WO2013108465A1 - アルミニウム合金部材と銅合金部材との面ろう付け方法 - Google Patents

アルミニウム合金部材と銅合金部材との面ろう付け方法 Download PDF

Info

Publication number
WO2013108465A1
WO2013108465A1 PCT/JP2012/078497 JP2012078497W WO2013108465A1 WO 2013108465 A1 WO2013108465 A1 WO 2013108465A1 JP 2012078497 W JP2012078497 W JP 2012078497W WO 2013108465 A1 WO2013108465 A1 WO 2013108465A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing
alloy member
aluminum alloy
copper alloy
mass
Prior art date
Application number
PCT/JP2012/078497
Other languages
English (en)
French (fr)
Inventor
貴訓 小久保
堀 久司
亮介 富樫
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to CN201280067490.6A priority Critical patent/CN104093515B/zh
Priority to KR1020147019240A priority patent/KR101731688B1/ko
Publication of WO2013108465A1 publication Critical patent/WO2013108465A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0233Sheets, foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials

Definitions

  • the present invention relates to a method of brazing an aluminum alloy member and a copper alloy member in a inert gas atmosphere without flux using a brazing sheet.
  • Non-Patent Document 1 an Al—Si—Mg—Bi-based foil brazing material (corresponding to 4104, melting point: 832 K) is sandwiched between an aluminum plate (A1050) and an oxygen-free copper plate (C1020), and an initial load of 0.1 MPa. And a technique of surface brazing by holding at 783 to 823 K (510 to 550 ° C.) in a vacuum furnace.
  • Non-Patent Document 1 the diffusion of Al into the Cu base material is activated during the brazing holding time, and an intermetallic compound ⁇ phase is generated. Further, the intermetallic compound ⁇ phase is formed on the Al side during cooling. It has been suggested that the joint strength (brazing strength) decreases.
  • Patent Document 1 when making a brazed structure in which an Al material and a Cu material are joined via a brazing material, Ni plating is applied to at least one of the Al material and the Cu material in advance.
  • a technique has been proposed in which a layer is formed, and thereafter, an Al material and a Cu material are brazed using a brazing material, for example, a brazing material made of Al—Si or an alloy mainly composed of Al—Si.
  • Patent Document 2 when joining a member made of aluminum (Al) or an aluminum (Al) alloy and a member made of copper or a copper alloy, silver (Ag) is applied to the joint surface of the member made of copper or a copper alloy.
  • the remaining metal is brazed using an Al—Si alloy brazing material and a joining surface of the aluminum layer (Al) or an aluminum (Al) alloy member and the metal layer.
  • Forming a layer, a remaining metal layer, and a reaction layer in which a region in which an Al—Ag intermetallic compound is generated is formed.
  • the reaction layer is formed of the brazing material, silver (Ag), and aluminum (Al).
  • Non-Patent Document 1 the fracture behavior of an Al—Cu brazed joint is examined in detail, and the main part of the final fracture position is not the interface between two different intermetallic compounds, the ⁇ phase and the ⁇ phase. , It is revealed that it is inside the ⁇ phase.
  • melting solidification of a brazing material inevitably accompanies the brazing joining of an aluminum member and a copper member, the production
  • the technique presented in Non-Patent Document 1 employs vacuum brazing, which has the disadvantages of low productivity efficiency and high cost.
  • the present invention has been devised in order to solve such a problem.
  • a single layer brazing sheet is used to braze an aluminum alloy member and a copper alloy member in a non-flux surface in an inert gas atmosphere.
  • An object of the present invention is to provide a surface brazing technique that suppresses the growth of an intermetallic compound layer and keeps the thermal conductivity between an aluminum alloy member and a copper alloy member high and has excellent brazing strength (shearing force). To do.
  • the method of surface brazing the aluminum alloy member and the copper alloy member of the present invention includes Si: 1.0 to 12% by mass, Mg: 0.1 to 5.0% by mass, A method of brazing an aluminum alloy member and a copper alloy member with a single layer brazing sheet having a component composition consisting of Al and unavoidable impurities and having a thickness of 15 to 200 ⁇ m, The brazing sheet is sandwiched between an aluminum alloy member and a copper alloy member and brought into surface contact with the brazing sheet under an inert gas atmosphere while maintaining a brazing temperature of 510 to 550 ° C. and a surface pressure of 0.6 MPa or more. It is characterized by brazing an aluminum alloy member and a copper alloy member without adding flux.
  • Cu, Mn, and Zn as unavoidable impurities contained in the brazing material are each preferably less than 1.0% by mass.
  • the brazing material preferably has a thickness of 15 to 150 ⁇ m, more preferably 15 to 100 ⁇ m.
  • the aluminum alloy member to be brazed is preferably one having at least a solidus temperature of 520 ° C. or higher.
  • the aluminum alloy member one having a solidus temperature of 550 ° C. or higher is more preferable.
  • those having a solidus temperature of 600 ° C. or higher, such as AA1000 series, are more preferable.
  • the brazing temperature is preferably 510 to 550 ° C.
  • the holding time at the brazing temperature during surface brazing is preferably 2 minutes or more, particularly 5 minutes or more.
  • the inert gas at the time of surface brazing is nitrogen gas, and the oxygen concentration of the inert gas is 500 ppm or less.
  • the aluminum alloy member and the copper alloy member are flux-free in an inert gas atmosphere, and the aluminum alloy member and the copper alloy member Surface brazing is applied with a specific surface pressure in between. For this reason, the void defect etc. which are easy to generate
  • brazing in an inert gas atmosphere is possible, and since a production method using a continuous furnace can be adopted, production efficiency is higher than in the case of vacuum brazing using a batch furnace.
  • brazing material inserted between the aluminum alloy member and the copper alloy member is melted. It will be efficiently discharged from between the alloy members. For this reason, it becomes possible to suppress the formation of intermetallic compounds such as the ⁇ phase on the Al side in particular, the thickness of the intermetallic compound layer can be reduced, and the thermal conductivity between the aluminum alloy member and the copper alloy member can be reduced.
  • Surface brazing excellent in brazing strength (shearing force) can be performed while keeping high.
  • brazing material is necessarily melted and solidified because brazing material is inserted between the aluminum alloy member and copper alloy member to be joined and brazing heating is performed. That is, as long as the brazing material remains between the aluminum alloy member and the copper alloy member even after brazing, it is difficult to control the generation of the intermetallic compound layer to the extent necessary for improving the joint strength. For this reason, the quality of brazed products tends to vary.
  • Patent Literature 1 when Ni plating is applied to at least one of the Al material and Cu material, or expensive silver (Ag) is used as an insert material as shown in Patent Literature 2.
  • a thin single-layer brazing sheet made of an Al-Si-Mg alloy brazing material is sandwiched between an aluminum alloy member and a copper alloy member, and a specific surface pressure is applied in a state of surface contact.
  • the brazing sheet is melted sufficiently by applying, and the molten brazing material is actively discharged from the interface while wetting the interface between the aluminum alloy member and the copper alloy member, forming between the aluminum alloy member and the copper alloy member.
  • This is a surface brazing method capable of reducing the thickness of the intermetallic compound layer. Since the thickness of the intermetallic compound layer can be reduced, a bonded body with high brazing strength can be obtained.
  • the aluminum alloy member may be an aluminum alloy plate, an aluminum alloy extruded material, or an aluminum alloy casting.
  • the copper alloy member may be a copper alloy plate, a copper alloy extruded material, or a copper alloy casting.
  • an engagement portion may be provided so that an aluminum alloy component and a copper alloy component can be connected to each other, and a portion for sandwiching the brazing sheet may be provided in the engagement portion.
  • the material to be joined is not limited to an aluminum alloy plate or a copper alloy plate, and may be anything made of aluminum alloy or copper alloy having a smooth surface that can be brazed at least partially. .
  • the aluminum alloy member to which the surface brazing method of the present invention is applied is preferably made of an aluminum alloy having a solidus temperature of 520 ° C. or higher.
  • a brazing temperature of 510 ° C. or higher is required to sufficiently dissolve the brazing material, and as an aluminum alloy member to be joined, It is necessary to apply to those whose solidus temperature is 520 ° C. or higher. If the solidus temperature of the aluminum alloy member to be joined is less than 520 ° C., at least a part of the aluminum alloy member may be dissolved in the surface brazing heating.
  • a more preferable solidus temperature of the aluminum alloy member is 550 ° C. or higher.
  • a more preferable solidus temperature of the aluminum alloy member is 600 ° C. or higher.
  • the first feature of the present invention is that a brazing sheet comprising a single layer of brazing material having a predetermined composition and thickness is used to reduce costs.
  • the brazing material is an alloy containing Si: 1.0 to 12% by mass, Mg: 0.1 to 5.0% by mass, with the balance being composed of Al and inevitable impurities, and having a thickness of 15
  • Si 1.0 to 12% by mass Si is an element for lowering the temperature of the liquidus line of the brazing sheet depending on its content and improving wettability during surface brazing. If the Si content is less than 1.0% by mass, the temperature of the liquidus line of the brazing sheet becomes too high, and even if the brazing temperature is reached, the brazing sheet is not sufficiently dissolved, which is sufficient There is a possibility that brazing strength (shear stress) cannot be obtained. Conversely, if the Si content exceeds 12% by mass, there is a high possibility that primary Si precipitates (crystallizes) in the center of the ingot during casting, and a healthy hot-rolled sheet is obtained. However, it becomes difficult to obtain a brazing sheet having a microscopically homogeneous structure. Therefore, the Si content in the brazing filler metal is in the range of 1.0 to 12% by mass. A more preferable Si content is in the range of 2.0 to 12% by mass. A more preferable Si content is in the range of 3.0 to 12% by mass.
  • Mg 0.1 to 5.0% by mass Since Mg acts as a reducing agent when oxidized itself, Mg suppresses oxidation of aluminum at the interface between the aluminum alloy member and the brazing material of the brazing sheet due to brazing heating, and improves wettability during surface brazing. It is considered to be an element for improvement. If the Mg content is less than 0.1% by mass, depending on the brazing temperature and holding time, the effect may be insufficient and sufficient brazing strength (shear stress) may not be obtained. . On the other hand, when the Mg content exceeds 5.0% by mass, the load on the roll when hot rolling the ingot is increased, and ear cracking also occurs, so that hot rolling becomes difficult.
  • the Mg content in the brazing material is in the range of 0.1 to 5.0% by mass.
  • a more preferable Mg content is in the range of 0.1 to 4.0% by mass.
  • a more preferable Mg content is in the range of 0.1 to 3.0% by mass.
  • the balance consists of Al and inevitable impurities.
  • Inevitable impurities include Fe, Cu, Mn, Zn, and the like.
  • Fe less than 1.0% by mass
  • Cu less than 1.0% by mass
  • Mn less than 1.0% by mass
  • the content of the components as inevitable impurities is preferably less than 1.0% by mass.
  • impurity elements include Cr, Ni, Zr, Ti, V, B, Sr, Sb, Ca, Na, etc., but Cr: less than 0.5 mass%, Ni: less than 0.5 mass% Zr: less than 0.2% by mass, Ti: less than 0.2% by mass, V: less than 0.1% by mass, B: less than 0.05% by mass, Sr: less than 0.05% by mass, Sb: 0.0% by mass. If it is in the range of less than 05% by mass, Ca: less than 0.05% by mass, and Na: less than 0.01% by mass, the performance characteristics of the brazing sheet according to the present invention will not be significantly impaired. May be included. About Pb, Bi, Sn, and In, each is less than 0.02 mass%, and each other is less than 0.02 mass%. Even if it contains an element outside the control in this range, the effect of the present invention is not hindered. .
  • the thickness of the brazing material constituting the brazing sheet 15 to 200 ⁇ m
  • the thickness of the brazing material constituting the single-layer brazing sheet according to the present invention may be any thickness that can achieve sound surface brazing. If the thickness is less than 15 ⁇ m, sufficient brazing strength may not be obtained. When the thickness exceeds 200 ⁇ m, the amount of the brazing material discharged from the joint surface becomes too large, resulting in an increase in cost. Accordingly, the thickness range of the brazing material is 15 to 200 ⁇ m. A more preferable thickness range is 15 to 150 ⁇ m. A more preferable thickness range is 15 to 100 ⁇ m.
  • a single layer type brazing sheet made of brazing material is manufactured as follows. Ingots, scraps, and the like as raw materials are blended and put into a melting furnace to melt a molten aluminum having a predetermined brazing material composition.
  • the melting furnace is generally a burner furnace in which the raw material is heated and melted directly by a burner flame. After the molten aluminum reaches a predetermined temperature, for example, 800 ° C., an appropriate amount of the flux for removing the debris is added, and the molten metal is stirred with a stirring rod to dissolve all raw materials.
  • an additional raw material such as Mg
  • an additional raw material such as Mg
  • the metal soot floating on the surface is removed.
  • the molten aluminum is cooled to a predetermined temperature, for example, 740 ° C.
  • the molten aluminum is poured out from the hot water outlet into a bowl, and if necessary, casting is started through an inline rotary degasser, a CFF filter, and the like.
  • a melting furnace and a holding furnace are provided side by side, after the molten metal melted in the melting furnace is transferred to the holding furnace, casting is started after further sedation or the like in the holding furnace.
  • the jacket of the DC casting machine may be a single pour, but may be a multi-pour that places importance on production efficiency. For example, while pouring through a dip tube and a float into a water-cooled mold having a size of 700 mm ⁇ 450 mm, the lower mold is lowered at a casting speed of 60 mm / min, and direct water cooling (Direct Chill), the molten metal in the sump is solidified and cooled to obtain a slab having a predetermined size, for example, 700 mm ⁇ 450 mm ⁇ 4500 mm. After the end of casting, the front and rear ends of the slab were cut and double-sided with 25 mm on one side.
  • Direct Chill direct water cooling
  • the 400 mm thick slab was inserted into a soaking furnace and homogenized at 450 to 540 ° C. for 1 to 12 hours ( HO treatment). After the homogenization treatment, the slab is taken out of the soaking furnace and subjected to several passes of hot rolling with a hot rolling mill to obtain, for example, a 6 mm thick hot rolled plate coil (Reroll). The 6 mm thick hot rolled plate coil is subjected to several passes of cold rolling to obtain a single layer brazing sheet made of a brazing material having a predetermined thickness, for example, 100 ⁇ m.
  • a coil is inserted into the annealer as necessary, and an intermediate annealing process at a holding temperature of 300 to 450 ° C. is performed to perform cold rolling. It is desirable to soften the plate.
  • the second feature of the present invention is that a specific surface pressure is applied between the aluminum alloy member and the copper alloy member without using a flux in an inert gas atmosphere. For this reason, when the brazing material is melted, it is efficiently discharged from between the aluminum alloy member and the copper alloy member, and in particular, it becomes possible to suppress the formation of intermetallic compounds such as the ⁇ phase on the Al side, thereby reducing the thickness of the intermetallic compound layer.
  • Surface brazing can be performed with excellent brazing strength (shearing force) while maintaining high thermal conductivity between the aluminum alloy member and the copper alloy member.
  • brazing sheet brazing material
  • inert gas atmosphere a holding temperature of 510 ° C. or more. It is necessary to hold for a predetermined time. For this reason, even during brazing heating, in order to suppress oxidation of the brazing surface of the aluminum alloy member or copper alloy member or the brazing material surface of the brazing sheet, surface brazing is performed in an inert gas atmosphere. There is a need to do.
  • the inert gas nitrogen gas, argon gas, helium gas, or the like can be used.
  • the oxygen concentration in the inert gas is preferably 500 ppm or less. If the oxygen concentration in the inert gas exceeds 500 ppm, the joint strength (shear stress) after surface brazing decreases. A more preferable oxygen concentration in the inert gas is 100 ppm. A more preferable oxygen concentration in the inert gas is 10 ppm or less. Specifically, for the industrial nitrogen gas, since the standard is defined as an oxygen concentration of 10 ppm or less, it is most preferable to use the industrial nitrogen gas from the viewpoint of cost.
  • the inert gas may be injected to replace the atmosphere in the heating device with the inert gas before reaching a predetermined holding temperature.
  • a brazing sheet (brazing material) having a predetermined composition is dissolved, and the brazing material and the aluminum alloy member, and the brazing material and the copper alloy member are in surface contact. In this state, brazing heating is performed. At this time, it is necessary to maintain a predetermined brazing temperature while applying a surface pressure of 0.6 MPa or more to the joint surface.
  • a surface pressure of 0.6 MPa or more is applied to the joint surface by a press installed in the furnace. You may braze.
  • the brazing material inserted between the aluminum alloy member and the copper alloy member is efficiently discharged from the interface between the aluminum alloy member and the copper alloy member when melted. For this reason, generation of intermetallic compounds such as the ⁇ phase on the Al side can be suppressed.
  • the thickness of the intermetallic compound layer can be 30 ⁇ m or less, and the surface brazing excellent in brazing strength (shearing force) while maintaining high thermal conductivity between the aluminum alloy member and the copper alloy member. Can be attached.
  • the brazing material inserted between the aluminum alloy member and the copper alloy member is not easily discharged from the interface between the aluminum alloy member and the copper alloy member even after melting. For this reason, the diffusion of Cu atoms from the surface of the copper alloy member into the molten brazing material proceeds rapidly, and the production of intermetallic compounds such as the ⁇ phase on the Al side containing the brazing material cannot be suppressed. As a result, the thickness of the intermetallic compound layer cannot be reduced, the thermal conductivity at the interface between the aluminum alloy member and the copper alloy member is decreased, and sufficient brazing strength (shear stress) is obtained. I can't.
  • brazing strength shear stress
  • thermal conductivity at the interface between the aluminum alloy member and the copper alloy member after surface brazing
  • a higher surface pressure is preferred. Therefore, a preferable surface pressure is 0.6 MPa or more. A more preferable surface pressure is 1.0 MPa or more.
  • Brazing temperature condition maintained at 510 to 550 ° C.
  • a brazing sheet (brazing material) having a predetermined composition is dissolved to wet the interface between the aluminum alloy member and the copper alloy member,
  • the brazing temperature is at least 510 ° C. or higher.
  • the brazing temperature is less than 510 ° C., the brazing material is not sufficiently dissolved, and sufficient brazing strength (shear strength) cannot be obtained.
  • higher brazing strength (shear strength) can be obtained when the holding temperature is higher within an allowable range.
  • a preferable holding temperature is in the range of 510 to 550 ° C.
  • the holding time at the brazing temperature is preferably 2 minutes or more. Although depending on the brazing temperature, if the holding time is less than 2 minutes, sufficient brazing strength (shear strength) cannot be obtained due to uneven temperature at the joint surface. A more preferable holding time is 5 minutes or more.
  • the ingot was chamfered by 3 mm after cutting the hot water to a thickness of 9 mm.
  • the ingot is charged into an electric heating furnace, heated to 480 ° C. at a heating rate of 100 ° C./hr, homogenized at 480 ° C. for 1 hour, and then 3 mm thick by a hot rolling mill. Hot rolling was applied. Thereafter, the hot-rolled sheet was cold-rolled to obtain a cold-rolled sheet having a thickness of 0.2 mm, and subjected to intermediate annealing at 400 ° C. for 2 hours in order to soften the sheet. Further, cold rolling was performed to obtain a final cold rolled plate having a thickness of 0.06 mm (60 ⁇ m).
  • brazing material thickness 15 ⁇ m, 20 ⁇ m, 30 ⁇ m, 60 ⁇ m and 100 ⁇ m were prepared for the E alloy brazing material.
  • This final cold rolled sheet was cut into a predetermined size (15 mm ⁇ 8 mm) to obtain a plurality of brazing sheets (brazing materials).
  • a brazing sheet (15 mm ⁇ 8 mm) is placed on the center of a 35 mm ⁇ 35 mm surface of block A (35 mm ⁇ 35 mm ⁇ 10 mm) made of AA1100 alloy, and made of oxygen-free copper
  • the block B was erected at the center on the 35 mm ⁇ 35 mm surface of the block A so that the 15 mm ⁇ 8 mm surface of the block B (18 mm ⁇ 15 mm ⁇ 8 mm) of (C1020) was superimposed on the brazing sheet.
  • the assembled block or the like was inserted into the test furnace while pressurizing the upper surface of the block B using a pressure brazing test jig as shown in FIG. PID control until the thermocouple attached to block A shows a predetermined brazing temperature while flowing industrial nitrogen gas (nitrogen with an oxygen concentration of 10 ppm or less) at a flow rate of 10 Nl / min to replace the atmosphere with an inert gas
  • the output to the resistance wire was turned off and the assembled block or the like was cooled in the furnace.
  • the thermocouple attached to the block A showed 400 ° C. or lower, the assembled block and the like were taken out of the furnace and cooled to room temperature.
  • the E alloy brazing material brazing material thickness: 60 ⁇ m
  • the industrial nitrogen nitrogen having an oxygen concentration of 10 ppm or less
  • an inverted T-shaped test piece in the same manner under the conditions of brazing temperature of 540 ° C. and holding time of 10 minutes in the air with or without flowing nitrogen of oxygen concentration of 500 ppm, nitrogen of 2000 ppm was made.
  • the inverted T-shaped test piece prepared as described above is fixed to a jig as shown in FIG. 3 and pressed from the end face (35 mm ⁇ 10 mm face) of the block A with an Amsler (strain rate: 1 mm). / Min), brazing strength (breaking shear stress) on the brazed surface was measured.
  • a brazing sheet (30 mm ⁇ 30 mm) is placed in the center of a 40 mm ⁇ 40 mm surface of a block C (40 mm ⁇ 40 mm ⁇ 4 mm) made of AA1050 alloy. Place the block D in the center on the 40 mm ⁇ 40 mm surface of the block C so that the 30 mm ⁇ 30 mm surface of the block D (30 mm ⁇ 30 mm ⁇ 2.5 mm) made of oxygen-free copper (C1020) overlaps the brazing sheet. Repeated.
  • the assembled block or the like was inserted into the test furnace while pressurizing the upper surface of the block D using a pressure brazing test jig as shown in FIG. PID control until the thermocouple attached to block C shows a predetermined brazing temperature while flowing industrial nitrogen gas (nitrogen with an oxygen concentration of 10 ppm or less) at a flow rate of 10 Nl / min to replace the atmosphere with inert gas
  • the output to the resistance wire was turned off and the assembled block or the like was cooled in the furnace.
  • the thermocouple attached to the block C showed 400 ° C. or lower, the assembled block and the like were taken out of the furnace and cooled to room temperature.
  • Thermal conductivity was calculated by multiplying density, specific heat, and thermal diffusivity. The density was measured by dimension and weight measurement, the specific heat, and the thermal diffusivity were measured by the laser flash method.
  • the test piece used for metallographic observation / thermal conductivity measurement was processed into a plate thickness of 2 mm with a milling cutter and then finished into a test piece having a diameter of 2 mm by wire-cut electric discharge machining.
  • a thermal constant measuring device TC-7000 manufactured by ULVAC-RIKO was used for the laser flash method.
  • the cross section of the central part of the test piece for metallographic structure observation and thermal conductivity measurement was embedded in a resin and mirror-polished, and the thickness of the intermetallic compound layer was measured under a metal microscope as shown in FIG. It was measured.
  • the upper region is a Cu substrate (oxygen-free copper (C1020)), and the lower region is an Al substrate (AA1050 alloy).
  • a ⁇ phase is generated in a layer shape on the upper side
  • a ⁇ phase is generated in a lump shape on the lower side.
  • brazing material thickness 60 ⁇ m
  • a material to be joined made of AA1100 alloy, oxygen-free copper (C1020)
  • Block while flowing industrial nitrogen (nitrogen with an oxygen concentration of 10 ppm or less), brazing was performed under the conditions of brazing temperature 540 ° C., holding time 10 minutes, pressurizing pressure 3 MPa, and preparation of an inverted T-shaped test piece
  • a test piece for observation of metal structure and measurement of thermal conductivity was prepared. The results are shown in Tables 2 to 10 and FIGS.
  • the brazing temperature is preferably 510 ° C. or higher. It can also be seen that the brazing temperature holding time is preferably 2 minutes or longer, particularly 5 minutes or longer.
  • Mg 0.1% by mass of Mg is sufficient to obtain a desired shear stress when brazing at 540 ° C.
  • the desired shear stress is not obtained if the Mg content is less than 0.01% by mass.
  • the shear stress does not decrease even when brazing at 540 ° C.
  • the preferable content of Mg is 0.1 to 3.0 mass%.
  • the Si content sufficient shear stress is obtained in the range of 1.0 to 12.0% by mass.
  • the Si content is 0.5% by mass
  • the obtained shear stress is slightly reduced. Yes. Therefore, it can be seen that the preferable content of Si is 1.0 to 12.0% by mass. It can be seen that Cu, Mn, and Zn, which are inevitable impurities, have almost no influence on the shear stress as long as each content is less than 1.0% by mass.
  • the thickness of the brazing material if the thickness is 15 ⁇ m or more, sufficient shear stress is obtained for the time being, but when the thickness is 15 ⁇ m, the obtained shear stress is slightly low. Therefore, the thickness of the brazing material is preferably 15 ⁇ m or more. If it is too thick, the brazing filler metal becomes excessive, so that the upper limit is 200 ⁇ m as described above. Looking at the brazing atmosphere, it can be seen that the atmosphere should be at least inert such as nitrogen. In particular, it can be seen that an inert gas atmosphere having an oxygen content of 500 ppm or less is preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 単層型のブレージングシートを用いてアルミニウム合金部材と銅合金部材とを無フラックスで面ろう付けする方法は、アルミニウム合金部材と銅合金部材との間に、Si:1.0~12質量%、Mg:0.1~5.0質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有し、厚さ15~200μmのろう材からなる単層ブレージングシートを挟みこみ面接触させた状態で、不活性ガス雰囲気下で、ろう付け温度510~550℃に保持しつつ、0.6MPa以上の面圧を付加しながら無フラックスでアルミニウム合金部材と銅合金部材とをろう付けする。

Description

アルミニウム合金部材と銅合金部材との面ろう付け方法
 本発明は、アルミニウム合金部材と銅合金部材とを、ブレージングシートを用いて不活性ガス雰囲気中、無フラックスで面ろう付けする方法に関するものである。
 近年、車載用IGBT等の発熱を面接触で冷却する熱交換システムの需要が高まっており、アルミニウム部材と銅部材とを面ろう付けする技術が必要とされている。例えば、銅板とセラミックスの板とを張り合わせた熱伝導性、電気的な絶縁性が良好な基板と、アルミニウム合金製の水冷部材とを接合する場合、前記基板の銅板と前記水冷部材のアルミニウム合金面とを面ろう付けする技術が必要とされる。
 この面ろう付け技術においては、アルミニウム合金部材と銅板との間にろう材を挿入してろう付け加熱を行なうため、接合部に空隙欠陥等が生じやすく、フラックスを使用するとフラックスを封じ込めやすい構造となっている。したがって、ろう付け技術の中でも比較的難しい技術となっている。
 一方、フラックスを使用しないアルミニウム部材と銅部材との面ろう付け接合技術として、真空ろう付け法を適用した面ろう付け接合技術が挙げられる。例えば非特許文献1には、アルミニウム板(A1050)と無酸素銅板(C1020)の間にAl-Si-Mg-Bi系箔ろう材(4104相当,融点:832K)を挟み込み、初期荷重0.1MPaを付加し、真空炉中で783~823K(510~550℃)に保持して、面ろう付けする技術について提示されている。この非特許文献1に提示された技術では、ろう付け保持時間中にCu母材中へのAlの拡散が活発化し金属間化合物δ相が生成し、さらに冷却時にAl側において金属間化合物θ相が晶出し、このため継手強度(ろう付け強度)が低下することが示唆されている。
 また特許文献1には、Al材とCu材とを、ろう材を介して接合したろう接構体を作る場合に、予めAl材とCu材のうち少なくも一方の接合箇所にNiメツキを施しメツキ層を形成させ、その後に、ろう材、例えばAl-Si、又はAl-Siを主体とする合金からなるろう材を用いてAl材とCu材とをろう接する技術が提示されている。
 さらに特許文献2には、アルミニウム(Al)またはアルミニウム(Al)合金製の部材と銅または銅合金製の部材との接合に際して、前記銅または銅合金製の部材の接合面に銀(Ag)からなる金属層を形成し、この金属層と前記アルミニウム(Al)またはアルミニウム(Al)合金製の部材の接合面とAl-Si系の合金ろう材を用いてろう付することにより、残存した前記金属層と、残存した前記金属層と、Al-Agの金属間化合物が生成された領域が存在する反応層とを形成し、この反応層は前記ろう材、銀(Ag)およびアルミニウム(Al)の反応によって構成され、そのマトリックス相へ網目状に生成する前記Al-Agの金属間化合物を存在させることを特徴とするアルミニウムまたはアルミニウム合金製の部材と銅または銅合金製の部材との接合方法が提示されている。
特開昭56-109157 特許第3917503号
軽金属溶接 Vol.40(2002)No.9,p13-20
 ところで、非特許文献1においては、Al-Cuろう付け継手の破壊挙動が詳細に調べており、最終破断位置の主要部はθ相とδ相という2種類の異なる金属間化合物間の界面ではなく、θ相内部であることが明らかにされている。そして同非特許文献1では、アルミニウム部材と銅部材とのろう付け接合時には、必然的にろう材の溶融凝固を伴うため、継手強度の向上に必要な程度に金属間化合物層の生成を制御することは原理的に困難であると結論づけている。また、同非特許文献1に提示された技術では、真空ろう付けを採用しており、このため生産性効率が低く、コストが高いという欠点がある。
 さらに、特許文献1において提示された技術では、予めAl材とCu材のうち少なくも一方の接合箇所にNiメツキを施しメツキ層を形成させる必要があり、特許文献2において提示された技術では、インサート材として高価な銀(Ag)を使用しなければならず、コストが嵩み、工程も煩雑となるおそれがある。
 このため、安定したろう付け品質を確保しつつ、しかもコストアップを招かないアルミニウム合金部材と銅合金部材とを面ろう付けする技術の開発が望まれている。
 本発明は、このような課題を解決するために案出されたものであり、単層型ブレージングシートによってアルミニウム合金部材と銅合金部材とを不活性ガス雰囲気中で無フラックス面ろう付けする際に、金属間化合物層の成長を抑制させ、アルミニウム合金部材と銅合金部材間の熱伝導率を高く保ちつつ、ろう付け強度(せん断力)に優れた面ろう付けする技術を提供することを目的とするものである。
 本発明のアルミニウム合金部材と銅合金部材との面ろう付け方法は、その目的を達成するために、Si:1.0~12質量%、Mg:0.1~5.0質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有し、厚さ15~200μmのろう材からなる単層ブレージングシートを用いてアルミニウム合金部材と銅合金部材とを面ろう付けする方法であって、前記ブレージングシートをアルミニウム合金部材と銅合金部材との間に挟みこみ面接触させた状態で、不活性ガス雰囲気下で、ろう付け温度510~550℃に保持しつつ、0.6MPa以上の面圧を付加しながら無フラックスでアルミニウム合金部材と銅合金部材とをろう付けすることを特徴とする。
 前記ろう材に含まれる不可避的不純物としてのCu、Mn、Znは、それぞれ1.0質量%未満とすることが好ましい。
 また、前記ろう材は、厚さ15~150μm、さらには厚さ15~100μmとすることが好ましい。
 さらに、面ろう付けされるアルミニウム合金部材としては、少なくとも固相線温度が520℃以上のものが好ましい。アルミニウム合金部材としては、固相線温度が550℃以上のものがより好ましい。アルミニウム合金部材としては、例えばAA1000系のように固相線温度が600℃以上であるものがさらに好ましい。
 さらにまた、前記ろう付け温度が510~550℃であることが好ましい。
 そして、面ろう付け時の前記ろう付け温度における保持時間は2分以上に、特に5分以上とすることが好ましい。
 さらに、面ろう付け時の前記不活性ガスが窒素ガスで、特に前記不活性ガスの酸素濃度は500ppm以下とすることが好ましい。
 本発明により提供されるアルミニウム合金部材と銅合金部材との面ろう付け方法によると、アルミニウム合金部材と銅合金部材を不活性ガス雰囲気中においてフラックスフリーで、かつアルミニウム合金部材と銅合金部材との間に特定の面圧を付加して面ろう付けしている。このため、アルミニウム合金部材と銅合金部材間に発生しやすい空隙欠陥等を抑制することができ、結果として品質の安定した面ろう付けが行える。
 上記面ろう付け方法によると、不活性ガス雰囲気中でのろう付けが可能であり、連続炉による生産方式を採用できるため、バッチ炉による真空ろう付けの場合に比べて、生産効率が高く、しかも単層型のブレージングシートを用いているため、全体として低コスト化が図れる。またアルミニウム合金部材と銅合金部材間に0.6MPa以上の面圧を付加してろう付けしているため、アルミニウム合金部材と銅合金部材間に挿入されたろう材は、溶融するとアルミニウム合金部材と銅合金部材間から効率良く排出されることとなる。このため、特にAl側におけるθ相などの金属間化合物の生成を抑制することが可能となり、金属間化合物層の厚みを薄くすることができ、アルミニウム合金部材と銅合金部材間の熱伝導率を高く保ちつつ、ろう付け強度(せん断力)に優れた面ろう付けが行える。
逆T字試験片の形状を説明する図 金属組織観察用・熱伝導率測定用試験片の形状を説明する図 せん断試験方法を説明する概念図 加圧式ろう付け試験治具を説明する概念図 金属間化合物層の厚み測定を説明する写真 化合物層の厚みに及ぼすろう付時の付加圧力の影響を示す図 せん断強度に及ぼす化合物層厚さの影響を示す図 熱伝導率に及ぼす化合物層厚さの影響を示す図 付加圧力0.2MPaにおける断面金属組織を示す写真 付加圧力0.6MPaにおける断面金属組織を示す写真 ろう付け温度と保持時間の影響を示す図 ろう材中のMg添加量の影響を示す図 ろう材中のSi添加量の影響を示す図 ろう材中の不純物含有量の影響を示す図 ろう材の厚さの影響を示す図 ろう付け雰囲気中の酸素濃度の影響を示す図
 通常、面ろう付けする際は、接合するアルミニウム合金部材と銅合金部材との間にろう材を挿入してろう付け加熱を行なうため、必然的にろう材の溶融凝固を伴っている。すなわち、ろう付け後もアルミニウム合金部材と銅合金部材との間にろう材が残存する限り、継手強度の向上に必要な程度に金属間化合物層の生成を制御することは困難である。このため、ろう付け製品の品質にバラツキが生じ易い。
 また、特許文献1に提示されるようにAl材とCu材のうち少なくとも一方の接合箇所にNiメツキを施す場合や、特許文献2に提示されるようにインサート材として高価な銀(Ag)を使用する場合であっても、結局Al-Si系の合金ろう材を用いてろう付けを行うため、コストが嵩み、工程も煩雑となる虞がある。
 そこで、本発明者等は、従来技術に比べ低コストで品質の安定した面ろう付け法について鋭意検討を重ねる過程で、本発明に到達した。
 以下にその詳細を説明する。
 まず本発明は、アルミニウム合金部材と銅合金部材との間にAl-Si-Mg系合金ろう材からなる極力厚さの薄い単層ブレージングシートを挟み込み、面接触させた状態で特定の面圧を付与してブレージングシートを十分に溶解させるとともに、アルミニウム合金部材と銅合金部材との界面を濡らしつつ溶融したろう材を界面から積極的に排出し、アルミニウム合金部材と銅合金部材との間に形成される金属間化合物層の厚みを薄くすることが可能な面ろう付け方法である。金属間化合物層の厚みを薄くすることができたために、ろう付け強度の高い接合体を得ることができている。
 アルミニウム合金部材は、アルミニウム合金板であってもよいし、アルミニウム合金押出材やアルミニウム合金鋳物であっても構わない。同様に銅合金部材は、銅合金板であってもよいし、銅合金押出材や銅合金鋳物であっても構わない。例えばアルミニウム合金製の部品と銅合金製の部品同士が連結できるように係合部を設けて、当該係合部にブレージングシートを挟み込める部位を設けるようにしてもよい。要するに本発明において、被接合材はアルミニウム合金板や銅合金板に限定されず、少なくとも一部にろう付け可能な平滑面を有するアルミニウム合金製及び銅合金製のものであれば何であってもよい。
 本発明の面ろう付け法を適用するアルミニウム合金部材としては、少なくとも固相線温度が520℃以上であるアルミニウム合金からなるものが好ましい。
 後記で詳述するAl-Si系のろう材を用いるとき、当該ろう材を十分に溶解するためには、510℃以上のろう付け温度が必要であり、被接合材であるアルミニウム合金部材としてはその固相線温度が520℃以上であるものに適用することが必要である。被接合材であるアルミニウム合金部材の固相線温度が520℃未満であると、面ろう付けの加熱において、アルミニウム合金部材の少なくとも一部が溶解してしまう可能性がある。より好ましいアルミニウム合金部材の固相線温度は550℃以上である。さらに好ましいアルミニウム合金部材の固相線温度は600℃以上である。
 本発明の第一の特徴点は、コストを抑えるためにブレージングシートとして、所定の組成と厚みを有するろう材単層からなるものを使用した点にある。
 そこで、まずろう材について説明する。
 ろう材として、Si:1.0~12質量%、Mg:0.1~5.0質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有する合金であって、厚さが15~200μmのアルミニウム合金薄板を用いる。
Si:1.0~12質量%
 Siは、その含有量によってブレージングシートの液相線の温度を下げるとともに、面ろう付け中の濡れ性を改善するための元素である。Si含有量が、1.0質量%に満たないと、ブレージングシートの液相線の温度が高くなりすぎて、所定のろう付け温度に到達してもブレージングシートの溶解が不十分となり、十分なろう付け強度(せん断応力)が得られない可能性がある。逆に、Si含有量が、12質量%を超えると、鋳造中に鋳塊中央部に初晶Siが析出(晶出)する可能性が高くなり、仮に健全な熱延板が得られたとしてもミクロ的に均質な組織のブレージングシートを得ることが困難となる。
 したがって、ろう材中のSi含有量は、1.0~12質量%の範囲とする。より好ましいSi含有量は、2.0~12質量%の範囲である。さらに好ましいSi含有量は、3.0~12質量%の範囲である。
Mg:0.1~5.0質量%
 Mgは、自らが酸化されることにより、還元剤として作用するため、ろう付け加熱によるアルミニウム合金部材とブレージングシートのろう材との界面におけるアルミニウムの酸化を抑制し、面ろう付け中の濡れ性を改善するための元素であると考えられる。Mg含有量が、0.1質量%に満たないと、ろう付け温度や保持時間にもよるが、その効果が不十分となり、十分なろう付け強度(せん断応力)が得られない可能性がある。逆に、Mg含有量が、5.0質量%を超えると、鋳塊を熱延する際のロールへの負荷が大きくなり、また耳割れも生じるため、熱延が困難となる。ろう材の加工性を考慮すると、Mg含有量は、低い方が好ましい。
 したがって、ろう材中のMg含有量は、0.1~5.0質量%の範囲とする。より好ましいMg含有量は、0.1~4.0質量%の範囲である。さらに好ましいMg含有量は、0.1~3.0質量%の範囲である。
 残部はAlと不可避的不純物からなる。
 不可避的不純物としてはFe、Cu、Mn、Zn等が挙げられるが、これら元素については、Fe:1.0質量%未満、Cu:1.0質量%未満、Mn:1.0質量%未満、Zn:1.0質量%未満の範囲であれば、本発明の効果を妨げるものではない。したがって、不可避的不純物としての前記成分含有量はそれぞれ1.0質量%未満とすることが好ましい。
 また、その他の不純物元素として、Cr、Ni、Zr、Ti、V、B、Sr、Sb、Ca、Na等も考えられるが、Cr:0.5質量%未満、Ni:0.5質量%未満、Zr:0.2質量%未満、Ti:0.2質量%未満、V:0.1質量%未満、B:0.05質量%未満、Sr:0.05質量%未満、Sb:0.05質量%未満、Ca:0.05質量%未満、Na:0.01質量%未満の範囲であれば、本発明に係るブレージングシートの性能特性を大きく阻害することがないため、不可避的不純物として含んでいてもよい。Pb、Bi、Sn、Inについては、それぞれ0.02質量%未満、その他各0.02質量%未満であって、この範囲で管理外元素を含有しても本発明の効果を妨げるものではない。
ブレージングシートを構成するろう材の厚さ;15~200μm
 本発明に係る単層型ブレージングシートを構成するろう材の厚みは、健全な面ろう付けを達成できる厚みであればよい。厚みが15μm未満であると、十分なろう付け強度が得られない可能性がある。厚みが200μmを超えると、接合面から排出されるろう材の量が多くなりすぎて、コスト高となる。したがって、ろう材の厚みの範囲は、15~200μmとする。より好ましい厚みの範囲は、15~150μmである。さらに好ましい厚みの範囲は、15~100μmである。
ろう材からなる単層型ブレージングシートの製造方法
 例えば、100μm厚さのろう材からなる単層型ブレージングシートであれば、以下のように製造する。
 原料となるインゴット、スクラップ等を配合し、溶解炉に投入して、所定のろう材組成からなるアルミニウム溶湯を溶製する。溶解炉は、バーナーの火炎によって直接原料を加熱溶解するバーナー炉が一般的である。アルミニウム溶湯が所定の温度、例えば、800℃に達した後、適量の除滓用フラックスを投入して、攪拌棒により溶湯の攪拌を行い、全ての原料を溶解する。その後、成分調整のため、追加の原料、例えばMg等を投入し、30~60分程度の鎮静を行った後、表面に浮遊するメタル滓を除去する。アルミニウム溶湯が所定の温度、例えば、740℃にまで冷却された後、出湯口から樋に出湯し、必要に応じて、インライン回転脱ガス装置、CFFフィルター等を通し鋳造を開始する。なお、溶解炉と保持炉が併設されている場合には、溶解炉で溶製された溶湯を保持炉に移湯した後、保持炉でさらに鎮静等を行ってから鋳造を開始する。
 DC鋳造機のジャケットは、1本注ぎであってもよいが、生産効率を重視する多本注ぎのものであってもよい。例えば、700mm×450mmのサイズの水冷式鋳型内に、ディップチューブ、フロートを通して注湯しながら、鋳造速度60mm/minで下型を下げ、水冷式鋳型下部において凝固シェル層に対して直接水冷(Direct Chill)を行いつつ、サンプ内の溶湯を凝固冷却せしめ、所定の寸法、例えば、700mm×450mm×4500mm寸法のスラブを得る。鋳造終了後、スラブの先端、後端を切断して片面25mmの両面面削を施し、400mm厚さとしたスラブをソーキング炉に挿入して、450~540℃×1~12時間の均質化処理(HO処理)を施す。均質化処理後、スラブをソーキング炉から取り出して、熱間圧延機によって何パスかの熱間圧延を施して、例えば、6mm厚の熱間圧延板コイル(Reroll)を得る。
 この6mm厚の熱間圧延板コイルに何パスかの冷間圧延を施して、所定の厚さ、例えば、100μm厚さのろう材からなる単層型ブレージングシートを得る。なお、冷間圧延工程において、冷間圧延板の加工硬化が著しい場合には、必要に応じて、コイルをアニーラーに挿入し、保持温度300~450℃の中間焼鈍処理を施して、冷間圧延板を軟化させることが望ましい。
 本発明の第二の特徴点は、不活性ガス雰囲気下でフラックスを用いることなく、アルミニウム合金部材と銅合金部材間に特定の面圧を付加している点にある。このため、ろう材が溶融するとアルミニウム合金部材と銅合金部材間から効率良く排出され、特にAl側におけるθ相などの金属間化合物の生成を抑制することが可能となり、金属間化合物層の厚みを薄くすることができ、アルミニウム合金部材と銅合金部材間の熱伝導率を高く保ちつつ、ろう付け強度(せん断力)に優れた面ろう付けが行える。
不活性ガス雰囲気下
 前述のようにブレージングシート(ろう材)を十分に溶解して、アルミニウム合金部材と銅合金部材との界面を濡らして面ろう付けするためには、少なくとも保持温度510℃以上で所定時間保持することが必要である。
 このため、ろう付け加熱中であっても、アルミニウム合金部材や銅合金部材のろう付け面の表面或いはブレージングシートのろう材面の酸化を抑制するために、不活性ガス雰囲気下で面ろう付けを行う必要がある。
 不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガス等が使用できる。また、不活性ガス中の酸素濃度は、500ppm以下であることが好ましい。不活性ガス中の酸素濃度が500ppmを超えると、面ろう付け後の接合強度(せん断応力)が低下する。
より好ましい不活性ガス中の酸素濃度は100ppmである。さらに好ましい不活性ガス中の酸素濃度は10ppm以下である。具体的には、工業用窒素ガスについては、酸素濃度10ppm以下と規格が定められているので、コスト面からも工業用窒素ガスを使用することが最も好ましい。
 もちろん、ろう付け加熱中、ろう付け温度保持中及び冷却中は、加熱装置内を不活性ガス雰囲気で充満しておくことが好ましい。しかしながら、電磁誘導加熱のように急速加熱する場合には所定の保持温度に到達する前に、不活性ガスを噴射して加熱装置内の大気を不活性ガスに置換してもよい。
付加面圧;0.6MPa以上
 本発明に係る面ろう付け方法において、所定の組成のブレージングシート(ろう材)を溶解して、ろう材とアルミニウム合金部材、ろう材と銅合金部材とを面接触させた状態で、ろう付け加熱を行うが、この際接合面に対して0.6MPa以上の面圧を付加しながら、所定のろう付け温度で保持する必要がある。もちろん、ろう付け加熱時には面圧を付加せずに、ろう材の溶融温度に到達する直前に、炉内に設置したプレス等によって接合面に対して0.6MPa以上の面圧を付加して面ろう付けを行ってもよい。
 面圧が0.6MPa以上の場合、アルミニウム合金部材と銅合金部材間に挿入されたろう材は、溶融するとアルミニウム合金部材と銅合金部材との界面から効率良く排出されることとなる。このため、特にAl側におけるθ相などの金属間化合物の生成を抑制することが可能となる。具体的には、例えば金属間化合物層の厚みを30μm以下にすることができ、アルミニウム合金部材と銅合金部材間の熱伝導率を高く保ちつつ、ろう付け強度(せん断力)に優れた面ろう付けが行える。
 面圧が0.6MPa未満の場合、アルミニウム合金部材と銅合金部材との間に挿入されたろう材は、溶融した後であってもアルミニウム合金部材と銅合金部材との界面から排出され難くなる。このため、銅合金部材表面から溶融ろう材中へのCu原子の拡散が急速に進行し、ろう材を含むAl側におけるθ相などの金属間化合物の生成を抑制することができない。結果として、金属間化合物層の厚みを薄くすることができず、アルミニウム合金部材と銅合金部材との界面の熱伝導率が低下するばかりでなく、十分なろう付け強度(せん断応力)を得ることができない。もちろん、面ろう付け後のアルミニウム合金部材と銅合金部材との界面の熱伝導率を高く維持しつつ、ろう付け強度(せん断応力)を十分に確保するためには、接合面に対して付加する面圧は高い方が好ましい。したがって、好ましい面圧は0.6MPa以上である。より好ましい面圧は1.0MPa以上である。
ろう付けの温度条件;510~550℃に保持
 本発明に係る面ろう付け方法において、所定の組成のブレージングシート(ろう材)を溶解して、アルミニウム合金部材と銅合金部材の界面を濡らすとともに、溶融したろう材をアルミニウム合金部材と銅合金部材との界面から排出しつつ、確実に面ろう付けを行うためには、少なくともろう付け温度510℃以上である必要がある。
 ろう付け温度が510℃未満である場合には、ろう材の溶解が不十分となり、十分なろう付け強度(せん断強度)が得られない。もちろん、許容できる範囲内で保持温度が高い方がより十分なろう付け強度(せん断強度)が得られる。しかしながら、保持温度が、550℃を超えると、ろう材を含むAl側へのCu原子の拡散が急速に進行し、1000系のアルミニウム合金部材であっても、界面付近の固相線温度が低下することで順次局部融解を起こし、特定の面圧を付加していることもあり、銅合金部材がアルミニウム合金部材に深くめり込んでしまう可能性がある。したがって、好ましい保持温度は、510~550℃の範囲である。
ろう付けの保持時間
 ろう付け温度における保持時間は、2分以上であることが好ましい。ろう付け温度にもよるが、保持時間が2分未満であると、接合面における温度の不均一によって、十分なろう付け強度(せん断強度)が得られない。より好ましい保持時間は、5分以上である。
ブレージングシートの作製
 所定の各種インゴットを計量、配合して、離型材を塗布した#30坩堝に9kgずつ(計16試料)の原材料を装入装填した。これら坩堝を電気炉内に挿入して、760℃で溶解して滓を除去し、その後、溶湯温度を740℃に保持した。次に小型回転脱ガス装置によって、溶湯に流量1Nl/分で窒素ガスを10分間吹き込み、脱ガス処理を行った。その後30分間の鎮静を行なって溶湯表面に浮上した滓を攪拌棒にて除去し、さらにスプーンで成分分析用鋳型にディスクサンプルを採取した。
 次いで、治具を用いて順次坩堝を電気炉内から取り出し、200℃に予熱しておいた5個の金型(70mm×70mm×15mm)にアルミニウム溶湯を鋳込んだ。各試料のディスクサンプルは、発光分光分析によって、組成分析を行なった。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 鋳塊は、押し湯を切断後、両面を3mmずつ面削して、厚み9mmとした。電気加熱炉にこの鋳塊を装入して、100℃/hrの昇温速度で480℃まで加熱し、480℃×1時間の均質化処理を行い、続いて熱間圧延機にて3mm厚さにまで熱間圧延を施した。
 この後、熱間圧延板に冷間圧延を施して、0.2mm厚さの冷延板とし、軟化させるため400℃×2時間の中間焼鈍を施した。さらに冷間圧延を施して、0.06mm(60μm)の最終冷間圧延板とした。なお、ろう材厚みのろう付け強度(せん断応力)に及ぼす影響を調査するために、E合金ろう材については、厚み15μm、20μm、30μm、60μm及び100μmの5水準の最終圧延板を作製した。
 この最終冷間圧延板を所定の大きさ(15mm×8mm)に切断して、複数枚のブレージングシート(ろう材)とした。
逆T字試験片の作製
 図1に示すようにAA1100合金製のブロックA(35mm×35mm×10mm)の35mm×35mmの面上中央にブレージングシート(15mm×8mm)を載置し、無酸素銅製(C1020)のブロックB(18mm×15mm×8mm)における15mm×8mmの面を上記ブレージングシートに重ねるようにしてブロックAにおける35mm×35mmの面上中央にブロックBを立設した。
 さらに図4(a)に示すような加圧式ろう付け試験治具を使用してブロックBの上面を加圧しつつ、試験炉内に組み上げたブロック等を挿入した。雰囲気を不活性ガスに置換するため、流量10Nl/分で工業用窒素ガス(酸素濃度10ppm以下の窒素)を流しつつ、ブロックAに取り付けた熱電対が所定のろう付け温度を示すまで、PID制御により50℃/分の速度で加熱し、所定のろう付け温度で所定の時間保持した後、抵抗線への出力をOFFとして、組み上げたブロック等を炉冷した。ブロックAに取り付けた熱電対が400℃以下を示した後、組み上げたブロック等を炉から取り出して室温まで冷却した。
 また、ろう付け雰囲気による酸素濃度のろう付け強度(せん断応力)に及ぼす影響を調査するため、E合金ろう材(ろう材厚:60μm)については、工業用窒素(酸素濃度10ppm以下の窒素)の他、酸素濃度500ppmの窒素、酸素濃度2000ppmの窒素を流しながら、或いは窒素を流すことなく大気中で、ろう付け温度540℃、保持時間10分の条件下で、同様にして逆T字試験片の作製を行った。
せん断応力の測定
 上記のようにして作製した逆T字試験片を図3のような治具に固定して、ブロックAの端面(35mm×10mmの面)からアムスラーによって加圧し(歪速度:1mm/分)、ろう付け面におけるろう付け強度(破断せん断応力)の測定を行った。
金属組織観察用・熱伝導率測定用試験片の作製
 図2に示すようにAA1050合金製のブロックC(40mm×40mm×4mm)の40mm×40mmの面上中央にブレージングシート(30mm×30mm)を載置し、無酸素銅製(C1020)のブロックD(30mm×30mm×2.5mm)における30mm×30mmの面を上記ブレージングシートに重ねるようにしてブロックCにおける40mm×40mmの面上中央にブロックDを重ねた。
 さらに図4(b)に示すような加圧式ろう付け試験治具を使用してブロックDの上面を加圧しつつ、試験炉内に組み上げたブロック等を挿入した。雰囲気を不活性ガスに置換するため、流量10Nl/分で工業用窒素ガス(酸素濃度10ppm以下の窒素)を流しつつ、ブロックCに取り付けた熱電対が所定のろう付け温度を示すまで、PID制御により50℃/分の速度で加熱し、所定のろう付け温度で所定の時間保持した後、抵抗線への出力をOFFとして、組み上げたブロック等を炉冷した。ブロックCに取り付けた熱電対が400℃以下を示した後、組み上げたブロック等を炉から取り出して室温まで冷却した。
熱伝導率の測定
 熱伝導率は密度、比熱、熱拡散率を乗じて算出した。密度は寸法および重量計測、比熱、熱拡散率はレーザフラッシュ法によってそれぞれ測定した。測定試験片は金属組織観察用・熱伝導率測定用試験片をフライスで板厚2mmに加工した後,ワイヤーカット放電加工により直径2mmの試験片に仕上げたものを使用した。レーザフラッシュ法はアルバック理工(株)製熱定数測定装置TC-7000を使用した。
金属間化合物層厚みの測定
 金属組織観察用・熱伝導率測定用試験片の中央部断面を樹脂に埋め込んで鏡面研磨し、図5に示すように金属顕微鏡下で金属間化合物層の厚さを測定した。図5において、上側の領域はCu基材(無酸素銅(C1020))、下側の領域はAl基材(AA1050合金)である。これら基材同士の接合界面に沿って、上側にδ相が層状に生成し、下側にθ相が塊状に生成している。接合界面と直交するように測定用基準線を設定し、δ相とCu基材との境界(a点)と、θ相とAl基材との境界(b点)との距離を測定し、この距離を金属間化合物層の厚さとした。このようにして、1試験片につき任意の10箇所の断面で金属間化合物層の厚さを測定し、その平均値を化合物層厚さとした。
 なお、上記実施例の説明中にあって、特に細かい条件の表示がないものについては、E合金ろう材(ろう材厚:60μm)及び被接合材(AA1100合金製、無酸素銅製(C1020)のブロック)を用い、工業用窒素(酸素濃度10ppm以下の窒素)を流しながら、ろう付け温度540℃、保持時間10分、加圧力3MPaの条件下でろう付けを行い、逆T字試験片の作製および金属組織観察用・熱伝導率測定用試験片の作製を行ったものである。
 その結果を表2~10、及び図6~16に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 まず、表2に示す結果から、0.6MPa以上の面圧を付加しながらろう付けを行えば、30μm以下の化合物層の厚みとなることがわかる。また、せん断強度に及ぼす化合物層厚さの影響についてみると、化合物層厚さが30μm以下の状態ではせん断強度が増加することがわかる。熱伝導率に及ぼす化合物厚さの影響についてみると、化合物層厚さが30μm以下の状態では熱伝導率が増加することがわかる。さらに、化合物層の厚さに及ぼすろう付時の付加圧力の影響について断面組織写真をみると、0.2MPaの面圧を付加しながらろう付を行えば、Al側においてθ相などの金属間化合物が大きく成長している組織となっているが、0.6MPaの面圧を付加しながらろう付を行えば、Al側においてθ相などの金属間化合物が大きく成長しておらず、薄いほぼ一定の厚さの組織となっており、金属間化合物の生成が抑制されたことがわかる。
 したがって、ろう付時の付加圧力については、0.6MPa以上の面圧を付加することが好ましいことがわかる。
 ろう付け温度については、510℃以上とすることが好ましいことがわかる。また、ろう付け温度保持時間は2分以上に、特に5分以上とすることが好ましいことがわかる。
 次にろう材を構成するアルミニウム合金中の成分の影響についてみると、540℃でろう付けした際に所望のせん断応力を得るには0.1質量%のMg含有で十分である。しかし、540℃でろう付けした際にMg含有量が0.01質量%未満では所望のせん断応力が得られていない。また、Mg含有量が3.0質量%を超えた試料では540℃でのろう付けを行ってもせん断応力は低下しないが、前述のようにろう材自体の加工性は低下する。したがって、Mgの好ましい含有量は0.1~3.0質量%であることがわかる。
 Si含有量についてみると、1.0~12.0質量%の範囲で、十分なせん断応力が得られているが、Si含有量0.5質量%では、若干得られるせん断応力が低くなっている。
したがって、Siの好ましい含有量は1.0~12.0質量%であることがわかる。
 不可避的不純物であるCu,Mn,Znについては、それぞれ1.0質量%未満の含有であれば、せん断応力にほとんど影響していないことがわかる。
 ろう材の厚さについては、15μm以上の厚さであれば、とりあえず十分なせん断応力が得られているが、その厚さが15μmの場合、若干得られるせん断応力が低くなっている。したがって、ろう材の厚さは15μm以上とすることが好ましい。厚すぎるとろう材が過剰となってしまうため上限は200μmであることは前記したとおりである。
 ろう付け時の雰囲気についてみると、少なくとも窒素等の不活性雰囲気とするべきであることがわかる。特に酸素含有量が500ppm以下の不活性ガス雰囲気とすることが好ましいことがわかる。
 本発明によれば、安定したろう付け品質を確保しつつ、しかもコストアップを招かないアルミニウム合金部材と銅合金部材とを面ろう付けする技術が提供される。

Claims (9)

  1.  Si:1.0~12質量%、Mg:0.1~5.0質量%を含み、残部がAl及び不可避的不純物からなる成分組成を有し、厚さ15~200μmのろう材からなる単層ブレージングシートを用いてアルミニウム合金部材と銅合金部材とを面ろう付けする方法であって、
     前記ブレージングシートをアルミニウム合金部材と銅合金部材との間に挟みこみ面接触させた状態で、不活性ガス雰囲気下で、ろう付け温度510~550℃に保持しつつ、0.6MPa以上の面圧を付加しながら無フラックスでアルミニウム合金部材と銅合金部材とをろう付けすることを特徴とするアルミニウム合金部材と銅合金部材との面ろう付け方法。
  2.  前記ろう材に含まれる不可避的不純物としてのCuが1.0質量%未満に制限されている請求項1に記載のアルミニウム合金部材と銅合金部材との面ろう付け方法。
  3.  前記ろう材に含まれる不可避的不純物としてのMnが1.0質量%未満に制限されている請求項1に記載のアルミニウム合金部材と銅合金部材との面ろう付け方法。
  4.  前記ろう材に含まれる不可避的不純物としてのZnが1.0質量%未満に制限されている請求項1に記載のアルミニウム合金部材と銅合金部材との面ろう付け方法。
  5.  前記ブレージングシートを構成するろう材は、厚さ15~150μmである請求項1に記載のアルミニウム合金部材と銅合金部材との面ろう付け方法。
  6.  前記ろう付け温度における保持時間が2分以上である請求項1に記載のアルミニウム合金部材と銅合金部材との面ろう付け方法。
  7.  前記ろう付け温度における保持時間が5分以上である請求項1に記載のアルミニウム合金部材と銅合金部材との面ろう付け方法。
  8.  前記不活性ガスが窒素ガスである請求項1に記載のアルミニウム合金部材と銅合金部材との面ろう付け方法。
  9.  前記不活性ガスの酸素濃度が500ppm以下である請求項1に記載のアルミニウム合金部材と銅合金部材との面ろう付け方法。
PCT/JP2012/078497 2012-01-19 2012-11-02 アルミニウム合金部材と銅合金部材との面ろう付け方法 WO2013108465A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280067490.6A CN104093515B (zh) 2012-01-19 2012-11-02 铝合金构件与铜合金构件的面硬钎焊方法
KR1020147019240A KR101731688B1 (ko) 2012-01-19 2012-11-02 알루미늄 합금 부재와 구리 합금 부재의 면 경납땜 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-009107 2012-01-19
JP2012009107A JP5915198B2 (ja) 2012-01-19 2012-01-19 アルミニウム合金部材と銅合金部材との面ろう付け方法

Publications (1)

Publication Number Publication Date
WO2013108465A1 true WO2013108465A1 (ja) 2013-07-25

Family

ID=48798902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/078497 WO2013108465A1 (ja) 2012-01-19 2012-11-02 アルミニウム合金部材と銅合金部材との面ろう付け方法

Country Status (5)

Country Link
JP (1) JP5915198B2 (ja)
KR (1) KR101731688B1 (ja)
CN (1) CN104093515B (ja)
TW (1) TWI526269B (ja)
WO (1) WO2013108465A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501537A (zh) * 2020-11-11 2021-03-16 中国电子科技集团公司第三十八研究所 一种铝合金表面低温钎焊改性涂层及制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104985274B (zh) * 2015-03-12 2017-09-19 乐清市超研电气科技有限公司 超强度裸端头焊接工艺
CN104985351A (zh) * 2015-06-30 2015-10-21 苏州华日金菱机械有限公司 一种用于较厚板材的焊接焊料
CN105033581A (zh) * 2015-07-10 2015-11-11 西北矿冶研究院 一种锌电解阴极导电头铜和铝异质金属复合方法
CN105742934A (zh) * 2016-02-29 2016-07-06 中网电力科技有限公司 一种铜铝过渡线夹的铜铝钎焊方法
WO2020022046A1 (ja) * 2018-07-23 2020-01-30 大学共同利用機関法人自然科学研究機構 アルミナ分散強化銅のろう付接合方法
DE102020203502A1 (de) * 2020-03-18 2021-09-23 Mahle International Gmbh Verfahren zum Herstellen eines Wärmeübertragers
CN114434039A (zh) * 2021-01-15 2022-05-06 重庆理工大学 一种铜铝异材低温互连的焊料及焊接方法
CN116391059A (zh) * 2021-04-13 2023-07-04 柠檬金属有限公司 铝合金
CN113199103B (zh) * 2021-06-11 2022-04-19 哈尔滨工业大学 适用于高功率电子器件或组件的电磁感应快速连接方法
CN114160899B (zh) * 2021-12-19 2023-06-09 南京理工大学 一种铸铝发动机活塞部件的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190620A (ja) * 1997-09-16 1999-04-06 Mazda Motor Corp 金属部材の接合方法及び接合装置
JP2000343210A (ja) * 1999-03-31 2000-12-12 Komatsu Ltd 二重構造管およびその製造方法
JP2002113569A (ja) * 2000-10-04 2002-04-16 Sumitomo Precision Prod Co Ltd アルミニウム部材と銅部材の接合方法および熱交換装置とその製造方法
JP2004303818A (ja) * 2003-03-28 2004-10-28 Ngk Insulators Ltd ヒートスプレッダモジュールの製造方法及びヒートスプレッダモジュール
JP2009226454A (ja) * 2008-03-24 2009-10-08 Niigata Univ 金属部材の接合方法及びその装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6815086B2 (en) * 2001-11-21 2004-11-09 Dana Canada Corporation Methods for fluxless brazing
CN100349683C (zh) * 2005-09-06 2007-11-21 山东大学 一种使铜-铝接头结合强度高的扩散钎焊方法
CN100363137C (zh) * 2005-12-30 2008-01-23 哈尔滨工业大学 填充复合焊料非连续增强铝基复合材料振动液相焊接方法
JP5532520B2 (ja) * 2010-09-29 2014-06-25 日本軽金属株式会社 アルミニウム合金部材の面ろう付け方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190620A (ja) * 1997-09-16 1999-04-06 Mazda Motor Corp 金属部材の接合方法及び接合装置
JP2000343210A (ja) * 1999-03-31 2000-12-12 Komatsu Ltd 二重構造管およびその製造方法
JP2002113569A (ja) * 2000-10-04 2002-04-16 Sumitomo Precision Prod Co Ltd アルミニウム部材と銅部材の接合方法および熱交換装置とその製造方法
JP2004303818A (ja) * 2003-03-28 2004-10-28 Ngk Insulators Ltd ヒートスプレッダモジュールの製造方法及びヒートスプレッダモジュール
JP2009226454A (ja) * 2008-03-24 2009-10-08 Niigata Univ 金属部材の接合方法及びその装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501537A (zh) * 2020-11-11 2021-03-16 中国电子科技集团公司第三十八研究所 一种铝合金表面低温钎焊改性涂层及制备方法

Also Published As

Publication number Publication date
TW201341092A (zh) 2013-10-16
TWI526269B (zh) 2016-03-21
CN104093515A (zh) 2014-10-08
JP2013146759A (ja) 2013-08-01
JP5915198B2 (ja) 2016-05-11
KR20140112505A (ko) 2014-09-23
CN104093515B (zh) 2017-01-18
KR101731688B1 (ko) 2017-05-17

Similar Documents

Publication Publication Date Title
JP5915198B2 (ja) アルミニウム合金部材と銅合金部材との面ろう付け方法
JP5532520B2 (ja) アルミニウム合金部材の面ろう付け方法
CN103930577B (zh) 铝合金材料和铝合金结构体及其制造方法
TWI557234B (zh) Aluminum alloy fin sheet for heat exchangers with excellent weldability and sag resistance and its manufacturing method
CN103906852A (zh) 热交换器翅用铝合金材料及其制造方法、以及使用该铝合金材料的热交换器
JP4231529B2 (ja) アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
KR20160009600A (ko) 단층으로 가열 접합 기능을 가지는 알루미늄 합금재와 그 제조방법 및 상기 알루미늄 합금재를 이용한 알루미늄 접합체
JP5870791B2 (ja) プレス成形性と形状凍結性に優れたアルミニウム合金板およびその製造方法
KR20160015229A (ko) 열교환기 및 당해 열교환기용 핀재
JP5906994B2 (ja) アルミニウム合金部材の面ろう付け方法
JP4231530B2 (ja) アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
JP6614307B1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP5537256B2 (ja) アルミニウム合金ブレージングシート
JP2017025378A (ja) 熱交換器用Al−Mn系アルミニウム合金材およびその製造方法
JP4242429B2 (ja) アルミニウム合金厚板の製造方法およびアルミニウム合金厚板
JP3916577B2 (ja) 双ベルト鋳造用フィン用アルミニウム合金およびフィン材
JP5856764B2 (ja) 過共晶アルミニウム−シリコン合金圧延板成形品およびその製造方法
JP2003071588A (ja) ろう材シート、ブレージングシートおよびそれらの製造方法
KR20230145563A (ko) 알루미늄 합금판, 그 제조 방법 및 열교환기
CA3193262A1 (en) Direct chill cast aluminum ingot with composition gradient for reduced cracking
JP2011012301A (ja) 銅合金及び銅合金の製造方法
JP2018162496A (ja) アルミニウム合金厚板
BG2544U1 (bg) Система за мониторинг на пред­ пазните пътни мантинели

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147019240

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865603

Country of ref document: EP

Kind code of ref document: A1