negative electrode active material and the binder, or the separator surface is not particularly limited.
  • a known doctor blade method or gravure printing method is used.
  • the drying method is not particularly limited, and known hot air drying, vacuum drying, or the like can be used.
  • the thickness of the inorganic oxide porous film obtained at that time is preferably about 1 to 50 ⁇ m, more preferably about 2 to 10 ⁇ m.
  • Battery constituent materials such as a positive electrode, a negative electrode, a separator, and an electrolytic solution of a lithium ion secondary battery are not particularly limited, and conventionally known materials can be used.
  • well-known literature such as international publication 09/041722 pamphlet, can be used.
  • the lithium ion secondary battery of the present invention manufactured by the above-described manufacturing method includes an inorganic oxide porous film composed of the inorganic oxide powder of the present invention.
  • the average pore radius of the inorganic oxide porous membrane is preferably 0.05 to 0.50 ⁇ m, more preferably 0.07 to 0.20 ⁇ m.
  • the porosity of the inorganic oxide porous film is preferably 30 to 80% by volume, more preferably 30 to 60% by volume.
  • the inorganic oxide porous film has sufficient ion permeability and excellent heat resistance and insulation.
  • a lithium ion secondary battery provided with a membrane is excellent in load characteristics and excellent in heat resistance and dimensional stability even at the shutdown temperature of the separator.
  • the calculation method of the average pore radius and porosity of an inorganic oxide porous membrane is mentioned later in an Example for an alumina porous membrane as an example.
  • Oxide purity 100-total weight of impurities (% by weight)
  • BET specific surface area As a specific surface area measuring apparatus, “Furosorb II 2300” manufactured by Shimadzu Corporation was used, and the nitrogen adsorption method was determined by a single point method according to the method defined in JIS-Z-8830.
  • particle size Using a laser particle size distribution measuring apparatus ["MICROTRACK” manufactured by Nikkiso Co., Ltd.], a particle diameter corresponding to a cumulative percentage of 50% on a mass basis was defined as an average particle diameter by a laser diffraction method. Further, the particle diameters corresponding to the cumulative percentage of 5% and the cumulative 100% on the mass basis from the small diameter side of the particle size distribution were d5 and d100, respectively. In the measurement, ultrasonic dispersion was performed with a 0.2 wt% sodium hexametaphosphate aqueous solution, and the refractive index was set to 1.76.
  • FIB processing was performed at a thickness of 20 nm in the sample depth direction to create a new cross section, and the cross section was observed by SEM.
  • FIB processing and cross-sectional SEM observation are repeated at 20 nm intervals to acquire 100 or more images, and image analysis software [Aviso ver. Manufactured by Visualization Sciences Group. 6.0] and position correction was performed to obtain continuous slice images.
  • the scale was 20 nm / pix for all three axes.
  • the obtained continuous slice image was subjected to three-dimensional quantitative analysis of alumina particles, and the degree of three-dimensional particle unevenness was calculated.
  • an alumina coating film for evaluation was produced by the following method. First, ⁇ -alumina powder (100 parts by weight), pure water (41.8 parts by weight) and polycarboxylic acid ammonium salt (0.5 parts by weight) were ultrasonically dispersed, and then a styrene-butadiene copolymer (SBR). A rubber latex (5 parts by weight, latex particle size: 0.17 ⁇ m) was added and ultrasonically dispersed again to prepare a slurry.
  • SBR styrene-butadiene copolymer
  • the slurry was applied on a PET film (manufactured by Teijin DuPont Film, X-71) with a test coater (manufactured by Yusui Seiki: CAD150II) (applicator gap: 15 ⁇ m, tape feed rate: 1 m / min, dried) Temperature: 80 ° C.), an evaluation alumina-coated film having an alumina porous film formed on the PET film surface was obtained.
  • the pore volume of the alumina porous membrane was calculated by the following procedure. Alumina coated film for evaluation and PET film not coated with alumina were cut into a sheet of 20 mm ⁇ 50 mm, and the pore distribution was measured with a mercury porosimeter (manufactured by Autopore III 9430 MICROMERITICS), respectively. The pore volume of the alumina porous membrane was determined using the following formula.
  • Alumina porous membrane pore volume (mL / g) [(alumina coating film pore volume ⁇ alumina porous membrane weight) ⁇ (film pore volume ⁇ film weight)] / (alumina porous membrane weight)
  • the weight of the alumina porous membrane was determined from the weight difference between the film before the alumina powder coating and the film after the coating.
  • the pore volume of the alumina porous membrane was calculated by dividing the pore volume of the uncoated film from the pore volume of the alumina coated film. Among the pore volumes of the resulting alumina porous membrane, the average pore radius (pore radius corresponding to 50% of the cumulative pore volume of the alumina porous membrane) is calculated from the pore volume in the range of 0.01 ⁇ m to 1 ⁇ m. Asked.
  • Example 1 aluminum isopropoxide prepared from aluminum having a purity of 99.99% is hydrolyzed with water to obtain slurry-like aluminum hydroxide, which is dried to reduce the light bulk density to 0. 0.1 g / cm 3 of dry powder aluminum hydroxide was obtained. Further, this dry powdered aluminum hydroxide was calcined by being held at 1220 ° C. for 4 hours in a gas furnace for calcining by combustion of propane gas or the like, and pulverized by a jet mill to obtain ⁇ -alumina powder.
  • the BET specific surface area is 4.3 m 2 / g, the average particle size is 0.57 ⁇ m, the content of coarse particles of 10 ⁇ m or more is 3 ppm or less, and [(d100 ⁇ d5) / average particle size]
  • the average three-dimensional particle unevenness degree of 128 particles is 3.7, and the ratio of the number of particles having a three-dimensional particle unevenness degree greater than 4.0 to the total number of particles of ⁇ -alumina powder was 34.4%.
  • an ⁇ -alumina slurry was prepared from the ⁇ -alumina powder by the method described above, and this was coated on a PET film to prepare an evaluation alumina-coated film having an alumina porous film formed on the surface.
  • the ⁇ -alumina porous membrane had an average pore radius of 0.10 ⁇ m and a porosity of 37%, and had a sufficient pore radius and porosity for lithium ion permeation.
  • Example 1 Dry powdered aluminum hydroxide obtained by the same method as in Example 1 was calcined by holding in a gas furnace at 1205 ° C. for 2 hours, and pulverized by a vibration mill to obtain ⁇ -alumina powder.
  • the BET specific surface area is 10 m 2 / g, the average particle size is 0.25 ⁇ m, the content of coarse particles of 10 ⁇ m or more is 1000 ppm, and [(d100 ⁇ d5) / average particle size] is 69.
  • the average three-dimensional particle unevenness degree of 128 particles is 2.8, and the ratio of the number of particles having a three-dimensional particle unevenness degree greater than 4.0 to the total number of particles of ⁇ -alumina powder is 3.8%. Met. Further, the slurry prepared from the ⁇ -alumina powder by the above-described method was coated on a PET film to prepare an evaluation alumina-coated film having an alumina porous film formed on the surface.
  • the ⁇ -alumina porous membrane had an average pore radius of 0.04 ⁇ m and a porosity of 28%, and did not have a sufficient pore radius and porosity for lithium ion permeation.
  • the inorganic oxide powder of the present invention can provide a high porosity inorganic oxide porous film having excellent lithium ion conductivity for use in a lithium ion secondary battery.
  • the inorganic oxide porous film is excellent in lithium ion conductivity, and the lithium ion secondary battery provided with the inorganic oxide porous film on at least one surface of a positive electrode, a negative electrode, or a separator is a secondary battery excellent in load characteristics. Therefore, it is promising industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 本発明は、リチウムイオン二次電池を構成する正極、負極またはセパレーターの少なくとも一つの表面に、リチウムイオン導電性に優れ、絶縁性を有する無機酸化物多孔膜を形成するために好適な無機酸化物粉末を提供することを課題とする。 本発明は、リチウムイオン二次電池を構成する正極、負極またはセパレーターの少なくとも一つの表面に絶縁性を有する無機酸化物多孔膜を形成するために使用される無機酸化物粉末であって、 1)酸化物純度が90重量%以上、 2)平均粒子径が1μm以下であり、 かつ、 3)平均3次元粒子凹凸度が3.0以上 である無機酸化物粉末に関する。

Description

無機酸化物粉末および無機酸化物含有スラリーならびに該スラリーを使用したリチウムイオン二次電池およびその製造方法
 本発明は、リチウムイオン二次電池を構成する正極、負極またはセパレーターの少なくとも一つの表面に絶縁性を有する無機酸化物多孔膜を形成するために使用される無機酸化物粉末に関する。また、本発明は、この無機酸化物粉末を含有するスラリー、さらにはこのスラリーを使用したリチウムイオン二次電池およびその製造方法に関する。
 リチウムイオン二次電池は高いエネルギー密度を有することから、携帯電話やパーソナルコンピューター等の民生用小型機器に用いられ、また近年では、これら小型機器に加えて自動車用途への応用も加速している。
 リチウムイオン二次電池は、一般に正極と負極とを有し、さらにこれら極板間を電気的に絶縁する目的でセパレーターが配置されていることが一般的である。リチウムイオン二次電池用のセパレーターとしては、例えば、ポリオレフィン系樹脂から成る微多孔性シートが使用されている。
 この微多孔性シートからなるセパレーターは、電池内部で短絡が発生した場合、セパレーターの有するシャットダウン機能によって、セパレーターの孔が塞がって、短絡した部分のリチウムイオンの移動ができなくなり、短絡部位の電池機能を失わせることにより、リチウムイオン二次電池の安全性を保持する役割を担っている。しかしながら、瞬間的に発生する発熱によって電池温度が例えば150℃を超えると、セパレーターは急激に収縮して、正極と負極の短絡部位が拡大することがある。この場合、電池温度は数百℃以上にまで異常過熱された状態に至ることがあり、安全性の面で問題となっている。
 そこで、上記問題点を解決する手段として、特許文献1には、リチウムイオン二次電池を構成する正極または負極ないしはセパレーターの表面に、絶縁性を有する無機酸化物フィラーを含む無機酸化物多孔膜を形成する技術が提案されている。
 また、特許文献2には、このような無機酸化物多孔膜に使用される無機酸化物フィラーとして、平均粒径が0.1~5μmで、耐熱性の高いαアルミナ粒子を使用した、厚みが0.5~20μmである多孔膜を有するリチウムイオン二次電池が開示されている。
特開平9-147916号公報 特開2005-222780号公報
 上述の特許文献にて開示されている無機酸化物多孔膜は、耐熱性が高く、寸法安定性に優れるため、セパレーターの急激な収縮を抑制することができる。
 しかしながら、これらの特許文献に記載されているBET比表面積や平均粒径等の諸物性を満足する無機酸化物粉末を用いて無機酸化物多孔膜を形成した場合においても、得られる無機酸化物多孔膜の平均細孔半径や空隙率が十分でなく、イオン透過性が不足する結果、当該無機酸化物多孔膜を含むリチウムイオン二次電池の負荷特性が不十分になってしまうという問題があった。
 このように上記特許文献で開示された無機酸化物粉末は、リチウムイオン二次電池の無機多孔膜形成用の粉末としては、必ずしも満足いくものであるとはいえなかった。
 かかる状況下、本発明の目的は、リチウムイオン二次電池を構成する正極、負極またはセパレーターの少なくとも一つの表面に、十分なイオン透過性を与えることができる平均細孔半径や空隙率を有し、かつ、優れた耐熱性と絶縁性を有する無機酸化物多孔膜を形成するために好適な無機酸化物粉末を提供するものである。
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、無機酸化物多孔膜を構成する無機酸化物粉末の形状(3次元粒子凹凸度)が、得られる無機酸化物多孔膜の平均細孔半径や空隙率に大きく影響することを見出した。そして、下記の発明が上記目的に合致することを見出し、本発明に至った。
 すなわち、本発明は、以下の発明に係るものである。
 <1> リチウムイオン二次電池を構成する正極、負極またはセパレーターの少なくとも一つの表面に絶縁性を有する無機酸化物多孔膜を形成するために使用される無機酸化物粉末であって、
1)酸化物純度が90重量%以上、
2)平均粒子径が1μm以下であり、
かつ、
3)平均3次元粒子凹凸度が3.0以上
であることを特徴とする無機酸化物粉末。
<2> 3次元粒子の凹凸度が4.0より大きい粒子を、無機酸化物粉末を構成する全粒子の数に基づき、5%以上含む前記<1>に記載の無機酸化物粉末。
 <3> BET比表面積が1m/g以上20m/g以下である前記<1>または<2>に記載の無機酸化物粉末。
 <4> 無機酸化物が、αアルミナである前記<1>~<3>のいずれかに記載の無機酸化物粉末。
 <5> 前記<1>~<4>のいずれかに記載の無機酸化物粉末、バインダー及び溶媒を含むことを特徴とする無機酸化物スラリー。
 <6> 前記<5>記載の無機酸化物スラリーを、正極および/または負極の表面に塗布した後に、該スラリーを乾燥させて、無機酸化物多孔膜を形成する工程を含むリチウムイオン二次電池の製造方法。
 <7> 前記<5>記載の無機酸化物スラリーをセパレーターの表面に塗布した後に、該スラリーを乾燥させて、無機酸化物多孔膜を形成する工程を含むリチウムイオン二次電池の製造方法。
 <8> 前記<6>または<7>記載の製造方法により製造されてなることを特徴とするリチウムイオン二次電池。
 本発明によれば、十分なイオン透過性を与えることができる平均細孔半径や空隙率を有し、かつ、優れた耐熱性と絶縁性を有する無機酸化物多孔膜を形成するために好適な無機酸化物粉末が提供される。該無機酸化物粉末で形成された無機酸化物多孔膜は、リチウムイオン導電性に優れるため、該無機酸化物多孔膜を正極、負極またはセパレーターの少なくとも一つの表面に備えたリチウムイオン二次電池は、負荷特性に優れた二次電池となる。
3次元粒子凹凸度の説明のための模式図である。
 以下、本発明について詳細に説明する。なお、本明細書において「~」という表現を用いる場合、その前後の数値を含む表現として用いる。
 本発明は、リチウムイオン二次電池を構成する正極、負極またはセパレーターの少なくとも一つの表面に絶縁性を有する無機酸化物多孔膜を形成するために使用される無機酸化物粉末であって、
1)酸化物純度が90重量%以上、
2)平均粒子径が1μm以下であり、
かつ、
3)平均3次元粒子凹凸度が3.0以上
である無機酸化物粉末(以下、「本発明の無機酸化物粉末」あるいは単に「無機酸化物粉末」と称す場合がある。)に係るものである。
 本発明の無機酸化物粉末は、電気的に絶縁性を有する物質であれば特に限定はされず、その酸化物成分として、酸化アルミニウム、酸化チタン、酸化マグネシウム、酸化ケイ素等を用いることができる。これらは1種でもよく、2種以上を混合してしてもよい。
 中でも、酸化アルミニウム(アルミナ)が好ましく、絶縁性や耐熱性に優れ、化学的に安定なαアルミナが特に好ましい。
 本発明の無機酸化物粉末の酸化物純度は90重量%以上であり、99重量%以上が好ましく、さらに好ましくは99.9重量%以上であり、最も好ましくは99.99重量%以上である。
 なお、「酸化物純度」とは、本発明の無機酸化物粉末におけるすべての成分の合計を100重量%としたときに、基準となる酸化物成分の割合を意味する。その測定法は、基準となる酸化物成分がαアルミナである場合を例として実施例にて後述する。
 特に本発明の無機酸化物粉末がαアルミナ粉末である場合、その純度が90重量%を下回ると、αアルミナ粉末に含まれるSi、NaまたはFe等の不純物が多くなり、良好な電気絶縁性が得られなくなるばかりでなく、短絡の原因となる金属性異物の混入量が多くなり好ましくない。
 本発明の無機酸化物粉末は、無機酸化物粉末を構成する無機酸化物粒子の形状(3次元粒子凹凸度)を所定の範囲としていることに特徴の一つがある。
 ここで、「3次元粒子凹凸度」とは、無機酸化物粉末を構成する一つの無機酸化物粒子の形状パラメータであり、粒子体積V(μm)及び粒子に外接する直方体の体積La×Lb×Lc(μm)に基づき、以下の式(1)で規定される値である。また、「(粉末の)平均3次元粒子凹凸度」とは、粉末に含まれる任意の100個以上の無機酸化物粒子に対して、式(1)により算出した3次元粒子凹凸度の平均値である。

  3次元粒子凹凸度=La×Lb×Lc/V  ・・・・・(1)

 ここで、Laは粒子の長径、Lbは粒子の中径、Lcは粒子の短径を意味し、La、Lb、Lcは直交する。図1に3次元粒子凹凸度の説明のための模式図に示す。
 上記粒子体積V、粒子の長径La、粒子の中径Lb、粒子の短径Lcは、対象となる粒子の連続スライス像を3次元定量解析ソフト(例えば、ラトックシステムエンジニアリング製TRI/3D-PRT)にて解析して求めることができる。
 また、粒子の連続スライス像は、所定量の無機酸化物粉末を分散させた粒子固定用樹脂(エポキシ樹脂等)を硬化させた評価用試料を、FIB加工で所定の間隔でスライスし、断面SEM像を得ることを繰り返して、所定の枚数の断面SEM像を取得し、次いで、得られた断面SEM像を適当な画像解析ソフト(例えば、Visualization Sciences Group製Avizo ver.6.0)で合成することで得ることができる。
 具体的な3次元粒子凹凸度の評価手順(連続スライス像用試料作製方法、3次元定量解析ソフトによるV、La、Lb、Lcの決定方法)は、アルミナ粒子を例として、実施例にて詳述する。
 上述の方法で規定される、本発明の無機酸化物粉末の平均3次元粒子凹凸度は3.0以上であり、好ましくは3.5以上である。また、平均3次元粒子凹凸度の上限は、10.0以下が好ましく、より好ましくは、6.0以下である。
 平均3次元粒子凹凸度が3.0未満の場合、無機酸化物粉末をスラリー化して電極活物質(正極活物質あるいは負極活物質)とバインダーとを含む電極合剤層の表面に塗布、乾燥して得られる無機酸化物多孔膜の空隙率が低下し、その結果、前記無機酸化物多孔膜に保持される電解液量が少なくなり好ましくない。また、本発明の無機酸化物粉末の平均3次元粒子凹凸度が10.0を超える場合、本発明の無機酸化物粉末をスラリー化して電極活物質とバインダーを含む電極合剤層からなる電極(正極あるいは負極)の表面に塗布、乾燥して得られる本発明の無機酸化物粉末からなる無機酸化物多孔膜の空隙率も大きくなり、前記無機酸化物多孔膜の強度が低下する場合がある。
 本発明の無機酸化物粉末は、3次元粒子凹凸度が4.0より大きい粒子を、無機酸化物粉末を構成する全粒子の数に基づいて5%以上含むことが好ましく、20%以上含むことがより好ましい。4.0より大きい3次元粒子凹凸度を有する粒子数の割合が前記範囲内である場合、無機酸化物粉末をスラリー化して電極活物質とバインダーとを含む電極合剤層の表面に塗布、乾燥して得られる無機酸化物多孔膜の空隙率が最適な範囲となり、無機酸化物多孔膜に保持される電解液量や無機酸化物多孔膜の強度が良好となる。本発明の無機酸化物粉末に含まれる、4.0より大きい3次元粒子凹凸度を有する粒子数の割合の上限は特に限定されるものではないが、通常、90%以下である。
 本発明の無機酸化物粉末の酸化物成分としては、αアルミナが好適である。本発明の無機酸化物粉末がαアルミナである場合には、αアルミナ粉末とバインダーと溶媒を混合してαアルミナスラリーを作製して、電極活物質を含む電極合剤層からなる正極や負極の表面、あるいはセパレーターの表面に、αアルミナスラリーを塗布して、塗膜形成を行い、さらには圧延等の圧密処理を行うと、リチウムイオン伝導性に適したαアルミナ多孔膜の空隙率と細孔半径が十分に確保できると同時に、空隙率を好ましい範囲で任意に制御可能となり好ましい。
 本発明の無機酸化物粉末の平均粒子径は1μm以下である。ここで規定する「平均粒子径」は、レーザー回折法により得た質量基準で累積百分率50%相当粒子径を意味する。
 また、BET比表面積は、好ましくは1m/g以上20m/g以下であり、より好ましくは1m/g以上10m/g以下であり、さらに好ましくは1m/g以上5m/g以下である。BET比表面積が前記範囲にある場合、吸着水分量が低減されるため、下記の方法にて無機酸化物多孔膜を作製し、リチウムイオン二次電池を製造した際に、水分による泡の発生が低減され、安全性の高い電池が得られる。
 なお、平均粒子径及びBET比表面積の測定方法は、αアルミナ粉末を例として実施例にて後述する。
 本発明の無機酸化物粉末として好適であるαアルミナ粉末の製造方法は特に限定されないが、αアルミナ粉末の製造方法としては、例えば、アルミニウムアルコキシド法で製造された水酸化アルミニウムを焼成する方法;有機アルミニウムを使って、合成する方法;その原料に遷移アルミナまたは熱処理により遷移アルミナとなるアルミナ粉末を、塩化水素を含有する雰囲気ガス中にて焼成する方法;特開2010-150090号公報、特開2008-100903号公報、特開2002-047009号公報、特開2001-354413号公報などに記載の方法などが挙げられる。
 アルミニウムアルコキシド法としては、例えば、アルミニウムアルコキシドを、水を用いて加水分解してスラリー状、ゾル状、ゲル状の水酸化アルミニウムを得て、それを乾燥させることにより乾燥粉末状の水酸化アルミニウムを得る方法などが挙げられる。
乾燥させることにより得られる粉末状の水酸化アルミニウムは、軽装かさ密度が通常0.1~0.4g/cm程度のかさ高い粉末であり、好ましくは0.1~0.2g/cmの軽装かさ密度を有する。
 水酸化アルミニウムの累計細孔容積(細孔半径が0.01μm以上1μm以下の範囲)は特に制限されないが、0.6mL/g以上の累計細孔容積を有することが好ましい。この場合、一次粒子が小さく、分散性に優れ、凝集粒子が少ないため、焼成して得られるアルミナ焼結体は、強固に結合した粉砕困難なアルミナ凝集粒子の発生を防ぐことができる。
 アルミニウムアルコキシド法により得られた乾燥粉末状の水酸化アルミニウムを焼成することにより、目的とするαアルミナ粉末を得ることができる。
 水酸化アルミニウムの焼成は通常、焼成容器に充填して行われる。焼成容器としては、例えば鞘などが挙げられる。
 また、焼成容器の材質は、得られるαアルミナ粉末の汚染防止の観点からアルミナであることが好ましく、特に高純度のαアルミナであるのがよい。
 水酸化アルミニウムの焼成容器への充填方法は特に制限されないが、自重で充填し、過度に圧密しないことが好ましい。
 水酸化アルミニウムの焼成に用いる焼成炉としては、例えば、トンネルキルン、回分式通気流型箱型焼成炉、回分式並行流型箱型焼成炉などに代表される材料静置型焼成炉;ロータリーキルンなどが挙げられる。
 水酸化アルミニウムの焼成温度、焼成温度までの昇温速度及び焼成時間は、所望の物性を有するαアルミナとなるように適宜選定する。
 水酸化アルミニウムの焼成温度は、例えば1100℃以上1450℃以下、好ましくは1200℃以上1350℃以下であり、この焼成温度まで昇温するときの昇温速度は、通常30℃/時間以上500℃/時間以下であり、水酸化アルミニウムの焼成時間は、通常0.5時間以上24時間以内、好ましくは1時間以上10時間以内である。
 水酸化アルミニウムの焼成は、例えば大気雰囲気中の他、窒素ガス、アルゴンガスなどの不活性ガス雰囲気中で焼成してもよく、プロパンガスなどの燃焼によって焼成するガス炉のように、水蒸気分圧が高い雰囲気中で焼成しても良い。
 得られたαアルミナ粉末は、平均粒子径が10μmを超えた状態で凝集している場合がある。その場合は粉砕して、平均粒子径を1μm以下にすることが好ましい。
 αアルミナ粉末の粉砕は、例えば振動ミル、ボールミル、ジェットミルなどの公知の装置を用いて行うことができ、乾式状態で粉砕する方法、および、湿式状態で粉砕する方法のいずれも採用することができるが、純度を維持しながら、粗大な凝集粒子を含まず、前述のαアルミナ粉末の物性を達成するためには、純度を維持しながら粉砕する方法、例えばジェットミルによる粉砕が好ましい方法として挙げられる。
 得られたαアルミナ粉末に含まれる10μm以上の粗大粒子の含有量は、10ppm以下であることが好ましく、3ppm以下であることがより好ましい。粗大粒子の含有量が前記範囲内である場合、均一な無機酸化物多孔膜が得られ、粗大粒子による空隙率の低減が抑制され、高い空隙率を有する多孔膜が得られる。
 なお、αアルミナ粉末の平均粒子径は、例えば、実施例に記載の評価方法によって測定することができる。
 αアルミナ粉末の、粒度分布の小径側から質量基準で累積百分率5%、累積100%に相当する粒径をそれぞれd5、d100としたとき、[(d100-d5)/平均粒子径]が30以下であることが好ましく、さらに好ましくは10以下であり、最も好ましくは5以下である。この場合、粒径のばらつきが小さくなり、均一な無機酸化物多孔膜が得られる。
 粉砕装置は、得られるαアルミナ粉末の汚染が少ない点で、αアルミナと接する面が高純度のαアルミナの材質で構成されているか、あるいは樹脂ライニングされていることが好ましい。
 媒体撹拌ミルなどを用いて粉砕する場合は、これに用いられる粉砕媒体も、高純度のαアルミナの材質で構成されていることが好ましい。
 本発明の無機酸化物スラリーは、上述の本発明の無機酸化物粉末、バインダー及び溶媒を含んでなる。バインダーとしては公知のものを使用することができ、具体的には、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)等のフッ素樹脂;ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル等のポリアクリル酸誘導体;ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル等のポリメタクリル酸誘導体;ポリアミド、ポリイミド、ポリアミドイミド、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、ポリアクリロニトリル及びその誘導体、ポリエチレン、ポリプロピレン、アラミド樹脂等を用いることができる。
 また、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸及びヘキサジエンより選択される2種類以上の材料の共重合体を用いてもよい。
 溶媒としては、公知のものを使用することができ、具体的には、水、アセトン、テトラヒドロフラン、メチレンクロライド、クロロホルム、ジメチルホルムアミド、N-メチル-2-ピロリドン(NMP)、シクロヘキサン、キシレン、シクロヘキサノンまたはこれらの混合溶媒を用いることができる。
 また、塗布に最適な粘度を有する無機酸化物スラリーとする目的で公知の増粘剤を添加してもよい。
 本発明の無機酸化物スラリーにおけるバインダーの含有量は、特に限定されるものではないが、例えば、本発明の無機酸化物粉末100重量部に対して、0.1~20重量部であることが好ましい。また、本発明の無機酸化物スラリーにおける溶媒の含有量は、特に限定されるものではないが、例えば、本発明の無機酸化物粉末100重量部に対して、10~500重量部であることが好ましい。
 本発明の無機酸化物粉末、バインダー及び溶媒を混合し、分散させることにより本発明の無機酸化物スラリーを調製することができる。前記無機酸化物スラリーの分散方法は特に限定されるものではなく、公知のプラネタリーミキサーによる攪拌方式や超音波照射による分散方法を用いることができる。このとき、該スラリーのせん断速度100S-1での粘度が低いほど、分散、混合、移送等の工程の作業性が良好となる。
 このようにして得られた無機酸化物スラリーから製造される無機酸化物多孔膜は、耐熱性が高く、絶縁性である。この無機酸化物多孔膜は、正極、負極あるいはセパレーターの少なくとも一つの表面に形成され、正極、負極およびセパレーターと共に積層して形成した電池群(積層型電池群)、又は無機酸化物多孔膜を、正極、負極およびセパレーターと共に積層して巻回して形成した電極群(巻回型電池群)と、電解液とを含むリチウムイオン二次電池に好適に用いられる。
 このようなリチウムイオン二次電池を好適に製造する方法としては、電極活物質(正極活物質あるいは負極活物質)とバインダーとを含む電極合剤層からなる正極および/または負極の表面に上記の無機酸化物スラリーを塗布、乾燥させて、無機酸化物多孔膜を形成する工程を含む製造方法が挙げられる。また、正極および/または負極の表面ではなく、セパレーターの表面に上記の無機酸化物スラリーを塗布、乾燥させて、無機酸化物多孔膜を形成する工程を含む製造方法でもよい。
 より具体的な製造方法として、例えば、負極に無機酸化物多孔膜を形成した巻回型電池群を含むリチウムイオン二次電池の製法の場合、無機酸化物多孔膜を表面に付与した負極リード接合部に負極リードの一端を、正極リード接合部に負極リードの一端を接合し、正極と負極とをセパレーターを介して積層、巻回して巻回型電極群を構成し、この電極群を上部と下部の絶縁リングではさまれた状態で電池缶に収納して、電解液を注入後、電池蓋にて塞ぐ方法が挙げられる。
 前記無機酸化物スラリーを、正極または負極活物質とバインダーを含んだ電極合剤層表面、あるいはセパレーター表面に塗布する方法は特には限定されず、例えば、公知のドクターブレード法やグラビア印刷法等を使用することができる。乾燥方法も特に限定されず、公知の熱風乾燥、真空乾燥等を使用することができる。その際に得られる無機酸化物多孔膜の厚みを、好ましくは1~50μm、より好ましくは2~10μm程度とすることが好ましい。
 リチウムイオン二次電池の正極、負極、セパレーター、電解液等の電池構成材料は特に限定されず、従来公知のものを用いることができる。例えば、国際公開第09/041722号パンフレット等の公知文献にて開示されたものを用いることができる。
 上述の製造方法にて製造された本発明のリチウムイオン二次電池は、本発明の無機酸化物粉末から構成される無機酸化物多孔膜を含む。
 ここで、無機酸化物多孔膜の平均細孔半径は、0.05~0.50μmが好ましく、0.07~0.20μmがより好ましい。また、無機酸化物多孔膜の空隙率は、30~80体積%が好ましく、30~60体積%がより好ましい。
 平均細孔半径、空隙率が上記範囲を満たす場合、十分なイオン透過性を有し、かつ、優れた耐熱性と絶縁性を有する無機酸化物多孔膜となるため、このような無機酸化物多孔膜を備えたリチウムイオン二次電池は、負荷特性に優れ、セパレーターのシャットダウン温度においても耐熱性及び寸法安定性に優れる。
 なお、無機酸化物多孔膜の平均細孔半径及び空隙率の算出方法は、アルミナ多孔膜を例にして、実施例にて後述する。
 以下、実施例を挙げて本発明を詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。なお、各物性の評価方法は次の通りである。
(酸化物純度)
 Si、Na、Mg、Cu、Feの含有量を、固体発光分光法にて測定した。
 酸化物純度は、基準となる酸化物(αアルミナ)中に含まれるSiO、NaO、MgO、CuO、Feの重量の総和(%)を100から差し引いたものを用いた。なお、SiO、NaO、MgO、CuO、Feを不純物と定義する。算出式は以下のとおりである。
    酸化物純度(重量%)=100-不純物の重量の総和(重量%)
(BET比表面積)
 比表面積測定装置として、島津製作所社製の「フロソーブII 2300」を使用し、JIS-Z-8830に規定された方法に従って、窒素吸着法一点法により求めた。
(粒子径)
 レーザー粒度分布測定装置〔日機装(株)製「マイクロトラック」〕を用いてレーザー回折法により、質量基準で累積百分率50%相当粒子径を平均粒子径とした。また、粒度分布の小径側から質量基準で累積百分率5%、累積100%に相当する粒径をそれぞれd5、d100とした。測定に際しては、0.2重量%のヘキサメタ燐酸ソーダ水溶液で超音波分散し、屈折率は1.76とした。
(平均3次元粒子凹凸度)
 エポキシ樹脂100重量部に、分散剤2重量部とアルミナ粒子粉末2重量部を分散させ、真空脱気した後、硬化剤12重量部を入れ、得られたアルミナ分散エポキシ樹脂をシリコン型に流し込み硬化させた。
 硬化後の試料を試料台に固定後、カーボン蒸着し、FIB-SEM〔FEI製(HELIOS600)〕にセットし、加速電圧30kVでFIB加工して断面を作製し、その断面を加速電圧2kVでSEM観察した。観察後、試料奥行き方向に20nmの厚さでFIB加工して新しく断面を作製し、その断面をSEM観察した。このように20nm間隔でFIB加工、断面SEM観察を繰り返して100枚以上の像を取得し、画像解析ソフト〔Visualization Sciences Group製Avizo ver.6.0〕で位置補正を行い、連続スライス像を得た。スケールは3軸ともに20nm/pixとした。
 得られた連続スライス像に対し、アルミナ粒子の3次元定量解析を行い、3次元粒子凹凸度を算出した。3次元定量解析には、定量解析ソフトTRI/3D-PRT(ラトックシステムエンジニアリング製)を使用した。
 3次元定量解析は、まず連続スライス像をTRI/3D-PRT上で開き、メディアンフィルターを適用しノイズ除去を行い、次に3次元的に孤立した粒子をそれぞれ識別してラベル化した後、測定領域外周で途切れた粒子を削除した。
 上記処理で削除されずに残った粒子から、任意の粒子の粒子体積V、粒子の長径La、粒子の中径Lb及び粒子の短径Lcを求め、上記式(1)から3次元粒子凹凸度を算出した。
 このようにして得られた粒子100個以上の粒子凹凸度の平均値として平均3次元粒子凹凸度を得た。
(評価用アルミナ塗工フィルムの作製)
 アルミナ多孔膜の平均細孔半径、空隙率の評価用の試料フィルムとして、以下の方法で評価用アルミナ塗工フィルムを作製した。
 まず、αアルミナ粉末(100重量部)、純水(41.8重量部)及びポリカルボン酸アンモニウム塩(0.5重量部)を超音波分散させた後に、スチレン-ブタジエン共重合体(SBR)のゴムラテックス(5重量部、ラテックス粒子径:0.17μm)を加え、再度超音波分散してスラリーを調製した。
 次いで、PETフィルム(帝人デュポンフィルム製、X-71)上に、テストコーター(廉井精機製:CAD150II)にて前記スラリーを塗布して(アプリケーターギャップ:15μm、テープ送り速度:1m/分、乾燥温度:80℃)、PETフィルム表面にアルミナ多孔膜が形成された評価用アルミナ塗工フィルムを得た。
(アルミナ多孔膜細孔容積)
 アルミナ多孔膜の細孔容積は以下の手順で算出した。
 評価用アルミナ塗工フィルム、およびアルミナ未塗工のPETフィルムを20mm×50mmのシート状に切り出し、細孔分布を水銀ポロシメーター(オートポアIII9430 MICROMERITICS社製)にてそれぞれ測定し、それぞれの細孔容積からアルミナ多孔膜の細孔容積を、下記式を用いて求めた。

 アルミナ多孔膜細孔容積(mL/g)=[(アルミナ塗工フィルム細孔容積×アルミナ多孔膜重量)-(フィルム細孔容積×フィルム重量)]/(アルミナ多孔膜重量)

 なお、アルミナ多孔膜の重量は、アルミナ粉末を塗工する前のフィルムと、塗工後のフィルムとの重量差から求めた。
(アルミナ多孔膜の平均細孔半径)
 アルミナ塗工フィルムの細孔容積から、未塗工のフィルムの細孔容積を除してアルミナ多孔膜の細孔容積を算出した。得られるアルミナ多孔膜の細孔容積のうち、0.01μm以上1μm以下の範囲の細孔容積から、平均細孔半径(アルミナ多孔膜の累積細孔容積が50%に相当する細孔半径)を求めた。
(アルミナ多孔膜の空隙率)
 上述のαアルミナ多孔膜の細孔半径が0.01μm以上1μm以下の範囲の細孔容積を用いて、下記式に従い、アルミナ多孔膜の空隙率を求めた。

 アルミナ多孔膜空隙率(%)=[1-(アルミナ多孔膜密度/構成材料真比重)]×100
 アルミナ多孔膜密度(g/mL)=1/[アルミナ多孔膜細孔容積+(1/構成材料真比重)]
(実施例1)
 先ず、純度99.99%のアルミニウムを原料にして調製したアルミニウムイソプロポキシドを、水を用いて加水分解してスラリー状の水酸化アルミニウムを得て、これを乾燥させることにより軽装かさ密度が0.1g/cmの乾燥粉末状の水酸化アルミニウムを得た。
 さらに、この乾燥粉末状の水酸化アルミニウムをプロパンガス等の燃焼によって焼成するガス炉にて、1220℃で4時間保持して焼成し、ジェットミルにて粉砕してαアルミナ粉末を得た。
 得られたαアルミナ粉末の不純物量はSi=7ppm、Fe=5ppm、Cu=1ppm以下、Na=2ppm、Mg=1ppm以下であり、アルミナを基準とする酸化物純度は99.99重量%以上であった。また、BET比表面積は4.3m/gであり、平均粒子径が0.57μmであり、10μm以上の粗大粒子の含有量が3ppm以下であり、[(d100-d5)/平均粒子径]は4.6であり、128個の粒子の平均3次元粒子凹凸度が3.7であり、αアルミナ粉末の全粒子数に対する3次元粒子の凹凸度が4.0より大きい粒子の数の割合は34.4%であった。
 さらに、前記αアルミナ粉末から、上述した方法によりαアルミナスラリーを調製し、これをPETフィルム上に塗工して、アルミナ多孔膜が表面に形成された評価用アルミナ塗工フィルムを作製した。該αアルミナ多孔膜の平均細孔半径は0.10μmであり、空隙率は37%であり、リチウムイオン透過に対する十分な細孔半径と空隙率を有していた。
(比較例1)
 実施例1と同様の方法で得た乾燥粉末状の水酸化アルミニウムを、ガス炉にて、1205℃で2時間保持して焼成し、振動ミルにて粉砕してαアルミナ粉末を得た。
得られたαアルミナ粉末の不純物量はSi=12ppm、Fe=5ppm、Cu=1ppm以下、Na=2ppm、Mg=2ppmであり、アルミナを基準とする酸化物純度は99.99重量%以上であった。また、BET比表面積は10m/gであり、平均粒子径が0.25μmであり、10μm以上の粗大粒子の含有量が1000ppmであり、[(d100-d5)/平均粒子径]は69であり、128個の粒子の平均3次元粒子凹凸度が2.8であり、αアルミナ粉末の全粒子数に対する3次元粒子の凹凸度が4.0より大きい粒子の数の割合は3.8%であった。
 さらに、前記αアルミナ粉末から上述の方法により調製したスラリーをPETフィルム上に塗工し、アルミナ多孔膜が表面に形成された評価用アルミナ塗工フィルムを作製した。該αアルミナ多孔膜の平均細孔半径は0.04μmであり、空隙率は28%であり、リチウムイオン透過に対する十分な細孔半径と空隙率を有していなかった。
 本発明の無機酸化物粉末は、リチウムイオン二次電池用途として、リチウムイオン導電性に優れる高空隙率の無機酸化物多孔膜を提供できる。該無機酸化物多孔膜は、リチウムイオン導電性に優れ、該無機酸化物多孔膜を正極、負極あるいはセパレーターの少なくとも一つの表面に備えたリチウムイオン二次電池は、負荷特性に優れた二次電池となるため、工業的に有望である。

Claims (8)

  1.  リチウムイオン二次電池を構成する正極、負極またはセパレーターの少なくとも一つの表面に絶縁性を有する無機酸化物多孔膜を形成するために使用される無機酸化物粉末であって、
    1)酸化物純度が90重量%以上、
    2)平均粒子径が1μm以下であり、
    かつ、
    3)平均3次元粒子凹凸度が3.0以上
    であることを特徴とする無機酸化物粉末。
  2.  3次元粒子凹凸度が4.0より大きい粒子を、無機酸化物粉末を構成する全粒子の数に基づき、5%以上含む請求項1に記載の無機酸化物粉末。
  3.  BET比表面積が1m/g以上20m/g以下である請求項1または2に記載の無機酸化物粉末。
  4.  無機酸化物が、αアルミナである請求項1~3のいずれかに記載の無機酸化物粉末。
  5.  請求項1~4のいずれかに記載の無機酸化物粉末、バインダー及び溶媒を含むことを特徴とする無機酸化物スラリー。
  6.  請求項5記載の無機酸化物スラリーを、正極および/または負極の表面に塗布した後に、該スラリーを乾燥させて、無機酸化物多孔膜を形成する工程を含むことを特徴とするリチウムイオン二次電池の製造方法。
  7.  請求項5記載の無機酸化物スラリーをセパレーターの表面に塗布した後に、該スラリーを乾燥させて、無機酸化物多孔膜を形成する工程を含むことを特徴とするリチウムイオン二次電池の製造方法。
  8.  請求項6または7記載の製造方法により製造されてなることを特徴とするリチウムイオン二次電池。
PCT/JP2013/050954 2012-01-20 2013-01-18 無機酸化物粉末および無機酸化物含有スラリーならびに該スラリーを使用したリチウムイオン二次電池およびその製造方法 WO2013108883A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380005971.9A CN104040777B (zh) 2012-01-20 2013-01-18 无机氧化物粉末和含有无机氧化物的浆料以及使用该浆料的锂离子二次电池及其制造方法
KR1020147019979A KR101704154B1 (ko) 2012-01-20 2013-01-18 무기 산화물 분말 및 무기 산화물 함유 슬러리 그리고 그 슬러리를 사용한 리튬 이온 이차 전지 및 그 제조 방법
EP13738268.5A EP2806493B1 (en) 2012-01-20 2013-01-18 Inorganic oxide powder, inorganic oxide powder containing slurry, lithium ion secondary battery with the slurry, and process for producing the same
US14/371,203 US9577237B2 (en) 2012-01-20 2013-01-18 Inorganic oxide powder, inorganic oxide-containing slurry, lithium ion secondary battery using said slurry, and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-010227 2012-01-20
JP2012010227 2012-01-20

Publications (1)

Publication Number Publication Date
WO2013108883A1 true WO2013108883A1 (ja) 2013-07-25

Family

ID=48799304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050954 WO2013108883A1 (ja) 2012-01-20 2013-01-18 無機酸化物粉末および無機酸化物含有スラリーならびに該スラリーを使用したリチウムイオン二次電池およびその製造方法

Country Status (7)

Country Link
US (1) US9577237B2 (ja)
EP (1) EP2806493B1 (ja)
JP (1) JP5362132B2 (ja)
KR (1) KR101704154B1 (ja)
CN (1) CN104040777B (ja)
TW (1) TWI577635B (ja)
WO (1) WO2013108883A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811702A (zh) * 2014-02-12 2014-05-21 佛山市金辉高科光电材料有限公司 一种新型陶瓷涂层聚烯烃复合膜及其制备方法
WO2015087122A1 (en) * 2013-12-11 2015-06-18 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101739211B1 (ko) 2012-07-27 2017-05-23 스미또모 가가꾸 가부시끼가이샤 알루미나 슬러리 및 그 제조 방법 그리고 도공액
JP5737265B2 (ja) * 2012-10-23 2015-06-17 信越化学工業株式会社 珪素酸化物及びその製造方法、負極、ならびにリチウムイオン二次電池及び電気化学キャパシタ
JP6349957B2 (ja) * 2014-05-21 2018-07-04 住友金属鉱山株式会社 リチウム遷移金属複合酸化物製造用匣鉢充填物およびリチウム遷移金属複合酸化物の製造方法
WO2016093242A1 (ja) 2014-12-10 2016-06-16 三菱樹脂株式会社 アルミナスラリー
JP6130080B2 (ja) * 2014-12-17 2017-05-17 住友化学株式会社 無機酸化物粉末、およびこれを含有するスラリー、ならびに非水電解液二次電池およびその製造方法
JP6673341B2 (ja) * 2015-03-30 2020-03-25 日本ゼオン株式会社 二次電池多孔膜用組成物
WO2018047871A1 (ja) * 2016-09-09 2018-03-15 住友化学株式会社 アルミナ粉末、アルミナスラリー、アルミナ含有コート層、積層分離膜及び二次電池
EP3401282B1 (en) * 2016-11-14 2023-02-22 Sumitomo Chemical Company, Limited Alumina and slurry containing same, and alumina porous film using the same, laminated separator, nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
US20180351147A1 (en) * 2016-11-14 2018-12-06 Sumitomo Chemical Company, Limited Alumina and slurry containing the same, and alumina porous film using the same, laminated separator, nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
US11764348B2 (en) 2017-03-31 2023-09-19 Aesc Japan Ltd. Battery electrode, and lithium ion secondary battery
JP6981468B2 (ja) * 2017-04-25 2021-12-15 日本電気株式会社 リチウムイオン二次電池
JP6971193B2 (ja) 2018-04-19 2021-11-24 住友化学株式会社 アルミナ粉末およびこれを含有するスラリー、アルミナ多孔膜およびこれを備えた積層セパレータ、並びに非水電解液二次電池およびその製造方法
RU2743898C1 (ru) 2018-11-16 2021-03-01 Общество С Ограниченной Ответственностью "Яндекс" Способ выполнения задач
RU2744032C2 (ru) 2019-04-15 2021-03-02 Общество С Ограниченной Ответственностью "Яндекс" Способ и система для определения результата выполнения задачи в краудсорсинговой среде
RU2744038C2 (ru) 2019-05-27 2021-03-02 Общество С Ограниченной Ответственностью «Яндекс» Способ и система для определения результата для задачи, выполняемой в краудсорсинговой среде
RU2019128272A (ru) 2019-09-09 2021-03-09 Общество С Ограниченной Ответственностью «Яндекс» Способ и система для определения производительности пользователя в компьютерной краудсорсинговой среде
RU2019135532A (ru) 2019-11-05 2021-05-05 Общество С Ограниченной Ответственностью «Яндекс» Способ и система для выбора метки из множества меток для задачи в краудсорсинговой среде
JP6803451B1 (ja) * 2019-12-13 2020-12-23 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US11996540B2 (en) 2019-12-20 2024-05-28 Intecells, Inc. Method and apparatus for making lithium ion battery electrodes
US11621411B2 (en) 2019-12-23 2023-04-04 Intecells, Inc. Method of insulating lithium ion electrochemical cell components with metal oxide coatings
RU2020107002A (ru) 2020-02-14 2021-08-16 Общество С Ограниченной Ответственностью «Яндекс» Способ и система приема метки для цифровой задачи, исполняемой в краудсорсинговой среде

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147916A (ja) 1995-11-20 1997-06-06 Fuji Photo Film Co Ltd 非水二次電池
JP2001354413A (ja) 2000-06-07 2001-12-25 Sumitomo Chem Co Ltd αアルミナ粉末
JP2002047009A (ja) 2000-05-23 2002-02-12 Sumitomo Chem Co Ltd αアルミナ粉末およびそれを用いた熱伝導性シート
JP2005222780A (ja) 2004-02-04 2005-08-18 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2005235695A (ja) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2005327680A (ja) * 2004-05-17 2005-11-24 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
WO2006061936A1 (ja) * 2004-12-07 2006-06-15 Matsushita Electric Industrial Co., Ltd. セパレータおよびそれを用いた非水電解液二次電池
JP2008100903A (ja) 2006-09-19 2008-05-01 Sumitomo Chemical Co Ltd αアルミナ粉末
JP2009054455A (ja) * 2007-08-28 2009-03-12 Sony Corp 非水電解質二次電池および電極の製造方法
WO2009041722A1 (ja) 2007-09-28 2009-04-02 Sumitomo Chemical Company, Limited リチウム複合金属酸化物および非水電解質二次電池
WO2010041556A1 (ja) * 2008-10-10 2010-04-15 トヨタ自動車株式会社 リチウム二次電池およびその製造方法
JP2010150090A (ja) 2008-12-25 2010-07-08 Sumitomo Chemical Co Ltd αアルミナ粉末

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268807A (ja) * 1988-09-05 1990-03-08 Copal Co Ltd 厚膜ハイブリッドicの電極形成用ペーストおよび厚膜ハイブリッドic
US7115339B2 (en) * 2003-02-21 2006-10-03 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery
EP1734600B1 (en) 2004-02-18 2008-11-26 Panasonic Corporation Secondary battery
TW200540116A (en) * 2004-03-16 2005-12-16 Sumitomo Chemical Co Method for producing an α-alumina powder
JP4781263B2 (ja) 2004-06-22 2011-09-28 パナソニック株式会社 二次電池およびその製造方法
CN101516782B (zh) 2006-09-19 2011-11-16 住友化学株式会社 α氧化铝粉末
EP2169742A4 (en) * 2007-06-06 2013-06-26 Teijin Ltd MICROPOROUS POLYOLEFIN MEMBRANE BASE FOR A SEPARATE WATER-FREE SECONDARY BATTERY, METHOD FOR THE PRODUCTION THEREOF, A WATER-FREE SECONDARY BATTERY DISTRIBUTOR AND A WATER-FREE SECONDARY BATTERY
JP2009032677A (ja) * 2007-07-04 2009-02-12 Hitachi Maxell Ltd セパレータ用多孔質膜およびその製造方法、電池用セパレータおよびその製造方法、電池用電極およびその製造方法、ならびにリチウム二次電池
KR101040482B1 (ko) 2008-03-04 2011-06-09 주식회사 엘지화학 다공성 코팅층이 코팅된 세퍼레이터 및 이를 구비한 전기화학소자
US20130183568A1 (en) 2009-11-18 2013-07-18 Susan J. Babinec Composite separator for electrochemical cell and method for its manufacture
JP2012004103A (ja) * 2010-02-25 2012-01-05 Sumitomo Chemical Co Ltd 無機酸化物粉末および無機酸化物含有スラリーならびに該スラリーを使用したリチウムイオン二次電池およびその製造方法
CN102190323B (zh) * 2010-02-25 2014-08-06 住友化学株式会社 无机氧化物粉末和含无机氧化物的淤浆、以及使用该於浆的锂离子二次电池和制备其的方法
JP2011216257A (ja) * 2010-03-31 2011-10-27 Teijin Ltd 非水系二次電池用セパレータ

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09147916A (ja) 1995-11-20 1997-06-06 Fuji Photo Film Co Ltd 非水二次電池
JP2002047009A (ja) 2000-05-23 2002-02-12 Sumitomo Chem Co Ltd αアルミナ粉末およびそれを用いた熱伝導性シート
JP2001354413A (ja) 2000-06-07 2001-12-25 Sumitomo Chem Co Ltd αアルミナ粉末
JP2005222780A (ja) 2004-02-04 2005-08-18 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2005235695A (ja) * 2004-02-23 2005-09-02 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
JP2005327680A (ja) * 2004-05-17 2005-11-24 Matsushita Electric Ind Co Ltd リチウムイオン二次電池
WO2006061936A1 (ja) * 2004-12-07 2006-06-15 Matsushita Electric Industrial Co., Ltd. セパレータおよびそれを用いた非水電解液二次電池
JP2008100903A (ja) 2006-09-19 2008-05-01 Sumitomo Chemical Co Ltd αアルミナ粉末
JP2009054455A (ja) * 2007-08-28 2009-03-12 Sony Corp 非水電解質二次電池および電極の製造方法
WO2009041722A1 (ja) 2007-09-28 2009-04-02 Sumitomo Chemical Company, Limited リチウム複合金属酸化物および非水電解質二次電池
WO2010041556A1 (ja) * 2008-10-10 2010-04-15 トヨタ自動車株式会社 リチウム二次電池およびその製造方法
JP2010150090A (ja) 2008-12-25 2010-07-08 Sumitomo Chemical Co Ltd αアルミナ粉末

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2806493A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087122A1 (en) * 2013-12-11 2015-06-18 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
CN105830250A (zh) * 2013-12-11 2016-08-03 丰田自动车株式会社 非水电解质二次电池
CN109065942A (zh) * 2013-12-11 2018-12-21 丰田自动车株式会社 非水电解质二次电池
US10950892B2 (en) 2013-12-11 2021-03-16 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte secondary battery
CN103811702A (zh) * 2014-02-12 2014-05-21 佛山市金辉高科光电材料有限公司 一种新型陶瓷涂层聚烯烃复合膜及其制备方法

Also Published As

Publication number Publication date
KR101704154B1 (ko) 2017-02-07
EP2806493A1 (en) 2014-11-26
CN104040777B (zh) 2016-08-31
JP2013168361A (ja) 2013-08-29
EP2806493B1 (en) 2019-09-18
JP5362132B2 (ja) 2013-12-11
US9577237B2 (en) 2017-02-21
TW201339097A (zh) 2013-10-01
US20150004465A1 (en) 2015-01-01
TWI577635B (zh) 2017-04-11
KR20140117415A (ko) 2014-10-07
EP2806493A4 (en) 2015-10-21
CN104040777A (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5362132B2 (ja) 無機酸化物粉末および無機酸化物含有スラリーならびに該スラリーを使用したリチウムイオン二次電池およびその製造方法
JP6386128B2 (ja) 無機酸化物多孔膜
JP6404503B2 (ja) アルミナおよびこれを含有するスラリー、ならびにこれを用いたアルミナ多孔膜、積層セパレータ、非水電解液二次電池および非水電解液二次電池の製造方法
US20110206963A1 (en) Inorganic oxide powder and inorganic oxide-containing slurry, and lithium ion secondary battery using the same slurry and method of producing the same
JP6811300B2 (ja) 蓄電デバイス用セパレータ及びその製造方法、並びに蓄電デバイス及びその製造方法
WO2019093498A1 (ja) 蓄電デバイス用セパレータ、及び蓄電デバイス
JP6317536B1 (ja) アルミナおよびこれを含有するスラリー、ならびにこれを用いたアルミナ多孔膜、積層セパレータ、非水電解液二次電池および非水電解液二次電池の製造方法
JP6971193B2 (ja) アルミナ粉末およびこれを含有するスラリー、アルミナ多孔膜およびこれを備えた積層セパレータ、並びに非水電解液二次電池およびその製造方法
KR101516975B1 (ko) 리튬티타늄산화물계 음극용 조성물을 이용한 리튬티타늄산화물계 음극의 제조방법
JP6816094B2 (ja) αアルミナ、スラリー、多孔膜、積層セパレータ、並びに非水電解液二次電池及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738268

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14371203

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013738268

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147019979

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE