WO2013108497A1 - 自走式電子機器および自走式イオン発生機 - Google Patents

自走式電子機器および自走式イオン発生機 Download PDF

Info

Publication number
WO2013108497A1
WO2013108497A1 PCT/JP2012/081379 JP2012081379W WO2013108497A1 WO 2013108497 A1 WO2013108497 A1 WO 2013108497A1 JP 2012081379 W JP2012081379 W JP 2012081379W WO 2013108497 A1 WO2013108497 A1 WO 2013108497A1
Authority
WO
WIPO (PCT)
Prior art keywords
control unit
air
exhaust port
ion generator
self
Prior art date
Application number
PCT/JP2012/081379
Other languages
English (en)
French (fr)
Inventor
雅倫 坪井
康弘 岡
成典 波戸
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280066518.4A priority Critical patent/CN104040265A/zh
Publication of WO2013108497A1 publication Critical patent/WO2013108497A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/04Arrangements for portability
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L7/00Suction cleaners adapted for additional purposes; Tables with suction openings for cleaning purposes; Containers for cleaning articles by suction; Suction cleaners adapted to cleaning of brushes; Suction cleaners adapted to taking-up liquids
    • A47L7/0061Suction cleaners adapted for additional purposes; Tables with suction openings for cleaning purposes; Containers for cleaning articles by suction; Suction cleaners adapted to cleaning of brushes; Suction cleaners adapted to taking-up liquids adapted for disinfecting or sterilising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/42Mobile autonomous air conditioner, e.g. robots

Definitions

  • the present invention relates to a self-propelled electronic device and a self-propelled ion generator, and more particularly to a self-propelled electronic device that sucks and exhausts air and an ion generator that generates ions.
  • air purifiers for the purpose of sterilization and deodorization are used for indoor air.
  • Various types of air purifiers such as a fan type and an ion type are commercially available. These devices mainly have the function of removing fine particles (pollen, viruses, fungi, etc.) floating in the air and the function of removing odors from pets, etc.
  • ion generators that release ions that decompose and remove fungi and airborne bacteria in the air have been used due to the growing awareness of the living environment.
  • a self-propelled cleaner that travels autonomously for the purpose of collecting dust in a limited space such as a room is used.
  • the conventional air cleaner since the conventional air cleaner is fixedly installed in a room or the like, it takes a considerable amount of time to uniformly sterilize and deodorize the entire room. Further, when there is an article that causes dust or odor in a place away from the position where the air purifier is installed, it is difficult to remove the dust and odor appropriately and quickly. In order to quickly remove such local dust and odors, the user's cause is removed, or a portable air cleaner is transported to a place with dust each time. It was necessary to let them.
  • stationary, desktop, and portable types are used as ion generators. However, in the stationary type or the desktop type, ions are released from one place on a room or a desk, so that it is difficult to sufficiently distribute ions depending on the size of the space.
  • the portable type has the advantage of being portable, but there is a problem that the space where ions are spread is limited to a local space.
  • self-propelled vacuum cleaners have been used in the past, but the purpose is to collect dust and dust.
  • an air cleaning robot that self-runs for the purpose of air cleaning without the purpose of cleaning is disclosed. This removes floating dust, and discharges the clean air exhausted together with ions.
  • the present invention has been made in view of the above circumstances, and is self-propelled that performs sterilization and deodorization by purifying air or generating ions while traveling autonomously. It is an object to provide an electronic device or an ion generator.
  • the present invention includes a housing, a travel control unit that moves the housing by controlling rotation of a wheel disposed in the lower portion of the housing, a suction port that introduces external air into the housing, and the introduction An exhaust port that discharges air to the outside, opening and closing of the suction port and the exhaust port, a blower control unit that controls introduction of air from the suction port and release of air from the exhaust port, and a control unit
  • the self-propelled electron is characterized in that, while the control unit moves the housing by the travel control unit, the air blowing control unit opens the suction port and the exhaust port to release air.
  • Equipment is provided. According to this, since the suction port and the exhaust port are opened by the air blowing control unit and the air is released while the casing is moved, the user does not need to carry the electronic device by himself / herself. Air can be quickly purified with respect to the entire space.
  • the self-propelled electronic device is used as a self-propelled ion generator provided with an ion generator that generates ions in an exhaust path exhausted from an exhaust port.
  • the air inlet control unit opens the suction port and the exhaust port to release the air containing ions, so that the user himself carries the ion generator. It is not necessary, and the ion generator can autonomously travel to quickly and accurately sterilize and deodorize the air in the entire desired space.
  • the control unit moves the housing by opening the suction port and the exhaust port by the air blowing control unit.
  • the air containing ions is discharged from the exhaust port with a strong air blowing output. According to this, since the air containing ions is released from the exhaust port by a strong blast output in a state where the casing is stationary, deodorization and sterilization of the odor generated at the stationary position can be performed quickly and accurately. Can be done.
  • an odor detection unit that detects an odor around the outside of the casing, and when the intensity of the detected odor changes to a predetermined odor determination value or more during movement of the casing, the control is performed.
  • the unit is characterized in that the casing is made stationary by the travel control unit, and the air containing the ions is released by opening the suction port and the exhaust port by the air blowing control unit. According to this, since the odor detected by the odor detection unit is stopped at a position where the intensity of the odor is large and air containing ions is released, the odor generated at that position can be quickly and accurately deodorized. it can.
  • the control unit moves the case by the travel control unit.
  • the air containing ions is emitted with a weaker air blowing output than that in the stationary state.
  • the casing is moved to release air containing ions, so that when a predetermined deodorizing effect occurs at the stationary position. The ion release for the purpose of deodorization is terminated, and the sterilization and deodorization of the entire predetermined space can be continued.
  • the opening amount for opening the suction port and the exhaust port is controlled.
  • the air blowing control unit opens the suction port and the exhaust port to release air containing ions while the casing is moved, so that the user determines the installation position of the ion generator. Even if it is not changed or transported, quick and accurate sterilization, etc., or deodorization can be performed on the air in the entire space that can be traveled by the autonomous running of the ion generator itself.
  • the self-propelled electronic device includes a travel control unit, a blower and an air purifier that purifies the sucked air through a filter, a humidifier that humidifies the sucked air, and exhausts generated ions.
  • the self-propelled ion generator is equipped with a control unit that controls the traveling means for running the casing while detecting obstacles around the casing of the ion generator, and is controlled without any user operation. This means an ion generator of a type in which the unit travels and stops and autonomously travels the casing by judging the traveling direction by itself.
  • the self-propelled type includes autonomously traveling to a target position by a user operation.
  • FIG. 1 shows a schematic block diagram of an embodiment of a self-propelled ion generator as a self-propelled electronic device of the present invention.
  • a self-propelled ion generator (hereinafter also simply referred to as an ion generator) of the present invention mainly includes a control unit 11, a rechargeable battery 12, a remaining battery level detection unit 13, a failure detection unit 14, and an odor detection.
  • traveling control unit 21, wheel 22, ion generation unit 31, air blowing control unit 32, exhaust port 41, suction port 42, input unit 51, storage unit 61, charging table search unit 91, receiving unit 92, charging table connection Part 93 is provided.
  • the charging stand 100 is installed in the predetermined position of the room which discharge
  • the ion generator 1 is supplied with electric power from the charging stand in contact with the charging stand and charges the rechargeable battery 12 of the ion generator 1. Further, the ion generator 1 executes the ion generation function while running away from the charging stand automatically.
  • the self-propelled ion generator 1 of the present invention performs sterilization and the like by sucking ambient air and exhausting the air containing the generated ions while self-propelled on the floor where it is installed. is there.
  • the ion generator 1 of this invention has the function to return to the charging stand 100 autonomously, when the capacity
  • FIG. 8 shows a schematic perspective view of one embodiment of the self-propelled ion generator of the present invention.
  • the ion generator 1 includes a disk-shaped housing 2, and an ion generator 31, a rechargeable battery 12, a controller 11, a blower controller 32, and a plurality of drives are provided inside and outside the housing 2.
  • a wheel 22 including a wheel, a rear wheel, and a front wheel, an exhaust port 41, a suction port 42, a receiving unit 92, and other components shown in FIG. 1 are provided.
  • a portion where the receiving unit 92 and a front wheel (not shown) are arranged is called a front portion
  • a portion where a rear wheel (not shown) is arranged (right side portion in FIG. 8) is called a rear portion. .
  • the casing 2 mainly includes a circular bottom plate and a rear side plate 2b that form a chassis, a front side plate 2c that functions as a movable bumper, and a circular upper portion that covers a top portion of the rear side plate 2b and the front side plate 2c. It is comprised from the cover 2d.
  • the suction port 42 is formed slightly rearward of the center of the upper cover 2d, and the exhaust port 41 is formed slightly forward of the center of the upper cover 2d.
  • the suction port 42 and the exhaust port 41 are provided with a movable suction port lid 9 and an exhaust port lid in order to prevent dust and foreign matter from entering from the suction port 42 and the exhaust port 41 when charging is not performed. Can be opened and closed.
  • the ion generator 1 turns in a stationary state by a pair of drive wheels rotating forward in the same direction, moving forward, moving backward in the same direction, moving backward, and rotating in the opposite directions.
  • the driving wheel stops, and the pair of driving wheels rotate in opposite directions to change their directions.
  • the ion generator 1 self-travels while avoiding an obstruction in the whole installation place or the whole desired range.
  • the ion generator 1 detects a signal emitted from the transmission unit 102 of the charging base 100 by the reception unit 92 to recognize the direction in which the charging base 100 is present. When the remaining charge amount decreases, or when the set time of the set automatic operation timer elapses, it automatically proceeds almost linearly in the direction of the charging stand and returns to the charging stand 100. Further, in the present invention, when the signal from the charging stand 100 cannot be detected when returning, the ion generator 1 is temporarily stopped and rotated once (360 ° rotation) on the spot. Whether or not a signal from 100 is detected may be detected, and the direction in which the charging stand is present may be detected. When a signal is detected, it recognizes that there exists the charging stand 100 in the front direction of the receiving part when it is detected, and it travels linearly toward the charging stand. However, if there are obstacles, move to the charging stand while avoiding them.
  • the control unit 11 in FIG. 1 is a part that controls the operation of each component of the ion generator 1, and is mainly realized by a microcomputer including a CPU, a ROM, a RAM, an I / O controller, a timer, and the like.
  • the CPU organically operates each hardware based on a control program stored in advance in a ROM or the like, and executes the ion generation function, the traveling function, and the like of the present invention.
  • the rechargeable battery 12 is a part that supplies power to each functional element of the ion generator 1, and is a part that mainly supplies power for performing ion generation control and travel control.
  • a lithium ion battery, a nickel metal hydride battery, a Ni—Cd battery, or the like is used.
  • the rechargeable battery 12 is charged in a state where the ion generator 1 and the charging stand 100 are connected. Connection between the ion generator 1 and the charging stand 100 is performed by bringing exposed charging terminals that are the connecting portions (93, 101) into contact with each other.
  • the remaining battery level detection unit 13 is a part that detects the remaining capacity (remaining battery level) of the rechargeable battery. For example, the remaining battery level detection unit 13 outputs a numerical value representing the current remaining capacity as a percentage with respect to the fully charged state. As will be described later, based on the remaining battery level (%) detected here, it is determined whether to return to the charging stand 100 or to shift to a sleep mode where the operation stops and the operation ends. .
  • the obstacle detection unit 14 is a part that detects that the ion generator 1 is in contact with an obstacle such as an indoor desk or chair while the ion generator 1 is traveling. It is detected by a contact sensor consisting of a switch. Therefore, a contact sensor is disposed corresponding to the front portion of the front side plate 2 c of the housing 2.
  • the CPU recognizes the position where the obstacle exists based on the signal output from the obstacle detection unit 14. Based on the position information of the recognized obstacle, a direction to travel next is determined while avoiding the obstacle.
  • the odor detection unit 15 is a part that detects an odor around the outside of the housing 2.
  • the odor detection unit 15 for example, a semiconductor type odor sensor or a contact combustion type odor sensor which has been conventionally used may be used.
  • the odor sensor 15 is attached to the housing 2 in a state of being exposed to the outside from the side plate 2b or 2c of the housing 2.
  • the control unit 11 acquires the output signal, thereby generating odor information 62 and storing it in the storage unit 61.
  • the ion generator 31 is a part that is accommodated in the housing and generates ions. Specifically, water molecules in the air are ionized by discharge, and H + (H 2 O) m (m is an arbitrary natural number) as positive ions and O 2 ⁇ (H 2 O) n (n is a negative ion). Any natural number).
  • H + (H 2 O) m m is an arbitrary natural number
  • O 2 ⁇ (H 2 O) n a negative ion. Any natural number).
  • An example of the ion generator 31 will be described with reference to FIG.
  • the figure is a perspective view of the ion generator 31.
  • the ion generator 31 has a plurality of ion emitters 31a and 31b facing the exhaust path.
  • the ion emission parts 31a and 31b are formed of, for example, circular openings in a part of the resinous casing of the ion generation part 31, and the following electrodes for generating ions correspond to the openings. Is provided. That is, a common counter electrode 33 and needle-like discharge electrodes 34a and 34b are provided in the respective ion emission portions 31a and 31b.
  • the discharge electrodes 34a and 34b are needle electrodes having pointed tips, and the counter electrode 33 is a common grounded electrode opened so as to surround the discharge electrodes 34a and 34b.
  • the ion generator 31 has a high-voltage electricity generation circuit built in the main body portion 35, and operates by being supplied with electric power from the battery (rechargeable battery) 12 via two terminals 36 provided on one side surface.
  • the high-voltage electricity generation circuit of the main body portion 35 supplies a positive or negative high voltage having an AC waveform or an impulse waveform to the discharge electrodes 34a and 34b.
  • the ion generator 31 has a plurality of discharge electrodes. For example, a high voltage having a positive impulse waveform is applied to the discharge electrode 34a. Thereby, ions generated by ionization are combined with moisture in the air to generate positive cluster ions mainly composed of H + (H 2 O) m described above. A high voltage having a negative impulse waveform is applied to the other discharge electrode 34b, and ions generated by ionization combine with moisture in the air to form negative cluster ions mainly composed of O 2 ⁇ (H 2 O) n. Generated.
  • the ions to be generated are not particularly limited, and examples thereof include ions capable of purifying air, ions having a skin beautifying effect and an effect of suppressing bacterial growth on the skin surface, and the like.
  • Plasma cluster ions registered trademark
  • the ion generator 31 is provided as a small rectangular parallelepiped ion generator, for example.
  • the air blowing control unit 32 is a part that controls the opening and closing of the suction port 42 and the exhaust port 41, the introduction of air from the suction port, and the release of air including ions from the exhaust port. That is, it is a part that takes outside air into the apparatus from the suction port 42, passes the taken-in air through a predetermined flow path inside the apparatus to the direction of the ion generating unit 31, and sends it to the direction of the exhaust port 41.
  • the blower control unit 32 mainly includes a blower fan, a fan rotation mechanism, a suction port lid, an exhaust port lid, a suction port, and an exhaust port opening / closing control unit. The ions generated by the ion generating unit 31 are sent to the exhaust port 41 along with the air flowing through the inside of the apparatus by the air blowing control unit 32 and blown out from the exhaust port 41 to the outside.
  • the exhaust port 41 is an opening that is provided, for example, at a position on the upper surface of the housing as shown in FIG. 1 and discharges air containing ions generated by the ion generator to the outside. Moreover, you may make it discharge
  • the suction port 42 is an opening for introducing external air into the housing, and is provided at a position on the upper surface of the housing 2 as shown in FIG. FIG. 8 shows the exhaust port 41 and the suction port 42.
  • the intake of external air through the suction port 42 and the exhaust of air containing ions through the exhaust port 41 are mainly performed by rotating the blower fan of the blow control unit 32.
  • a lid may be provided at each of the suction port and the exhaust port, and these lids may be opened and closed by the opening / closing control unit in accordance with the start and stop of the blower fan. That is, when ions are released, the lids of the suction port and the exhaust port are opened, and when ions are not released, the lids of the suction port and the exhaust port are closed. By performing such opening / closing control, it is possible to prevent dust and foreign matter from entering from the suction port and the exhaust port when ions are not released.
  • ions are generated and released into the room when necessary, so that the ions are sterilized and deodorized in the room. Or deodorization can be performed accurately.
  • the travel control unit 21 is a part that controls the autonomous travel of the ion generator 1, and is a part that automatically moves the housing by controlling the rotation of the wheels 22 arranged mainly in the lower part of the housing. Driving the wheels causes the ion generator 1 to perform operations such as forward movement, backward movement, rotation, and stationary.
  • the input unit 51 is a part where the user inputs an instruction for the operation of the ion generator 1, and is provided on the surface of the casing of the ion generator 1 as an operation panel or an operation button.
  • a remote control unit is provided separately from the cleaner body, and by pressing an operation button provided on the remote control unit, infrared rays or radio wave signals are transmitted, and operation instructions are input by wireless communication. May be.
  • a power switch (power sw) 52, a start switch (start sw) 53, a main power switch (main sw) 54, a charge request switch 55, and other switches are provided.
  • the user receives an instruction from the remote controller. Based on this instruction content, it is sent to the travel control section 21 via the control section 11, and travel control in the direction instructed by the user, travel stop control, ion generation amount control, and the like are executed.
  • FIG. 2 is a schematic explanatory diagram of the state transition of the operation mode of the present invention.
  • four modes and states of a stop state 70, a sleep mode 74, a standby mode 73, and an operation mode 72 are shown.
  • the driving mode 72 is provided with a traveling mode 75 and a stationary mode 76.
  • the operation modes are not limited to these, and other modes may be provided.
  • the main power switch (main sw) 54 is a switch for turning on (ON) or turning off (OFF) the power supply to the entire main body of the ion generator 1.
  • main sw 54 When the main sw 54 is OFF, the ion generator 1 is in a complete stop state 70 and does not accept all operation inputs from the input unit 51 other than the ON input of the main sw 54.
  • main sw 54 when the main sw 54 is ON, only the operation input by turning on or off the power supply sw 52 is accepted, and the operation input of the other input unit 51 is not accepted.
  • the case where the main sw 54 is in the ON state and the power source sw 52 is in the OFF state is referred to as a sleep mode 74.
  • the sleep mode 74 is a state in which at least an on (ON) operation of the power supply sw52 is accepted, and when the power supply sw52 is turned on (ON) by the user in the sleep mode 74, the standby mode 73 is entered.
  • the power switch (power supply sw) 52 is a switch for enabling the main functions of the ion generator 1 to be in an operable state. When turned on (ON), at least the control unit 11 receives power from the rechargeable battery 12. The power is supplied and the CPU is operating (standby state).
  • the standby mode 73 is a state in which an ion generation function and a traveling function can be executed if there is an instruction input by the user. For example, in the standby mode 73, the start switch (start sw) 53 is turned on (ON) by the user. When operated, the operation mode 72 is entered.
  • the start switch (start sw) 53 is a switch for inputting start and stop of the operation of the ion generator 1, and specifically, a switch for executing an ion generation function and a movement function.
  • start sw53 is turned on (ON), for example, the traveling control unit 21 of the ion generator 1 starts autonomous traveling, and the ion generating unit 31 starts generating ions.
  • start sw53 is input during execution of ion emission, this means that an input operation of OFF (OFF) has been performed, and the control unit 11 stops the ion emission and movement functions.
  • OFF OFF
  • ions are released in a state where they are separated from the charging stand, a process of returning to the charging stand 100 may be performed while the ions are released.
  • the operation mode 72 is a mode for mainly executing an ion generation function and a travel function, and continues ion generation while traveling in the room as long as the remaining amount of the rechargeable battery 12 remains a predetermined value or more as will be described later. Further, when the remaining amount of the rechargeable battery is reduced, the direction of the charging base is recognized by receiving light from the charging base, and an operation of automatically returning to the charging base is performed.
  • the driving mode 72 includes the traveling mode 75 and the stationary mode 76.
  • the traveling mode 75 is a mode in which autonomous traveling is performed
  • the stationary mode 76 is a mode in which autonomous traveling is not performed and the vehicle is stationary at the current position.
  • the stationary mode 76 is mainly set when the odor is strong at the current position.
  • the stationary mode 76 is entered, the odor at that position is strong, and in order to eliminate the smell, the blast output is increased by stopping at that position.
  • the smell at the stationary position is quickly erased.
  • the mode returns to the running mode and autonomous running is started.
  • autonomous driving it is considered that there is little need for deodorization as the main purpose, so it is only necessary to reduce the blowing output to some extent and release air containing ions.
  • the charge request switch 55 is a switch for the user to input a charge request. For example, when the user notices that the traveling operation has slowed while the ion generator 1 is traveling autonomously and presses the charge request switch 55 to perform charging, the ion generator 1 Ion generation is stopped, and the process of returning to the charging stand (return process) is performed.
  • the storage unit 61 is a part for storing information and programs necessary for realizing various functions of the ion generator 1, and a storage element such as a semiconductor element such as RAM or ROM, a hard disk, or a flash memory is used.
  • the storage unit 61 mainly stores odor information 62, battery information 63, blower output information 64, opening / closing information 65, current position information 66, operation mode information 71, and the like.
  • the odor information 62 includes information indicating the intensity of the odor detected by the odor detection unit (odor sensor) 15.
  • the odor information 62 stores an odor determination value as a determination value serving as a reference for determining the output of air blowing. For example, if the detected current odor information (smell intensity) changes to a predetermined odor determination value or more during movement of the housing, a strong air blow is output to quickly remove the odor. To do. At this time, the casing is stopped by the travel control unit, and the suction port and the exhaust port are opened by the air blowing control unit, and air containing ions is released with a strong air blowing output.
  • the detected current odor information (odor intensity) is smaller than a predetermined odor determination value while the housing is stationary, it is determined that the odor has been extinguished, and the blower output is weakened. To. In this case, air including ions is released with a weaker blast output than in the stationary state with the casing moved by the travel control unit and the suction port and the exhaust port opened by the blast control unit.
  • the battery information 63 includes a remaining battery level (%) detected by the remaining battery level detection unit 13 and a determination value (first to be described later) to be compared with the remaining battery level detected to determine the return to the charging stand.
  • the remaining amount threshold value P1, the second remaining amount threshold value P2) and the like are included.
  • the ventilation output information 64 is information for setting the output of the ventilation generated by the ventilation control unit 32. For example, when “100%” is set, the maximum output wind is output from the exhaust port 41. .
  • the setting of the blast output may be changed based on the numerical value of the odor information 62 acquired by the odor sensor 15. For example, when the odor information acquired by the odor sensor changes to a predetermined value or more, set the maximum output (strong: 100%) in a state where the running is stopped and stopped, and air containing ions is output. To do.
  • the air blowing output is set low and air containing ions is output.
  • the opening / closing information 65 is information indicating an open state or a closed state of the suction port 42 and the exhaust port 41, and the air blowing control unit 32 performs opening / closing control of the suction port 42 and the exhaust port 41 based on this information.
  • the current position information 66 is information indicating the position where the ion generator 1 is currently present, and is relative coordinate information indicating where in the room. For example, the coordinate value of the position connected to the charging stand or the coordinate value indicating the current position of the ion generator. Further, based on this information 63, history information (travel map) actually traveled may be generated. The travel map can be used to determine the next and subsequent travel routes.
  • the ion generator 1 performs the process of returning to the charging stand 100 by itself, but when the control unit 11 determines that it is necessary to return to the state in contact with the charging stand, the feedback process is performed. To do.
  • the control unit 11 is stopped by the traveling control unit 21 and then makes one rotation in a stationary state.
  • the charging stand searching unit 91 performs charging.
  • the feedback process of moving toward the direction in which the charging pedestal exists is executed in a state where air containing ions is discharged from the exhaust port.
  • the case where it is determined that it is necessary to return to the state where it is in contact with the charging stand is, for example, a case where the remaining battery level of the rechargeable battery 12 has decreased, or a case where the charging request switch 55 is pushed down by the user.
  • the user may give a feedback instruction using the remote control.
  • the remaining battery level detected by the remaining battery level detection unit 13 is equal to or less than the first remaining threshold value P1 stored as the battery information 62, it is determined that it is necessary to return to the charging stand. And execute the feedback process.
  • the charging request switch 55 is pushed down during automatic traveling, it is determined that it is necessary to return to the charging stand, and a feedback process is executed.
  • the control unit 11 stops the ion generation function and the movement control, Stop at the current position.
  • the ion generator 1 of the present invention may have other necessary configurations and functions in addition to the above configuration.
  • a timer switch that sets the time for executing the sterilization and deodorization processing is provided, and when a timer switch is turned on (ON), counting of a preset time (for example, 60 minutes) is started.
  • the process of generating ions may be executed until the set time elapses. After the set time elapses, processing such as sterilization due to ion generation may be stopped and automatically returned to the charging stand.
  • a charging stand searching unit 91, a receiving unit 92, and a charging stand connecting unit 93 are configured to detect the position of the charging stand 100 and to receive power from the charging stand.
  • the charging stand searching unit 91 is a part that searches for the position of the charging stand, and detects in which direction the position where the charging stand 100 exists when the ion generator 1 is located away from the charging stand. Part.
  • an autonomous traveling process by the traveling control unit 21 and a light detection process by the receiving unit 92 are used.
  • the charging stand searching unit 91 recognizes that the charging stand exists in the forward direction of the receiving unit 92.
  • the charging stand 100 is rotated once while being stationary at the current position, and is emitted from the charging stand 100 by the receiving unit 92. Check whether the detected light is detected.
  • the receiving unit 92 is a part that detects a transmission signal transmitted from the transmitting unit 102 of the charging stand 100.
  • a signal transmitted from the charging stand 100 for example, light, for example, visible light, infrared light, ultrasonic waves, or the like can be used, but a beacon (radio beacon) is generally used.
  • the charging stand connection unit 93 is a terminal for inputting power for charging the rechargeable battery 12. By making the charging stand connecting portion 93 and the connecting portion 101 of the charging stand 100 physically contact, the power supplied from the power supply portion 104 of the charging stand 100 is supplied to the rechargeable battery 12 and charged.
  • the charging stand connecting portion 93 is formed in a state of being exposed on the side surface of the main body of the ion generator 1 in order to make contact with the connecting portion 101.
  • a charging stand 100 mainly includes a connection unit 101, a transmission unit 102, a control unit 103, and a power supply unit 104, and the AC power supply power from an outlet of a commercial power source 105 disposed on an indoor wall or the like. Receive supply.
  • the power supply unit 104 is a part that receives AC power from the commercial power source 105, converts it into DC power that can charge the ion generator 1, and supplies the DC power to the connection unit 101.
  • the transmission unit 102 transmits signals such as radio waves and light, and a beacon is used to provide directivity.
  • the receiving unit 92 When light is used as a transmission signal, for example, since infrared rays have a directivity that spreads to a certain extent and travels, when the ion generator 1 enters the range, the receiving unit 92 causes infrared rays to be transmitted. Can be detected.
  • the control unit 103 of the charging stand 100 is a part that realizes various functions of the charging stand, and mainly performs light emission processing and charging power supply control.
  • the control unit 103 can be realized by a microcomputer including a CPU, a ROM, a RAM, an I / O controller, a timer, and the like. In the following embodiments, infrared rays are emitted from the transmission unit 102 of the charging stand.
  • FIG. 3 is an explanatory diagram showing the relationship between the operation mode shown in FIG. 2, the three switches (52, 53, 54), and the opening / closing states of the suction port 42 and the exhaust port 41.
  • the stop state 70 as shown in FIG. 2, all three switches are in the OFF state, both the suction port 42 and the exhaust port 41 are closed, and the ion generator is in a stationary state.
  • the sleep mode 74 only the main power supply sw54 is in the ON state, the other two switches (52, 53) are in the OFF state, and both the suction port 42 and the exhaust port 41 are in the closed state.
  • the generator is stationary.
  • the main power supply sw54 and the power supply sw52 are in the ON state
  • the start switch (start sw) 53 is in the OFF state
  • both the suction port 42 and the exhaust port 41 are in the closed state.
  • the machine is stationary.
  • the traveling mode 75 In the operation mode 72, in the traveling mode 75, all three switches are in the ON state, both the suction port and the exhaust port are in the open state, and the ion generator is discharging ions while traveling. It is. That is, while the casing is moved by the traveling control unit, the traveling mode 75 is set, and the control unit opens the suction port and the exhaust port by the air blowing control unit so as to release air containing ions. To. In the operation mode 72, in the stationary mode 76, all the three switches are in the ON state, and both the suction port and the exhaust port are in the open state, but the ion generator releases the ions in the stationary state. It is in a state.
  • the stationary mode 76 is set while the housing is stationary, and the control unit opens the suction port and the exhaust port by the air blowing control unit, and the housing
  • the air containing ions is discharged from the discharge port with a stronger blowing output than when moving the air.
  • the user can move the ion generator to a target position, and can stop the ion generator to discharge ions.
  • the three switches, the suction port, and the exhaust port are in the same state as in the traveling mode 75, and return to the charging stand while discharging ions.
  • FIG. 4 shows a flowchart of one embodiment of the schematic operation of the self-propelled ion generator of the present invention.
  • the ion generator 1 is in a state (stop state 70) connected to the charging stand 100 with the main power switch being OFF.
  • step S1 it is assumed that the user turns on (ON) the main power switch (main sw) 54 of the input unit 51.
  • power is supplied to the control unit 11 and the mode shifts to the sleep mode 74 as shown in FIG.
  • step S2 information is set so as to correspond to the sleep mode 74.
  • the operation mode information 71 is set to the sleep mode 74
  • the current position information 63 is set to the position of the charging stand.
  • step S3 the control unit 11 checks whether or not the power supply sw52 is turned on (ON). If there is an ON input, the process proceeds to step S4, and if not, step S3 is looped.
  • step S4 since the power supply sw is turned on (ON), as shown in FIG. 2, the process shifts to the standby mode 73 and the standby mode is set. For example, the operation mode information 71 is set to the standby mode 73, and it is checked whether or not the start switch (start sw) 53 is turned on. If it is detected in step S5 that the start sw53 is turned on (ON), the process proceeds to step S6, and if not, step S5 is looped.
  • step S6 since the start sw53 is input ON, as shown in FIG. 2, the operation mode 72 is set and the operation mode is set.
  • step S7 it is checked whether or not there is an input for shifting to the sleep mode by the user. Specifically, as shown in FIG. 2, it is checked whether or not the power source sw52 is turned off (OFF).
  • step S8 it is checked whether or not there is an input for instructing to shift to the still mode 76 by the user.
  • a dedicated switch not shown in FIG. 1 may be provided, and when this switch is depressed, the mode may be shifted to the still mode 76.
  • the still mode is executed by a still mode instruction by a user's remote control operation. If there is an instruction input, the process proceeds to step S9, and if not, the process proceeds to step S10. In step S9, since the user inputs an instruction to shift to the still mode, the operation mode is set to the still mode 76, and then the process proceeds to step S12.
  • step S10 since there is no instruction input for shifting to the stationary mode, the operation mode is set to the traveling mode 75.
  • step S11 an automatic travel process is started. That is, the ion generator 1 drives the wheel 22 by the traveling control unit 21, leaves the charging stand 100, and starts traveling based on a predetermined route.
  • step S12 the control unit 11 starts an operation process and an ion generation process.
  • the ion generation part 31 is mainly started, ion generation control is performed, and also traveling control is performed. Details of the ion generation processing and the like will be described with reference to FIGS. 5, 6, and 7 to be described later.
  • step S13 after the ion generation process or the like is performed, it is checked whether or not the operation mode information 71 has changed. Specifically, whether or not the operation mode information 71 has changed from one of the two modes (75, 76) of the operation modes 72 to the standby mode 73 or the sleep mode 74 during operation. To check. If the operation mode has changed, the process proceeds to step S2 or S4 based on the content of the operation mode information 71 after the transition. That is, when the operation mode information 71 is the sleep mode 74, the process proceeds to step S2, and when the operation mode information 71 is the standby mode 73, the process proceeds to step S4. On the other hand, when the operation mode information 71 remains in any one of the operation modes 72 (75, 76), the process returns to step S7.
  • FIG. 5 shows a detailed flowchart of the operation process and the ion generation process in step S12.
  • the control unit 11 causes the ventilation control unit 21 to open the exhaust port 41 and the suction port 42.
  • air is sucked from the suction port 42, passed through the vicinity of the discharge port of the ions discharged from the ion generation unit 31, and then air containing ions from the exhaust port 32.
  • the process which discharges.
  • the obstacle detection unit 14 detects an obstacle such as a desk, the process of moving while changing the traveling direction is repeated.
  • step S32 it is checked whether or not the start sw53 is turned off (OFF). If there is an OFF input, the process proceeds to step S33, and if not, the process proceeds to step S36.
  • step S33 the ion generation process is stopped, and in step S34, the exhaust port 41 and the suction port 42 are closed. Further, since the start sw53 has been turned OFF, the operation mode information 71 is set to shift to the standby mode 73 in step S35. Then, it progresses to step S13 and returns to step S4 of standby mode 73 by determination of step S13.
  • step S36 it is checked whether or not the charge sw55 is input (ON).
  • the charging sw 55 is input to ON, it means that the user has requested charging. If there is an ON input, the process proceeds to step S37, and if not, the process proceeds to step S39.
  • step S37 based on the current position information 66, the ion generator 1 checks whether or not it is currently at the position of the charging stand 100. That is, it is checked whether or not the charging base 100 remains connected. When in the position of the charging stand 100, the process returns to step S32. That is, since the ion generator 1 remains connected to the charging stand 100, it is charged as it is.
  • step S38 a return process to the charging stand 100 is performed. That is, when the ion generator 1 is at a position different from the position of the charging stand, a charging request is input by the user, and therefore processing for returning to the charging stand 100 is performed in order to charge the rechargeable battery. Until returning to the charging stand 100, as shown in FIG. 3, ions are released in the travel mode 75 state. After this processing, the process proceeds to step S101 in FIG.
  • FIG. 7 shows a detailed flowchart of an embodiment of the return processing to the charging stand in steps S38 and S40.
  • the ion generator 1 performs rotation operation control in a state where it is stationary at the current position.
  • the traveling control unit 21 causes the pair of driving wheels of the wheels 22 to rotate reversely with each other and operates the wheels so as to rotate on the spot.
  • the rotation operation control the rotation is performed once (360 ° rotation) at a predetermined rotation speed with the forward direction to which the current receiving unit 92 is directed as the first reference.
  • step S ⁇ b> 72 during the rotation operation, the receiving unit 92 checks whether or not a signal by the beacon from the charging stand 100 has been received. If a signal is received, the process proceeds to step S73. If no reception is detected, the process proceeds to step S74. When the signal is received by the receiving unit 92, the direction in which the charging stand 100 is present is recognized in the receiving state during rotation.
  • step S73 the rotation is stopped, and a linear traveling process is performed toward the recognized charging base 100.
  • the traveling process is performed so as to return to the charging stand as linearly as possible.
  • the obstacle detection unit 14 detects the obstacle and moves while adjusting the travel route. Further, when there is an obstacle, the straight route may be deviated. Therefore, it is preferable to continue the light reception detection process by the receiving unit 92 even during movement.
  • step S74 if a signal has not been detected yet, it is checked whether or not one rotation (360 ° rotation) has been completed. If it has made one revolution, the process proceeds to step S75, and if it has not made one revolution yet, the process returns to step S71.
  • step S75 the vehicle has already made one rotation in a stationary state, but no signal from the charging stand 100 has been detected. Specifically, since the direction of the charging stand could not be detected at the currently stationary position, processing for determining the next traveling direction is performed. The determination of the traveling direction may be performed based on, for example, a traveling map stored as history information. After determining the traveling direction, the process proceeds to step S101 in FIG. The above is the description of one embodiment of the return processing to the charging stand in FIG. Note that similar feedback processing is also executed in step S40 described later.
  • step S36 of FIG. 5 when there is no ON input of the charge sw55, the process proceeds to step S39, and the remaining battery level of the rechargeable battery is checked.
  • the control unit 11 causes the remaining battery capacity detection unit 13 to calculate the remaining capacity of the rechargeable battery 12. It is checked whether or not the current battery remaining amount is equal to or less than a predetermined first remaining amount threshold value P1 (%) of the battery information 63 stored in the storage unit 61 in advance.
  • a numerical value that is a measure of the remaining amount sufficient to return to the charging stand 100 is set, for example, a numerical value such as 19% is set. However, it is not limited to this value. If the remaining battery charge is equal to or less than P1 (%), the process proceeds to step S40, and if not, the process proceeds to step S41.
  • step S41 it is checked whether or not there is an input indicating the end of ion generation by the user. For example, it is checked whether an OFF input operation of the start sw53 has been performed. If there is an input to end ion generation, the process proceeds to step S40, and if not, the process proceeds to step S42.
  • step S40 when the remaining battery level is low, or when the user inputs an end of ion generation, a return process to the charging stand is performed as in step S38. Thereafter, the process proceeds to step S101 in FIG.
  • step S ⁇ b> 42 the odor information 62 is acquired by the odor detection unit (odor sensor) 15 and stored in the storage unit 61.
  • the previously acquired odor information is also stored as history information.
  • This history information can be used in the next traveling control. For example, when traveling next time, the history information of the position where the odor was strong may be read, and the position may be preferentially taken to the position where the odor was strong.
  • step S43 it is checked whether or not the acquired odor information 62 has changed to a numerical value greater than or equal to a predetermined odor determination value.
  • a predetermined odor determination value In particular, when the previously acquired odor information 62 is smaller than the odor determination value, it is checked whether or not the odor information 62 newly acquired this time is larger than the odor determination value.
  • the default value may be fixedly set in advance for the odor determination value, the user may be able to change the setting according to his / her preference because there are individual differences in how the odor is felt.
  • step S44 since it is determined that the odor at the position where the current odor information 62 is acquired is strong, the operation mode is shifted to the stationary mode 76 in order to focus on deodorization at that position.
  • the travel control unit 21 performs a process of keeping the suction port 42 and the exhaust port 41 open. In this case, the ion generator 1 releases air containing ions in a stationary state.
  • an odor monitoring timer is started.
  • a timer that counts one minute may be used.
  • the timer value is not limited to one minute, and other time may be set.
  • the time when the smell of the intensity is expected to disappear may be automatically set in correspondence with the intensity of the acquired odor information. That is, when the odor intensity is large, a long time is set as the timer value, and when it is small, a short time is set.
  • step S46 the blower output information 64 is set to the maximum output value (strong: 100%) in order to quickly erase the odor.
  • step S ⁇ b> 47 the air blowing control unit 32 outputs air containing ions based on the set air blowing output information 64. That is, the blast output of the blower fan is maximized and strong air is exhausted from the exhaust port 41. Accordingly, it is possible to deodorize more quickly and appropriately by blowing a large amount of air containing ions at a position where a strong odor is generated. Such powerful air blowing is continued for the time set in the odor monitoring timer unless a predetermined deodorizing effect is exhibited.
  • a display or warning sound indicating that the deodorizing process is being performed may be output. Thereafter, the process returns to step S32.
  • step S48 it is checked whether or not the time set as the odor monitoring timer has elapsed. For example, when the set 1 minute has elapsed, the process proceeds to step S49, and when it has not yet elapsed, the process returns to step S32.
  • step S49 it is checked whether or not the currently acquired odor information 62 is equal to or greater than the same predetermined value as in step S43. If it is greater than or equal to the predetermined value, the process returns to step S32 while continuing the strong wind ion output process. At this time, the odor monitoring timer may be set again.
  • the odor monitoring timer (1 minute) has elapsed, or even if the odor monitoring timer is set many times, if the acquired odor information is greater than or equal to the predetermined value, the odor will not disappear even if the deodorizing process is performed.
  • a warning display or a warning sound may be output.
  • a separate deodorization timer is provided, and the elapsed time since the first stop is counted. If the deodorization effect does not appear even if the predetermined time has elapsed, the stationary position where the deodorization process was performed is stored. In addition, the process may proceed to step S50 to temporarily stop the deodorizing process and return to the traveling mode.
  • step S50 the operation mode is set to shift to the travel mode 75.
  • the travel state is set to travel from the stationary state with the suction port 42 and the exhaust port 41 being opened. That is, the ion generator 1 is moved toward a predetermined direction by the traveling control unit 21 based on a traveling map or the like.
  • step S51 a process for reducing the blower output is performed.
  • the air blow output information 64 set to be strong (100%) in step S46 is set to a medium air blow output (for example, medium: 70%).
  • the ventilation control part 32 controls a ventilation fan so that air volume may be reduced to about 70%, and discharges the air containing an ion.
  • the numerical value of this blower output is not limited to 70%, and the setting may be changed by the user or the like. For example, it may be 50%, or 20% if it is a small space or a space with little air pollution. That is, the opening amount for opening the suction port and the exhaust port may be appropriately controlled.
  • step S51 the process returns to step S32.
  • step S42 to step S51 mainly by performing the processing from step S42 to step S51, in a strong odor position, a quick and accurate deodorizing process can be executed in a state of being stationary at the position, and the odor is not so strong. In this case, air containing appropriate ions can be released to the entire room while autonomously traveling.
  • step S101 of FIG. 6 in order to return to the charging stand 100, a charging stand searching process and travel feedback control are performed. Specifically, a process of moving toward a certain direction of the charging base detected by the receiving unit 92 is performed, and at the same time, a detection process of a signal (beacon) transmitted from the charging base 100 is continuously performed. Thereby, the ion generator 1 will move gradually toward the direction of a charging stand.
  • step S102 it is checked whether or not the start sw53 is turned off (OFF) by the user. If the start sw53 is turned OFF, the process proceeds to step S103, and if not, the process proceeds to step S106.
  • step S103 since the user inputs OFF of start sw53, the ion generation processing is stopped.
  • step S104 the exhaust port 41 and the suction port 42 are closed.
  • step S105 the operation mode information 71 is stored in the standby mode. 73 is set to shift. Thereafter, the process returns to step S13 in FIG.
  • step S106 it is checked whether or not the ion generator 1 has returned to the charging stand 100. That is, it is checked whether or not the current position information 66 is the position of the charging stand 100. If it is determined that the battery has returned to the charging stand 100, the process proceeds to step S107, and if not, the process proceeds to step S110.
  • step S107 the ion generation process is stopped as in step S103, the exhaust port 41 and the suction port 42 are closed in step S108, and the operation mode information 71 is set to shift to the standby mode 73 in step S109. . Thereafter, the process returns to step S13 in FIG.
  • step S110 it is checked whether or not the remaining battery level is equal to or less than the second remaining threshold value P2 of the battery information stored in advance in the storage unit 61.
  • P2 9 (%) is set (P2 ⁇ P1).
  • P2 is a numerical value considered that there is a possibility that the battery cannot be returned to the charging stand when the remaining battery level is further reduced.
  • step S110 if the remaining battery level is equal to or less than P2, the process proceeds to step S111. If not, the process returns to step S101 to continue the process of returning to the charging stand. In step S111, the ion generation process is stopped. In step S112, the exhaust port 41 and the suction port 42 are closed, the traveling is stopped, and the vehicle stops at the current position. That is, since the remaining battery level becomes equal to or less than the second remaining threshold (P2), it may be impossible to return to the charging stand, and the return to the charging stand is given up and the current position is maintained.
  • P2 second remaining threshold
  • step S113 since the power returning to the charging stand by self-running has decreased to the predetermined value P2 or less, the operation mode information 71 is set to shift to the sleep mode 74. Thereafter, the process returns to step S13 in FIG. In this case, since it becomes a stationary state at a position different from the charging stand 100, the user returns the main body of the ion generator 1 to the charging stand 100.
  • the remaining power since charging is required but it is no longer possible to return to the charging stand, it is preferable to use the remaining power to display a warning indicating that charging is necessary or to sound a warning sound to the user. .
  • the above is description of one Example of ion generation and traveling control of the ion generator of this invention, and the return process to a charging stand.
  • a cause such as the remaining battery level is low and it is necessary to return to the charging stand, after stopping at the current position, rotate once on the spot and change the direction of the charging stand. Since searching, the position of the charging base to be returned can be found quickly. Furthermore, the time to return to a charging stand can be shortened by moving substantially linearly in the direction of the detected charging stand.
  • the self-supporting ion generator 1 described above controls traveling, and discharges ions when air is sucked and exhausted during the traveling.
  • the present invention is not limited to such a configuration, and can be applied to an electronic device that includes at least travel control and a blower to suck in air and exhaust it.
  • the electronic device includes an air cleaner that includes a filter and purifies air, a humidifier that humidifies air, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Manipulator (AREA)

Abstract

筐体と、前記筐体下部に配置された車輪の回転を制御して筐体を移動させる走行制御部と、外部の空気を筐体内部へ導入する吸込口と、前記導入した空気を外部へ放出する排気口と、前記吸込口および排気口の開閉と、前記吸込口からの空気の導入および前記排気口からの空気の放出を制御する送風制御部と、制御部とを備え、前記制御部が、前記走行制御部によって前記筐体を移動させている間、前記送風制御部によって前記吸込口および排気口を開放させて、空気を放出させることを特徴とする自走式電子機器。

Description

自走式電子機器および自走式イオン発生機
 この発明は、自走式電子機器および自走式イオン発生機に関し、詳しくは、空気を吸気・排気する自走式電子機器およびイオンを発生させるイオン発生機に関する。
 今日、室内等の空気に対して、除菌および消臭等を目的とした空気清浄機が利用されている。
 空気清浄機としては、ファン式やイオン式などのさまざまな方式の装置が市販されている。
 これらの装置は、主として、空気中に浮遊する微粒子(花粉、ウイルス、カビ菌など)を除去する機能や、ペット等のにおいを除去する機能を有しており、室内やオフィスの所定範囲内の空間の空気を清浄するために、室内等の壁際などに設置されている。
 また、近年、生活環境に対する意識の高まりから、空気中のカビ菌や浮遊菌を分解・除去するイオンを放出するイオン発生機が利用されている。
 さらに、室内などの限られた空間における集塵を目的とした自律的に走行する自走式掃除機が利用されている。
特開2005-331128号公報 特開2004-195215号公報
 しかし、従来の空気清浄機は、室内等に固定設置されているため、室内の全体を均一に除菌および消臭するためには相当の時間がかかる。また、空気清浄機の設置されている位置から離れた場所に、ほこりやにおいの原因となる物品がある場合、そのほこりやにおいを、適切かつ迅速に除去することは難しい。
 そのような局所的なほこりやにおいを迅速に除去するためには、利用者が原因となる物品を取り除くか、可搬型の空気清浄機を、その都度そのほこり等のある場所まで運搬して動作させる必要があった。
 また、イオン発生機としては、据え置き型、卓上型、携帯型のタイプが利用されている。
 しかし、据え置き型や卓上型では、部屋や机上の一箇所からイオンを放出するため、空間の大きさによってはイオンを十分に行き渡らせることが難しかった。
 また、携帯型では、持ち運び可能という利点が得られるものの、イオンの行き渡る空間は局部的な空間に限定されてしまうという問題があった。
 また、従来から自走式の掃除機が利用されているが、ゴミやちりを集塵することが目的である。また、特許文献1によれば、清掃を目的とせず空気清浄を目的として自走する空気清浄ロボットについて開示されている。これは、浮遊する塵埃を除去するもので、合わせて排気する清浄な空気にイオンを含ませて放出するものである。
 そこで、この発明は、以上のような事情を考慮してなされたものであり、自律的に走行しながら空気を浄化、またはイオンを発生することにより、除菌および消臭等を行う自走式電子機器またはイオン発生機を提供することを課題とする。
 この発明は、筐体と、前記筐体下部に配置された車輪の回転を制御して筐体を移動させる走行制御部と、外部の空気を筐体内部へ導入する吸込口と、前記導入した空気を外部へ放出する排気口と、前記吸込口および排気口の開閉と、前記吸込口からの空気の導入および前記排気口からの空気の放出を制御する送風制御部と、制御部とを備え、前記制御部が、前記走行制御部によって前記筐体を移動させている間、前記送風制御部によって前記吸込口および排気口を開放させて、空気を放出させることを特徴とする自走式電子機器を提供するものである。
 これによれば、筐体を移動させている間に、送風制御部によって吸込口および排気口を開放させて、空気を放出させているので、ユーザ自らが電子機器を運搬する必要はなく、所望の空間全体に対して、迅速に空気を浄化させることができる。
 また、上記自走式電子機器は、排気口から排気される排気経路にイオンを発生するイオン発生部を設けた自走式イオン発生機として利用される。
 これによれば、筐体を移動させている間に、送風制御部によって吸込口および排気口を開放させて、イオンを含む空気を放出させているので、ユーザ自らが、イオン発生機を運搬する必要はなく、イオン発生機の自律走行により、所望の空間全体の空気に対して、迅速かつ適確な除菌および消臭ができる。
 また、前記走行制御部が、前記筐体を静止させている間、前記制御部が、前記送風制御部によって、前記吸込口および排気口を開放させて、前記筐体を移動させている場合よりも強い送風出力でイオンを含む空気を前記排気口から放出させることを特徴とする。
 これによれば、筐体を静止した状態において、強い送風出力により、イオンを含む空気を排気口から放出させるので、その静止した位置において発生したにおいの消臭と除菌を、迅速かつ適確に行うことができる。
 また、前記筐体の外部周辺のにおいを検知するにおい検知部をさらに備え、前記筐体の移動中において、前記検知されたにおいの強度が、所定のにおい判定値以上に変化した場合、前記制御部は、前記走行制御部によって前記筐体を静止させ、前記送風制御部によって、前記吸込口および排気口を開放させて、イオンを含む空気を放出させることを特徴とする。
 これによれば、におい検知部によって検知されたにおいの強度が大きい位置に静止させて、イオンを含む空気を放出させるので、その位置に発生したにおいを、迅速かつ適確に消臭することができる。
 また、前記筐体が静止した状態において、前記におい検出部が検出したにおいの強度が、所定のにおい判定値よりも小さくなった場合、前記制御部は、前記走行制御部によって前記筐体を移動させ、前記送風制御部によって、前記吸込口および排気口を開放させた状態で、前記静止状態よりも弱い送風出力でイオンを含む空気を放出させることを特徴とする。
 これによれば、静止した位置において、においの強度が小さくなった場合に、筐体を移動させて、イオンを含む空気を放出させるので、静止位置において、所定の消臭効果が生じた場合に、消臭目的のイオン放出を終了し、引き続いて所定の空間全体に対する除菌と消臭とを継続することができる。
 また、前記吸込口および排気口を開放させる開放量を制御することを特徴とする。
 この発明によれば、筐体を移動させている間に、送風制御部によって、吸込口および排気口を開放させてイオンを含む空気を放出させているので、ユーザがイオン発生機の設置位置を変更したり、運搬したりしなくても、イオン発生機自身の自律走行によって走行可能な範囲の空間全体の空気に対して、迅速かつ適確な除菌等、あるいは消臭ができる。
この発明の自走式イオン発生機の一実施例の概略構成ブロック図である。 この発明の自走式イオン発生機の動作モードの状態遷移図である。 この発明の自走式イオン発生機における動作モードとスイッチ等との関係の説明図である。 この発明の自走式イオン発生機の概略動作のフローチャートである。 この発明の自走式イオン発生機における運転処理およびイオン発生処理のフローチャートである。 この発明の自走式イオン発生機における充電台へ帰還するまでの処理の一実施例のフローチャートである。 この発明の自走式イオン発生機における充電台への帰還処理のフローチャートである。 この発明の自走式イオン発生機の一実施例の概略斜視図である。 この発明の自走式イオン発生機に設けられるイオン発生部の概略的な構成の説明図である。
 以下、図面を使用して本発明の実施の形態を説明する。なお、以下の実施例の記載によって、この発明が限定されるものではない。
 この発明において、自走式電子機器とは、走行制御部、送風機を備え吸気した空気をフィルタ等を介して浄化する空気清浄機、また吸気した空気を加湿する加湿器、また発生したイオンを排気空気と共に放出するイオン発生機を含む。なお、自走式イオン発生機とは、イオン発生機の筐体の周囲の障害物を検知しながら、筐体を走行させる走行手段を制御する制御部等を備え、ユーザの操作によることなく制御部が走行および停止、並びに、走行方向を自ら判断して筐体を自律的に走行させる方式のイオン発生機を意味する。自走式とは、ユーザの操作により、目的の位置へと自律的に走行することも含む。
<自走式イオン発生機の構成>
 この発明において、自走式電子機器として以下に自走式イオン発生機を例に説明する。この事例は、単なる一例であり、自走式電子機器としては、上述した概念を含むことはもちろんである。
 図1に、この発明の自走式電子機器として自走式イオン発生機の一実施例の概略構成ブロック図を示す。
 図1において、この発明の自走式イオン発生機(以下、単に、イオン発生機とも呼ぶ)は、主として、制御部11、充電池12、電池残量検出部13、障害検知部14、におい検知部15、走行制御部21、車輪22、イオン発生部31、送風制御部32、排気口41、吸込口42、入力部51、記憶部61、充電台探索部91、受信部92、充電台接続部93を備える。
 また、イオンを含む空気を放出する部屋の所定の位置に充電台100が設置される。充電台100とイオン発生機1とを接続することにより、イオン発生機1は充電台と接触した状態で充電台からの電力の供給を受け、イオン発生機1の充電池12を充電する。また、イオン発生機1は、充電台から離れ自動、走行しながらイオン発生機能を実行する。
 この発明の自走式イオン発生機1は、設置された場所の床面を自走しながら、周囲の空気を吸い込み、生成されたイオンを含む空気を排気することにより除菌等を行うものである。この発明のイオン発生機1は、充電池の容量が低下したり、所定の消臭等の処理が終了すると、自律的に充電台100に帰還する機能を有する。
 図8に、この発明の自走式イオン発生機の一実施例の概略斜視図を示す。
 図8において、イオン発生機1は、円盤形の筐体2を備え、この筐体2の内部および外部に、イオン発生部31、充電池12、制御部11、送風制御部32、複数の駆動輪、後輪および前輪からなる車輪22、排気口41、吸込口42、受信部92、図1に示したその他の構成要素が設けられている。
 図8において、受信部92および図示しない前輪が配置されている部分(図8の左側部分)を前方部、図示しない後輪が配置されている部分(図8の右側部分)を後方部と呼ぶ。
 筐体2は、主として、シャシーを構成する平面視円形の底板および後方側板2bと、可動式のバンパーとして機能する前方側板2cと、後方側板2bおよび前方側板2cの上部を塞ぐ平面視円形の上部カバー2dとから構成されている。
 吸込口42は上部カバー2dの中心よりもやや後方側に形成され、排気口41は上部カバー2dの中心よりもやや前方側に形成されている。
 吸込口42と排気口41は、充電等の非稼働時に、ほこりや異物が吸込口42や排気口41から侵入することを防止するために、可動式の吸込口用蓋9や排気口用蓋によって開閉可能となっている。
 また、イオン発生機1は、一対の駆動輪が同一方向に正回転して前進し、同一方向に逆回転して後退し、互いに逆方向に回転することにより静止した状態で旋回する。例えば、イオン発生機1が、室内の周縁に到達した場合および進路上の障害物に衝突した場合、駆動輪が停止し、一対の駆動輪を互いに逆方向に回転して向きを変える。これにより、イオン発生機1は、設置場所全体あるいは所望範囲全体に障害物を避けながら自走する。
 また、イオン発生機1は、後述するように、受信部92によって、充電台100の送信部102から出射される信号を検出して充電台100のある方向を認識し、たとえば、充電池12の充電残量が少なくなった場合、あるいは設定された自動運転タイマーの設定時間が経過した場合に、自動的に、充電台のある方向にほぼ直線的に進行して、充電台100まで帰還する。
 さらに、この発明では、帰還しようとするときに、充電台100からの信号が検出できない場合は、イオン発生機1は、一旦静止して、その場で1回転(360°回転)し、充電台100からの信号が検出されるか否かを確認し、充電台が存在する方向を検出するようにしてもよい。
 信号が検出された場合、検出されたときの受信部の前方方向に、充電台100があると認識し、直線的に充電台の方向へ向かって走行する。ただし、障害物があれば、それを避けながら、充電台の方向へ移動する。
 以下、図1に示す各構成要素を説明する。
 図1の制御部11は、イオン発生機1の各構成要素の動作を制御する部分であり、主として、CPU、ROM、RAM、I/Oコントローラ、タイマー等からなるマイクロコンピュータによって実現される。
 CPUは、ROM等に予め格納された制御プログラムに基づいて、各ハードウェアを有機的に動作させて、この発明のイオン発生機能、走行機能などを実行する。
 充電池12は、イオン発生機1の各機能要素に対して電力を供給する部分であり、主として、イオン発生制御および走行制御を行うための電力を供給する部分である。たとえば、リチウムイオン電池、ニッケル水素電池、Ni-Cd電池などが用いられる。
 充電池12の充電は、イオン発生機1と充電台100とを接続した状態で行われる。
 イオン発生機1と充電台100との接続は、互いの接続部(93,101)である露出した充電端子どうしを接触させることにより行う。
 電池残量検出部13は、充電池の残りの容量(電池残量)を検出する部分であり、たとえば、フル充電状態に対して、現在の残容量をパーセントで表した数値を出力する。
 後述するように、ここで検出された電池残量(%)に基づいて、充電台100の方へ帰還するか、あるいはその場で静止して動作も終了するスリープモードに移行するかを判断する。
 障害検知部14は、イオン発生機1が走行中に、室内の机やいすなどの障害物に接触したことを検知する部分であり、特にバンパーとして機能する前方側板2cの変位を、たとえば、マイクロスイッチなどからなる接触センサで検知する。そのため、筐体2の前方側板2cの前部に接触センサが対応して配置される。
 CPUは、障害検知部14から出力された信号に基づいて、障害物の存在する位置を認識する。認識された障害物の位置情報に基づいて、その障害物を避けて次に走行すべき方向を決定する。
 におい検知部15は、筐体2の外部周辺のにおいを検知する部分である。
 におい検知部15(以下、臭いセンサとも呼ぶ)としては、たとえば、従来から用いられている半導体式の臭いセンサや、接触燃焼式の臭いセンサを用いればよい。
 臭いセンサ15は、たとえば、筐体2の側板2bまたは2cから外部へ露出した状態で、筐体2に取り付けられる。
 臭いセンサ15がにおいを検出すると、そのにおいの強度に対応した出力信号を出力し、制御部11がその出力信号を取得することにより、臭気情報62を生成して、記憶部61に記憶する。
 イオン発生部31は、筐体内部に収容され、イオンを発生する部分である。
 具体的には、放電により空気中の水分子を電離し、正イオンとしてH+(H2O)m(mは任意の自然数)、負イオンとしてO2 -(H2O)n(nは任意の自然数)を生成する。
 イオン発生部31としては、図9を参照にその一例を説明する。該図は、イオン発生部31の斜視図である。イオン発生部31は排気経路に臨む複数のイオン放出部31a、31bを有している。このイオン放出部31a、31bは、イオン発生部31の樹脂性の筺体の一部を、例えば円形状に開口した開口部からなり、その開口部に対応して以下のイオン発生のための電極が設けられている。
 つまり、各々のイオン放出部31a、31bには、共通の対向電極33と針状の放電電極34a、34bが各々設けられる。放電電極34a、34bは先端が尖った針電極であり、対向電極33は放電電極34a、34bの周囲を囲うように開口された共通の接地された電極である。
 イオン発生部31は、本体部分35に高圧電気発生回路が内蔵されており、一側面に設けられた2つの端子36を介してバッテリー(充電池)12から電力が供給され、作動する。
 本体部分35の高圧電気発生回路は、放電電極34a、34bに、交流波形またはインパルス波形から成る正または負の高電圧を供給する。前述のようにイオン発生部31は複数の放電電極を持ち、例えば放電電極34aには、正のインパルス波形の高電圧が印加される。これにより、電離により発生するイオンが空気中の水分と結合して主として先に説明したH+(H2O)mから成る正のクラスタイオンが生成される。
 他の放電電極34bには、負のインパルス波形の高電圧が印加され、電離により発生するイオンが空気中の水分と結合して主としてO2 -(H2O)nから成る負のクラスタイオンが生成される。
 発生するイオンとしては、特に限定されないが、たとえば、空気を浄化することの可能なイオン、美肌効果と肌表面の菌増殖を抑制する効果のあるイオンなどがあげられ、特に、従来から用いられているプラズマクラスターイオン(登録商標)を用いることができる。イオン発生部31は、たとえば、小型の直方体形状のイオン発生装置として提供される。
 送風制御部32は、吸込口42および排気口41の開閉と、吸込口からの空気の導入および排気口からのイオンを含む空気の放出を制御する部分である。すなわち、外部の空気を吸込口42から装置内部に取り入れ、取り込んだ空気を装置内部の所定の流通経路を通過させてイオン発生部31の方向へ導き、排気口41の方向へ送る部分である。送風制御部32は、主として、送風ファンと、ファン回転機構と、吸込口用蓋、排気口用蓋、吸込口および排気口の開閉制御部などから構成される。
 イオン発生部31によって発生されたイオンは、送風制御部32によって装置内部を流通する空気とともに、排気口41の方向へ送られ、排気口41から外部へ吹き出される。
 排気口41は、たとえば図1に示すような筐体の上面の位置に設けられ、イオン発生部で発生されたイオンが含まれる空気を外部へ放出する開口である。また、イオンを含む空気は、走行方向の後方であってやや斜め上方に放出されるようにしてもよい。
 吸込口42は、外部の空気を筐体内部へ導入する開口であり、図1に示すように、筐体2の上面の位置に設けられる。図8には、排気口41および吸込口42を示している。
 また、吸込口42を介した外部の空気の吸い込みと、排気口41を介したイオンを含んだ空気の排気は、主として、送風制御部32の送風ファンを回転させることによって行われる。ただし、吸込口と排気口にそれぞれ蓋を設け、送風ファンの起動および停止に対応させて、開閉制御部によって、これらの蓋を開放および閉鎖させるようにしてもよい。
 すなわち、イオンを放出する場合は、吸込口および排気口の蓋を開放し、イオンを放出しない場合は、吸込口および排気口の蓋を閉鎖させる。このような開閉制御をすることによって、イオンを放出しない場合に、ほこりや異物が吸込口および排気口から侵入することが防止できる。
 また、後述するように、動作モードに対応させて排気口と吸込口の開閉を制御して、必要なときにイオンを発生して室内に放出することにより、イオンによる室内の除菌と消臭または脱臭を、適確に行うことができる。
 走行制御部21は、イオン発生機1の自律走行の制御をする部分であり、主として筐体下部に配置された車輪22の回転を制御して、自動的に筐体を移動させる部分である。
 車輪を駆動させることにより、イオン発生機1の前進、後退、回転、静止などの動作を行わせる。
 入力部51は、ユーザが、イオン発生機1の動作を指示入力する部分であり、イオン発生機1の筐体表面に、操作パネル、あるいは操作ボタンとして設けられる。
 あるいは、入力部51としては、クリーナ本体とは別に、リモコンユニットを設け、このリモコンユニットに設けられた操作ボタンを押すことにより、赤外線や無線電波信号を送出し、無線通信により動作の指示入力をしてもよい。
 入力部51としては、たとえば、電源スイッチ(電源sw)52、起動スイッチ(スタートsw)53、主電源スイッチ(主sw)54、充電要求スイッチ55、その他のスイッチなどが設けられる。なお、入力部51としては、ユーザがリモコンによる指示を受ける。この指示内容に基づき、制御部11を介して走行制御部21へと送られ、ユーザが指示する方向への走行制御、また走行停止の制御、イオン発生量の制御等が実行される。
 図2に、この発明の動作モードの状態遷移の概略説明図を示す。
 ここでは、一実施例として、停止状態70、スリープモード74、スタンバイモード73、および運転モード72の4つのモードおよび状態を示している。
 また、運転モード72には、走行モード75と、静止モード76とを設ける。
 ただし、動作モードは、これらのものに限るものではなく、他のモードを設けてもよい。
 主電源スイッチ(主sw)54は、イオン発生機1本体の全体に対する電力の供給を、入(ON)または切(OFF)するためのスイッチである。
 この主sw54がOFFの場合、イオン発生機1は、完全な停止状態70であり、主sw54のON入力以外の入力部51からの操作入力をすべて受けつけない状態である。
 また、主sw54がONの場合は、電源sw52の入または切による操作入力のみを受けつける状態であり、他の入力部51の操作入力は受けつけない状態である。このように、主sw54がON状態であり、かつ電源sw52がOFF状態の場合を、スリープモード74と呼ぶ。
 したがって、停止状態70のときに、主電源スイッチ(主sw)54が入(ON)操作されると、スリープモードへ移行する。
 スリープモード74は、少なくとも、電源sw52の入(ON)操作を受けつける状態であり、スリープモード74において、ユーザによって電源sw52が入(ON)操作されると、スタンバイモード73へ移行する。
 電源スイッチ(電源sw)52は、イオン発生機1の主要機能を動作可能な状態にするためのスイッチであり、入(ON)にされた場合は、少なくとも制御部11に、充電池12からの電力を供給し、CPUが動作している状態(スタンバイ状態)となる。
 スタンバイモード73は、ユーザによる指示入力等があれば、イオン発生機能や走行機能を実行可能な状態であり、たとえば、スタンバイモード73において、ユーザによって、起動スイッチ(スタートsw)53が入(ON)操作されると、運転モード72へ移行する。
 起動スイッチ(スタートsw)53は、イオン発生機1の運転動作の開始および停止を入力するためのスイッチであり、具体的には、イオン発生機能および移動機能を実行させるためのスイッチである。
 スタンバイモード73において、このスタートsw53が、入(ON)にされた場合、たとえばイオン発生機1の走行制御部21によって自律走行を開始し、さらに、イオン発生部31によってイオン発生を開始する。
 また、イオン放出の実行中に、スタートsw53が入力された場合は、切(OFF)の入力操作がされたことを意味し、制御部11がイオン放出および移動機能を停止させる。あるいは、充電台を離れた状態でイオンを放出している場合は、イオンを放出したままの状態で充電台100へ帰還する処理をしてもよい。
 運転モード72は、主として、イオン発生機能と走行機能を実行するモードであり、後述するように充電池12の残量が所定値以上残っている限り、室内を走行しながらイオン発生を継続する。また、充電池の残量が少なくなってきた場合には、充電台からの光を受光することにより充電台の方向を認識し、充電台へ自動的に帰還する動作を行う。
 運転モード72には、上記したように、走行モード75と、静止モード76とがある。
 走行モード75とは、自律走行を行っているモードであり、静止モード76とは、自律走行を行わず、現在の位置に静止しているモードである。
 静止モード76は、主として、現在の位置において臭気が強い場合に設定される。静止モード76となった場合は、その位置の臭気が強いので、そのにおいを消すために、その位置に静止して送風出力を強くする。これにより、静止した位置のにおいを、迅速に消去する。
 また、静止状態で強い送風をしばらく行って、その位置のにおいが所定値よりも低下した場合は、走行モードに戻り、自律走行を開始させる。自律走行中は、消臭を主目的とする必要は少ないと考えられるので、送風出力をある程度低下させて、イオンを含んだ空気を放出すればよい。
 充電要求スイッチ55は、ユーザが充電要求を入力するためのスイッチである。
 たとえば、イオン発生機1が自律走行している途中で、ユーザが走行動作が遅くなってきたことに気づき、充電を行わせるためにこの充電要求スイッチ55を押すと、イオン発生機1は、一旦イオン発生を中止し、充電台の方向へ戻る処理(帰還処理)を行う。
 記憶部61は、イオン発生機1の各種機能を実現するために必要な情報や、プログラムを記憶する部分であり、RAMやROM等の半導体素子、ハードディスク、フラッシュメモリ等の記憶媒体が用いられる。
 記憶部61には、主として、臭気情報62、電池情報63、送風出力情報64、開閉情報65、現在位置情報66、動作モード情報71などが記憶される。
 臭気情報62は、におい検知部(臭いセンサ)15によって検知されたにおいの強度を示す情報を含む。
 また、臭気情報62には、後述するように、送風の出力を決定する基準となる判定値として、におい判定値を予め記憶しておく。
 たとえば、筐体の移動中において、検知された現在の臭気情報(においの強度)が、所定のにおい判定値以上に変化した場合は、迅速ににおいを消すために、強い送風を出力するようにする。このとき、走行制御部によって筐体を静止させ、送風制御部によって、吸込口および排気口を開放させて、強い送風出力で、イオンを含む空気を放出させる。
 また、筐体が静止した状態において、検出した現在の臭気情報(においの強度)が、所定のにおい判定値よりも小さくなった場合は、においが消されたと判断して、送風出力を弱めるようにする。この場合、走行制御部によって筐体を移動させ、送風制御部によって、吸込口および排気口を開放させた状態で、静止状態よりも弱い送風出力で、イオンを含む空気を放出させる。
 電池情報63には、電池残量検出部13によって検出された電池残量(%)や、充電台への帰還を決定するために検出された電池残量と比較する判定値(後述する第1残量しきい値P1,第2残量しきい値P2)などが含まれる。
 送風出力情報64は、送風制御部32によって生成される送風の出力を設定する情報であり、たとえば、「100%」に設定されている場合は、最大出力の風が排気口41から出力される。
 また、臭いセンサ15によって取得された臭気情報62の数値に基づいて、送風出力を設定変更してもよい。
 たとえば、臭いセンサによって取得された臭気情報が所定値以上に変化した場合は、走行を停止して静止した状態で、最大出力(強:100%)に設定して、イオンを含んだ空気を出力する。
 また、取得した臭気情報が所定値よりも低くなった場合は、送風出力を低く設定して、イオンを含んだ空気を出力する。
 開閉情報65は、吸込口42と排気口41の開状態あるいは閉状態を示す情報であり、この情報に基づいて、送風制御部32が、吸込口42と排気口41の開閉制御を行う。
 現在位置情報66は、イオン発生機1が現在存在する位置を示す情報であり、室内の中のどこにいるかを示す相対的な座標情報である。
 たとえば、充電台に接続された位置の座標値や、イオン発生機の現在位置を示す座標値である。
 さらに、この情報63をもとに、実際に走行した履歴情報(走行マップ)を生成してもよい。走行マップは、次回以降の走行ルートを決定するのに利用できる。
 この発明では、イオン発生機1が自ら充電台100へ帰還する処理を実行するが、制御部11が、充電台と接触した状態に帰還する必要があると判断した場合に、その帰還処理を実行する。
 ここで、帰還する必要があると判断した場合、制御部11は、走行制御部21によって静止させた後、静止状態で1回転し、その1回転する間に、充電台探索部91が、充電台が存在する方向を探索し、充電台の方向を検出した場合に、排気口からイオンを含む空気を放出した状態で、充電台が存在する方向に向かって移動する帰還処理を実行する。
 ここで、充電台と接触した状態に帰還する必要があると判断する場合とは、たとえば、充電池12の電池残量が少なくなってきた場合や、ユーザにより充電要求スイッチ55が押し下げられた場合など、ユーザがリモコンを利用して帰還指示を行った場合等がある。
 特に、電池残量検出部13によって検出された電池残量が、電池情報62として記憶されている第1残量しきい値P1以下となった場合に、充電台へ帰還する必要があると判断し、帰還処理を実行する。
 あるいは、自動走行中に、充電要求スイッチ55が押し下げられた場合に、充電台へ帰還する必要があると判断し、帰還処理を実行する。
 また、検出された電池残量が、第1残量しきい値P1よりも小さい第2残量しきい値P2以下となった場合、制御部11は、イオン発生機能および移動制御を停止させ、現在位置に静止させる。
 この発明のイオン発生機1は、以上のような構成に加えて、他にも必要な構成や機能を備えてもよい。
 たとえば、除菌や消臭処理を実行する時間を設定するタイマースイッチを設け、タイマースイッチの入(ON)操作がされた場合には、予め設定された時間(たとえば60分間)のカウントを開始し、その設定時間が経過するまでイオンを発生する処理を実行するようにしてもよい。
 この設定時間が経過した後は、イオン発生による除菌等の処理を中止し、自動的に充電台に帰還するようにしてもよい。
 図1において、充電台探索部91と、受信部92と、充電台接続部93は、充電台100の位置検出と、充電台からの電力を受けるための構成である。
 充電台探索部91は、充電台の位置を探索する部分であり、イオン発生機1が充電台から離れた位置にある場合に、充電台100の存在する位置がどの方向にあるかを検出する部分である。
 充電台の探索には、走行制御部21による自律走行処理と、受信部92による光検出処理を用いる。
 受信部92によって、充電台100からの送信信号が検出された場合、充電台探索部91は、受信部92の前方方向に、充電台が存在すると認識する。
 また、イオン発生機の現在位置において、充電台100が検出されなかった場合は、上記したように、その現在位置に静止した状態で1回転して、受信部92により、充電台100から出射された光が検出されるか否かをチェックする。
 受信部92は、充電台100の送信部102から送信される送信信号を検出する部分である。
 充電台100から送信される信号としては、たとえば、光、例えば可視光、赤外線、超音波などが用いることができるが、一般的にはビーコン(radio beacon)が用いられている。
 充電台接続部93は、充電池12を充電させるための電力を入力するための端子である。
 この充電台接続部93と、充電台100の接続部101とを物理的に接触させることにより、充電台100の電力供給部104から与えられる電力を、充電池12に供給し充電する。
 充電台接続部93は、接続部101と接触させるために、イオン発生機1本体の側面に露出した状態で形成される。
<充電台の構成>
 充電台は、イオン発生機1の充電池12の充電を行うものである。
 図1において、充電台100は、主として、接続部101、送信部102、制御部103、電力供給部104とを備え、室内の壁などに配置された商用電源105のコンセントからのAC電源電力の供給を受ける。
 電力供給部104は、商用電源105からの交流電力を受け入れ、イオン発生機1を充電することのできる直流電力に変換し、接続部101に与える部分である。
 送信部102は、電波、光等の信号を送信するもので、指向性を持たすためにビーコンが利用される。
 送信信号として光を用いる場合、例えば赤外線はある程度の範囲に広がって進行するという指向性を有しているので、イオン発生機1がその範囲内に入った場合は、受信部92によって、赤外線を検出することができる。
 また、イオン発生機1が上記範囲内に存在していても、イオン発生機1の受信部92が、充電台100と反対方向を向いている場合は、例えば赤外線を受光できない。しかし、上記したように、静止位置で1回転することにより、赤外線を受光できるようになる。
 充電台100の制御部103は、充電台の各種機能を実現する部分であり、主として、発光処理と、充電電力の供給制御を行う。制御部103は、CPU、ROM、RAM、I/Oコントローラ、タイマー等からなるマイクロコンピュータにより実現できる。
 以下の実施例では、充電台の送信部102から赤外線を出射するものとする。
<動作モードの説明>
 図3に、図2に示した動作モードと、3つのスイッチ(52,53,54)と、吸込口42および排気口41の開閉状態の関係を示す説明図を示す。
 停止状態70では、図2に示したように、3つのスイッチはすべてOFF状態であり、吸込口42と排気口41のどちらも閉鎖状態であり、イオン発生機は静止状態となっている。
 また、スリープモード74では、主電源sw54のみがON状態となっており、他の2つのスイッチ(52,53)はOFF状態で、吸込口42および排気口41のどちらも閉鎖状態であり、イオン発生機は静止状態である。
 スタンバイモード73では、主電源sw54と電源sw52とがON状態となっており、起動スイッチ(スタートsw)53がOFF状態であり、吸込口42および排気口41のどちらも閉鎖状態であり、イオン発生機は静止状態である。
 運転モード72において、走行モード75の場合は、3つのスイッチはすべてON状態であり、吸込口および排気口はどちらも開放状態であり、イオン発生機は、走行しながらイオンを放出している状態である。
 すなわち、走行制御部によって筐体を移動させている間は、走行モード75に設定され、制御部は、送風制御部によって、吸込口および排気口を開放させて、イオンを含む空気を放出させるようにする。
 運転モード72において、静止モード76の場合は、3つのスイッチはすべてON状態であり、吸込口および排気口はどちらも開放状態であるが、イオン発生機は、静止した状態で、イオンを放出している状態である。
 たとえば、局所的な消臭を行うために、筐体を静止させている間は、静止モード76に設定され、制御部は、送風制御部によって、吸込口および排気口を開放させて、筐体を移動させている場合よりも強い送風出力でイオンを含む空気を排出口から放出させるようにする。また、ユーザが目的の位置へとイオン発生機を移動させ、この位置に静止させてイオンを放出させるようにすることもできる。
 また、充電台への帰還処理をしている場合は、3つのスイッチと、吸込口および排気口は走行モード75の状態と同じ状態であり、イオンを放出しながら、充電台の方向へ戻る。
<自走式イオン発生機の動作説明>
 図4に、この発明の自走式イオン発生機の概略動作の一実施例のフローチャートを示す。
 ここでは、イオン発生機1は、主電源スイッチがOFF状態で、充電台100と接続された状態(停止状態70)にあるものとする。
 まず、ステップS1において、ユーザが、入力部51の主電源スイッチ(主sw)54を入(ON)にしたとする。
 このとき制御部11に電力が供給され、図2に示すように、スリープモード74へ移行する。
 ステップS2において、スリープモード74に対応するように、情報を設定する。たとえば、動作モード情報71をスリープモード74に設定し、現在位置情報63を、充電台の位置に設定する。
 ステップS3において、制御部11は、電源sw52が入(ON)にされるか否かをチェックする。
 ON入力があれば、ステップS4へ進み、そうでない場合はステップS3をループする。
 ステップS4において、電源swが入(ON)にされたので、図2に示すように、スタンバイモード73へ移行し、スタンバイモードの設定を行う。
 たとえば、動作モード情報71を、スタンバイモード73に設定し、起動スイッチ(スタートsw)53が入(ON)にされるか否かをチェックする。
 ステップS5において、スタートsw53が入(ON)にされたことを検出すると、ステップS6へ進み、そうでない場合はステップS5をループする。
 ステップS6において、スタートsw53がON入力されたので、図2に示すように、運転モード72へ移行し、運転モードの設定を行う。
 ここでは、動作モード情報71の設定に加え、イオン発生処理に必要なハードウェアの起動と、自律走行に必要なハードウェアの起動準備処理を行う。
 ステップS7において、ユーザにより、スリープモードへ移行するための入力があるか否かチェックする。
 具体的には、図2に示すように、電源sw52が切(OFF)入力されたか否かチェックする。
 切(OFF)入力があれば、ステップS2へ戻り、スリープモード74に移行する。
 一方、切(OFF)入力がない場合は、ステップS8へ進む。
 ステップS8において、ユーザにより、静止モード76へ移行することを指示する入力があるか否かをチェックする。ここで、静止モードへ移行する指示入力は、図1に示していない専用のスイッチを設け、このスイッチを押下げた場合に、静止モード76へ移行するようにしてもよい。あるいは、ユーザのリモコン操作による静止モード指示により静止モードが実行される。
 この指示入力があった場合は、ステップS9へ進み、そうでない場合は、ステップS10へ進む。
 ステップS9において、ユーザにより静止モードへ移行する指示入力があったので、動作モードを静止モード76に設定し、その後ステップS12へ進む。
 ステップS10において、静止モードへの移行する指示入力がなかったので、動作モードを走行モード75に設定する。
 ステップS11において、自動走行処理を開始する。
 すなわち、イオン発生機1は、走行制御部21によって車輪22を駆動させ、充電台100から離れ、所定のルートに基づいて、走行を開始する。
 走行するルートは、記憶部61に過去の走行ルートの履歴情報が記憶されていれば、その履歴情報に従って決定すればよい。
 ステップS12において、制御部11は、運転処理およびイオン発生処理を開始する。
 ここでは、主として、イオン発生部31を起動させ、イオン発生制御を行い、さらに走行制御も行う。
 このイオン発生処理等の詳細については、後述する図5、図6および図7を用いて説明する。
 ステップS13において、イオン発生処理等をした後、動作モード情報71に遷移が生じたか否かをチェックする。
 具体的には、運転中において、運転モード72のうち2つのモード(75,76)のどちらかのモードから、スタンバイモード73、あるいはスリープモード74へ、動作モード情報71が変化したか否かをチェックする。
 動作モードが変化した場合は、その遷移後の動作モード情報71の内容に基づいて、ステップS2またはS4へ進む。
 すなわち、動作モード情報71がスリープモード74となっている場合は、ステップS2へ移行し、スタンバイモード73となっている場合はステップS4へ移行する。
 一方、動作モード情報71が運転モード72のいずれかのモード(75,76)のままの場合は、ステップS7へ戻る。
 次に、図5に、ステップS12の運転処理およびイオン発生処理の詳細フローチャートを示す。
 図5のステップS31において、制御部11は、送風制御部21により、排気口41と吸込口42を開放させる。
 たとえば、部屋の右方向へ一定速度で移動しながら、吸込口42から空気を吸い込み、イオン発生部31から放出されるイオンの放出口付近を通過させた後、排気口32からイオンを含んだ空気を排出する処理を行う。
 また、障害検知部14によって、机などの障害物を検知した場合は、進行方向を変化させて移動する処理を繰り返す。
 ステップS32において、スタートsw53の切(OFF)入力がされたか否かをチェックする。OFF入力があった場合はステップS33へ進み、そうでない場合はステップS36へ進む。
 ステップS33において、イオン発生処理を停止し、ステップS34において、排気口41と吸込口42とを閉鎖する。またスタートsw53のOFF入力がされたので、ステップS35において、動作モード情報71をスタンバイモード73へ移行設定する。
 その後、ステップS13へ進み、ステップS13の判定により、スタンバイモード73のステップS4へ戻る。
 ステップS36において、充電sw55が入(ON)入力されたか否かをチェックする。
 充電sw55がON入力された場合、ユーザによる充電要求がされたことを意味する。
 ON入力があった場合、ステップS37へ進み、そうでない場合はステップS39へ進む。
 ステップS37において現在位置情報66に基づいて、イオン発生機1は現在、充電台100の位置にいるか否かをチェックする。すなわち、充電台100に接続されたままの状態であるか否かをチェックする。
 充電台100の位置にいる場合は、ステップS32へ戻る。すなわち、イオン発生機1は充電台100に接続されたままであるので、そのまま充電を行う。
 ステップS37において、現在位置情報66が充電台の位置でない場合は、ステップS38へ進む。
 ステップS38において、充電台100への帰還処理を行う。
 すなわち、イオン発生機1が充電台の位置とは異なる位置にいるときに、ユーザにより充電要求が入力されたので、充電池の充電をするために、充電台100に帰還する処理を行う。充電台100へ戻るまでの間は、図3に示したように、走行モード75の状態のままで、イオンを放出するようにする。この処理の後、図6のステップS101へ進む。
 図7に、ステップS38およびS40の充電台への帰還処理の一実施例の詳細フローチャートを示す。
 図7のステップS71において、イオン発生機1は、現在の位置に静止した状態で、回転動作制御を行う。すなわち、走行制御部21によって、車輪22のうち一対の駆動輪を互いに逆回転し、その場で回転するように車輪を動作させる。回転動作制御では、現在の受信部92が向いている前方方向を最初の基準として、所定の回転速度で1回転(360°回転)させる。
 ステップS72において、上記回転動作を行っている最中に、受信部92によって、充電台100からのビーコンによる信号が受信されたか否かをチェックする。
 信号が受信された場合は、ステップS73へ進み、受信が検出されない場合は、ステップS74へ進む。
 受信部92によって受信された場合、充電台100が存在する方向が、回転途中の受信状態でその方向が認識される。
 そこで、ステップS73において、回転を停止し、認識した充電台100の方向へ向かって、直線的な走行処理を行う。ここでは、できるだけ直線的に充電台へ戻るように、走行処理が行われる。
 ただし、途中に障害物が存在すれば、障害検知部14によってその障害物を検知して、走行ルートを調整しながら、移動する。
 また、障害物がある場合は上記の直線的なルートをはずれる場合もあるので、移動中も、受信部92による受光検出処理を継続して行うことが好ましい。
 ステップS74において、まだ信号を検出していない場合は、1回転(360°回転)が終了したか否かチェックする。1回転した場合は、ステップS75へ進み、まだ1回転していない場合はステップS71へ戻る。
 ステップS75において、静止した状態ですでに1回転したが、充電台100からの信号が検出されなかったので、充電台の探索設定を行う。具体的には、現在静止した位置では、充電台の方向が検出できなかったので、次に走行する方向を決定する処理を行う。
 この走行方向の決定は、たとえば、履歴情報として記憶している走行マップに基づいて行えばよい。走行方向を決定した後、図6のステップS101へ進む。
 以上が、図7の充電台への帰還処理の一実施例の説明である。
 なお、後述するステップS40においても同様の帰還処理を実行する。
 図5のステップS36において、充電sw55のON入力がない場合は、ステップS39に進み、充電池の電池残量をチェックする。
 ここで、制御部11は、電池残量検出部13によって充電池12の残容量を算出させる。
 現在の電池残量が、記憶部61に予め記憶されていた電池情報63の所定の第1残量しきい値P1(%)以下となっているか否かをチェックする。
 この第1残量しきい値P1としては、充電台100へ戻るのに十分な残量の目安となる数値が設定され、たとえば、19%というような数値が設定される。ただし、この数値に限るものではない。
 電池残量≦P1(%)の場合は、ステップS40へ進み、そうでない場合はステップS41へ進む。
 電池残量がP1(%)よりも大きい場合は、電池残量はまだ十分にあるので、イオン発生処理はそのまま継続される。
 ステップS41において、ユーザによるイオン発生の終了を意味する入力があるか否かチェックする。たとえば、スタートsw53のOFF入力操作が行われたか否かをチェックする。
 イオン発生終了の入力があった場合は、ステップS40へ進み、そうでない場合は、ステップS42へ進む。
 ステップS40において、電池残量が少ない場合、あるいはユーザによりイオン発生終了の入力があった場合、ステップS38と同様に、充電台への帰還処理を行う。その後、図6のステップS101へ進む。
 ステップS42において、におい検知部(臭いセンサ)15によって、臭気情報62を取得し、記憶部61に記憶する。このとき、前回取得した臭気情報も履歴情報として記憶しておく。
 また、臭気情報を取得した位置の情報(現在位置情報66)とともに、その位置の臭気情報62を履歴情報として記憶してもよい。この履歴情報は、次回の走行制御で利用することができる。
 たとえば、次回に走行するとき、臭気の強かった位置の履歴情報を読み出して、優先的に、臭気の強かった位置へ行くようにしてもよい。
 ステップS43において、取得した臭気情報62が、所定のにおい判定値以上の数値に変化したか否かをチェックする。
 特に、前回取得した臭気情報62はにおい判定値よりも小さかった場合に、今回新たに取得した臭気情報62がそのにおい判定値よりも大きくなっているか否かをチェックする。
 また、におい判定値は、予めデフォルト値を固定設定しておいてもよいが、臭いの感じ方には個人差があるので、ユーザが自分の好みによって設定変更できるようにしてもよい。
 臭気情報62が所定値以上に変化した場合は、ステップS44へ進み、そうでない場合はステップS48へ進む。
 ステップS44において、現在臭気情報62を取得した位置の臭気が強いと判断されたので、その位置の消臭を重点的に行うために、動作モードを静止モード76に移行させる。
 ここでは、図3に示したように、吸込口42と排気口41とを開放したままで、走行制御部21によって静止させる処理を行う。この場合、イオン発生機1は、静止状態で、イオンを含む空気を放出することになる。
 ステップS45において、におい監視タイマーを起動させる。
 におい監視タイマーは、たとえば、1分間をカウントするタイマーを用いればよい。
 ただし、タイマー値としては、1分間に限るものではなく、他の時間を設定できるようにしてもよい。
 また、取得した臭気情報の強度に対応させて、その強度のにおいが消えると予想される時間を自動的にセットするようにしてもよい。すなわち、においの強度が大きい場合は、タイマー値として長い時間を設定し、小さい場合は短い時間を設定する。
 ステップS46において、においを急速に消し去るために、送風出力情報64を、最大出力値(強:100%)に設定する。
 ステップS47において、送風制御部32が、設定された送風出力情報64に基づいて、イオンを含む空気を出力する。すなわち、送風ファンの送風出力を最大にして、排気口41から強風の空気を排気する。これにより、強いにおいが発生している位置にイオンを含む空気を大量に吹き出すことにより、より迅速かつ適確に消臭することができる。
 このような強力な送風は、所定の消臭効果があらわれない限り、におい監視タイマーに設定された時間だけ、継続される。また、静止して、消臭処理をしている場合は、消臭処理をしていることを示す表示や警告音を出力してもよい。
 その後、ステップS32へ戻る。
 一方、ステップS43において、取得した臭気情報が、所定値以上の数値に変化していない場合は、ステップS48へ進む。
 たとえば、前回と同様に依然としてにおいが高いか、あるいはにおいが所定値よりも低くなった場合は、ステップS48へ進むことになる。
 ステップS48において、におい監視タイマーとして設定した時間が、経過したか否かをチェックする。たとえば、設定した1分間が経過した場合は、ステップS49へ進み、まだ経過していない場合はステップS32へ戻る。
 ステップS49において、現在取得した臭気情報62が、ステップS43と同じ所定値以上となっているか否かをチェックする。
 所定値以上となっている場合は、強風のイオン出力処理をさらに継続したままで、ステップS32へ戻る。このとき、におい監視タイマーを、再度設定してもよい。
 また、におい監視タイマー(1分)が経過した場合や、何度もにおい監視タイマーを設定しても、取得した臭気情報が所定値以上の場合は、消臭処理をしてもにおいが消えないことを示す警告表示や警告音を出力してもよい。
 あるいは、消臭タイマーを別に設け、最初に静止してからの経過時間をカウントして、所定時間が経過しても消臭効果が現れない場合は、その消臭処理を行った静止位置を記憶しておき、ステップS50へ進み、消臭処理を一時中止して走行モードに戻ってもよい。
 一方、取得した臭気情報62が、その所定値よりも小さくなっている場合は、ステップS50へ進む。このとき、現在静止している位置のにおいが、ある程度低くなったことを意味する。すなわち、強風のイオン出力により、所望の消臭効果が生じたことを意味する。
 ステップS50において、動作モードを走行モード75に移行設定する。
 ここでは、図3の走行モード75に示すように、吸込口42と排気口41とを開放したままで、走行状態を静止から走行とする。すなわち、走行制御部21により、走行マップ等に基づいて、所定の方向に向かってイオン発生機1を移動させる。
 ステップS51において、送風出力を低下させる処理を行う。
 たとえば、ステップS46で強(100%)に設定されていた送風出力情報64を、中程度の送風出力(たとえば、中:70%)に設定する。そして、送風制御部32が風量を70%程度に低下させるように送風ファンを制御して、イオンを含む空気を放出させる。ただし、この送風出力の数値は70%に限るものではなく、ユーザ等によって設定変更できるようにしてもよい。たとえば、50%でもよく、小さな空間や空気の汚れの少ない空間であれば20%でもよい。すなわち、吸込口および排気口を開放させる開放量を適切に制御できるようにすればよい。
 これにより、静止モード76において、消臭目的のイオン放出が行われていたものが、自律的に走行しながら、どちらかと言うと、消臭よりも除菌が目的のイオン放出を行うように変更される。
 ステップS51の後、ステップS32へ戻る。
 以上のように、主として、ステップS42からステップS51の処理を行うことにより、においの強い位置では、その位置に静止した状態で迅速かつ適確な消臭処理が実行でき、においがそれほど強くなくなった場合には、自律走行をしながら、部屋全体に適切なイオンを含む空気を放出することができる。
 図6のステップS101において、充電台100へ戻るために、充電台の探索処理と、走行帰還制御とを行う。具体的には、受信部92によって検出した充電台のある方向へ向かって移動する処理を行い、同時に、充電台100から送信された信号(ビーコン)の検出処理を継続的に行う。これにより、イオン発生機1は、徐々に、充電台の方向へ向かって移動することになる。
 ステップS102において、ユーザによって、スタートsw53が切(OFF)入力されたか否かチェックする。
 スタートsw53のOFF入力がされた場合は、ステップS103へ進み、そうでない場合はステップS106へ進む。
 ステップS103において、ユーザによりスタートsw53のOFF入力がされたので、イオン発生処理を停止し、ステップS104において、排気口41と吸込口42を閉鎖し、ステップS105において、動作モード情報71を、スタンバイモード73に移行設定する。
 その後、図4のステップS13へ戻る。
 ステップS106において、イオン発生機1が充電台100へ帰還したか否かチェックする。すなわち、現在位置情報66が、充電台100の位置となったか否かをチェックする。
 充電台100に帰還したと判断された場合は、ステップS107へ進み、そうでない場合は、ステップS110へ進む。
 ステップS107においては、ステップS103と同様に、イオン発生処理を停止し、ステップS108において、排気口41と吸込口42を閉鎖し、ステップS109において、動作モード情報71を、スタンバイモード73に移行設定する。その後、図4のステップS13へ戻る。
 一方、ステップS110において、電池残量が、記憶部61に予め記憶された電池情報の第2残量しきい値P2以下であるか否かをチェックする。
 ここで、第2残量しきい値P2(%)としては、上記したP1よりも小さな値が設定され、たとえば、P2=9(%)が設定される(P2<P1)。ただし、この数値に限るものではない。
 このしきい値P2は、これ以上電池残量が少なくなると、充電台へ戻れなくなるおそれがあると考えられる数値である。
 ステップS110において、電池残量≦P2の場合、ステップS111へ進み、そうでない場合、充電台へ帰還する処理を継続するために、ステップS101へ戻る。
 ステップS111において、イオン発生処理を停止する。
 ステップS112において、排気口41と吸込口42を閉鎖し、走行を停止し、現在の位置で静止する。すなわち、電池残量が第2残量しきい値(P2)以下となったため、充電台へ戻ることができない場合があると考え、充電台への帰還をあきらめ、現在位置に留まる。
 ステップS113において、自力走行で充電台へ戻る電力が所定値P2以下に減少したため、動作モード情報71を、スリープモード74に移行設定する。その後、図4のステップS13へ戻る。
 この場合は、充電台100とは異なる位置で静止状態となるので、ユーザにより、イオン発生機1本体を充電台100へ戻してもらうことになる。
 ここで、充電が必要となったが充電台まで戻れなくなったので、残りの電力を使用して、ユーザに充電が必要であることを示す警告表示をするか、あるいは警告音を鳴らすことが好ましい。
 以上が、この発明のイオン発生機のイオン発生および走行制御と、充電台までの帰還処理の一実施例の説明である。
 このように、電池残量が少なくなったという原因等が発生し、充電台への帰還が必要となった場合、現在位置で静止した後、その場で1回転して、充電台の方向を探索するので、戻るべき充電台の位置を早く見つけることができる。さらに、検出した充電台の方向に、ほぼ直線的に移動することによって、充電台まで帰る時間を短縮することができる。
 以上説明した自立式イオン発生機1は、走行を制御し、その走行中に空気を吸気し、排気する際にイオンを放出するものである。この発明は、このような構成に限らず、少なくとも走行制御、および送風機を備え空気を吸気し、それを排気する電子機器に適用できる。その電子機器としては、先に説明した通り、フィルタを備え空気を浄化する空気清浄機、空気を加湿する加湿器等を含む。
  1 自走式イオン発生機
  2 筐体
 2b 後方側板
 2c 前方側板
 2d 上部カバー
  9 吸気用蓋部
 11 制御部
 12 充電池
 13 電池残量検出部
 14 障害検知部
 15 におい検知部
 21 走行制御部
 22 車輪
 41 排気口
 42 吸込口
 51 入力部
 52 電源スイッチ(電源sw)
 53 起動スイッチ(スタートsw)
 54 主電源スイッチ(主sw)
 55 充電要求スイッチ
 61 記憶部
 62 臭気情報
 63 電池情報
 64 送風出力情報
 65 開閉情報
 66 現在位置情報
 70 停止状態
 71 動作モード情報
 72 運転モード
 73 スタンバイモード
 74 スリープモード
 75 走行モード
 76 静止モード
 91 充電台探索部
 92 受信部
 93 充電台接続部
100 充電台
101 接続部
102 送信部
103 制御部
104 電力供給部
105 商用電源

Claims (6)

  1.  筐体と、
     前記筐体下部に配置された車輪の回転を制御して筐体を移動させる走行制御部と、
     外部の空気を筐体内部へ導入する吸込口と、
     前記導入した空気を外部へ放出する排気口と、
     前記吸込口および排気口の開閉と、前記吸込口からの空気の導入および前記排気口からの空気の放出を制御する送風制御部と、制御部とを備え、
     前記制御部が、前記走行制御部によって前記筐体を移動させている間、前記送風制御部によって前記吸込口および排気口を開放させて、空気を放出させることを特徴とする自走式電子機器。
  2.  請求項1記載の自走式電子機器は、前記排気口から排気される排気経路にイオンを発生するイオン発生部を設けた自走式イオン発生機。
  3.  前記走行制御部が、前記筐体を静止させている間、前記制御部が、前記送風制御部によって、前記吸込口および排気口を開放させて、前記筐体を移動させている場合よりも強い送風出力でイオンを含む空気を前記排気口から放出させることを特徴とする請求項2に記載の自走式イオン発生機。
  4.  前記筐体の外部周辺のにおいを検知するにおい検知部をさらに備え、
     前記筐体の移動中において、前記検知されたにおいの強度が、所定のにおい判定値以上に変化した場合、
     前記制御部は、前記走行制御部によって前記筐体を静止させ、
     前記送風制御部によって、前記吸込口および排気口を開放させて、イオンを含む空気を放出させることを特徴とする請求項2または3に記載の自走式イオン発生機。
  5.  前記筐体が静止した状態において、
     前記におい検出部が検出したにおいの強度が、所定のにおい判定値よりも小さくなった場合、
     前記制御部は、前記走行制御部によって前記筐体を移動させ、
     前記送風制御部によって、前記吸込口および排気口を開放させた状態で、前記静止状態よりも弱い送風出力でイオンを含む空気を放出させることを特徴とする請求項4に記載の自走式イオン発生機。
  6.  前記吸込口および排気口を開放させる開放量を制御する請求項2から5のいずれかに記載の自走式イオン発生機。
PCT/JP2012/081379 2012-01-17 2012-12-04 自走式電子機器および自走式イオン発生機 WO2013108497A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280066518.4A CN104040265A (zh) 2012-01-17 2012-12-04 自走式电子设备和自走式离子发生器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012007404A JP2013148246A (ja) 2012-01-17 2012-01-17 自走式電子機器および自走式イオン発生機
JP2012-007404 2012-03-30

Publications (1)

Publication Number Publication Date
WO2013108497A1 true WO2013108497A1 (ja) 2013-07-25

Family

ID=48798934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081379 WO2013108497A1 (ja) 2012-01-17 2012-12-04 自走式電子機器および自走式イオン発生機

Country Status (3)

Country Link
JP (1) JP2013148246A (ja)
CN (1) CN104040265A (ja)
WO (1) WO2013108497A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106363600A (zh) * 2016-10-18 2017-02-01 天津大学 一种自走式室内环境测量智能机器人系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180021595A (ko) * 2016-08-22 2018-03-05 엘지전자 주식회사 이동 로봇 및 그 제어방법
JP7190652B2 (ja) 2017-11-28 2022-12-16 パナソニックIpマネジメント株式会社 自走式病原体検出装置、病原体検出システム、及び、制御方法
JP7212545B2 (ja) * 2019-02-22 2023-01-25 東芝ライフスタイル株式会社 自律型電気掃除機

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315356A (ja) * 1988-06-15 1989-12-20 Matsushita Electric Ind Co Ltd 空気清浄機
JPH0713449U (ja) * 1993-08-17 1995-03-07 リコーエレメックス株式会社 空気清浄器
JP2003074921A (ja) * 2001-08-29 2003-03-12 Sanyo Electric Co Ltd 空気清浄機
JP2005046616A (ja) * 2003-07-29 2005-02-24 Samsung Kwangju Electronics Co Ltd 陰イオン発生器を具備するロボット掃除機
JP2005164106A (ja) * 2003-12-02 2005-06-23 Daikin Ind Ltd 空気調和装置
JP2005331128A (ja) * 2004-05-18 2005-12-02 Zojirushi Corp 自走式空気清浄ロボット
JP2008167900A (ja) * 2007-01-11 2008-07-24 Daikin Ind Ltd 空気清浄装置
JP2011099574A (ja) * 2009-11-04 2011-05-19 Sharp Corp 空気清浄機
JP2011202815A (ja) * 2010-03-24 2011-10-13 Panasonic Corp 空気清浄装置および加湿機能付き空気清浄装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204872A (ja) * 2004-01-22 2005-08-04 Matsushita Electric Ind Co Ltd 自走式掃除機及びそのプログラム
KR100791382B1 (ko) * 2006-06-01 2008-01-07 삼성전자주식회사 로봇의 이동 경로에 따라 소정 영역의 특성에 관한 정보를수집하고 분류하는 방법 및 상기 영역 특성에 따라제어되는 로봇, 상기 영역 특성을 이용한 ui 구성 방법및 장치
CN101152068A (zh) * 2006-09-27 2008-04-02 上海中策工贸有限公司 气味系统
CN101758762A (zh) * 2008-12-24 2010-06-30 辽宁鑫欧威汽车服务有限公司 智能型多功能汽车空调装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315356A (ja) * 1988-06-15 1989-12-20 Matsushita Electric Ind Co Ltd 空気清浄機
JPH0713449U (ja) * 1993-08-17 1995-03-07 リコーエレメックス株式会社 空気清浄器
JP2003074921A (ja) * 2001-08-29 2003-03-12 Sanyo Electric Co Ltd 空気清浄機
JP2005046616A (ja) * 2003-07-29 2005-02-24 Samsung Kwangju Electronics Co Ltd 陰イオン発生器を具備するロボット掃除機
JP2005164106A (ja) * 2003-12-02 2005-06-23 Daikin Ind Ltd 空気調和装置
JP2005331128A (ja) * 2004-05-18 2005-12-02 Zojirushi Corp 自走式空気清浄ロボット
JP2008167900A (ja) * 2007-01-11 2008-07-24 Daikin Ind Ltd 空気清浄装置
JP2011099574A (ja) * 2009-11-04 2011-05-19 Sharp Corp 空気清浄機
JP2011202815A (ja) * 2010-03-24 2011-10-13 Panasonic Corp 空気清浄装置および加湿機能付き空気清浄装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106363600A (zh) * 2016-10-18 2017-02-01 天津大学 一种自走式室内环境测量智能机器人系统
CN106363600B (zh) * 2016-10-18 2018-10-23 天津大学 一种自走式室内环境测量智能机器人系统

Also Published As

Publication number Publication date
CN104040265A (zh) 2014-09-10
JP2013148246A (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5357946B2 (ja) 掃除ロボット
JP5165784B1 (ja) 自走式イオン発生機及び掃除ロボット
KR101586161B1 (ko) 청소기 및 제어 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체
WO2013108479A1 (ja) 自走式電子機器
US7789951B2 (en) Method and system for moving air purifier
JP2014200449A (ja) 自走式掃除機
WO2013161406A1 (ja) 自走式電子機器
WO2013108497A1 (ja) 自走式電子機器および自走式イオン発生機
JP2013169222A (ja) 自走式電子機器
JP4812885B1 (ja) 空気清浄機
JP2013233222A (ja) 充電台及び自走式電子機器に蓄積した静電気の除電方法
JP2013169224A (ja) 自走式掃除機
JP2015156107A (ja) 自走式電子機器
JP5986902B2 (ja) 自走式掃除機
JP2013234779A (ja) 充電台
JP2013231534A (ja) 自走式電子機器、充電台及び自走式電子機器の除電システム
JP2013250747A (ja) 自走式電子機器
JP2013213451A (ja) 電子機器および送風装置
JP2013070966A (ja) 掃除ロボット
JP2017213429A (ja) 自走式掃除機
JP2013146312A (ja) 自走式イオン放出装置
JP2013250751A (ja) イオン発生機能付の自走式電子機器
JP2013070950A (ja) 掃除ロボット
JP2013250748A (ja) 自走式電子機器
JP2013213456A (ja) 送風装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865598

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12865598

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE