WO2013108687A1 - 伝送路、及び、伝送方法 - Google Patents

伝送路、及び、伝送方法 Download PDF

Info

Publication number
WO2013108687A1
WO2013108687A1 PCT/JP2013/050210 JP2013050210W WO2013108687A1 WO 2013108687 A1 WO2013108687 A1 WO 2013108687A1 JP 2013050210 W JP2013050210 W JP 2013050210W WO 2013108687 A1 WO2013108687 A1 WO 2013108687A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
metal line
input
metal
multimode waveguide
Prior art date
Application number
PCT/JP2013/050210
Other languages
English (en)
French (fr)
Inventor
翔 大橋
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US14/371,556 priority Critical patent/US9882255B2/en
Priority to JP2013554272A priority patent/JP5954590B2/ja
Priority to EP13738750.2A priority patent/EP2806496A1/en
Priority to CN201380004479.XA priority patent/CN104025376B/zh
Publication of WO2013108687A1 publication Critical patent/WO2013108687A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/213Frequency-selective devices, e.g. filters combining or separating two or more different frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/10Wire waveguides, i.e. with a single solid longitudinal conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/16Dielectric waveguides, i.e. without a longitudinal conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H2007/386Multiple band impedance matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2581Multimode transmission

Definitions

  • the present technology relates to a transmission line and a transmission method, and more particularly to a transmission line and a transmission method that enable multimode transmission having a plurality of transmission paths (modes) to be easily performed on an electrical signal.
  • Patent Document 1 discloses a multimode interference coupler including a section forming a multimode waveguide through which a plurality of (mode) lights are transmitted.
  • the electrical signal has a longer wavelength than light. As a result, problems may arise.
  • the present technology has been made in view of such a situation, and makes it possible to easily perform multi-mode transmission for an electric signal.
  • the transmission path of the first aspect of the present technology includes a multimode waveguide, a metal line through which an electric signal is transmitted, the multimode waveguide connected to the multimode waveguide and the metal line, and the A transmission line including a matching structure for impedance matching with a metal line.
  • an electric signal is input from the metal line to the multimode waveguide through a matching structure that performs impedance matching between the metal line and the multimode waveguide,
  • an electrical signal is output from a multimode waveguide to another metal line via another matching structure.
  • an electric signal is input / output between the multimode waveguide and the metal line via the matching structure.
  • the second transmission line of the present technology is a transmission line that includes a multimode waveguide and a metal line through which an electric signal is transmitted, and the multimode waveguide and the metal line are directly connected to each other.
  • the second transmission method of the present technology is a transmission method in which an electrical signal is directly input from a metal line to a multimode waveguide, and the electrical signal is directly output from the multimode waveguide to another metal line. .
  • an electric signal is directly input / output between the multimode waveguide and the metal line.
  • FIG. 1 is a diagram illustrating a configuration example of a transmission path of an optical system.
  • the transmission path is a transmission path that performs multi-mode transmission with two inputs and two outputs for light, and includes single-mode waveguides 12 1 and 12 2 , multi-mode waveguide 13, and single-mode waveguide. 14 1 and 14 2 .
  • Single-mode waveguide 12 1, the cross section is substantially rectangular multi-mode waveguide 13, in the figure, the upper left side, the single-mode waveguide 12 2, the multi-mode waveguide 13, in the figure, the lower left side, single mode waveguide 14 1, the multi-mode waveguide 13, in the figure, the upper right side, a single-mode waveguide 14 2, the multi-mode waveguide 13, in the figure, the lower right side, are disposed, respectively.
  • E / O (Electrical / Optical) converter 11 1 is connected to the single-mode waveguide 12 2, E / O converter 11 2 are connected.
  • E / O converter 11 1 in accordance with an electric signal # 1 supplied from outside, emits light # 1 corresponding to the electric signal # 1.
  • E / O converter 11 2 in accordance with electric signals # 2 supplied from the outside, emits light # 1 corresponding to the electric signal # 2.
  • the multi-mode waveguide 13 is a multi-mode optical fiber or the like, a single-mode optical fiber or the like as an interface that inputs light (incident), single-mode waveguide 12 1 and The light transmitted through each of 12 2 is input to the multimode waveguide 13.
  • the light # 1 E / O converter 11 1 emits light, continue to transmit the single mode waveguide 12 1 is input to the multi-mode waveguide 13.
  • the light # 2 E / O converter 11 2 emits light, continue to transmit the single mode waveguide 12 2, are input to the multi-mode waveguide 13.
  • single mode waveguides 14 2 from the multi-mode waveguide 13 is a single mode optical fiber or the like as an interface for outputting the light (emitted) is arranged.
  • O / E (Optical / Electrical) converter 152 is connected, the light # 1 continue to transmit the single mode waveguide 14 2, O / E converter 15 2 To reach.
  • O / E converter 15 2 receives light # 1 of a single mode waveguide 14 2, outputs an electric signal # 1 corresponding to the light # 1.
  • single mode waveguides 14 1 from the multi-mode waveguide 13 is a single mode optical fiber or the like as an interface for outputting the light (emitted) is arranged.
  • the O / E converter 15 1 is connected, the light # 2 to continue to transmit the single mode waveguide 14 1 reaches the O / E converter 15 1.
  • O / E converter 15 1 receives light # 2 of a single mode waveguide 14 1, and outputs the light # 2 corresponding electrical signals # 2.
  • the E / O converters 11 1 and 11 2 and the O / E converters 15 1 and 15 2 are so-called active circuits that require a power source.
  • the position on the right side of the multimode waveguide 13 where the light input from the left side of the multimode waveguide 13 reaches depends on the size (structure) of the multimode waveguide 13 and the like.
  • the transmission line of the optical system in FIG. 1 is used as it is, for example, for transmission of millimeter waves, which are electrical signals in the millimeter wave band, that is, electrical signals having a frequency of about 30 to 300 GHz (wavelength is about 1 to 10 mm). In some cases, electrical signals have a longer wavelength than light, which can cause problems.
  • millimeter waves which are electrical signals in the millimeter wave band, that is, electrical signals having a frequency of about 30 to 300 GHz (wavelength is about 1 to 10 mm). In some cases, electrical signals have a longer wavelength than light, which can cause problems.
  • the single mode waveguides 12 1 and 12 2 and the single mode waveguides 14 1 and 14 2 are enlarged, and the entire transmission path is increased. Increase in size.
  • a millimeter wave having a long wavelength is more likely to leak from the waveguide than light having a short wavelength.
  • the single mode waveguides 12 1 and 12 2 and the single mode waveguides 14 1 and 14 2 are arranged at close positions, a signal leaked from a single mode waveguide is It interferes with a signal transmitted through another single mode waveguide disposed near the single mode waveguide.
  • each single mode waveguide for inputting / outputting a signal to / from the multimode waveguide 13 (corresponding to the multimode waveguide 13) is arranged to some extent away from other single mode waveguides. It is necessary to impose.
  • a position where a signal is input to the multimode waveguide 13 (corresponding to the waveguide) (hereinafter also referred to as an input position), and a signal input from the input position is the multimode waveguide 13.
  • the positional relationship with the position of the multimode waveguide 13 that reaches and arrives (hereinafter also referred to as the output position) is determined by the wavelength of the signal and the size of the multimode waveguide 13.
  • the single-mode waveguides 12 1 and 12 2 and the single-mode waveguides 14 1 and 14 2 are placed at a desired input position. it and providing the waveguides 12 1 and 12 2, to the desired output location, it may become difficult to provide a single-mode waveguide 14 1 and 14 2.
  • the present technology proposes a transmission path that makes it possible to easily perform multi-mode transmission for electric signals.
  • FIG. 2 is a plan view and a cross-sectional view showing a configuration example of the first embodiment of the transmission line to which the present technology is applied.
  • the transmission path is a transmission path that performs multi-mode transmission with two inputs and two outputs, for example, for an electrical signal such as a millimeter wave, and includes metal lines 21 1 and 21 2 , matching structures 22 1 and 22 2. , Multimode waveguide 23, matching structures 24 1 and 24 2 , and metal lines 25 1 and 25 2 .
  • the millimeter wave transmitted through the metal line 21 i is input to the multimode waveguide 23 through the matching structure 22 i .
  • the matching structure 22 i is a circuit that performs impedance matching between the metal line 21 i and the multimode waveguide 23.
  • As the matching structure 22 i reflection between the metal line 21 i and, for example, a multi-mode waveguide 23 such as a dielectric waveguide, as described later, is prevented, and millimeter waves are efficiently generated.
  • a passive circuit that can send and receive (for millimeter waves, for example, a bonding wire of about 1 mm as an antenna) can be employed.
  • the multimode waveguide 23 is, for example, a rectangular flat plate-shaped dielectric waveguide, and a metal line 21 i is connected to the left side of the multimode waveguide 23 via a matching structure 22 i .
  • the millimeter wave input to the multimode waveguide 23 from the metal line 21 i through the matching structure 22 i is transmitted from the left to the right through the multimode waveguide 23.
  • a matching structure 24 i is connected to the right side of the multimode waveguide 23, and a metal line 25 i is connected to the matching structure 24 i .
  • the matching structure 24 i is configured in the same manner as the matching structure 22 i and achieves impedance matching between the multimode waveguide 23 and the metal line 25 i .
  • the metal line 25 i is configured similarly to the metal line 21 i .
  • the millimeter wave input from the metal line 21 i to the multimode waveguide 23 via the matching structure 22 i is transmitted through the multimode waveguide 23 from left to right. Then, the millimeter wave reaches the right side of the multimode waveguide 23. Of the millimeter waves that reach the right side of the multimode waveguide 23, the millimeter wave that reaches the position where the matching structure 24 i is arranged is It is output to the metal line 25 i via the matching structure 24 i .
  • Millimeter wave output in the metal line 25 i is continue to transmit the metal line 25 i, for example, is supplied to the not shown millimeter wave receiving circuit for receiving a millimeter wave.
  • the metal line 21 i , the matching structure 22 i , the multimode waveguide 23, the matching structure 24 i , and the metal line 25 i are cross-sectional views (the plan view is cut in a direction perpendicular to the drawing). As shown in the sectional view at the time), they are arranged in a plane.
  • the matching structure 22 1 is at the upper left of the multimode waveguide 23
  • the matching structure 22 2 is at the lower left of the multimode waveguide 23
  • the matching structure 24 1 is at the multimode waveguide 23.
  • the top right of the matching structure 24 2 in the lower right of the multi-mode waveguide 23, are respectively disposed.
  • millimeter waves are input from the metal line 21 i to the multimode waveguide 23 via the matching structure 22 i and transmitted from left to right in the drawing. Then, out of the millimeter wave which has reached the right side of the multi-mode waveguide 23, a millimeter-wave matching structures 24 i reaches the deployed position, the multi-mode waveguide 23 via a matching structure 24 i, metal It is output to the line 25 i .
  • the metal line 21 i and the matching structure 22 i , and the matching structure 24 i and the metal line 25 i are the single-mode waveguides 12 1 and 12 2 and the waveguides for millimeter waves corresponding to 14 1 and 14 2 ( 1), the transmission path of the optical system of FIG. 1 can be made compact compared to the case where it is used for millimeter wave transmission as it is. .
  • the single mode waveguides 12 1 and 12 2 and 14 1 and 14 2 (corresponding to the millimeter wave waveguides) of the transmission line of FIG.
  • the matching structures 22 i and 24 i are not restricted in arrangement to prevent interference, and can be arranged at any position of the multimode waveguide 23.
  • the matching structure 22 i for impedance matching between the metal line 21 i and the multimode waveguide 23 is provided.
  • the impedance between the metal line 21 i and the multimode waveguide 23 is ( In the case of (almost) matching, or when reflection of millimeter waves when the metal line 21 i and the multimode waveguide 23 are directly connected does not matter, the metal line 21 is not provided without providing the matching structure 22 i. i and the multimode waveguide 23 can be directly connected. Similarly, the multimode waveguide 23 and the metal line 25 i can be directly connected without providing the matching structure 24 i .
  • the millimeter wave is directly input from the metal line 21 i to the multimode waveguide 23 and transmitted from the left to the right in the figure.
  • the millimeter wave that reaches the position where the metal line 25i is disposed is directly output from the multimode waveguide 23 to the metal line 25i. .
  • the transmission path can be made compact.
  • FIG. 3 is a plan view and a cross-sectional view showing a configuration example of a second embodiment of a transmission line to which the present technology is applied.
  • the transmission line is common to the transmission line of FIG. 2 in that it has metal lines 21 i to 25 i , but the transmission line of FIG. 2 in that a metal plate 31 is newly provided. Is different.
  • a flat metal plate 31 is provided so as to be in contact with one surface of the flat multimode waveguide 23.
  • the metal lines 21 i and 25 i are directly connected to the multimode waveguide 23 without providing the matching structures 22 i and 24 i. can do.
  • FIG. 4 is a plan view and a cross-sectional view showing a configuration example of a third embodiment of a transmission line to which the present technology is applied.
  • the transmission line is common to the transmission line of FIG. 2 in that it has metal lines 21 i to 25 i .
  • each of the matching structures 21 i and 24 i and the multi-mode waveguide 23 are stacked so that the matching structures 21 i and 24 i are stacked. This is different from the transmission path of FIG. 2 in which the mode waveguide 23 is arranged so as to be aligned on a plane.
  • FIG. transmission path 4 (as alignment structures 22 i and 24 i are hidden) multi-mode waveguide 23 of the flat plate shape, alignment structures 22 i and to cover the entire 24 i, alignment structures 22 i and 24 i are arranged on, therefore, the alignment structure 22 i and 24 i are, by the amount that is hidden in the multi-mode waveguide 23, can be made compact transmission path.
  • the present technology is described as an example a transmission path aligned structures 22 i and 24 i are provided, the techniques described below, without providing the matching structures 22 i and 24 i, metal
  • the present invention is also applicable to a transmission line in which each of the lines 21 i and 25 i and the multimode waveguide 23 are directly connected.
  • FIG. 5 is a diagram illustrating functions that can be added to a transmission line to which the present technology is applied.
  • an input position that is a position where a millimeter wave is input to the multimode waveguide 23 and a millimeter wave input from the input position are transmitted through the multimode waveguide 23.
  • the positional relationship with the output position, which is the position of the multimode waveguide 23 that arrives in this manner, is determined by the signal wavelength and the size (structure) of the multimode waveguide 23.
  • Figure 5 is a multi-mode waveguide 23, while adopting a dielectric waveguide of rectangular plate shape of a predetermined size, the metallic wire 21 i via a matching structure 22 i, and inputs to the multi-mode waveguide 23
  • the analysis results of electromagnetic field analysis when 60 GHz millimeter waves and 80 GHz millimeter waves are adopted as input signals are shown.
  • 60 GHz millimeter wave, and millimeter wave 80GHz are both from the matching structure 22 1 disposed at the upper left of the multi-mode waveguide 23, and is input to the multi-mode waveguide 23.
  • Both the 60 GHz millimeter wave and the 80 GHz millimeter wave input to the multimode waveguide 23 are transmitted (propagated) from the left to the right of the multimode waveguide 23 while the electric field intensity distribution meanders. , And reaches the right side of the multimode waveguide 23.
  • the millimeter wave 60GHz reaches the position of the lower right of the multi-mode waveguide 23 (position alignment structure 24 2 are disposed), a millimeter wave 80GHz is the upper right of the multi-mode waveguide 23 position has been reached (position aligned structures 24 1 is located).
  • millimeter wave 60GHz reaching the bottom right of the multi-mode waveguide 23, from the lower right of the multi-mode waveguide 23 is output via the matching structure 24 2 disposed therein.
  • a millimeter wave 80GHz reaching the upper right of the multi-mode waveguide 23, from the upper right of the multi-mode waveguide 23 is output via the matching structure 24 1 disposed therein.
  • the 60 GHz millimeter wave input to the multimode waveguide 23 from the matching structure 22 1 (connected to the metal line 21 1 ) disposed on the upper left of the multimode waveguide 23 is the multimode waveguide. 23 is output to the matching structure 24 2 (connected to the metal line 25 2 ) disposed at the lower right of the line 23. Further, the millimeter wave 80GHz input from the matching structure 22 1 disposed at the upper left of the multi-mode waveguide 23 to the multi-mode waveguide 23, alignment structure disposed on the upper right of the multi-mode waveguide 23 24 1 (in It is output to the connected metal line 25 1 ).
  • the transmission line functions as a demultiplexer that demultiplexes the 60 GHz millimeter wave and the 80 GHz millimeter wave from the multiplexed signal obtained by multiplexing the 60 GHz millimeter wave and the 80 GHz millimeter wave. It can be said that a wave function is added.
  • a demultiplexing function can be added to a transmission line to which the present technology is applied.
  • a mixing (coupling) function, a switch function, and a cross function are added. Can do.
  • FIG. 6 is a plan view showing a configuration example of an embodiment of a 1-input N-output transmission line to which a demultiplexing function is added.
  • FIG. 6 portions corresponding to those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted below as appropriate.
  • a plurality of signals O # 1, O # 2,..., O # N which are millimeter waves of different frequencies (bands) f # 1, f # 2,.
  • metal line 21 1 of the multiplexed signal (electrical signal) I # 1 or for input 1 is input, via a matching structure 22 1 for impedance matching, the left of the multi-mode waveguide 23 Connected upward (upper left).
  • N is a plurality of signals from which signals O # 1, O # 2,..., O # N of a plurality of frequencies f # 1, f # 2,.
  • metal lines 25 1, 25 2 for pieces of output, ..., 25 N are aligned structures 24 1, 24 2 for impedance matching, ..., via the 24 N, respectively, the multi-mode waveguide They are connected to different positions on the right side of the waveguide 23.
  • the multiplexed signal I # 1 to no signal O # 1 of N frequency f # 1 through f # N obtained by multiplexing the O # N are a plurality
  • a metal line 21 1 matching through the structure 22 1, transmits the input to the multi-mode waveguide 23, to signal O # 1 not included in the multiplexed signal I # 1 of O # n, the signal O # n is the multi-mode waveguide 23 and went to reach the position of alignment structure 24 n, through a matching structure 24 n, is output to the metal line 25 n.
  • the transmission line in FIG. 6 has a demultiplexing function of demultiplexing the signals O # 1 to O # N from the multiplexed signal I # 1.
  • FIG. 7 is a plan view showing a configuration example of an embodiment of an N-input 1-output transmission line to which a mixing function is added.
  • signals I # 1, I # 2,..., I # N that are millimeter waves of different frequencies (bands) f # 1, f # 2,. that the N metal for the input line 21 1, 21 2, ..., 21 N are aligned structures 22 1, 22 2 for impedance matching, ..., via the 22 N, respectively, multi
  • the mode waveguide 23 is connected to a different position on the left side.
  • a multiplexed signal O # obtained by multiplexing signals I # 1, I # 2,..., I # N of a plurality of frequencies f # 1, f # 2,. 1 is a metal line 25 1 for one output which is output through a matching structure 24 1 for impedance matching, and is connected to the right side of the upper multi-mode waveguide 23 (upper right).
  • the size of the multimode waveguide 23 and the positions of the matching structures 22 1 to 22 N and 25 1 are obtained by changing the signal I # n of the frequency f # n from the position of the matching structure 22 n . If you enter a multi-mode waveguide 23, signal I # n is, go to transmit multi-mode waveguide 23 is set so as to reach the position of the alignment feature 24 1.
  • a plurality of N signals I # 1 to I # N having frequencies f # 1 to f # N are transferred from the metal lines 21 1 to 21 N to the matching structures 22 1 to 22 N. through it, respectively, by entering the multi-mode waveguide 23, signal I # 1 to I # N is any, go to transmit multi-mode waveguide 23, and reaches the position of the alignment structure 24 1, matching through the structure 24 1, as a signal O # 1, it is outputted to the metal line 25 1.
  • the transmission line in FIG. 7 multiplexes (mixes) signals I # 1 to I # N having a plurality of different frequencies f # 1 to f # N, and multiplexes the signals I # 1 to I # N.
  • the signal O # 1 has the function of mixing the output to a metal line 25 1.
  • FIG. 8 is a plan view showing a configuration example of an embodiment of an N-input N-output transmission line to which a switch function is added.
  • FIG. 8 portions corresponding to those in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted below as appropriate.
  • N input metal lines 21 1 to 21 N to which a plurality of millimeter wave signals I # 1 to I # N are input are matched structures 22 1 to 22 N for impedance matching. Are connected to different positions on the left side of the multimode waveguide 23, respectively.
  • N output metal lines 25 1 to 25 N from which a plurality of signals O # 1 to O # N, which are millimeter waves, are output are matched structures 24 1 to 24 for impedance matching. through 24 N, are respectively connected to the right different positions of the multi-mode waveguide 23.
  • the size of the multimode waveguide 23 and the positions of the matching structures 22 1 to 22 N and 24 1 to 24 N indicate the signal I # n of the frequency f # n and the matching structure 22 n .
  • the transmission line of FIG. 8 has the frequency f # n input from the position of the matching structure 22 n when a plurality of signals I # 1 to I # N having different frequencies f # 1 to f # N are input.
  • Function of the switch for outputting the signal I # n of the signal I # n from the position of the matching structure 24 n ′ as the signal O # n ′, that is, the signals I # 1 to I # N having a plurality of different frequencies f # 1 to f # N Has the function of rearranging
  • the size of the multi-mode waveguide 23 and the positions of the matching structures 22 1 to 22 N and 24 1 to 24 N are the same as the signal I # n of the predetermined frequency F and the position of the matching structure 22 n .
  • the signal I # n is transmitted through the multimode waveguide 23 and can be set to reach the position of the matching structure 24n ′ .
  • the transmission path of FIG. 8 to a plurality of signals I # 1 not of the same frequency F if I # N is input, the signal I # n inputted from the position of the matching structures 22 n, matching structures 24 It has a function of crossing output as a signal O # n ′ from the position n ′, that is, a function of rearranging the arrangement of a plurality of signals I # 1 to I # N having the same frequency.
  • the object to be transmitted through the transmission line is not limited to the millimeter wave, and may be an electrical signal other than the millimeter wave.
  • this technique can take the following structures.
  • the metal line 1 input metal line to which a multiplexed signal in which signals of a plurality of frequency bands are multiplexed is input; A transmission line according to any one of [1] to [5], comprising: a plurality of output metal lines from which signals in the plurality of frequency bands are output.
  • As the metal line A plurality of input metal lines to which signals of a plurality of frequency bands are input, and The transmission line according to any one of [1] to [5], further comprising: an output metal line that outputs a multiplexed signal obtained by multiplexing the signals of the plurality of frequency bands.
  • a multimode waveguide A plurality of input metal lines to which each of a plurality of signals is input; A transmission line according to any one of [1] to [5], comprising: a plurality of output metal lines from which the plurality of signals are output.
  • An electrical signal is input from the metal line to the multimode waveguide through a matching structure that performs impedance matching between the metal line and the multimode waveguide.
  • As the metal line 1 input metal line to which a multiplexed signal in which signals of a plurality of frequency bands are multiplexed is input;
  • An electrical signal is input directly from a metal line to a multimode waveguide, A transmission method for directly outputting an electrical signal from the multimode waveguide to another metal line.
  • 11 1 , 11 2 E / O converter 12 1 , 12 2 single mode waveguide, 13 multimode waveguide, 14 1 , 14 2 single mode waveguide, 15 1 , 15 2 O / E converter, 21 1 , 21 2, ⁇ ⁇ ⁇ , 21 N metal lines, 22 1, 22 2, ⁇ , 22 N matching structure 23 multi-mode waveguide, 24 1, 24 2, ⁇ , 24 N matching structure 25 1 , 25 2 ,..., 25 N metal line, 31 metal plate

Landscapes

  • Optical Integrated Circuits (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Microwave Amplifiers (AREA)
  • Waveguides (AREA)

Abstract

 本技術は、電気信号を対象とするマルチモード伝送を、容易に行うことができるようにする伝送路、及び、伝送方法に関する。 マルチモード導波路と、電気信号が伝送される金属線路とが、そのマルチモード導波路と金属線路とのインピーダンス整合をとる整合構造を介して接続されている。例えば、前記電気信号は、ミリ波帯の信号を援用することができる。例えば、前記マルチモード導波路、前記金属線路、及び、前記整合構造は、平面上に並ぶように配置することができる。本技術は、例えば、ミリ波等の電気信号の伝送に適用することができる。

Description

伝送路、及び、伝送方法
 本技術は、伝送路、及び、伝送方法に関し、伝送経路(モード)が複数あるマルチモード伝送を、電気信号を対象として、容易に行うことができるようにする伝送路、及び、伝送方法に関する。
 光を対象とするマルチモード伝送(伝播)(伝搬)については、種々の技術が提案されている。
 例えば、特許文献1には、複数の(モードの)光が伝送されるマルチモード導波路を形成しているセクションを含んでいるマルチモード干渉結合器が開示されている。
特表平08-508351号公報
 ところで、例えば、ミリ波等の電気信号を対象とするマルチモード伝送を、光を対象とするマルチモード伝送の技術をそのまま利用して行う場合、電気信号は、光に比較して、波長が長いため、問題が生じることがある。
 本技術は、このような状況に鑑みてなされたものであり、電気信号を対象とするマルチモード伝送を、容易に行うことができるようにするものである。
 本技術の第1の側面の伝送路は、マルチモード導波路と、電気信号が伝送される金属線路と、前記マルチモード導波路と前記金属線路とに接続される、前記マルチモード導波路と前記金属線路とのインピーダンス整合をとる整合構造とを備える伝送路である。
 本技術の第1の側面の伝送方法は、電気信号を、金属線路から、前記金属線路とマルチモード導波路とのインピーダンス整合をとる整合構造を介して、前記マルチモード導波路に入力し、前記マルチモード導波路から、他の整合構造を介して、他の金属線路に、電気信号を出力する伝送方法である。
 以上のような第1の側面においては、電気信号が、マルチモード導波路と金属線路との間を、整合構造を介して、入出力される。
 本技術の第2の伝送路は、マルチモード導波路と、電気信号が伝送される金属線路とを備え、前記マルチモード導波路と、前記金属線路とが直接接続される伝送路である。
 本技術の第2の伝送方法は、電気信号を、金属線路から、マルチモード導波路に直接入力し、前記マルチモード導波路から、他の金属線路に、電気信号を直接出力する伝送方法である。
 以上のような第2の側面においては、電気信号が、マルチモード導波路と金属線路との間を、直接、入出力される。
 本技術によれば、電気信号を対象とするマルチモード伝送を、容易に行うことができる。
光学系の伝送路の構成例を示す図である。 本技術を適用した伝送路の第1実施の形態の構成例を示す平面図及び断面図である。 本技術を適用した伝送路の第2実施の形態の構成例を示す平面図及び断面図である。 本技術を適用した伝送路の第3実施の形態の構成例を示す平面図及び断面図である。 本技術を適用した伝送路に付加することができる機能を説明する図である。 分波の機能が付加された1入力N出力の伝送路の一実施の形態の構成例を示す平面図である。 混合の機能が付加されたN入力1出力の伝送路の一実施の形態の構成例を示す平面図である。 スイッチ(又はクロス)の機能が付加されたN入力N出力の伝送路の一実施の形態の構成例を示す平面図である。
 以下、本技術の実施の形態について説明するが、その前に、前段階の準備として、光を対象とするマルチモード伝送について簡単に説明する。
 [光を対象とするマルチモード伝送]
 図1は、光学系の伝送路の構成例を示す図である。
 図1において、伝送路は、光を対象として、2入力2出力のマルチモード伝送を行う伝送路であり、シングルモード導波路12及び12、マルチモード導波路13、並びに、シングルモード導波路14及び14を有する。
 シングルモード導波路12は、断面が略長方形のマルチモード導波路13の、図中、左上側に、シングルモード導波路12は、マルチモード導波路13の、図中、左下側に、シングルモード導波路14は、マルチモード導波路13の、図中、右上側に、シングルモード導波路14は、マルチモード導波路13の、図中、右下側に、それぞれ配置されている。
 シングルモード導波路12には、E/O(Electrical/Optical)変換器11が接続されており、シングルモード導波路12には、E/O変換器11が接続されている。
 E/O変換器11は、外部から供給される電気信号#1に従い、その電気信号#1に対応する光#1を発光する。
 同様に、E/O変換器11は、外部から供給される電気信号#2に従い、その電気信号#2に対応する光#1を発光する。
 シングルモード導波路12及び12は、マルチモード光ファイバ等であるマルチモード導波路13に、光を入力(入射)するインターフェースとしてのシングルモード光ファイバ等であり、シングルモード導波路12及び12それぞれを伝送する光は、マルチモード導波路13に入力される。
 したがって、E/O変換器11が発光する光#1は、シングルモード導波路12を伝送していき、マルチモード導波路13に入力される。同様に、E/O変換器11が発光する光#2は、シングルモード導波路12を伝送していき、マルチモード導波路13に入力される。
 マルチモード導波路13の左上に配置されたシングルモード導波路12からマルチモード導波路13に入力される光#1は、マルチモード導波路13を伝送していき、図1では、マルチモード導波路13の右下に到達する。
 マルチモード導波路13の右下には、マルチモード導波路13から光を出力(出射)するインターフェースとしてのシングルモード光ファイバ等であるシングルモード導波路14が配置されている。
 したがって、マルチモード導波路13を伝送していき、マルチモード導波路13の右下に到達した光#1は、シングルモード導波路14に出力され、シングルモード導波路14を伝送していく。
 シングルモード導波路14には、O/E(Optical/Electrical)変換器15が接続されており、シングルモード導波路14を伝送していく光#1は、O/E変換器15に到達する。
 O/E変換器15は、シングルモード導波路14からの光#1を受光し、その光#1に対応する電気信号#1を出力する。
 一方、マルチモード導波路13の左下に配置されたシングルモード導波路12からマルチモード導波路13に入力される光#2は、マルチモード導波路13を伝送していき、図1では、マルチモード導波路13の右上に到達する。
 マルチモード導波路13の右上には、マルチモード導波路13から光を出力(出射)するインターフェースとしてのシングルモード光ファイバ等であるシングルモード導波路14が配置されている。
 したがって、マルチモード導波路13を伝送していき、マルチモード導波路13の右上に到達した光#2は、シングルモード導波路14に出力され、シングルモード導波路14を伝送していく。
 シングルモード導波路14には、O/E変換器15が接続されており、シングルモード導波路14を伝送していく光#2は、O/E変換器15に到達する。
 O/E変換器15は、シングルモード導波路14からの光#2を受光し、その光#2対応する電気信号#2を出力する。
 なお、E/O変換器11及び11、並びに、O/E変換器15及び15は、いずれも、電源を必要とする、いわゆるアクティブな回路である。
 また、図1において、マルチモード導波路13の左側から入力された光が、マルチモード導波路13の右側のどの位置に到達するかは、マルチモード導波路13のサイズ(構造)等によって決まる。
 図1の光学系の伝送路を、そのまま、例えば、ミリ波帯の電気信号、すなわち、周波数が30ないし300GHz程度(波長が、1ないし10mm程度)の電気信号であるミリ波の伝送に利用した場合、電気信号は、光に比較して、波長が長いため、問題が生じることがある。
 例えば、波長の長いミリ波を伝送する場合には、シングルモード導波路12及び12、並びに、シングルモード導波路14及び14(に相当する導波路)が大型化し、伝送路全体が大型化する。
 さらに、波長の長いミリ波は、波長の短い光に比較して、導波路から漏れやすい。このため、シングルモード導波路12及び12や、シングルモード導波路14及び14(に相当する導波路)を、近い位置に配置すると、あるシングルモード導波路から漏れた信号が、そのシングルモード導波路に近い位置に配置された他のシングルモード導波路を伝送している信号に干渉する。
 かかる干渉を防止するためには、マルチモード導波路13(に相当する導波路)に信号を入出力する各シングルモード導波路を、他のシングルモード導波路から、ある程度離して配置する配置の制約を課す必要がある。
 しかしながら、マルチモード伝送では、マルチモード導波路13(に相当する導波路)に信号を入力する位置(以下、入力位置ともいう)と、その入力位置から入力された信号が、マルチモード導波路13を伝送していって到達するマルチモード導波路13の位置(以下、出力位置ともいう)との位置関係は、信号の波長や、マルチモード導波路13のサイズによって決まる。
 したがって、シングルモード導波路12及び12や、シングルモード導波路14及び14(に相当する導波路)に、配置の制約を課した場合には、所望の入力位置に、シングルモード導波路12や12を設けることや、所望の出力位置に、シングルモード導波路14や14を設けることが困難となることがある。
 そこで、本技術では、電気信号を対象とするマルチモード伝送を、容易に行うことができるようにする伝送路を提案する。
 [本技術を適用した伝送路の第1実施の形態]
 図2は、本技術を適用した伝送路の第1実施の形態の構成例を示す平面図及び断面図である。
 図2において、伝送路は、例えば、ミリ波等の電気信号を対象として、2入力2出力のマルチモード伝送を行う伝送路であり、金属線路21及び21、整合構造22及び22、マルチモード導波路23、整合構造24及び24、並びに、金属線路25及び25を有する。
 金属線路21は(図2では、i=1,2)、例えば、断面が円筒形等の銅線であり、金属線路21には、例えば、ミリ波を送信する図示せぬミリ波送信回路から供給されるミリ波が伝送される。
 金属線路21は(図2では、i=1,2)、整合構造22に接続されており、整合構造22は、マルチモード導波路23に接続されている。
 したがって、金属線路21を伝送されてくるミリ波は、整合構造22を介して、マルチモード導波路23に入力される。
 整合構造22は、金属線路21と、マルチモード導波路23とのインピーダンス整合をとる回路等である。整合構造22としては、金属線路21と、例えば、後述するように、誘電体導波路等であるマルチモード導波路23との間で、反射を防止して、効率的に、ミリ波を授受することができるパッシブな回路(ミリ波については、例えば、アンテナとしての1mm程度のボンディングワイヤ等)を採用することができる。
 マルチモード導波路23は、例えば、長方形の平板形状の誘電体導波路等であり、マルチモード導波路23の左側には、整合構造22を介して、金属線路21が接続されている。
 したがって、金属線路21から、整合構造22を介して、マルチモード導波路23に入力されるミリ波は、マルチモード導波路23を、左から右に向かって伝送される。
 マルチモード導波路23の右側には、整合構造24が接続されており、整合構造24には、金属線路25が接続されている。
 整合構造24は、整合構造22と同様に構成され、マルチモード導波路23と金属線路25とのインピーダンス整合をとる。
 金属線路25は、金属線路21と同様に構成される。
 金属線路21から、整合構造22を介して、マルチモード導波路23に入力されるミリ波は、マルチモード導波路23を、左から右に向かって伝送していく。そして、ミリ波は、マルチモード導波路23の右側に到達し、そのマルチモード導波路23の右側に到達したミリ波のうちの、整合構造24が配置された位置に到達したミリ波は、整合構造24を介して、金属線路25に出力される。
 金属線路25に出力されたミリ波は、金属線路25を伝送していき、例えば、ミリ波を受信する図示せぬミリ波受信回路に供給される。
 なお、図2では、金属線路21、整合構造22、マルチモード導波路23、整合構造24、並びに、金属線路25は、断面図(平面図を、図面に垂直な方向に切ったときの断面図)に示すように、平面上に並ぶように配置されている。
 また、図2の平面図において、整合構造22は、マルチモード導波路23の左上に、整合構造22は、マルチモード導波路23の左下に、整合構造24は、マルチモード導波路23の右上に、整合構造24は、マルチモード導波路23の右下に、それぞれ配置されている。
 以上のように構成される伝送路では、ミリ波が、金属線路21から、整合構造22を介して、マルチモード導波路23に入力され、図中、左から右方向に伝送される。そして、マルチモード導波路23の右側に到達したミリ波のうちの、整合構造24が配置された位置に到達したミリ波は、マルチモード導波路23から、整合構造24を介して、金属線路25に出力される。
 図2の伝送路では、図1の伝送路のシングルモード導波路12及び12並びに14及び14に代えて、金属線路21及び整合構造22、並びに、整合構造24及び金属線路25が設けられているので、ミリ波等の電気信号を対象とするマルチモード伝送を、容易に行うことができる。
 すなわち、金属線路21及び整合構造22、並びに、整合構造24及び金属線路25は、シングルモード導波路12及び12並びに14及び14(に相当するミリ波用の導波路)に比較して、小型に構成することができるので、図1の光学系の伝送路を、そのまま、ミリ波の伝送に利用する場合に比較して、伝送路をコンパクトに構成することができる。
 また、図2の伝送路では、図1の伝送路のシングルモード導波路12及び12並びに14及び14(に相当するミリ波用の導波路)を設ける必要がないので、図1で説明したような、ミリ波が導波路から漏れることによる干渉の防止のために、シングルモード導波路12及び12並びに14及び14(に相当するミリ波用の導波路)の配置が制約されることはない。
 すなわち、整合構造22及び24は、干渉を防止するために配置が制約されることはなく、マルチモード導波路23の任意の位置に配置することができる。
 さらに、整合構造22及び24(ひいては、整合構造22及び24それぞれと接続される金属線路21及び25)の配置が制約されないので、伝送路に、後述するような所望の機能を付加することができる。
 なお、図2では、金属線路21とマルチモード導波路23とのインピーダンス整合をとるための整合構造22を設けたが、例えば、金属線路21とマルチモード導波路23とのインピーダンスが(ほぼ)整合している場合や、金属線路21とマルチモード導波路23とを直接接続したときのミリ波の反射が問題にならない場合には、整合構造22を設けずに、金属線路21とマルチモード導波路23とを直接接続することができる。同様に、整合構造24を設けずに、マルチモード導波路23と金属線路25とを直接接続することができる。
 この場合、ミリ波は、金属線路21から、マルチモード導波路23に直接入力され、図中、左から右方向に伝送されていく。そして、マルチモード導波路23の右側に到達したミリ波のうちの、金属線路25が配置された位置に到達したミリ波が、マルチモード導波路23から、金属線路25に直接出力される。
 以上のように、整合構造22及び24を設けずに、金属線路21及び25それぞれとマルチモード導波路23とを直接接続する場合には、整合構造22及び24を設けない分だけ、伝送路をコンパクトに構成することができる。
 [本技術を適用した伝送路の第2実施の形態]
 図3は、本技術を適用した伝送路の第2実施の形態の構成例を示す平面図及び断面図である。
 なお、図中、図2の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図3において、伝送路は、金属線路21ないし金属線路25を有する点で、図2の伝送路と共通するが、金属板31が新たに設けられている点で、図2の伝送路と相違する。
 図3では、平板形状のマルチモード導波路23の一面に接触するように、平板形状の金属板31が設けられている。
 この場合、マルチモード導波路23の、金属板が接触している一面から、ミリ波が漏れるのを防止することができる。
 なお、図3の伝送路においては、図2で説明した場合と同様に、整合構造22及び24を設けずに、金属線路21及び25それぞれとマルチモード導波路23とを直接接続することができる。
 [本技術を適用した伝送路の第3実施の形態]
 図4は、本技術を適用した伝送路の第3実施の形態の構成例を示す平面図及び断面図である。
 なお、図中、図2の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図4において、伝送路は、金属線路21ないし金属線路25を有する点で、図2の伝送路と共通する。
 但し、図4の伝送路においては、整合構造21及び24それぞれと、マルチモード導波路23とが、積層するように配置されている点で、整合構造21及び24それぞれと、マルチモード導波路23とが平面上に並ぶように配置されている図2の伝送路と相違する。
 図4の伝送路では、平板形状のマルチモード導波路23が、整合構造22及び24の全体を覆うように(整合構造22及び24が隠れるように)、整合構造22及び24上に配置されており、したがって、整合構造22及び24が、マルチモード導波路23に隠れている分だけ、伝送路をコンパクトに構成することができる。
 ここで、以下では、本技術を、整合構造22及び24が設けられた伝送路を例として説明するが、以下説明する本技術は、整合構造22及び24を設けずに、金属線路21及び25それぞれとマルチモード導波路23とが直接接続された伝送路にも適用可能である。
 [伝送路に付加することができる機能]
 図5は、本技術を適用した伝送路に付加することができる機能を説明する図である。
 マルチモード導波路23のマルチモード伝送において、マルチモード導波路23にミリ波を入力する位置である入力位置と、その入力位置から入力されたミリ波が、マルチモード導波路23を伝送していって到達するマルチモード導波路23の位置である出力位置との位置関係は、信号の波長や、マルチモード導波路23のサイズ(構造)によって決まる。
 図5は、マルチモード導波路23として、所定のサイズの長方形の平板形状の誘電体導波路を採用するとともに、金属線路21から整合構造22を介して、マルチモード導波路23に入力する入力信号として、60GHzのミリ波と80GHzのミリ波とを採用した場合の、電磁界解析の解析結果を示している。
 図5では、60GHzのミリ波、及び、80GHzのミリ波は、いずれも、マルチモード導波路23の左上に配置された整合構造22から、マルチモード導波路23に入力されている。
 マルチモード導波路23に入力された60GHzのミリ波、及び、80GHzのミリ波は、いずれも、電界強度分布が蛇行しながら、マルチモード導波路23の左から右に伝送(伝播)していき、マルチモード導波路23の右側に到達している。
 図5では、60GHzのミリ波は、マルチモード導波路23の右下の位置(整合構造24が配置されている位置)に到達し、80GHzのミリ波は、マルチモード導波路23の右上の位置(整合構造24が配置された位置)に到達している。
 したがって、マルチモード導波路23の右下に到達した60GHzのミリ波は、マルチモード導波路23の右下から、そこに配置された整合構造24を介して出力される。同様に、マルチモード導波路23の右上に到達した80GHzのミリ波は、マルチモード導波路23の右上から、そこに配置された整合構造24を介して出力される。
 以上のように、マルチモード導波路23の左上に配置された整合構造22(に接続された金属線路21)からマルチモード導波路23に入力された60GHzのミリ波は、マルチモード導波路23の右下に配置された整合構造24(に接続された金属線路25)に出力される。また、マルチモード導波路23の左上に配置された整合構造22からマルチモード導波路23に入力された80GHzのミリ波は、マルチモード導波路23の右上に配置された整合構造24(に接続された金属線路25)に出力される。
 したがって、60GHzのミリ波、及び、80GHzのミリ波を多重化(混合)した多重化信号を、整合構造22から入力した場合には、多重化信号に含まれる60GHzのミリ波は、整合構造24から出力され、多重化信号に含まれる80GHzのミリ波は、整合構造24から出力される。
 この場合、伝送路は、60GHzのミリ波、及び、80GHzのミリ波を多重化した多重化信号から、60GHzのミリ波と80GHzのミリ波とを分波する分波器として機能するので、分波の機能が付加されているということができる。
 以上のように、本技術を適用した伝送路には、分波の機能を付加することができるが、その他、例えば、混合(結合)の機能や、スイッチの機能、クロスの機能を付加することができる。
 図6は、分波の機能が付加された1入力N出力の伝送路の一実施の形態の構成例を示す平面図である。
 なお、図6において、図2の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図6では、複数の異なる周波数(帯域)f#1,f#2,・・・,f#Nのミリ波である信号O#1,O#2,・・・,O#Nが多重化された多重化信号(電気信号)I#1が入力される1個の入力用の金属線路21が、インピーダンス整合をとるための整合構造22を介して、マルチモード導波路23の左側の上方(左上)に接続されている。
 さらに、図6では、複数の周波数f#1,f#2,・・・,f#Nの信号O#1,O#2,・・・,O#Nそれぞれが出力される複数であるN個の出力用の金属線路25,25,・・・,25が、インピーダンス整合をとるための整合構造24,24,・・・,24を介して、それぞれ、マルチモード導波路23の右側の異なる位置に接続されている。
 ここで、図6において、マルチモード導波路23のサイズ、並びに、整合構造22及び25ないし25の位置は、周波数f#nの信号O#nを(n=1,2,・・・,N)、整合構造22の位置から、マルチモード導波路23に入力した場合に、信号O#nが、マルチモード導波路23を伝送していって、整合構造24の位置に到達するように設定(設計)されている。
 図6の伝送路においては、複数であるN個の周波数f#1ないしf#Nの信号O#1ないしO#Nを多重化した多重化信号I#1を、金属線路21から、整合構造22を介して、マルチモード導波路23に入力すると、多重化信号I#1に含まれる信号O#1ないしO#Nのうちの、信号O#nは、マルチモード導波路23を伝送していって、整合構造24の位置に到達し、整合構造24を介して、金属線路25に出力される。
 したがって、図6の伝送路は、多重化信号I#1から、信号O#1ないしO#Nそれぞれを分波する分波の機能を有する。
 図7は、混合の機能が付加されたN入力1出力の伝送路の一実施の形態の構成例を示す平面図である。
 なお、図7において、図2の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図7では、複数の異なる周波数(帯域)f#1,f#2,・・・,f#Nのミリ波である信号I#1,I#2,・・・,I#Nが入力されるN個の入力用の金属線路21,21,・・・,21が、インピーダンス整合をとるための整合構造22,22,・・・,22を介して、それぞれ、マルチモード導波路23の左側の異なる位置に接続されている。
 さらに、図7では、複数の周波数f#1,f#2,・・・,f#Nの信号I#1,I#2,・・・,I#Nを多重化した多重化信号O#1が出力される1個の出力用の金属線路25が、インピーダンス整合をとるための整合構造24を介して、マルチモード導波路23の右側の上方(右上)に接続されている。
 ここで、図7において、マルチモード導波路23のサイズ、並びに、整合構造22ないし22及び25の位置は、周波数f#nの信号I#nを、整合構造22の位置から、マルチモード導波路23に入力した場合に、信号I#nが、マルチモード導波路23を伝送していって、整合構造24の位置に到達するように設定されている。
 図7の伝送路においては、複数であるN個の周波数f#1ないしf#Nの信号I#1ないしI#Nを、金属線路21ないし21から、整合構造22ないし22を介して、それぞれ、マルチモード導波路23に入力すると、信号I#1ないしI#Nは、いずれも、マルチモード導波路23を伝送していって、整合構造24の位置に到達し、整合構造24を介して、信号O#1として、金属線路25に出力される。
 したがって、図7の伝送路は、複数の異なる周波数f#1ないしf#Nの信号I#1ないしI#Nを多重化(混合)し、その信号I#1ないしI#Nを多重化した信号O#1を、金属線路25に出力する混合の機能を有する。
 図8は、スイッチの機能が付加されたN入力N出力の伝送路の一実施の形態の構成例を示す平面図である。
 なお、図8において、図2の場合と対応する部分については、同一の符号を付してあり、以下では、その説明は、適宜省略する。
 図8では、ミリ波である複数の信号I#1ないしI#Nが入力されるN個の入力用の金属線路21ないし21が、インピーダンス整合をとるための整合構造22ないし22を介して、それぞれ、マルチモード導波路23の左側の異なる位置に接続されている。
 さらに、図8では、ミリ波である複数の信号O#1ないしO#Nが出力されるN個の出力用の金属線路25ないし25が、インピーダンス整合をとるための整合構造24ないし24を介して、それぞれ、マルチモード導波路23の右側の異なる位置に接続されている。
 ここで、図8において、マルチモード導波路23のサイズ、並びに、整合構造22ないし22及び24ないし24の位置は、周波数f#nの信号I#nを、整合構造22の位置から、マルチモード導波路23に入力した場合に、信号I#nが、マルチモード導波路23を伝送していって、整合構造24n’の位置に到達するように設定されている(n'=1,2,・・・,Nであり、任意のn=n1に対するn'=n1'と、n1と等しくないn=n2に対するn'=n2'とは、異なる値)。
 図8の伝送路においては、ある周波数f#nの信号I#nを、金属線路21から、整合構造22を介して、マルチモード導波路23に入力すると、信号I#nは、マルチモード導波路23を伝送していって、整合構造24n’の位置に到達し、整合構造24n’を介して、金属線路25n’に、信号O#n'として出力される。
 したがって、図8の伝送路は、複数の異なる周波数f#1ないしf#Nの信号I#1ないしI#Nが入力された場合に、整合構造22の位置から入力される周波数f#nの信号I#nを、整合構造24n’の位置から、信号O#n'として出力するスイッチの機能、すなわち、複数の異なる周波数f#1ないしf#Nの信号I#1ないしI#Nの並びを並び替える機能を有する。
 なお、図8において、マルチモード導波路23のサイズ、並びに、整合構造22ないし22及び24ないし24の位置は、所定の周波数Fの信号I#nを、整合構造22の位置から、マルチモード導波路23に入力した場合に、信号I#nが、マルチモード導波路23を伝送していって、整合構造24n’の位置に到達するように設定することができる。
 この場合、所定の周波数Fの信号I#nを、金属線路21から、整合構造22を介して、マルチモード導波路23に入力すると、信号I#nは、マルチモード導波路23を伝送していって、整合構造24n’の位置に到達し、整合構造24n’を介して、金属線路25n’に、信号O#n'として出力される。
 したがって、図8の伝送路は、同一の周波数Fの複数の信号I#1ないしI#Nが入力された場合に、整合構造22の位置から入力される信号I#nを、整合構造24n’の位置から、信号O#n'として出力するクロスの機能、すなわち、同一周波数の複数の信号I#1ないしI#Nの並びを並び替える機能を有する。
 ここで、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、伝送路を伝送させる対象は、ミリ波に限定されるものではなく、ミリ波以外の電気信号であってもよい。
 なお、本技術は、以下のような構成をとることができる。
 [1]
 マルチモード導波路と、
 電気信号が伝送される金属線路と、
 前記マルチモード導波路と前記金属線路とに接続される、前記マルチモード導波路と前記金属線路とのインピーダンス整合をとる整合構造と
 を備える伝送路。
 [2]
 前記電気信号は、ミリ波帯の信号である
 [1]に記載の伝送路。
 [3]
 前記マルチモード導波路、前記金属線路、及び、前記整合構造は、平面上に並ぶように配置されている
 [1]又は[2]に記載の伝送路。
 [4]
 前記マルチモード導波路に接触する金属をさらに備える
 [1]ないし[3]のいずれかに記載の伝送路。
 [5]
 前記マルチモード導波路と前記整合構造とは、積層するように配置されている
 [1]又は[2]に記載の伝送路。
 [6]
 前記金属線路として、
  複数の周波数帯域の信号が多重化された多重化信号が入力される1の入力用の金属線路と、
  前記複数の周波数帯域の信号それぞれが出力される複数の出力用の金属線路と
 を備える[1]ないし[5]のいずれかに記載の伝送路。
 [7]
 前記金属線路として、
  複数の周波数帯域の信号それぞれが入力される複数の入力用の金属線路と、
  前記複数の周波数帯域の信号が多重化された多重化信号が出力される1の出力用の金属線路と
 を備える[1]ないし[5]のいずれかに記載の伝送路。
 [8]
 前記金属線路として、
  複数の信号それぞれが入力される複数の入力用の金属線路と、
  前記複数の信号それぞれが出力される複数の出力用の金属線路と
 を備える[1]ないし[5]のいずれかに記載の伝送路。
 [9]
 電気信号を、金属線路から、前記金属線路とマルチモード導波路とのインピーダンス整合をとる整合構造を介して、前記マルチモード導波路に入力し、
 前記マルチモード導波路から、他の整合構造を介して、他の金属線路に、電気信号を出力する
 伝送方法。
 [10]
 マルチモード導波路と、
 電気信号が伝送される金属線路と
 を備え、
 前記マルチモード導波路と、前記金属線路とが直接接続される
 伝送路。
 [11]
 前記電気信号は、ミリ波帯の信号である
 [10]に記載の伝送路。
 [12]
 前記マルチモード導波路、及び、前記金属線路は、平面上に並ぶように配置されている
 [10]又は[11]に記載の伝送路。
 [13]
 前記マルチモード導波路に接触する金属をさらに備える
 [10]ないし[12]のいずれかに記載の伝送路。
 [14]
 前記金属線路として、
  複数の周波数帯域の信号が多重化された多重化信号が入力される1の入力用の金属線路と、
  前記複数の周波数帯域の信号それぞれが出力される複数の出力用の金属線路と
 を備える[10]ないし[13]のいずれかに記載の伝送路。
 [15]
 前記金属線路として、
  複数の周波数帯域の信号それぞれが入力される複数の入力用の金属線路と、
  前記複数の周波数帯域の信号が多重化された多重化信号が出力される1の出力用の金属線路と
 を備える[10]ないし[13]のいずれかに記載の伝送路。
 [16]
 前記金属線路として、
  複数の信号それぞれが入力される複数の入力用の金属線路と、
  前記複数の信号それぞれが出力される複数の出力用の金属線路と
 を備える[10]ないし[13]のいずれかに記載の伝送路。
 [17]
 電気信号を、金属線路から、マルチモード導波路に直接入力し、
 前記マルチモード導波路から、他の金属線路に、電気信号を直接出力する
 伝送方法。
 11,11 E/O変換器, 12,12 シングルモード導波路, 13 マルチモード導波路, 14,14 シングルモード導波路, 15,15 O/E変換器, 21,21,・・・,21 金属線路, 22,22,・・・,22 整合構造, 23 マルチモード導波路, 24,24,・・・,24 整合構造, 25,25,・・・,25 金属線路, 31 金属板

Claims (17)

  1.  マルチモード導波路と、
     電気信号が伝送される金属線路と、
     前記マルチモード導波路と前記金属線路とに接続される、前記マルチモード導波路と前記金属線路とのインピーダンス整合をとる整合構造と
     を備える伝送路。
  2.  前記電気信号は、ミリ波帯の信号である
     請求項1に記載の伝送路。
  3.  前記マルチモード導波路、前記金属線路、及び、前記整合構造は、平面上に並ぶように配置されている
     請求項2に記載の伝送路。
  4.  前記マルチモード導波路に接触する金属をさらに備える
     請求項2に記載の伝送路。
  5.  前記マルチモード導波路と前記整合構造とは、積層するように配置されている
     請求項2に記載の伝送路。
  6.  前記金属線路として、
      複数の周波数帯域の信号が多重化された多重化信号が入力される1の入力用の金属線路と、
      前記複数の周波数帯域の信号それぞれが出力される複数の出力用の金属線路と
     を備える請求項2に記載の伝送路。
  7.  前記金属線路として、
      複数の周波数帯域の信号それぞれが入力される複数の入力用の金属線路と、
      前記複数の周波数帯域の信号が多重化された多重化信号が出力される1の出力用の金属線路と
     を備える請求項2に記載の伝送路。
  8.  前記金属線路として、
      複数の信号それぞれが入力される複数の入力用の金属線路と、
      前記複数の信号それぞれが出力される複数の出力用の金属線路と
     を備える請求項2に記載の伝送路。
  9.  電気信号を、金属線路から、前記金属線路とマルチモード導波路とのインピーダンス整合をとる整合構造を介して、前記マルチモード導波路に入力し、
     前記マルチモード導波路から、他の整合構造を介して、他の金属線路に、電気信号を出力する
     伝送方法。
  10.  マルチモード導波路と、
     電気信号が伝送される金属線路と
     を備え、
     前記マルチモード導波路と、前記金属線路とが直接接続される
     伝送路。
  11.  前記電気信号は、ミリ波帯の信号である
     請求項10に記載の伝送路。
  12.  前記マルチモード導波路、及び、前記金属線路は、平面上に並ぶように配置されている
     請求項11に記載の伝送路。
  13.  前記マルチモード導波路に接触する金属をさらに備える
     請求項11に記載の伝送路。
  14.  前記金属線路として、
      複数の周波数帯域の信号が多重化された多重化信号が入力される1の入力用の金属線路と、
      前記複数の周波数帯域の信号それぞれが出力される複数の出力用の金属線路と
     を備える請求項11に記載の伝送路。
  15.  前記金属線路として、
      複数の周波数帯域の信号それぞれが入力される複数の入力用の金属線路と、
      前記複数の周波数帯域の信号が多重化された多重化信号が出力される1の出力用の金属線路と
     を備える請求項11に記載の伝送路。
  16.  前記金属線路として、
      複数の信号それぞれが入力される複数の入力用の金属線路と、
      前記複数の信号それぞれが出力される複数の出力用の金属線路と
     を備える請求項11に記載の伝送路。
  17.  電気信号を、金属線路から、マルチモード導波路に直接入力し、
     前記マルチモード導波路から、他の金属線路に、電気信号を直接出力する
     伝送方法。
PCT/JP2013/050210 2012-01-18 2013-01-09 伝送路、及び、伝送方法 WO2013108687A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/371,556 US9882255B2 (en) 2012-01-18 2013-01-09 Transmission line and transmission method
JP2013554272A JP5954590B2 (ja) 2012-01-18 2013-01-09 伝送路、及び、伝送方法
EP13738750.2A EP2806496A1 (en) 2012-01-18 2013-01-09 Transmission line and transmission method
CN201380004479.XA CN104025376B (zh) 2012-01-18 2013-01-09 传输线和传输方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012007700 2012-01-18
JP2012-007700 2012-01-18

Publications (1)

Publication Number Publication Date
WO2013108687A1 true WO2013108687A1 (ja) 2013-07-25

Family

ID=48799113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050210 WO2013108687A1 (ja) 2012-01-18 2013-01-09 伝送路、及び、伝送方法

Country Status (5)

Country Link
US (1) US9882255B2 (ja)
EP (1) EP2806496A1 (ja)
JP (1) JP5954590B2 (ja)
CN (1) CN104025376B (ja)
WO (1) WO2013108687A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232612A (en) * 1975-09-09 1977-03-12 Nippon Telegr & Teleph Corp <Ntt> Mode multiple millimeter wave transmission system
JPH08508351A (ja) 1993-11-04 1996-09-03 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ マルチモード干渉結合器における強度特性及び位相特性の変化方法
JP2001160703A (ja) * 1999-12-02 2001-06-12 Murata Mfg Co Ltd 線路変換構造、高周波回路および無線装置
JP2010093444A (ja) * 2008-10-06 2010-04-22 Hitachi Ltd 誘電体導波路及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071833A (en) * 1976-10-15 1978-01-31 Ford Motor Company Apparatus for coupling coaxial transmission line to rectangular waveguide
JPH01108509A (ja) * 1987-10-22 1989-04-25 Mitsubishi Electric Corp 光合分波装置
US5942944A (en) * 1998-01-12 1999-08-24 The United States Of America As Represented By The Secretary Of The Army Low loss based power divider/combiner for millimeter wave circuits
CN1350653A (zh) * 1998-09-16 2002-05-22 约尔特有限公司 无电子线路的无线光纤通信
KR100438014B1 (ko) * 2001-08-16 2004-06-30 주식회사 한빛아이앤씨 다중 모드 간섭을 이용한 가변 광필터
US6781477B1 (en) * 2002-09-30 2004-08-24 Carnegie Mellon University System and method for increasing the channel capacity of HVAC ducts for wireless communications in buildings
EP1662284B1 (en) * 2003-05-23 2015-03-25 Panasonic Corporation Optical device, optical device manufacturing method, and optical integrated device
CN1825691A (zh) * 2006-01-26 2006-08-30 东南大学 微波毫米波基片集成波导定向耦合器
CN100385278C (zh) * 2006-05-30 2008-04-30 浙江大学 单一调制区控制的3×3多模干涉型光开关
US7340138B1 (en) * 2007-01-25 2008-03-04 Furukawa Electric North America, Inc. Optical fiber devices and methods for interconnecting dissimilar fibers
CN101834339A (zh) * 2010-04-23 2010-09-15 电子科技大学 一种基片集成波导结构延迟线
US9405064B2 (en) * 2012-04-04 2016-08-02 Texas Instruments Incorporated Microstrip line of different widths, ground planes of different distances

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232612A (en) * 1975-09-09 1977-03-12 Nippon Telegr & Teleph Corp <Ntt> Mode multiple millimeter wave transmission system
JPH08508351A (ja) 1993-11-04 1996-09-03 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ マルチモード干渉結合器における強度特性及び位相特性の変化方法
JP2001160703A (ja) * 1999-12-02 2001-06-12 Murata Mfg Co Ltd 線路変換構造、高周波回路および無線装置
JP2010093444A (ja) * 2008-10-06 2010-04-22 Hitachi Ltd 誘電体導波路及びその製造方法

Also Published As

Publication number Publication date
JP5954590B2 (ja) 2016-07-20
CN104025376B (zh) 2016-10-26
US9882255B2 (en) 2018-01-30
JPWO2013108687A1 (ja) 2015-05-11
CN104025376A (zh) 2014-09-03
US20140354369A1 (en) 2014-12-04
EP2806496A1 (en) 2014-11-26

Similar Documents

Publication Publication Date Title
US10992054B2 (en) Array antenna system
JP6200613B1 (ja) ダイプレクサ及び送受信システム
US10044088B2 (en) Transmission-line conversion structure for millimeter-wave band
US9577407B2 (en) Optical transmitter or transmission unit in optical transmitter/receiver provided on opto-electric hybrid board
JP2010160978A (ja) 高周波信号伝送システム、高周波信号伝送コネクタおよび高周波信号伝送ケーブル
JP6279190B1 (ja) 導波管回路
US9083069B2 (en) Power combiner/distributor, power amplifying circuit, and wireless apparatus
JP2009200591A (ja) 導波管チョーク構造
JP5954590B2 (ja) 伝送路、及び、伝送方法
WO2017169546A1 (ja) フロントエンド回路、および、高周波モジュール
US20090295497A1 (en) Impedance transforming hybrid coupler
JP2020181111A (ja) 光アイソレータ及び光源装置
KR100435811B1 (ko) 비방사성 하이브리드 유전체 선로 변환부 및 이를포함하고 있는 장치
KR101017401B1 (ko) 광대역 무선 통합장치
JP5896447B2 (ja) 擬似負荷装置
JP2011155586A (ja) 周波回路基板、およびこれを備える周波モジュール
JP2011172173A (ja) ミリ波回路モジュール及びそれを用いたミリ波送受信機
WO2013027268A1 (ja) 電磁波伝搬媒体
WO2021215161A1 (ja) 多モード導波管アンテナ
JP2021175159A (ja) アンテナモジュール
US9118301B2 (en) Bonding wire impedance matching circuit
US20190079247A1 (en) Integrated photonic interconnect switch and integrated photonic interconnect network
JPWO2018029953A1 (ja) 導波管ストリップ線路変換器及び給電回路
CZ34435U1 (cs) Zařízení s radiovým terminálem
JP2015192293A (ja) 変換カプラーおよび信号入出力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738750

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013554272

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013738750

Country of ref document: EP

Ref document number: 14371556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE