WO2013108498A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2013108498A1
WO2013108498A1 PCT/JP2012/081442 JP2012081442W WO2013108498A1 WO 2013108498 A1 WO2013108498 A1 WO 2013108498A1 JP 2012081442 W JP2012081442 W JP 2012081442W WO 2013108498 A1 WO2013108498 A1 WO 2013108498A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
injection valve
valve
internal combustion
fuel
Prior art date
Application number
PCT/JP2012/081442
Other languages
English (en)
French (fr)
Inventor
藤井 義久
隆夫 福田
豊原 正裕
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to CN201280066266.5A priority Critical patent/CN104040154B/zh
Priority to US14/367,029 priority patent/US9422884B2/en
Priority to DE112012005684.1T priority patent/DE112012005684B4/de
Publication of WO2013108498A1 publication Critical patent/WO2013108498A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • F02D35/024Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0618Actual fuel injection timing or delay, e.g. determined from fuel pressure drop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention increases the accuracy of the fuel injection amount at the time of multistage fuel injection in which a plurality of fuels are injected in one cycle for each cylinder.
  • the present invention relates to a control device for an internal combustion engine that can be improved.
  • particulate matter Pulfine Matter
  • in-cylinder injection type internal combustion engines have advantages such as high output and low fuel consumption over intake port injection type internal combustion engines, while large particle size fuel adheres and remains on the crown surface of the piston and the wall surface of the cylinder bore.
  • PM is likely to be generated due to the fact that a non-uniform portion of the fuel and air is easily mixed.
  • the dual internal combustion engine in which the in-cylinder fuel injection valve and the intake port injection fuel injection valve are attached to the same cylinder, and intake air is generated in an operating region where much PM is generated.
  • a method to reduce PM using a fuel injection valve for port injection and a method to attach a filter that captures PM can be expected to have a high PM reduction effect, but it is difficult to increase costs by adding new devices. ing.
  • Patent Document 1 discloses multi-stage injection control in which fuel injection is performed a plurality of times in one cycle. Yes. According to this control, the fuel adhesion amount in the cylinder can be reduced, the uniformity of the air-fuel mixture can be increased, and PM can be reduced.
  • the fuel injection amount remains the same as before and only the number of injections is increased. Therefore, the fuel injection amount per time is smaller than the conventional fuel injection amount.
  • the fuel injection amount is reduced, it is necessary to improve the fuel flow rate accuracy on the low fuel flow rate side, which has not been used in the past, and it becomes difficult to increase the cost by improving the accuracy of the fuel injection valve.
  • Patent Document 2 the opening / closing valve timing of the fuel injection valve is detected from the displacement point of the drive current of the fuel injection valve, and fed back to the energization time control of the fuel injection valve.
  • Patent Document 3 the opening / closing valve timing of the fuel injection valve is detected by a piezoelectric element and fed back to the energization time control of the fuel injection valve.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a control device for an internal combustion engine capable of highly accurate fuel injection control at the time of half lift of the fuel injection valve. There is to do.
  • a control device for an internal combustion engine comprises a fuel injection valve for supplying fuel to the internal combustion engine, means for calculating an energization time of the fuel injection valve, and opening of the fuel injection valve. And a means for calculating and storing a valve opening delay time that is a difference between the time when the fuel injection valve is energized and the time when the valve is detected, and the time when the fuel injection valve is energized is a predetermined value or more.
  • the valve opening delay time is calculated and stored, and when the energization time to the fuel injection valve is less than a predetermined value, the fuel injection valve is based on the valve opening delay time stored in the storage means. It is characterized by controlling the energization time.
  • the control apparatus for an internal combustion engine of the present invention configured as described above stores the valve opening delay time when the fuel injection valve is fully lifted when the energization time to the fuel injection valve is a predetermined value or more,
  • the stored time delay time memorized during full lift is referred to, so that the energization time is accurate even during half-lift. Control becomes possible.
  • the detection result of the on-off valve timing at the time of full lift that fully opens the valve during the half lift when the fuel injector is not fully opened is used as the energization of the fuel injector.
  • the time control By controlling by reflecting the time control, it is possible to provide a control device for an internal combustion engine capable of highly accurate fuel injection control at the time of half lift of the fuel injection valve.
  • FIG. 1 is a system configuration diagram showing an embodiment of a control device for an internal combustion engine according to the present invention.
  • the flowchart which shows the operation
  • the block diagram of the fuel injection of the control apparatus of the internal combustion engine shown in FIG. The table which shows a valve opening delay time table.
  • the table which shows the energization time correction table at the time of half lift.
  • the time chart which shows the fuel injection valve behavior at the time of a full lift.
  • FIG. 1 is a system configuration diagram of a control device for an internal combustion engine according to the present invention, and the internal combustion engine 11 is a sectional view of one cylinder.
  • an air flow meter 1 for measuring the intake air amount is installed, and a throttle valve 2 for adjusting the intake air amount is installed downstream thereof.
  • the output of the air flow meter 1 and the output of the opening degree of the throttle valve 2 are transmitted to the ECU 7.
  • the internal combustion engine 11 includes a fuel injection valve 3 that directly injects fuel into the cylinder 12.
  • the fuel injection valve 3 is connected to the fuel supply passage 14 and is supplied with high-pressure fuel.
  • a spark plug connected to the spark ignition device 9 is provided at the top of the cylinder 12.
  • a piston 13 is mounted in the cylinder 12 so as to be movable up and down, and a crankshaft for detecting the rotational angular velocity (engine speed) and the angular position of the crankshaft that converts the vertical movement of the piston 13 into a rotational motion is provided.
  • An angle signal plate 5 and a crank angle sensor 6 are provided, and a signal from the crank angle sensor 6 is transmitted to the ECU 7.
  • the internal combustion engine 11 also includes a camshaft for opening and closing the intake valve 17.
  • the camshaft is connected to the crankshaft by a timing belt or a metal chain, and rotates in conjunction with the rotation of the crankshaft.
  • the cam shaft is provided with a cam angle signal plate 18 and a cam angle sensor 15 for detecting the rotational angular velocity and angular position of the cam shaft, and a signal from the cam angle sensor 15 is transmitted to the ECU 7.
  • the intake valve 17 is provided with an intake VTC (ValvealTiming Control) 16 that can change the angle phase difference of the intake camshaft so that the opening / closing timing thereof can be changed.
  • the intake VTC 16 is an ECU (engine control unit). ) Controlled by a signal from 7.
  • this control device is equipped with the following sensors, all of which transmit signals to the ECU 7.
  • the fuel pressure sensor 4 is a sensor for measuring the pressure in the fuel supply passage 14 to the fuel injection valve 3.
  • the water temperature sensor 8 is a sensor that is attached to the cooling water passage of the internal combustion engine 11 and measures the cooling water temperature of the engine.
  • the valve opening detection sensor 10 is a sensor for detecting the valve opening timing of the fuel injection valve 3.
  • the valve opening detection sensor 10 can also be used as a knock sensor for detecting knocking.
  • the amount of intake air is adjusted by the throttle valve 2.
  • the intake air whose intake amount is adjusted by the throttle valve 2 is measured by the air flow meter 1, and the signal is transmitted to the ECU 7. Thereafter, the intake air passes through the intake valve 17 and enters the cylinder 12 of the internal combustion engine, and forms an air-fuel mixture together with the fuel injected from the fuel injection valve 3.
  • the fuel injection valve 3 is energized by a signal from the ECU 7 and is controlled to open and close to inject fuel.
  • the fuel / intake air mixture formed in the cylinder 12 is ignited by the spark ignition device 9.
  • the spark ignition device 9 is controlled to be ignited by a signal from the ECU 7.
  • the ignited air-fuel mixture burns and expands to push down the piston 13.
  • the output shaft (crankshaft) is connected to the piston 13 and rotates when the piston 13 is pushed down to output energy.
  • FIG. 3 shows a block diagram of the fuel injection section in the control device for the internal combustion engine of the present embodiment.
  • the fuel pressure 100 detected by the fuel pressure sensor 4 the intake air amount 101 detected by the air flow meter 1, the engine speed 102 detected by the crank angle sensor 6, and the water temperature 103 detected by the water temperature sensor 8.
  • the intake VTC opening 104 detected by the intake VTC 16 and the signal detected by the valve opening detection sensor 105 are input to each block, and various calculations, storage, determination, switching, and the like are performed.
  • the fuel injection amount calculation unit 106 calculates the fuel injection amount injected from the fuel injection valve 3 (116) based on the intake air amount 101, the engine speed 102, and the water temperature 103. Based on the intake air amount 101, the engine speed 102, and the water temperature 103, the fuel division number calculation unit 107 calculates the number of fuel divisions according to how many times the fuel is injected in each cylinder per cycle.
  • the fuel injection start timing calculation unit 108 calculates the fuel injection start timing based on the intake air amount 101, the engine speed 102, the water temperature 103, and the fuel division number.
  • the valve opening delay time table update unit 109 receives the output of the valve opening detection sensor 105, and stores half lift energization time correction (Phaf) data for the half lift index (Chaf) shown in FIG.
  • the fuel injection valve energization time calculation unit 110 is based on the fuel pressure 100, the fuel injection amount calculated by the fuel injection amount calculation unit 106, and the fuel division number calculated by the fuel division number calculation unit 107. 3 is calculated.
  • the fuel injection valve energization time calculation unit 110 performs a reference fuel injection amount stored in advance based on a later-described valve opening delay time and a required fuel injection during a half-lift (described later) (when the energization time is less than a predetermined value). Based on the ratio to the amount, the energization time to the fuel injection valve 3 is calculated.
  • the estimated in-cylinder pressure calculation unit 111 is based on the start time calculated by the fuel injection start time calculation unit 108, the intake air amount 101, the engine speed 102, the water temperature 103, and the intake VTC opening 104. Is calculated.
  • the valve opening delay time calculation unit 112 calculates a valve opening delay time (Topen) by referring to the valve opening delay time table shown in FIG. 4 from the differential pressure (Pdif) calculated by the differential pressure detection unit 117 described later. .
  • the half lift energization time calculation unit 113 is described later in the energization time calculated by the fuel injection valve energization time calculation unit 110, the valve opening delay time calculated by the valve opening delay time calculation unit 112, and the half lift described later. Based on the differential pressure (Pdif) calculated by the differential pressure detector 117, the energization time during half lift is calculated.
  • the energization time determination unit 114 determines whether the fuel injection valve energization time calculated by the fuel injection valve energization time calculation unit 110 is greater than or less than the valve opening delay time (Topen).
  • the switching means 115 includes a normal energization time calculated by the fuel injection valve energization time calculation unit 110 and a half lift calculated by the half lift energization time calculation unit 113 based on the determination result of the energization time determination unit 114. Switch between energization time during lift.
  • the differential pressure detection unit 117 calculates a differential pressure (Pdif) based on the fuel pressure 100 and the estimated in-cylinder pressure calculated by the estimated in-cylinder pressure calculation unit 111.
  • step 200 a fuel injection amount is calculated.
  • the fuel injection amount is calculated based on the intake air amount 101, the engine speed 102, and the water temperature 103 (fuel injection amount calculation unit 106 in FIG. 3).
  • step 201 the number of fuel divisions (Ndiv) is calculated.
  • the fuel division number is calculated based on the intake air amount 101, the engine speed 102, and the water temperature 103 (fuel division number calculation unit 107 in FIG. 3).
  • the number of fuel divisions indicates how many times the fuel is injected in each cylinder per cycle. In a gasoline engine, it is once in normal times, but multiple times during acceleration operation and low water temperature operation with a large amount of PM emission.
  • step 202 the fuel injection valve energization time is calculated.
  • the fuel injection valve energization time is calculated based on the fuel injection amount calculated by the fuel injection amount calculation unit 106, the fuel pressure 100, and the fuel division number calculated by the fuel division number calculation unit 107 (the fuel injection valve in FIG. 3).
  • Energization time calculation unit 110 assuming that the number of fuel divisions calculated by the fuel division number calculation unit 107 is 3, three fuel injection valve energization times are calculated.
  • step 203 the fuel injection start time is calculated.
  • the fuel injection start timing is calculated based on the intake air amount 101, the engine speed 102, the water temperature 103, and the fuel division number calculated by the fuel division number calculation unit 107 (fuel injection start timing calculation unit 108 in FIG. 3). .
  • the fuel division number calculated by the fuel division number calculation unit 107 is three, three fuel injection start timings are calculated.
  • Step 204 (S204) indicates the start of a process of repeatedly injecting fuel for the number of times of fuel division.
  • Ndiv number of fuel divisions
  • an estimated in-cylinder pressure is calculated.
  • the estimated in-cylinder pressure is calculated by estimating the in-cylinder pressure at the start of fuel injection.
  • the in-cylinder pressure refers to the pressure inside the cylinder 12 in FIG.
  • the estimated in-cylinder pressure is calculated based on the start timing calculated by the fuel injection start timing calculating unit 108, the intake air amount 101, the engine speed 102, the water temperature 103, and the intake VTC opening 104 (calculated estimated in-cylinder pressure in FIG. 3). Part 111).
  • the in-cylinder pressure in the cylinder 12 of the internal combustion engine 11 may be directly measured and used for the following control.
  • step 206 the differential pressure (Pdif) between the estimated in-cylinder pressure calculated by the estimated in-cylinder pressure calculation unit 111 and the fuel pressure 100 is calculated (the differential pressure calculation unit 117 in FIG. 3).
  • step 207 the valve opening delay time table in FIG. 4 is referred to from the differential pressure (Pdif) calculated by the differential pressure detecting unit 117 (valve opening delay time table updating unit 109) to open the valve opening delay time (Topen). Is calculated (the valve opening delay time calculation unit 112 in FIG. 3).
  • the in-cylinder pressure in the cylinder 12 may be directly measured to calculate the differential pressure.
  • valve opening delay time table is experimentally calculated in advance and stored in the ECU 7, the value of the valve opening delay time (Topen) varies depending on the variation of the individual fuel injection valves. Therefore, in step 252 (S252) described later. The value is sequentially updated for each cylinder (the valve opening delay time table updating unit 109 in FIG. 3).
  • step 208 it is determined whether the fuel injection valve energization time calculated in (S202) is less than the valve opening delay time (Topen) (energization time determination unit 114 in FIG. 3).
  • the fuel injection valve energization time is less than the valve opening delay time (Topen)
  • the energization time during half lift is calculated.
  • valve opening delay time (Topen) If it is equal to or longer than the valve opening delay time (Topen), it is determined that the fuel injection valve is fully lifted, and the switching means 115 shifts to the full lift processing (S250) to perform fuel injection valve energization start processing (FIG. 3 energization time determination unit 114).
  • step 208 when it is determined in step 208 (S208) that the energization time to the fuel injection valve is less than a predetermined value and half lift occurs, half lift processing (S209) and (S210) ), And the fuel injection from the fuel injection valve 3 (116) can be prohibited.
  • step 208 when it is determined in step 208 (S208) that the energization time to the fuel injection valve is less than a predetermined value and half lift occurs, half lift processing (S209) and (S210) ), And the fuel injection from the fuel injection valve 3 (116) can be prohibited.
  • the fuel injection from the fuel injection valve 3 is less than a predetermined value
  • the energization time during half lift in step 209 is calculated based on the ratio between the reference fuel injection amount stored in advance based on the valve opening delay time and the required fuel injection amount, and the energization to the fuel injection valve. You may comprise so that time may be calculated.
  • the required fuel injection amount during half lift and the energization time are calculated by calculating the energization time during half lift by the ratio of the required fuel injection amount during half lift and the reference fuel injection amount during full lift. It is possible to prevent deterioration in energization time accuracy due to the non-linear relationship.
  • step 250 the fuel injection start timing calculated by the fuel injection start timing calculation unit 108 in (S203), and the fuel injection valve energization calculated by the fuel injection valve energization time calculation unit 110 in (S202). Based on the time, the ECU injects fuel into the fuel injection valve.
  • step 251 it is determined whether or not the opening of the fuel injection valve is detected by the valve opening detection sensor 105 when the fuel injection valve is completely opened after energization of the fuel injection valve is started. .
  • step 252 the storage of the valve opening delay time is prohibited when the valve opening detection sensor 105 is out of order.
  • step 252 the difference between the energization start timing of the fuel injection valve in (S250) and the valve opening detection timing detected in (S251) is calculated as the valve opening delay time (Topen), and in (S206)
  • the valve opening delay time (Topen) in the valve opening delay time table (FIG. 4) is updated with reference to the differential pressure (Pdif) calculated in this way (the valve opening delay time table updating unit 109 in FIG. 3).
  • step 211 the process returns to the beginning (S204) of the repetition process.
  • FIG. 6 shows the behavior of the fuel injection valve during full lift
  • FIG. 7 shows the behavior of the fuel injection valve during half lift.
  • the energization state of the fuel injection valve is set to the length of energization time by turning OFF and ON.
  • the valve position of the fuel injection valve opens and closes gradually after the energized state is turned ON, and gradually opens until reaching the fully opened position at the time of full lift, and gradually closes when energized is turned OFF. To do.
  • step 208 the energization time is less than the valve opening delay time (Topen)
  • step 209 the half lift energization time is calculated (half lift energization time calculator 113 in FIG. 3).
  • the half lift index is calculated by the following equation (1) from the fuel injection valve energization time and the valve opening delay time (Topen).
  • Half lift index (Chaf) [%] Fuel injector energization time / Cleavage valve delay time (Topen) ... (1)
  • the half lift index (Chaf) increases as the ratio increases, and the fuel injection valve opening ratio increases and becomes 100% fully opened (full lift).
  • the lift amount of the fuel injection valve decreases, and the fuel flow rate decreases in proportion to the lift amount. Therefore, if the fuel injection valve is controlled with the fuel injection valve energization time calculated on the assumption that the fuel injection valve is fully lifted in step 202 (S202) during the half lift, the fuel injection amount is smaller than the actual amount. Therefore, it is necessary to increase the fuel injection valve energization time as the half lift index (Chaf) decreases.
  • the fuel injection valve energization time during half lift is calculated by the following equation (2).
  • the half lift energization time correction (Phaf) is calculated from the half lift energization time correction table of FIG. It is assumed that the half lift energization time correction table is experimentally calculated in advance and stored in the ECU 7.
  • Half-lift fuel injection valve energization time Fuel injection valve energization time x half lift energization time correction (Phaf) (2)
  • step 210 the fuel injection valve is energized from the ECU 7 based on the fuel injection start timing calculated in (S203) and the half-lift fuel injection valve energization time calculated in (S209). Inject.
  • step 211 the process returns to the beginning (S204) of the repetition process.
  • the control apparatus for an internal combustion engine includes a fuel pressure 100 in which the valve opening delay time is detected by the fuel pressure sensor 4 and an estimated in-cylinder pressure calculation unit 111 when the energization time to the fuel injection valve is a predetermined value or more. Based on the calculated differential pressure with the estimated in-cylinder pressure, the half lift energization time calculation unit 113 stores the differential pressure stored in the storage means when the energization time to the fuel injection valve is less than a predetermined value. Based on the above, the valve opening delay time can be calculated. With this configuration, when the fuel injection valve is fully lifted, the valve opening delay time is memorized according to the differential pressure between the fuel pressure and the cylinder pressure, and during the half lift when the valve opening timing is difficult to detect.
  • valve opening delay time can be referred to according to the differential pressure between the fuel pressure and the in-cylinder pressure. Since the valve opening delay time also depends on the differential pressure between the fuel pressure and the in-cylinder pressure, this control makes it possible to control the energization time during half lift with higher accuracy than the above control.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • valve opening detection sensor detects and controls the valve opening state of the fuel injection valve
  • valve closing detection sensor may be used for control
  • SYMBOLS 1 Air flow meter, 2 ... Throttle valve, 3 ... Fuel injection valve, 4 ... Fuel pressure sensor, 5 ... Crank angle signal board, 6 ... Crank angle sensor, 7 ... ECU (Engine control unit), 8 ... Water temperature sensor, 9 ... Spark ignition device, 10 ... Valve opening detection sensor, 11 ... Internal combustion engine, 12 ... Cylinder, 13 ... Piston , 14 ... Fuel supply passage, 15 ... Cam angle sensor, 16 ... Intake VTC, 17 ... Intake valve, 18 ... Cam angle signal plate, 100 ... Fuel pressure, 101 ... Intake air amount, 102 ... engine speed, 103 ... water temperature, 104 ... intake VTC opening, 105 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

燃料噴射弁のハーフリフト時において、高精度な燃料噴射制御が可能な内燃機関の制御装置を提供する。 内燃機関の制御装置は、内燃機関11に燃料を供給する燃料噴射弁3(116)と、該燃料噴射弁の通電時間を算出する手段110と、燃料噴射弁の開弁を検出するセンサ105と、燃料噴射弁への通電開始時間と開弁検出時間の差分である開弁遅れ時間を算出かつ記憶する手段112とを備え、通電時間判定部114で燃料噴射弁への通電時間が所定値以上の場合に、開弁遅れ時間を算出かつ記憶し、燃料噴射弁への通電時間が所定値未満の場合に、記憶手段に記憶された開弁遅れ時間に基づき、燃料噴射弁の通電時間を制御し、燃料噴射弁通電時間を増やす制御を実施する。

Description

内燃機関の制御装置
 本発明は、筒内に燃料を直接噴射する燃料噴射弁を備える筒内噴射式内燃機関において、気筒毎に1サイクル中に複数回の燃料を噴射する多段燃料噴射時に、燃料噴射量の精度を向上させることができる内燃機関の制御装置に関する。
 近年、各国の排気規制にて、自動車の排気ガス中に含まれる粒子状物質PM(Particulate Matter)に対する規制が厳しくなっている。特に、筒内噴射式内燃機関では、吸気ポート噴射式内燃機関に対し、高出力・低燃費等の長所がある一方、粒径の大きな燃料がピストンの冠面やシリンダボアの壁面に付着・残留することや、燃料と空気の混ざり具合が不均一の部分が生じやすいこと等により、PMが発生しやすい短所がある。
 このような筒内噴射式内燃機関のPM低減策として、筒内噴射用燃料噴射弁と吸気ポート噴射用燃料噴射弁を同一気筒に取り付けるデュアル式内燃機関により、PMが多く発生する運転領域では吸気ポート噴射用燃料噴射弁を使用してPM低減を図る方法や、PMを捕捉するフィルタを取り付ける等の方法があり、いずれも高いPM低減効果が望める反面、新規デバイス追加によるコスト増が難点となっている。
 そこで、新規デバイスの追加無しに、PMを低減する方法が模索されているが、その一つとして、特許文献1では、1サイクル中に複数回の燃料噴射を実行する多段噴射制御が開示されている。この制御によれば、筒内の燃料付着量低減・混合気の均一度を上げることができ、PMを低減することができる。
 しかしながら、この多段噴射制御では燃料噴射量は従来のままで噴射回数のみ多くするため、1回当たりの燃料噴射量が従来の燃料噴射量に対し少なくなる。燃料噴射量が少なくなると、従来使用することの無かった低燃料流量側の燃料流量精度を向上させる必要があり、燃料噴射弁の精度向上によるコスト増が難点となる。
 その対策として、特許文献2や特許文献3の制御技術を活用することができる。特許文献2では、燃料噴射弁の駆動電流の変位点により、燃料噴射弁の開閉弁時期を検出し、燃料噴射弁の通電時間制御にフィードバックする。特許文献3では、圧電素子により、燃料噴射弁の開閉弁時期を検出し、燃料噴射弁の通電時間制御にフィードバックする。
 以上の特許文献2や特許文献3の制御技術により既存のセンサを用いて前記燃料噴射弁の開閉弁時期を検出し、通電時間制御にフィードバックすることで、前記燃料噴射弁のコスト増を抑えつつ高精度の燃料噴射を実現し、安価にPMを低減することができる。
特開2011-132898号公報 特開2001-280189号公報 特開2003-65178号公報
 しかしながら、多段噴射制御等により、要求燃料噴射量が非常に少ない噴射の場合、燃料噴射弁は完全に開ききらない内に閉弁する状態(以下、ハーフリフトと呼ぶ)が発生する(図6と図7参照)。このハーフリフトでは、前記燃料噴射弁が完全に開弁しないため、特許文献2や特許文献3の方法では、燃料噴射弁の開弁を検出することが困難である。更に、燃料噴射弁閉弁時においても、完全開弁(以下、フルリフトと呼ぶ)からの閉弁でないため、閉弁時の放出エネルギが小さく、閉弁検出がフルリフト時に対して困難となる。
 本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、燃料噴射弁のハーフリフト時において、高精度な燃料噴射制御が可能な内燃機関の制御装置を提供することにある。
 前記目的を達成すべく、本発明に係る内燃機関の制御装置は、内燃機関に燃料を供給する燃料噴射弁と、該燃料噴射弁の通電時間を算出する手段と、前記燃料噴射弁の開弁を検出する手段と、前記燃料噴射弁への通電開始時間と開弁検出時間の差分である開弁遅れ時間を算出かつ記憶する手段とを備え、前記燃料噴射弁への通電時間が所定値以上の場合に、前記開弁遅れ時間を算出かつ記憶し、前記燃料噴射弁への通電時間が所定値未満の場合に、前記記憶手段に記憶された前記開弁遅れ時間に基づき、前記燃料噴射弁の通電時間を制御することを特徴としている。
 前記のごとく構成された本発明の内燃機関の制御装置は、前記燃料噴射弁への通電時間が所定値以上の、前記燃料噴射弁のフルリフト時に前記開弁遅れ時間を記憶しておき、前記燃料噴射弁への通電時間が所定値未満で、開弁時期の検出が困難なハーフリフト時に、フルリフト時に記憶した前記開弁遅れ時間の記憶内容を参照することで、ハーフリフト時も精度よく通電時間制御が可能となる。
 本発明の内燃機関の制御装置によれば、燃料噴射弁が完全に開ききらない内に閉弁するハーフリフト時に、完全開弁するフルリフト時の開閉弁時期の検出結果を、燃料噴射弁の通電時間制御に反映させて制御することにより、燃料噴射弁のハーフリフト時において、高精度な燃料噴射制御が可能な内燃機関の制御装置を提供することができる。前記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明に係る内燃機関の制御装置の一実施形態を示すシステム構成図。 図1に示す内燃機関の制御装置での燃料噴射の動作を示すフローチャート。 図1に示す内燃機関の制御装置の燃料噴射のブロック図。 開弁遅れ時間テーブルを示す表図。 ハーフリフト時通電時間補正テーブルを示す表図。 フルリフト時の燃料噴射弁挙動を示すタイムチャート。 ハーフリフト時の燃料噴射弁挙動を示すタイムチャート。
 以下、本発明に係る内燃機関の制御装置の一実施形態を図面に基づき詳細に説明する。図1は、本発明に係る内燃機関の制御装置のシステム構成図を示し、内燃機関11は1つの気筒の断面図を示している。
 内燃機関11の吸入通路には、吸入空気量を計測するエアフロメータ1が設置され、その下流には吸入空気量を調節するスロットル弁2が設置されている。エアフロメータ1の出力、及びスロットル弁2の開度の出力はECU7に送信される。内燃機関11は、シリンダ12内に燃料を直接噴射する燃料噴射弁3を備えている。燃料噴射弁3は燃料供給通路14に連結され、高圧の燃料が供給される。シリンダ12の頂部には火花点火装置9に接続された点火プラグが設けられている。
 また、シリンダ12内にはピストン13が上下動可能に装着され、ピストン13の上下動を回転運動に変換するクランクシャフトには、その回転角速度(エンジン回転数)および角度位置を検出するためのクランク角信号板5とクランク角センサ6が備わり、前記クランク角センサ6からの信号はECU7に送信される。また、内燃機関11は、前記吸気弁17を開閉するためのカムシャフトも備える。前記カムシャフトはタイミングベルト、もしくは金属チェーンによりクランクシャフトとつながり、クランクシャフトの回転と連動して回転する。
 また、前記カムシャフトにはその回転角速度および角度位置を検出するための、カム角信号板18とカム角センサ15が備わり、前記カム角センサ15からの信号はECU7に送信される。また、前記吸気弁17はその開閉タイミングが変更可能なように、吸気側カムシャフトの角度位相差を変更可能な吸気VTC(Valve Timing Control)16が備わり、前記吸気VTC16は、ECU(エンジンコントロールユニット)7からの信号により制御される。
 その他、本制御装置には以下のセンサが備わっており、いずれもECU7に信号を送信する。燃料圧力センサ4は、燃料噴射弁3への燃料供給通路14内の圧力を計測するためのセンサである。水温センサ8は、内燃機関11の冷却水通路に取り付けられ、エンジンの冷却水温度を計測するためのセンサである。開弁検出センサ10は、燃料噴射弁3の開弁時期を検出するためのセンサである。開弁検出センサ10は、ノッキングを検出するためのノックセンサと兼用することもできる。
 本実施形態の内燃機関11では、吸入空気はスロットル弁2により吸入量が調節される。スロットル弁2で吸入量が調節された吸入空気はエアフロメータ1により吸入量が計測され、その信号はECU7に送信される。その後、吸入空気は吸気弁17を通過して内燃機関のシリンダ12内に入り、燃料噴射弁3から噴射された燃料と共に混合気を形成する。前記燃料噴射弁3は、ECU7からの信号により通電されて開閉弁制御され、燃料を噴射する。
 シリンダ12内にて形成された燃料と吸入空気の混合気は、火花点火装置9により点火される。前記火花点火装置9は、ECU7からの信号により点火制御される。点火された混合気は燃焼し、膨張することでピストン13を押し下げる。出力軸(クランクシャフト)は前記ピストン13とつながっており、前記ピストン13が押し下げられることで回転し、エネルギを出力する。
 図3は本実施形態の内燃機関の制御装置内の燃料噴射部のブロック図を示している。図3において、燃料圧力センサ4で検出された燃料圧力100、エアフロメータ1で検出された吸入空気量101、クランク角センサ6で検出されたエンジン回転数102、水温センサ8で検出された水温103、吸気VTC16で検出された吸気VTC開度104、開弁検出センサ105で検出された信号が各ブロックに入力され、各種の算出、記憶、判定、切換等が行われる。
 燃料噴射量算出部106は、吸入空気量101、エンジン回転数102、水温103に基づいて燃料噴射弁3(116)から噴射する燃料噴射量を算出する。燃料分割数算出部107は、吸入空気量101とエンジン回転数102と水温103に基づいて、1サイクル当たり各気筒にて何回に分けて燃料を噴射するか燃料分割数を算出する。燃料噴射開始時期算出部108は、吸入空気量101、エンジン回転数102、水温103、及び燃料分割数に基づいて、燃料噴射開始時期を算出する。開弁遅れ時間テーブル更新部109は、開弁検出センサ105の出力が入力され、図5に示されるハーフリフト指数(Chaf)に対するハーフリフト時通電時間補正(Phaf)データが記憶されている。
 燃料噴射弁通電時間算出部110は、燃料圧力100と、燃料噴射量算出部106で算出された燃料噴射量と、燃料分割数算出部107で算出された燃料分割数に基づいて、燃料噴射弁3の通電時間を算出する。燃料噴射弁通電時間算出部110は、後述するハーフリフト時(通電時間が所定値未満の場合)には、後述する開弁遅れ時間に基づき予め記憶されている基準燃料噴射量と、要求燃料噴射量との比率に基づき、燃料噴射弁3への通電時間を算出する。
 推定筒内圧算出部111は、燃料噴射開始時期算出部108で算出された開始時期と、吸入空気量101と、エンジン回転数102と、水温103と、吸気VTC開度104に基づいて推定筒内圧を算出する。開弁遅れ時間算出部112は、後述する差圧検出部117で算出された差圧(Pdif)から、図4に示す開弁遅れ時間テーブルを参照し、開弁遅れ時間(Topen)を算出する。ハーフリフト時通電時間算出部113は、燃料噴射弁通電時間算出部110で算出された通電時間と、開弁遅れ時間算出部112で算出された開弁遅れ時間と、後述のハーフリフト時に、後述の差圧検出部117で算出された差圧(Pdif)に基づいて、ハーフリフト時通電時間を算出する。
 通電時間判定部114は、燃料噴射弁通電時間算出部110で算出された燃料噴射弁通電時間が開弁遅れ時間(Topen)以上か、未満かを判定する。切換手段115は、通電時間判定部114の判定結果で燃料噴射弁116に燃料噴射弁通電時間算出部110で算出された通常の通電時間と、ハーフリフト時通電時間算出部113で算出されたハーフリフト時の通電時間とを切換える。差圧検出部117は、燃料圧力100と、推定筒内圧算出部111で算出された推定筒内圧に基づいて、差圧(Pdif)を算出する。
 次に、図2のフローチャートと、図3のブロック図を用いて本実施例の内燃機関の制御装置の動作を説明する。図2では、1サイクルにおける1気筒分の燃料噴射の流れを示す。ステップ200(S200)では、燃料噴射量を算出する。燃料噴射量は吸入空気量101と、エンジン回転数102と、水温103に基づいて算出される(図3の燃料噴射量算出部106)。
 ステップ201(S201)では、燃料分割数(Ndiv)を算出する。燃料分割数は吸入空気量101とエンジン回転数102と水温103に基づいて算出される(図3の燃料分割数算出部107)。ここで、燃料分割数とは、1サイクル当たり各気筒にて何回に分けて燃料を噴射するかを示す。ガソリンエンジンでは通常時1回であるが、PM排出量が多い加速運転時や低水温運転時では複数回となる。
 ステップ202(S202)では、燃料噴射弁通電時間を算出する。燃料噴射弁通電時間は、燃料噴射量算出部106で算出した燃料噴射量と燃料圧力100と燃料分割数算出部107で算出された燃料分割数に基づいて算出される(図3の燃料噴射弁通電時間算出部110)。ここで、燃料分割数算出部107で算出された燃料分割数が3つとすると、3つの燃料噴射弁通電時間が算出される。
 ステップ203(S203)では、燃料噴射開始時期を算出する。燃料噴射開始時期は、吸入空気量101とエンジン回転数102と水温103と燃料分割数算出部107で算出された燃料分割数に基づいて算出される(図3の燃料噴射開始時期算出部108)。ここで、燃料分割数算出部107で算出された燃料分割数が3つとすると、3つの燃料噴射開始時期が算出される。ステップ204(S204)は燃料分割回数分、燃料噴射を繰り返し噴射する処理の始まりを示す。ここで、燃料噴射が燃料分割数(Ndiv)回噴射し終えているときは処理を終了する。
 ステップ205(S205)では、推定筒内圧を算出する。推定筒内圧は燃料噴射開始時点での筒内圧を推定して算出する。筒内圧とは、図1のシリンダ12内部の圧力を指す。推定筒内圧は燃料噴射開始時期算出部108で算出された開始時期と吸入空気量101とエンジン回転数102と水温103と吸気VTC開度104に基づいて算出される(図3の推定筒内圧算出部111)。なお、推定筒内圧算出部111で筒内圧を推定する代わりに、内燃機関11のシリンダ12内の筒内圧力を直接計測し、以下の制御に用いてもよい。
 ステップ206(S206)では、推定筒内圧算出部111で算出された推定筒内圧と燃料圧力100との差圧(Pdif)を算出する(図3の差圧算出部117)。ステップ207(S207)では差圧検出部117で算出された差圧(Pdif)から図4の開弁遅れ時間テーブルを参照し(開弁遅れ時間テーブル更新部109)、開弁遅れ時間(Topen)を算出する(図3の開弁遅れ時間算出部112)。なお、推定筒内圧の代わりに、シリンダ12内の筒内圧を直接計測して差圧を算出してもよい。
 開弁遅れ時間テーブルは予め実験的に算出されECU7に記憶されているが、開弁遅れ時間(Topen)は個々の燃料噴射弁のバラツキにより値は異なるため、後述するステップ252(S252)にて値は気筒毎に順次更新される(図3の開弁遅れ時間テーブル更新部109)。
 ステップ208(S208)では、(S202)にて算出された燃料噴射弁通電時間が開弁遅れ時間(Topen)未満かを判定する(図3の通電時間判定部114)。ここで、燃料噴射弁通電時間が開弁遅れ時間(Topen)未満であれば、燃料噴射弁は完全に開弁しないハーフリフトになると判断し、切換手段115によりハーフリフト処理(S209)に移行し、ハーフリフト時通電時間を算出する。開弁遅れ時間(Topen)以上であれば、燃料噴射弁は完全に開弁するフルリフトになると判断し、切換手段115によりフルリフト処理(S250)に移行し、燃料噴射弁通電開始処理をする(図3の通電時間判定部114)。
 また、本実施例と異なる態様として、ステップ208(S208)で、燃料噴射弁への通電時間が所定値未満の場合で、ハーフリフトになると判断された場合、ハーフリフト処理(S209)と(S210)をせず、燃料噴射弁3(116)からの燃料噴射を禁止する制御にすることもできる。このように、燃料噴射弁への通電時間が所定値未満のハーフリフト時に、燃料噴射弁からの燃料噴射を禁止することで、燃料噴射の精度を保つことが可能となる。
 さらに、ステップ209(S209)のハーフリフト時通電時間算出は、開弁遅れ時間に基づき予め記憶されている基準燃料噴射量と、要求燃料噴射量との比率に基づき、前記燃料噴射弁への通電時間を算出するように構成してもよい。このように構成すれば、ハーフリフト時の要求燃料噴射量と、フルリフト時の基準燃料噴射量の比率でハーフリフト時の通電時間を算出することにより、ハーフリフト時の要求燃料噴射量と通電時間の関係が非線形となることに起因する、通電時間精度の悪化を防ぐことができる。
 ステップ250(S250)では、(S203)にて燃料噴射開始時期算出部108で算出された燃料噴射開始時期と、(S202)にて燃料噴射弁通電時間算出部110で算出された燃料噴射弁通電時間とに基づいてECUから燃料噴射弁に通電し、燃料を噴射する。ステップ251(S251)では、燃料噴射弁への通電開始後、燃料噴射弁が完全に開弁した際に、燃料噴射弁の開弁を開弁検出センサ105にて検出されたか否かを判定する。所定時間内に信号が検出でき、かつ開弁検出センサ105が断線・ショート等により自己診断故障判定されていない正常状態の場合に(S252)に進み、それ以外の場合は(S211)に進む。また、ステップ251(S251)では、開弁検出センサ105が故障している場合に、開弁遅れ時間の記憶を禁止するように構成している。このように構成すると、開弁検出手段故障時に、誤って開弁遅れ時間を記憶することを防止し、ハーフリフト時の燃料噴射精度を保つことができる。
 ステップ252(S252)では、(S250)の燃料噴射弁への通電開始時期と(S251)にて検出された開弁検出時期の差分を開弁遅れ時間(Topen)として算出し、(S206)にて算出した差圧(Pdif)を参照して、開弁遅れ時間テーブル(図4)の開弁遅れ時間(Topen)を更新する(図3の開弁遅れ時間テーブル更新部109)。ステップ211(S211)では、繰り返し処理の先頭(S204)に戻る。
 ここで、図6,7を参照して、開弁遅れ時間(Topen)について図示する。図6はフルリフト時の燃料噴射弁の挙動を示し、図7はハーフリフト時の燃料噴射弁の挙動を示している。燃料噴射弁の通電状態はOFFとONにより通電時間の長短が設定される。燃料噴射弁の開弁、閉弁の弁位置は、通電状態がONとなってから遅れて徐々に開き始め、フルリフト時には完全開弁位置まで到達し、通電がOFFになると遅れて徐々に閉弁する。これに対して、通電時間が短く開弁遅れ時間(Topen)未満のときは、弁位置は完全開弁位置まで到達せず、小さい弁開度で通電時間がOFFとなるため、徐々に閉弁してしまう。このように、ハーフリフト時には弁開度(リフト量)が不十分となる。
 次に、ステップ208(S208)にて、通電時間が開弁遅れ時間(Topen)未満と判定された場合について記述する。ステップ209(S209)では、ハーフリフト時通電時間の算出をする(図3のハーフリフト時通電時間算出部113)。ここでは、燃料噴射弁通電時間と開弁遅れ時間(Topen)から、ハーフリフト指数を以下の式(1)で算出する。
 ハーフリフト指数(Chaf)[%]=燃料噴射弁通電時間 / 開弁遅れ時間(Topen)…(1) 
 ハーフリフト指数(Chaf)は、割合が大きくなるほど燃料噴射弁の開弁割合が大きくなり、100%で完全開弁(フルリフト)になる。一方で、割合が小さくなるほど燃料噴射弁のリフト量が小さくなり、リフト量に比例して燃料流量も少なくなる。よって、ハーフリフト時にステップ202(S202)にて燃料噴射弁がフルリフトすることを想定して算出された燃料噴射弁通電時間で燃料噴射弁を制御すると、実際よりも少ない燃料噴射量となる。そのため、ハーフリフト指数(Chaf)が少ないほど、燃料噴射弁通電時間を増やす必要がある。
 そこで、ハーフリフト時燃料噴射弁通電時間を以下の式(2)で算出する。ハーフリフト時通電時間補正(Phaf)は図5のハーフリフト時通電時間補正テーブルから算出する。なお、ハーフリフト時通電時間補正テーブルは予め実験的に算出され、ECU7に記憶されているものとする。
 ハーフリフト時燃料噴射弁通電時間=
         燃料噴射弁通電時間×ハーフリフト時通電時間補正(Phaf) …(2) 
 ステップ210(S210)では、(S203)にて算出された燃料噴射開始時期と(S209)にて算出されたハーフリフト時燃料噴射弁通電時間とに基づいてECU7から燃料噴射弁に通電し、燃料を噴射する。ステップ211(S211)では、繰り返し処理の先頭(S204)に戻る。
 本実施形態の内燃機関の制御装置は、燃料噴射弁への通電時間が所定値以上の場合に、開弁遅れ時間を燃料圧力センサ4で検出した燃料圧力100と、推定筒内圧算出部111で算出した推定筒内圧との差圧に基づいて記憶しておき、ハーフリフト時通電時間算出部113は、燃料噴射弁への通電時間が所定値未満の場合に、記憶手段に記憶された差圧に基づいて、開弁遅れ時間を算出することができる。このように構成すると、燃料噴射弁のフルリフト時に開弁遅れ時間を記憶する際に、燃料圧力と筒内圧力の差圧に応じて記憶させ、開弁時期の検出が困難なハーフリフト時に、フルリフト時の開弁遅れ時間の記憶内容を燃料圧力と筒内圧力の差圧に応じて参照することができる。開弁遅れ時間は、燃料圧力と筒内圧力の差圧にも依存するため、この制御により、前記の制御より更に精度良く、ハーフリフト時の通電時間制御が可能となる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 例えば、開弁検出センサで燃料噴射弁の開弁状態を検出して制御する例を示したが、閉弁検出センサを用いて制御するように構成してもよいのは勿論である。
 1・・・エアフロメータ、2・・・スロットル弁、3・・・燃料噴射弁、4・・・燃料圧力センサ、5・・・クランク角信号板、6・・・クランク角センサ、7・・・ECU(エンジンコントロールユニット)、8・・・水温センサ、9・・・火花点火装置、10・・・開弁検出センサ、11・・・内燃機関、12・・・シリンダ、13・・・ピストン、14・・・燃料供給通路、15・・・カム角センサ、16・・・吸気VTC、17・・・吸気弁、18・・・カム角信号板、100・・・燃料圧力、101・・・吸入空気量、102・・・エンジン回転数、103・・・水温、104・・・吸気VTC開度、105・・・開弁検出センサ、106・・・燃料噴射量算出部、107・・・燃料分割数算出部、108・・・燃料噴射開始時期算出部、109・・・開弁遅れ時間テーブル更新部、110・・・燃料噴射弁通電時間算出部、111・・・推定筒内圧算出部、112・・・開弁遅れ時間算出部、113・・・ハーフリフト時通電時間算出部、114・・・通電時間判定部、115・・・切換手段、116・・・燃料噴射弁、117・・・差圧算出部

Claims (5)

  1.  内燃機関に燃料を供給する燃料噴射弁と、該燃料噴射弁の通電時間を算出する手段と、前記燃料噴射弁の開弁を検出する手段と、前記燃料噴射弁への通電開始時間と開弁検出時間の差分である開弁遅れ時間を算出かつ記憶する手段とを備える内燃機関の制御装置であって、
     前記燃料噴射弁への通電時間が所定値以上の場合に、前記開弁遅れ時間を算出かつ記憶し、前記燃料噴射弁への通電時間が所定値未満の場合に、前記記憶手段に記憶された前記開弁遅れ時間に基づき、前記燃料噴射弁の通電時間を制御することを特徴とする内燃機関の制御装置。
  2.  前記内燃機関の制御装置は、前記燃料噴射弁の燃料圧力を検出する圧力検出手段と、内燃機関の筒内圧力を検出もしくは推定する手段と、前記燃料圧力と前記筒内圧力の差圧を算出かつ記憶する手段とをさらに備え、
     前記開弁遅れ時間を前記差圧に基づいて算出かつ記憶することを特徴とする請求項1に記載の内燃機関の制御装置。
  3.  前記燃料噴射弁への通電時間が所定値未満の場合に、前記開弁遅れ時間に基づき予め記憶されている基準燃料噴射量と、要求燃料噴射量との比率に基づき、前記燃料噴射弁への通電時間を算出することを特徴とする請求項1又は2に記載の内燃機関の制御装置。
  4.  前記燃料噴射弁への通電時間が所定値未満の場合に、前記燃料噴射弁からの燃料噴射を禁止することを特徴とする請求項1~3のいずれかに記載の内燃機関の制御装置。
     方法。
  5.  前記開弁検出手段が故障している場合、前記開弁遅れ時間の記憶を禁止することを特徴とする請求項1~4のいずれかに記載の内燃機関の制御装置。
PCT/JP2012/081442 2012-01-16 2012-12-05 内燃機関の制御装置 WO2013108498A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280066266.5A CN104040154B (zh) 2012-01-16 2012-12-05 内燃机的控制装置
US14/367,029 US9422884B2 (en) 2012-01-16 2012-12-05 Internal combustion engine control system with injector valve timing control
DE112012005684.1T DE112012005684B4 (de) 2012-01-16 2012-12-05 Verbrennungsmotor-Steuersystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-006453 2012-01-16
JP2012006453A JP5727395B2 (ja) 2012-01-16 2012-01-16 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2013108498A1 true WO2013108498A1 (ja) 2013-07-25

Family

ID=48798935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081442 WO2013108498A1 (ja) 2012-01-16 2012-12-05 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US9422884B2 (ja)
JP (1) JP5727395B2 (ja)
CN (1) CN104040154B (ja)
DE (1) DE112012005684B4 (ja)
WO (1) WO2013108498A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146090A1 (ja) * 2014-03-27 2015-10-01 株式会社デンソー 燃料噴射制御装置
EP3045702A4 (en) * 2013-09-09 2016-09-21 Nissan Motor FUEL INJECTION CONTROL DEVICE FOR MOTOR AND FUEL INJECTION CONTROL METHOD FOR ENGINE

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6169404B2 (ja) * 2013-04-26 2017-07-26 日立オートモティブシステムズ株式会社 電磁弁の制御装置及びそれを用いた内燃機関の制御装置
JP6011447B2 (ja) * 2013-05-10 2016-10-19 トヨタ自動車株式会社 燃料噴射弁の制御装置
JP6130280B2 (ja) * 2013-09-25 2017-05-17 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
JP6270599B2 (ja) * 2014-04-04 2018-01-31 日立オートモティブシステムズ株式会社 内燃機関の制御装置
CN106255815B (zh) 2014-04-25 2020-05-22 日立汽车系统株式会社 电磁式燃料喷射阀的控制装置
JP6330616B2 (ja) * 2014-10-21 2018-05-30 株式会社デンソー 制御装置
JP6328067B2 (ja) * 2015-02-03 2018-05-23 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射制御装置
JP6164244B2 (ja) * 2015-04-23 2017-07-19 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP6455415B2 (ja) * 2015-12-02 2019-01-23 株式会社デンソー 噴射制御装置
JP6658592B2 (ja) * 2017-02-13 2020-03-04 トヨタ自動車株式会社 燃料噴射制御装置
JP6614201B2 (ja) * 2017-05-19 2019-12-04 株式会社デンソー 燃料噴射制御装置
JP6705427B2 (ja) 2017-05-30 2020-06-03 株式会社デンソー 内燃機関の燃料噴射制御装置
JP6981366B2 (ja) 2018-05-25 2021-12-15 株式会社デンソー 燃料噴射弁の制御装置およびその方法
WO2020129631A1 (ja) * 2018-12-19 2020-06-25 日立オートモティブシステムズ株式会社 燃料噴射制御装置
JP7120132B2 (ja) * 2019-04-10 2022-08-17 トヨタ自動車株式会社 内燃機関の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125371A (ja) * 2004-11-01 2006-05-18 Denso Corp 蓄圧式燃料噴射装置
JP2008280911A (ja) * 2007-05-10 2008-11-20 Denso Corp コモンレール式燃料噴射システム
JP2011236770A (ja) * 2010-05-07 2011-11-24 Toyota Motor Corp 内燃機関の燃料噴射制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5924403A (en) * 1997-06-06 1999-07-20 Detroit Diesel Corporation Method for enhanced split injection in internal combustion engines
JP2001152940A (ja) * 1999-11-24 2001-06-05 Mitsubishi Electric Corp 燃料噴射システム
JP2001280189A (ja) 2000-03-30 2001-10-10 Hitachi Ltd 電磁式燃料噴射弁の制御方法
US6450149B1 (en) * 2000-07-13 2002-09-17 Caterpillar Inc. Method and apparatus for controlling overlap of two fuel shots in multi-shot fuel injection events
DE10140550B4 (de) 2001-08-17 2007-08-02 Robert Bosch Gmbh Verfahren zur Funktionsüberwachung schnellschaltender Einspritzventile
JP3972881B2 (ja) * 2003-09-30 2007-09-05 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP2007023836A (ja) * 2005-07-13 2007-02-01 Toyota Motor Corp 内燃機関の空燃比制御装置
JP4716283B2 (ja) * 2006-02-08 2011-07-06 本田技研工業株式会社 内燃機関の空燃比制御装置
CN102094736B (zh) * 2006-09-25 2012-09-05 株式会社日立制作所 燃料喷射阀
DE102009028048A1 (de) 2009-07-28 2011-02-03 Robert Bosch Gmbh Verfahren zum Betreiben eines Magnetventils, insbesondere Einspritzventils einer Kraftstoffeinspritzanlage
JP2011052670A (ja) * 2009-09-04 2011-03-17 Denso Corp 内燃機関の燃料噴射装置
DE102009045309B4 (de) 2009-10-02 2020-02-06 Robert Bosch Gmbh Verfahren und Steuergerät zum Betreiben eines Ventils
JP5372728B2 (ja) 2009-12-25 2013-12-18 日立オートモティブシステムズ株式会社 筒内噴射式内燃機関の制御装置
IT1399312B1 (it) * 2010-04-07 2013-04-16 Magneti Marelli Spa Metodo di controllo di un iniettore elettromagnetico di carburante
CN101881246B (zh) * 2010-06-02 2012-05-30 天津大学 喷油器响应时间的测量装置及测量方法
GB2482494A (en) * 2010-08-03 2012-02-08 Gm Global Tech Operations Inc Method for estimating an hydraulic dwell time between fuel injection pulses which corrects for injection timing delays

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125371A (ja) * 2004-11-01 2006-05-18 Denso Corp 蓄圧式燃料噴射装置
JP2008280911A (ja) * 2007-05-10 2008-11-20 Denso Corp コモンレール式燃料噴射システム
JP2011236770A (ja) * 2010-05-07 2011-11-24 Toyota Motor Corp 内燃機関の燃料噴射制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3045702A4 (en) * 2013-09-09 2016-09-21 Nissan Motor FUEL INJECTION CONTROL DEVICE FOR MOTOR AND FUEL INJECTION CONTROL METHOD FOR ENGINE
WO2015146090A1 (ja) * 2014-03-27 2015-10-01 株式会社デンソー 燃料噴射制御装置
JP2015190318A (ja) * 2014-03-27 2015-11-02 株式会社デンソー 燃料噴射制御装置

Also Published As

Publication number Publication date
CN104040154A (zh) 2014-09-10
CN104040154B (zh) 2016-10-05
DE112012005684B4 (de) 2019-06-13
DE112012005684T5 (de) 2014-10-23
JP5727395B2 (ja) 2015-06-03
US20140366848A1 (en) 2014-12-18
US9422884B2 (en) 2016-08-23
JP2013144971A (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5727395B2 (ja) 内燃機関の制御装置
US8141533B2 (en) Control apparatus and method for internal combustion engine
US8977472B2 (en) Fuel injection control system for direct-injection engine
US20100071659A1 (en) Control apparatus of internal combustion engine
EP1788229A1 (en) Combustion state determination method for internal combustion engine
JP2010084548A (ja) 内燃機関の高圧燃料ポンプ制御装置
RU2682176C2 (ru) Способ (варианты) и система контроля преждевременного зажигания
WO2007095410A3 (en) Engine timing control with intake air pressure sensor
EP2725215A1 (en) Method of operating an internal combustion engine
US10746108B2 (en) Methods and system for reactivating engine cylinders
JP2003148236A (ja) 内燃機関の点火時期制御装置
JP5052547B2 (ja) 内燃機関、内燃機関の制御装置
CN109253008B (zh) 用于操作内燃发动机的方法和控制系统
EP2843218B1 (en) Position based air/fuel ratio calculation in an internal combustion engine
US20170096959A1 (en) Fuel injection control device for internal combustion engine
JP6002797B2 (ja) 内燃機関の制御装置
WO2016046448A1 (en) Method for starting up a dual fuel engine
WO2003038262A1 (fr) Dispositif de detection de pression atmospherique d'un moteur a quatre temps et procede de detection de pression atmospherique
JP5273310B2 (ja) 内燃機関の制御装置
EP3267018A1 (en) Fuel injection valve, control device for fuel injection valve, and control method
JP5267728B2 (ja) 内燃機関の制御装置
JP2010174737A (ja) ディーゼル機関の制御装置
JP2014074337A (ja) 内燃機関の制御装置
JP2012219757A (ja) 内燃機関の制御装置
JP2003097328A (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865922

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14367029

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120120056841

Country of ref document: DE

Ref document number: 112012005684

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865922

Country of ref document: EP

Kind code of ref document: A1