WO2013107180A1 - 散热设备及刀片服务器 - Google Patents

散热设备及刀片服务器 Download PDF

Info

Publication number
WO2013107180A1
WO2013107180A1 PCT/CN2012/080699 CN2012080699W WO2013107180A1 WO 2013107180 A1 WO2013107180 A1 WO 2013107180A1 CN 2012080699 W CN2012080699 W CN 2012080699W WO 2013107180 A1 WO2013107180 A1 WO 2013107180A1
Authority
WO
WIPO (PCT)
Prior art keywords
chassis
fan
board
rear board
opening area
Prior art date
Application number
PCT/CN2012/080699
Other languages
English (en)
French (fr)
Inventor
田伟强
廖健行
水瑞锋
郝明亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2013107180A1 publication Critical patent/WO2013107180A1/zh
Priority to US14/077,455 priority Critical patent/US9351426B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20754Air circulating in closed loop within cabinets
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20727Forced ventilation of a gaseous coolant within server blades for removing heat from heat source

Definitions

  • the present invention relates to the field of heat dissipation, and more particularly to a heat sink device and a blade server for a blade server. Background technique
  • the high operating costs and power cooling costs, fast-growing storage capacity and data traffic bandwidth requirements are the biggest challenges facing enterprise data centers and a huge business opportunity for data center equipment vendors. It solves the heat dissipation and energy-saving design of high-density servers. At the same time, in order to cope with the same equipment, it can meet different requirements for heat dissipation. In particular, high-density switching boards with multiple optical modules are used for heat dissipation.
  • the common server structure is that the front side is the server computing node board, and the back side is the input/output switching board.
  • the computing node board and the input/output switching board are vertically interconnected through the backplane, for example, the budget contact board level. Set the input and output switching board vertical settings.
  • a typical blade server adopts a vertical mode in which the front board is vertically inserted and the board is horizontally inserted.
  • the heat dissipation air duct is: The front board is vertically inserted into the punched back board, and the cooling airflow enters through the front panel, and passes through the ventilation holes on the back board.
  • the heat dissipation method that is extracted by the fan on the rear wall.
  • the fan is horizontally disposed on the upper and lower edges on the rear wall panel, and air inlet channels are left on both sides of the chassis, and air is introduced from the top surfaces of the rear board, and the air passage structure undergoes a vertical to horizontal conversion process, thereby causing complicated air passages.
  • the fluid resistance is large, which is not conducive to heat dissipation.
  • the cooling airflow passes through the functional modules on the rear board, there is a cascade heating effect, which causes heat dissipation.
  • Another type of blade server adopts a vertical mode in which the front board is horizontally inserted and then the board is vertically inserted.
  • the heat dissipation air duct is: the front board is horizontally inserted into the punched back board, and the cooling airflow enters from the front panel, and passes through the back panel. Ventilation holes, the heat dissipation method that is extracted by the fan on the rear wall.
  • the fan is vertically disposed on the rear wall plate. In the middle area, the air inlet channel is left at the lower side of the chassis, and the function module of the rear board is flowed upward from the bottom of the rear board. This results in complicated air passages and large fluid resistance, which is not conducive to heat dissipation.
  • the cooling airflow passes through the function modules on the rear board, there is a cascade heating effect, which causes the rear board to dissipate heat poorly.
  • a heat dissipation device for a blade server Includes:
  • chassis a backboard, at least one rear board, and at least one fan
  • the chassis includes a horizontal wall panel, a vertical wall panel and a rear wall panel;
  • the backboard is disposed in the chassis, and is configured to be connected to a front card inserted from a front side of the chassis and the rear card inserted from a rear of the chassis;
  • the fan is disposed at a rear portion of the chassis for dissipating heat from the chassis;
  • the chassis includes one or more partitions, and the rear insert includes one or more second opening areas, the partition and the horizontal wall, the vertical wall, the rear wall, The backboard and the rear board form a cooling air duct that does not pass through the front board, so that the cooling airflow passes through the rear board, the second opening area, and the cooling airflow.
  • the fan is discharged to the outside of the chassis to dissipate heat from the function modules on the rear board.
  • a blade server comprising a heat sink device of an embodiment of the invention.
  • the heat dissipating air duct structure is single, and when the cooling airflow flows through the rear inserting board, there is no cascading heating effect, and the heat dissipating capability of the rear interposer board is improved.
  • FIG. 1a to 1d are schematic structural views of a blade server heat dissipation device according to an embodiment of the present invention, wherein FIG. 1a is a left side view of the device, FIG. 1b is a right side view of the device, and FIG. 1c is a top view of the device, FIG. Id is an enlarged view of a portion of the top view shown in Figure lc;
  • FIGS. 2a to 2c are schematic structural views of a blade server heat sink according to a further embodiment of the present invention, wherein Fig. 2a is a left side view of the heat sink device, Fig. 2b is a right side view of the heat sink device, and Fig. 2c is a top view of the heat sink device;
  • FIG. 3 is a plan view showing a further improvement of the embodiment of the present invention
  • 4a to 4c are schematic structural views of a further modification of the embodiment of the present invention, wherein FIG. 4a is a left side view of the heat dissipating device, FIG. 4b is a right side view of the heat dissipating device, and FIG. 4c is a top view of the heat dissipating device;
  • FIG. 5a to 5c are schematic structural views of a further modification of the embodiment of the present invention, wherein Fig. 5a is a left side view of the heat dissipating device, Fig. 5b is a right side view of the heat dissipating device, and Fig. 5c is a front view of the heat dissipating device;
  • FIG. 6a to 6c are schematic structural views of a blade server heat sink according to a further embodiment of the present invention, wherein Fig. 6a is a left side view of the heat sink device, Fig. 6b is a right side view of the heat sink device, and Fig. 6c is a front view of the heat sink device ;
  • Figure 7 is a front elevational view showing a further modification of the embodiment of the present invention.
  • FIG. 8a to 8c are schematic structural views of a further modification of the embodiment of the present invention, wherein Fig. 8a is a left side view of the heat dissipating device, Fig. 8b is a right side view of the heat dissipating device, and Fig. 8c is a front view of the heat dissipating device;
  • FIG. 9a to 9c are schematic structural views of an alternative according to an embodiment of the present invention, wherein Fig. 9a is a left side view of the heat dissipating device, Fig. 9b is a right side view of the heat dissipating device, and Fig. 9c is a front view of the heat dissipating device 100;
  • FIGS. 10a to 10c are schematic structural views of an alternative according to an embodiment of the present invention, wherein Fig. 10 is a left side view of the heat dissipating device, Fig. 10b is a right side view of the heat dissipating device, and Fig. 10c is a top view of the heat dissipating device. detailed description
  • the heat dissipating device 100 includes a chassis 110, and the chassis 110 includes a horizontal wall panel 120, a vertical wall panel 130, and a rear wall panel 140;
  • the horizontal wall panel 120 of the chassis 110 refers to the top and bottom wall panels constituting the chassis 110.
  • the vertical wall panel 130 refers to the left and right side panels constituting the chassis 110, and the rear wall panel 140 refers to the rear side wall panel constituting the chassis (the rear side wall panel may have only a small portion, and does not need to be completely covered) side).
  • the chassis 110 may be provided with a front panel as needed, or may be provided for the purpose of facilitating the installation of the front card 168.
  • a single air duct is formed on the left and right sides of the chassis (which may be formed only on one side) to dissipate heat from the rear board.
  • the convection gas in the air duct does not pass through the front board, but is separately Formed, this can more effectively dissipate the rear board (not through the front board, the wind temperature in the duct will not rise due to the function module that needs to dissipate heat on the front board).
  • the air duct There are many ways to form the air duct. For example, using some wind deflecting partitions, using various wall panels (horizontal wall panels, vertical wall panels, rear wall panels, etc.) of the chassis, this embodiment and the following embodiments are Various methods of formation will be introduced.
  • cooling air duct (as shown in the embodiment shown in Figure 6c); or by providing the rear part of the chassis (near the fan side) as a trough cover (as in the embodiment shown in Figure 3), such two
  • the opening of each plate can be the same, and it can be easily processed uniformly.
  • the heat dissipation device 100 of this embodiment includes:
  • the backboard 150 is disposed in the chassis 110 for connecting to the front board 168 inserted from the front of the chassis 110 and the rear board 160 inserted from the rear of the chassis 110;
  • the fan 170 is disposed at the rear of the chassis 110 for dissipating heat from the chassis 110;
  • the back plate 150 has one or more first opening areas 152, so that the heat generated by the front board 168 is discharged by the fan 170 through the first opening area 152 through the back board 150 and the fan 170, and then discharged to the outside of the chassis 110. ;
  • the chassis 110 includes one or more partitions 180, and the rear insert 160 includes one or more second aperture areas 162, a partition 180 and a horizontal wall panel 120, a vertical wall panel 130, a rear wall panel 140, a back panel 150, and
  • the rear insertion plate 160 forms a cooling air passage that does not pass through the front insertion plate 168, so that the cooling air flow is discharged from the rear insertion plate 160, the second opening area 162, and the fan 170 to the chassis 110 under the action of the fan 170. Out, to achieve heat dissipation of the functional modules on the rear board 160.
  • back side is used herein to refer to the side close to the rear wall
  • front side is used herein to refer to the side opposite the “back side”.
  • horizontal is used herein to mean the direction in which the chassis is placed on a plane parallel to the plane of placement
  • vertical is used herein to mean a direction perpendicular to the plane of placement.
  • top refers to the side that is perpendicular to the plane from which the chassis is placed
  • bottom refers to the side that is adjacent to the plane in which the chassis is placed.
  • left side refers to the left side when facing the rear wall panel of a cabinet placed on a flat surface
  • right side is used herein to refer to the right side in this case.
  • parallel is used herein to mean that the two components are substantially parallel, and does not limit the two to be absolutely parallel. There may be some error between the two or a certain angle between the two, as long as the two are separated. The interval can be. board.
  • the front interposer 168 is horizontally inserted into the backplane 150 at intervals from each other as shown in the left side view of FIG.
  • a certain width of the air inlet passage 192 is reserved between the two ends of the front insert plate 168 and the vertical wall panels 130 on both sides.
  • a person skilled in the art can select the width of the air inlet passage according to the actual situation, for example, a size of 1 cm, 2 cm or the like.
  • the rear insert 160 is vertically inserted into the backing plate 150 (shown in Figure 1c), generally parallel to the vertical wall panels 130 on either side.
  • the rear insert 160 is disposed on both sides adjacent to the vertical wall panel 130.
  • a plurality of fans 170 are arranged substantially in an array in a central region of the rear wall panel 140.
  • a plurality of functional modules not shown in the drawings such as an I/O port module, an optical module, and the like, are mounted on the side of the rear card 160 that faces away from the fan 170, that is, faces the vertical wall plate 130.
  • one or more first aperture areas 152 are formed in the area of the backplane 150 corresponding to the spacing between the front board 168 to cool the function of the front board 168 while the fan 170 is operating. Module.
  • the cooling method of the front plate 162 adopts such a structure. For the cleaning, the cooling structure of the front board 168 will not be described below.
  • the partition plate 180 is spaced substantially parallel to the rear insert plate 160, and the partition plate 180 is disposed between the rear insert plate 160 and the vertical wall plate 130 and the partition plate 180 is further away from the fan 170 than the rear insert plate 160, that is, closer to both sides.
  • Vertical wall plate 130 thereby forming a predetermined width between the partition plate 180 and the rear insert plate 160
  • a cooling duct 190 having a width of 2 cm forms an air inlet passage 192 between the partition 180 and the vertical wall 130.
  • the width of the cooling duct 190 can be determined based on the height of the functional modules mounted on the rear board 160. As is more clearly shown in Fig.
  • the partition plate 180 extends to the rear side to the vicinity of the rear wall panel 140, and a partition gap 182 of a predetermined width is formed between the rear end portion of the partition plate 180 and the rear wall panel 140, for example, a partition having a width of 2 cm.
  • the plate gap is such that a cooling airflow entering from the air inlet passage 192 can enter the cooling air duct 190 via the bulkhead gap 182.
  • the partition 180 may extend forwardly to or near the front side of the chassis 110 to more effectively define the air inlet passage 192.
  • the rear board 160 opens one or more second opening areas 162 near the end of the back board 150, so that the cooling airflow enters the chassis middle space from the cooling air duct 190 through the second opening area 162, and then is drawn out of the chassis 110 by the fan 170. .
  • the fan 170 operates to draw air from the cabinet 110, causing the cooling airflow to enter the cooling duct 190 from the front panel via the air inlet passage 192, the partition gap 182.
  • the cooling airflow is restricted by the structure of the partition plate 180 and the rear inserting plate 160, and flows through the functional modules mounted on the rear inserting plate 160 substantially in parallel with the rear interposer 160, thereby achieving a cooling effect on the functional modules.
  • the cooling airflow then enters the central space of the chassis 110 via the second aperture area 162 on the rear board 160 and is finally withdrawn from the chassis 110 via the fan 170.
  • the cooling airflow is first disposed on the side of the function module that needs to be dissipated through the rear board 160, and then discharged through the second opening area 162 and the fan 170 to the outside of the chassis 110.
  • the optical module with high heat dissipation requirement can be installed at the rear of the rear board 160, that is, the portion of the fan 170 side away from the back board 150, so that the cooling airflow is provided with the function module on the rear board 160.
  • the light module is cooled by the optical module, and then the other functional modules on the rear board 160 that require heat dissipation are dissipated.
  • the length of the rear insert 160 is relatively short, so the length of the cooling duct 190 is relatively short. Therefore, according to the duct structure of the blade server heat dissipating device 100 shown in Figs. la to Id, the cooling effect is good.
  • FIG. 2a through 2c illustrate a blade server heat sink 100 in accordance with a further embodiment of the present invention, wherein Fig. 2a is a left side view of the heat sink device 100, Fig. 2b is a right side view of the heat sink device 100, and Fig. 2c is a top plan view of the heat sink device 100.
  • the embodiment of the present invention shown in Figures 2a to 2c differs from the embodiment shown in Figures la to Id in that the rear insertion plate 160 of the embodiment shown in Figures 2a to 2c is plural, for example, four rear insertion boards are provided on each side. 2 pieces of the form, parallel to each other in parallel and vertically inserted on the back plate 150, mutual A plurality of parallel cooling ducts 190 are formed apart from each other.
  • each rear insert 160 and the partition 180 are generally symmetrically disposed about the longitudinal axis of the housing.
  • the functional modules on each rear insert 160 are mounted on the side of each rear insert 160 that faces away from the fan 170, respectively.
  • the rear insertion plate 160 closest to the fan 170 that is, the rear insertion plate 160 (hereinafter referred to as the second rear interposer 160) farthest from the partition plate 180 is near the end of the back plate 150.
  • One or more second opening areas 162 are opened, and the remaining rear inserting plate 160 (hereinafter referred to as the first rear inserting plate 160) opens one or more adjacent to the rear end of the rear wall panel 140 and the front end of the backing plate 150.
  • the second opening area 162 is such that the cooling airflow from the air inlet passage 192 can enter the plurality of cooling air ducts 190, respectively, in the cooling air duct 190 defined by the plurality of rear inserting plates 160 and the partition plates 180, simultaneously flowing
  • the function modules on each of the rear board 160 are simultaneously cooled by the function modules on each of the rear board 160.
  • a person skilled in the art can set a different number of rear inserts 160 according to specific application requirements, and by means of the partition plate 180, a plurality of parallel plates are formed between the rear insert plates 160 and between the rear insert plates 160 and the partition plates 180.
  • the cooling duct 190 of the interposer 160 Through the above arrangement, the cooling airflow reaches the second opening area 162 of the rear end of the first rear insertion plate 160 under the action of the fan 170, and a part of the first rear insertion board 160 is disposed on the side of the functional module that needs heat dissipation.
  • the function module is cooled, and passes through the second opening area 162 of the second rear board 160 and then discharged out of the chassis 110 through the fan 170; the other part reaches the second rear board 160 and is provided with a function module that needs heat dissipation.
  • the side heats the function module, passes through the second opening area 162 at the front end of the second rear board 160, and is discharged to the outside of the chassis through the fan.
  • FIG. 3 is a plan view of a further development of an embodiment of the present invention.
  • the heat dissipating device 100 may include a convex groove cover 142 connected to the rear wall plate 140 to sealingly cover the rear wall plate 140 and the air inlet passage 192 and the cooling air.
  • the area of the rear wall panel 140 covered by the convex groove cover 142 and the lower rear wall 140 is opened to provide a notch 144 for ventilation.
  • the notches 144 correspond to the intake passage 192 and the cooling duct 190, respectively, so that the cooling airflow from the intake passage 192 enters the trough-shaped region in the trough 142 via the notch 144 corresponding to the intake passage 192, and then A notch 144 corresponding to the cooling duct 190 enters each of the cooling ducts 190.
  • the second opening area 162 provided at the rear end of the first rear interposer 160 may also be omitted. In this way, all of the rear inserts 160 have the same structure, which is advantageous for uniform labor.
  • the rear wall panel 140, the vertical wall panel 130, and the horizontal wall panel 120 in the chassis 110 are formed.
  • the convex groove cover 142 is sealingly covered at the rear of the casing 110, and the rear portion of the casing is a portion close to the fan 170 side and away from the back plate 150.
  • the cooling airflow is caused to reach the slot cover 142 by the fan 170, and then the first rear board 160 is disposed on the side of the functional module that needs to be dissipated, and the second rear board 160 is disposed to require heat dissipation.
  • One side of the functional module flows out from the second opening area 162 of the front end of the first rear board 160 and the second opening area 162 of the front end of the second rear board 160, respectively, and is discharged through the fan 170.
  • the convex groove cover 142 is provided to facilitate covering the port and the cable, so that the overall structure of the chassis is neat and beautiful, and is convenient for maintenance.
  • FIG. 4a to 4c are schematic structural views of a further modification of the embodiment of the present invention, wherein Fig. 4a is a left side view of the heat dissipating device 100, Fig. 4b is a right side view of the heat dissipating device 100, and Fig. 4c is a plan view of the heat dissipating device 100.
  • the embodiment shown in Figures 4a to 4c differs from the embodiment shown in Figures la-lc to Figure 3 in that in the embodiment shown in Figures 4a to 4c, the functional modules on the rear board 160 are arranged on the side facing the fan. .
  • the air inlet passage 192 is formed between the side of the rear board 160 where the functional module is not mounted and the adjacent vertical wall panel 130.
  • the partition 180 is disposed at a distance from the rear insert 160 in this case on the side of the rear insert 160 closer to the fan 170, that is, on the side closer to the middle of the chassis 110, and spaced apart from the rear insert 160, Cooling ducts 190 are formed between the rear insert plates 160.
  • one or more second aperture areas 162 are formed in the rear insert 160 adjacent the end of the rear wall panel 140 for cooling air flow from the air inlet passage 192.
  • the cooling duct 190 enters via the second opening area 162.
  • the backing plate 150 extends laterally to the rear insert 160 such that the end of the backing plate 150 is spaced from the vertical wall panel 130, and an air inlet passage 192 is formed between the rear inserting plate 160 and the vertical wall panel 130.
  • the rear side of the partition 180 extends to the rear wall 140, and the front end of the partition 180 extends to the back plate 150.
  • the partition 180 closes the end of the back plate 150 to open a partition gap 182 for ventilation, so that the cooling air flowing through the functional module in the cooling air duct 190 enters the central portion of the chassis 110 via the partition gap 182. It is then withdrawn by the fan 170.
  • the cooling airflow passes through the side of the rear board 160 that is not provided with the functional module that needs to be dissipated, passes through the second opening area 162, and is disposed through the rear board 160.
  • the fan 170 is discharged to the outside of the chassis 110.
  • an optical module having a high heat dissipation requirement can be installed at a rear portion of the rear interposer 160, that is, a portion close to the fan 170 side away from the back plate 150, so that the cooling airflow passes.
  • the optical module is first dissipated through the optical module, and then the other function modules on the rear board 160 that require heat dissipation are dissipated.
  • the rear insert 160 and the bulkhead 180 are disposed symmetrically about the longitudinal axis of the chassis 110 on either side of the chassis 110.
  • a plurality of spaced apart rear inserts 160 may be present in the embodiment of Figures 4a through 4c.
  • the functional modules on the plurality of rear inserts 160 are disposed on the side facing the fan.
  • the partition plate 180 is disposed farthest from the vertical wall plate 130 than each of the rear insert plates 160, that is, the partition plate 180 is disposed in the plurality of rear insert plates 160 of the plurality of rear insert plates 160 that are closest to the fan 170.
  • the side close to the fan 170 that is, in order from the far side to the far side of the fan, is: a vertical wall panel 130, a plurality of spaced apart rear inserts 160, a partition 180, and a fan 170.
  • Such a structure forms a plurality of cooling ducts 190 between the plurality of rear inserts 160 and between the rear insert 160 and the partition 180 which are closest to the partition 180.
  • the rear insert 160 (hereinafter referred to as the first rear insert 160) farthest from the partition 180 opens one or more second opening areas 162 near the end of the rear wall 140.
  • the remaining rear insert 160 (hereinafter referred to as the second rear insert 160) opens one or more second opening areas 162 near the front end of the back plate 150 and near the rear end of the rear wall 140 so as to come from the air inlet passage 192.
  • the cooling airflow can simultaneously enter the plurality of cooling ducts 190 via the second opening areas 162, and simultaneously flow through the function modules on the rear board 160 in the cooling duct 190, and the functions on the plurality of rear board 160
  • the module is cooled at the same time.
  • the cooling airflow sequentially flows through the air inlet passage 192, the second opening region 162, the cooling air passage 190, and the partition gap 182, and flows through the rear inserting plate in the cooling air passage 190.
  • the function module on the 160 avoids the cascade heating effect generated by the function module on the rear board 160 during the cooling process, thereby improving the cooling efficiency.
  • the overall structure of the duct in the embodiment shown in Figs. 4a to 4c is advantageous for manufacturing and improves the cooling efficiency.
  • trough cover 142 shown in FIG. 3 can also be disposed in the embodiment shown in FIGS. 4a to 4c, which is advantageous for covering the port and the cable, so that the chassis The overall structure is neat and tidy and easy to maintain.
  • FIG. 1 can be combined with the embodiment of FIG. 4, namely, the rear board 160 on one side of the chassis and The partition 180 may be arranged in the manner of the embodiment of Figures 1a to 1c, while the rear insert 160 and the partition 180 on the other side may be arranged in the manner of the embodiment shown in Figures 4a to 4c.
  • Such embodiments are also within the scope of embodiments of the invention.
  • the front insert is horizontally inserted into the backing plate
  • the rear insert 160 is vertically inserted into the backing plate 150.
  • Embodiments of the invention are not limited to this configuration.
  • the front board 168 can also be vertically inserted into the back board, and the rear board 160 can be horizontally plugged onto the back board 150.
  • the air intake passages may be provided at the top and bottom of the chassis 110.
  • FIG. 5a to 5c are schematic structural views showing a further modification of the front board according to the embodiment of the present invention, showing that the front board is vertically inserted on the back board, and the rear board is inserted on the back board, and the air inlet passage is provided at the top and The situation at the bottom.
  • Fig. 5a is a left side view of the heat sink device 100
  • Fig. 5b is a right side view of the heat sink device 100
  • Fig. 5c is a front view of the heat sink device 100.
  • the front inserts 168 are vertically inserted into the back plate 150 at intervals.
  • a plurality of inlet passages 192 are defined between the ends of the front insert 168 and the horizontal and vertical panels 120 at the top and bottom.
  • a person skilled in the art can select the width of the air inlet passage according to the actual situation, for example, a size of 1 cm, 2 cm or the like.
  • the rear insert 160 is disposed substantially parallel to the horizontal wall 120 adjacent the horizontal wall 120, and the rear insert 160 is horizontally inserted into the back panel 150.
  • a plurality of fans 170 are arranged in an array in a central portion of the rear wall panel 140.
  • a plurality of functional modules not shown in the drawings such as an I/O port module, an optical module, and the like, are mounted on the side of the rear board 160 facing away from the fan 170.
  • the partition plate 180 is disposed between the rear insert plate 160 and the horizontal wall plate 120 parallel to the rear insert plate 160 and the horizontal wall plate 120, and the partition plate 180 is spaced apart from the rear insert plate 160, and the partition plate 180 is disposed.
  • the rear insert 160 is further away from the fan 170, that is, the horizontal wall 120 closer to the top and bottom, thereby forming a cooling duct 190 having a predetermined width, for example, a width of 2 cm, between the partition 180 and the rear insert 160.
  • An air inlet passage 192 is formed between the partition plate 180 and the horizontal wall panel 120 such that an end portion of the back plate is spaced apart from the horizontal wall panel.
  • the width of the cooling duct 190 can be determined based on the height of the functional modules mounted on the rear board 160.
  • the partition plate 180 extends to the rear side to the vicinity of the rear wall panel 140, and a partition gap 182 of a predetermined width is formed between the rear end of the partition plate 180 and the rear wall panel 140, for example, a partition gap of 2 cm in width. Cooling airflow entering from the air inlet passage 192 may enter the cooling air duct 190 via the bulkhead gap 182.
  • the spacer 180 may extend forwardly to or near the front end of the chassis 110 to more effectively define the air inlet passage 192.
  • the rear insert 160 opens one or more second opening areas 162 near the front end of the backing plate 150 for cooling airflow from the air inlet passage 192 via the partition gap 182.
  • the function module on the rear board 160 flows through the cooling duct 190, and then enters the chassis middle space via the second opening area 162 on the rear board 160, and is then withdrawn from the chassis 110 by the fan 170.
  • the fan 170 operates to draw air from the cabinet 110, causing the cooling airflow to enter the cooling duct 190 from the front panel via the air inlet passage 192, the partition gap 182.
  • the cooling airflow is restricted by the structure of the partition plate 180 and the rear inserting plate 160, and the rear inserting plate 160 flows through the functional modules mounted on the rear inserting plate 160 to achieve cooling effect on the functional modules, and then cool the airflow.
  • the second opening area 162 on the rear board 160 enters the middle space of the chassis 110, and finally the chassis 110 is drawn out via the fan 170.
  • the cooling airflow is first disposed on the side of the function module that needs to be dissipated through the rear board 160, and then discharged through the second opening area 162 and the fan 170 to the outside of the chassis 110.
  • the optical module with high heat dissipation requirement can be installed at the rear of the rear board 160, that is, the portion of the fan 170 side away from the back board 150, so that the cooling airflow is provided with the function module on the rear board 160.
  • the light module is cooled by the optical module, and then the other functional modules on the rear board 160 that require heat dissipation are dissipated.
  • the slot cover 142 shown in FIG. 3 can also be disposed in the embodiment shown in FIG. 5, which is advantageous for covering the port and the cable, so that the overall structure of the chassis Neat and beautiful, and easy to maintain.
  • the channel cover 142 is horizontally disposed at the upper and lower portions of the rear wall panel 140, corresponding to the air inlet passage 192 and the cooling air passage 190.
  • the rear insert 160 and the bulkhead 180 can be disposed substantially symmetrically about the longitudinal axis of the chassis 110 within the top and top of the chassis 110. In the presence of the trough 142, the troughs 142 are also symmetrically disposed accordingly.
  • FIG. 6a to 6c are heat dissipation devices 100 in accordance with a further embodiment of the present invention, wherein Fig. 6a is a left side view of the heat dissipation device 100, Fig. 6b is a right side view of the heat dissipation device 100, and Fig. 6c is a front view of the heat dissipation device 100.
  • the difference between the embodiment of the present invention shown in FIG. 6 and the embodiment shown in FIG. 5 is that the rear insertion board 160 of the embodiment shown in FIG. 6 has a plurality of forms, for example, four pieces of the upper part and the lower part of the four rear insertion boards.
  • the back plates 150 are horizontally inserted side by side with each other and spaced apart from each other to form a plurality of substantially parallel cooling ducts 190.
  • the functional modules on each rear insert 160 are mounted on the side of each rear insert 160 that faces away from the fan 170, respectively.
  • the rear insertion plate 160 closest to the fan 170 that is, the rear insertion plate 160 (hereinafter referred to as the second rear insertion plate 160) farthest from the partition plate 180 is opened near the front end of the back plate 150 or a plurality of second opening areas 162, remaining rear inserting plate 160 (hereinafter referred to as first rear The inserting plate 160) opens one or more second opening areas 162 near the rear end of the rear wall panel 140 and near the front end of the backing plate 150, so that the cooling airflow from the air inlet passage 192 can enter the plurality of cooling air ducts respectively.
  • the cooling airflow reaches the second opening area 162 of the rear end of the first rear insertion plate 160 under the action of the fan 170, and a part of the first rear insertion board 160 is disposed on the side of the functional module that needs heat dissipation.
  • the function module is cooled and passed through the second opening area 162 of the second rear board 160 and then discharged to the chassis 110 through the fan 170; the other part reaches the second rear board 160 and is provided with a functional module requiring heat dissipation.
  • One side heats the function module, passes through the second opening area 162 at the front end of the second rear board 160, and is discharged to the outside of the chassis through the fan.
  • FIG. 7 is a front elevational view of a further development of an embodiment of the present invention.
  • the heat dissipating device 100 may include a convex grooved cover 142 that is sealingly covered on the rear side of the rear wall panel 140, covering the rear wall panel 140 and the air inlet passage 192, Cooling the area corresponding to the air duct 190.
  • the area of the rear wall panel 140 covered by the convex groove cover 142 is provided with a notch 144 for ventilation.
  • the slots correspond to the air inlet passage 192 and the cooling air duct 190, respectively, so that the cooling airflow from the air inlet passage 192 enters the slotted region in the slot cover 142 via the slot 144 corresponding to the air inlet passage 192, and then passes through The notch 144 corresponding to the cooling duct 190 enters each of the cooling ducts 190.
  • the second opening area 162 provided at the rear end of the first rear interposer 160 may also be omitted.
  • the rear wall 140, the vertical wall 130, and the horizontal wall 120 in the chassis 110 form the outwardly convex groove cover 142.
  • the groove cover 142 is sealingly covered at the rear of the chassis 110, and the rear of the chassis is A portion near the side of the fan 170 and away from the backing plate 150.
  • the cooling airflow is caused to reach the slot cover 142 by the fan 170, and then the first rear board 160 is disposed on the side of the functional module that needs to be dissipated, and the second rear board 160 is disposed to require heat dissipation.
  • One side of the functional module flows out from the second opening area 162 of the front end of the first rear board 160 and the second opening area 162 of the front end of the second rear board 160, respectively, and is discharged through the fan 170.
  • the fan 170 Outside the chassis.
  • Providing the convex grooved cover 142 to facilitate covering the port And the cable makes the overall structure of the chassis neat and beautiful, and easy to maintain.
  • FIG. 8a to 8c are schematic structural views of a further modification of the embodiment of the present invention, wherein Fig. 8a is a left side view of the heat dissipating device 100, Fig. 8b is a right side view of the heat dissipating device 100, and Fig. 8c is a front view of the heat dissipating device 100.
  • the functional modules on the rear board 160 are disposed on the side facing the fan 170.
  • the backing plate 150 extends vertically to the rear insert 160 such that the end of the backing plate 150 is spaced from the horizontal wall 120 such that an inlet passage 192 is formed between the rear insert 150 and the horizontal wall 120.
  • the air inlet passage 192 is formed between the side of the rear board 160 where the functional module is not mounted and the adjacent horizontal wall panel 120.
  • the partition 180 is disposed in this case on the side of the rear insert 160 closer to the fan 170, that is, on the side closer to the middle of the chassis 110, and spaced apart from the rear insert 160 to form cooling with the rear insert 160. Wind tunnel 190.
  • the rear insert 160 extends to the rear wall panel 140, one or more second aperture areas 162 are formed in the rear insert 160 adjacent the rear end of the rear wall panel 140 for cooling air flow from the air inlet passage 192.
  • the cooling duct 190 enters via the second opening area 162.
  • the rear end portion of the partition 180 extends to the rear wall panel 140 and is sealingly coupled to the rear wall panel 140, and the front end portion of the partition 180 extends to the back panel 150.
  • the partition 180 opens a partition gap 182 for ventilation near the front end of the back plate 150, so that the cooling airflow flows from the air inlet passage 192 through the second opening region 162 in the cooling air passage 190.
  • the functional module then enters the central region of the chassis 110 via the bulkhead gap 182 and is then withdrawn by the fan 170.
  • the cooling airflow passes through the side of the rear board 160 that is not provided with the functional module that needs to be dissipated, passes through the second opening area 162, and is disposed through the rear board 160.
  • the fan 170 is discharged to the outside of the chassis 110.
  • an optical module having a high heat dissipation requirement can be installed at a rear portion of the rear interposer 160, that is, a portion close to the side of the back plate 150 from the side of the fan 170, so that the cooling airflow passes through the rear interposer 160.
  • the optical module is cooled by the optical module, and then the other functional modules on the rear board 160 that require heat dissipation are dissipated.
  • a plurality of parallel spaced rear inserts 160 may be present in the embodiment of Figures 8a through 8c.
  • the functional modules on the plurality of rear inserts 160 are disposed on a side facing the fan.
  • the partition plate 180 is disposed on a side of the plurality of rear inserting plates 160 closest to the fan 170 adjacent to the fan 170, that is, the partition plate 180 is disposed away from each of the rear inserting plates 160.
  • the horizontal wall panel 120 is furthest, that is, in order from the farthest to the nearest fan: The horizontal wall plate 120, the plurality of parallel spaced rear insertion plates 160, the partition plate 180, and the fan 170.
  • Such a structure forms a plurality of substantially parallel cooling ducts 190 between the plurality of rear inserts 160 and between the rear insert 160 and the partition 180 closest to the partition 180.
  • the rear insertion plate 160 (hereinafter referred to as the first rear insertion plate 160) farthest from the partition plate 180 opens one or more second opening areas 162 near the rear end of the rear wall panel 140.
  • the remaining rear insert 160 (hereinafter referred to as the second rear insert 160) has a second opening area 162 near the front end of the back plate 150 and the rear end of the rear wall 140 so as to be cooled from the air inlet passage 192.
  • the plurality of cooling ducts 190 can be simultaneously accessed through the second opening areas 162, and the function modules on the rear board 160 are simultaneously flowed through the cooling ducts 190, and the function modules on the plurality of rear board 160 are simultaneously performed. cool down.
  • the cooling airflow sequentially flows through the air inlet passage 192, the second opening region 162, the cooling air passage 190, and the partition gap 182, and flows through the rear insert plate 160 in the cooling air passage 190.
  • the function module avoids the cascade heating effect generated by the function module on the rear board 160 during the cooling process, thereby improving the cooling efficiency.
  • the overall structure of the duct in the embodiment shown in Fig. 8 is advantageous for manufacturing and improves the cooling efficiency.
  • the slot cover 142 as shown in FIG. 3 can also be disposed in the embodiment shown in FIG. 8 to facilitate covering the port and the cable, so that the overall structure of the chassis Neat and beautiful, and easy to maintain.
  • the channel cover 142 is horizontally disposed at the upper and lower portions of the rear wall panel 140, corresponding to the air inlet passage 192 and the cooling air passage 190.
  • the rear insert 160 and the bulkhead 180 and possibly the trough 142 are disposed substantially symmetrically about the longitudinal axis of the chassis 110 within the top and bottom of the chassis 110.
  • FIG. 5 can be combined with the embodiment shown in FIG. 8, that is, the rear board 160 and the upper portion of the chassis.
  • the plate 180 can be arranged in the manner of the embodiment of Fig. 5, while the rear insert 160 and the partition 180 of the lower portion of the chassis can be arranged in the manner of the embodiment shown in Fig. 8.
  • the rear insert 160 and the partition 180 of the upper portion of the cabinet may be arranged in the same manner as the embodiment of Fig. 8, and the rear insert 160 and the partition 180 at the lower portion of the cabinet may be arranged in the same manner as the embodiment shown in Fig. 5.
  • Such embodiments are also within the scope of embodiments of the invention.
  • the embodiment of the present invention is applicable not only to the case where the front board and the rear board are vertical, that is, the front board is horizontally inserted on the back board, and the rear board is vertically inserted on the back board, or the front board is vertically inserted in the back board.
  • the upper and lower inserts are horizontally inserted on the backplane, and the embodiment of the present invention is also applicable to the case where the front insert and the rear insert are parallel, that is, the front and rear inserts are horizontally inserted on the back board, or Both the card and the rear board are vertical Straight into the backplane, the following two cases are described separately.
  • FIG. 9a to 9c are schematic structural views of an alternative according to an embodiment of the present invention, showing a case where both the front card and the rear card are horizontally inserted on the back board, wherein FIG. 9a is a left side view of the heat dissipating device 100, Figure 9b is a right side view of the heat sink device 100, and Figure 9c is a front view of the heat sink device 100.
  • the front board 168 of the heat sink 100 is horizontally inserted into the back board 150 at intervals.
  • a substantially central portion of the vertical height of the backing plate 150 defines one or more first apertured regions 152 for venting the rear of the back panel to cool the functional modules on the rear panel 160.
  • there is no need to reserve a special air inlet passage 192 in the front portion and the air duct structure is further compressed, and the original chassis mechanism is not changed much. , which helps to reduce manufacturing costs.
  • the rear insert 160 is horizontally inserted over the generally central region of the backing plate 150, generally parallel to the top and bottom horizontal panels 120.
  • a plurality of fans 170 are arranged substantially in an array in the upper and lower regions of the rear wall panel 140.
  • a plurality of functional modules not shown in the drawings such as an I/O port module, an optical module, and the like, are mounted on a side surface of the rear interposer 160 facing away from the fan 170, that is, a rear insertion at the upper portion
  • a functional module on the board 160 is mounted on the underside of the rear board, and a functional module on the lower rear board 160 is mounted on the upper side of the rear board.
  • two partition plates 180 are provided corresponding to the upper and lower rear insertion plates 160, and an upper partition plate 180 corresponding to the upper rear insertion plate 160 is disposed on the upper rear insertion plate 160.
  • the lower side of the lower rear partition 160 is disposed on the upper side of the lower rear insert 160, thereby forming an air inlet passage 193 between the upper and lower partitions 180, and the upper partition 180 is
  • a cooling duct 190 is formed between the upper rear interposer 160
  • a cooling duct 190 is formed between the lower partition 180 and the lower rear board 160
  • the air inlet passage 193 corresponds to the first opening area 152 on the back board 150.
  • fan 170, rear insert 160, and partition 180 are disposed generally symmetrically about the longitudinal axis of housing 110 within the housing.
  • the upper and lower partitions 180 extend to the vicinity of the rear wall panel 140 such that the upper and lower partitions 180 form a partition gap 182 between the rear end of the rear wall panel 140 and the rear wall panel 140 so as to enter the cooling airflow from the air inlet passage 193.
  • the cooling duct 190 can be accessed via the bulkhead gap 182, and the functional modules on the rear insert 160 are passed through the cooling duct 190.
  • the upper and lower rear inserts 160 open one or more second opening areas 162 near the end of the back plate 150, so that the cooling airflow enters the upper and lower spaces of the chassis from the cooling air duct 190 through the second opening area 162, and then is driven by the fan 170.
  • the chassis 110 is withdrawn.
  • the cooling airflow is first set by the rear board 160 under the action of the fan 170.
  • One side of the functional module that needs to be dissipated is discharged to the outside of the chassis 110 through the second opening area 162 and the fan 170.
  • the optical module with high heat dissipation requirement can be installed at the rear of the rear board 160, that is, the portion of the fan 170 side away from the back board 150, so that the cooling airflow is provided with the function module on the rear board 160.
  • the light module is cooled by the optical module, and then the other functional modules on the rear board 160 that require heat dissipation are dissipated.
  • the rear insert 160 in the embodiment shown in Figs. 9a to 9c may include a plurality of rear insert plates arranged side by side in parallel.
  • the partition plate 180 is disposed farthest from the horizontal wall panel 120 than each of the rear insert plates 160 so as to be between the rear insert plates 160 and the rear insert plate 160 and the partition plate farthest from the horizontal wall plate 120.
  • a cooling duct 190 is formed between the 180 so that the cooling airflow passes through the partition gap 182 and the second opening area 162 in the cooling duct simultaneously through the functional modules on each of the rear boards 160.
  • FIG. 10a to 10c are schematic structural views of an alternative according to an embodiment of the present invention, showing a case where both the front card and the rear card are vertically inserted on the back board, wherein FIG. 10a is a left side view of the heat dissipating device 100, FIG. 10b is a right side view of the heat sink device 100, and FIG. 10c is a top view of the heat sink device 100. If on the drawing of FIG. 10c, the upper side is considered to be the right side of the chassis 110 and the lower side is the left side of the chassis 110, the rear insertion board 160 is vertically inserted into the substantially central portion of the back plate 150, and the left and right sides.
  • the vertical wall panels 130 are parallel.
  • a plurality of fans 170 are arranged substantially in an array in the left and right side regions of the rear wall panel 140, i.e., along the vertical wall panels 130 at the edge regions of the rear wall panel 140.
  • a plurality of functional modules not shown in the drawings such as an I/O port module, an optical module, and the like, are mounted on a side surface of the rear interposer 160 facing away from the fan 170, that is, behind the left side.
  • a functional module on the plug-in board 160 is mounted on the right side of the rear board, and a functional module on the right rear board 160 is mounted on the left side of the rear board.
  • two partition plates 180 are provided corresponding to the rear insertion plates 160 on the left and right sides, respectively, and the left side partition plate 180 corresponding to the left rear insertion plate 160 is disposed on the right side of the left rear insertion plate 160. And the right partition plate 180 corresponding to the right rear insert plate 160 is disposed on the left side of the right rear insert plate 160, thereby forming an air inlet passage 193 between the left and right side partition plates 180, and the left side partition plate 180
  • a cooling duct 190 is formed between the left rear board 160, a cooling duct 190 is formed between the right side panel 180 and the right rear board 160, and the air inlet duct 193 and the first opening on the back board 150 are formed.
  • Area 152 corresponds.
  • the left and right side partitions 180 extend to the vicinity of the rear wall panel 140 such that the left and right side partitions 180 form a partition gap 182 between the end of the rear wall panel 140 and the rear wall panel 140 for the cooling airflow entering from the air inlet passage 193.
  • Can The cooling duct 190 is entered through the partition gap 182.
  • the left and right rear insertion plates 160 are adjacent to the end of the back plate 150 to open one or more second opening areas 162, so that the cooling airflow enters the upper and lower space of the chassis from the cooling air channel 190 through the second opening area 162, and then is driven by the fan 170.
  • the chassis 110 is withdrawn.
  • the rear insert 160 in this example includes a plurality of rear insert plates arranged side by side in parallel.
  • the partition plate 180 is disposed farthest from the fan 170 than each of the rear insert plates 160 so as to be inserted between the rear insert plates 160 and the farthest from the vertical wall plates.
  • the cooling duct 190 is formed between the plate 160 and the partition plate 180, so that the cooling airflow passes through the partition gap 1060 and the second opening area simultaneously flows through the space in the cooling duct 190.
  • the function modules on the rear board is not shown in the drawings.
  • the common advantage of the embodiment of the present invention shown in FIG. 9 and FIG. 10 is that the modification of the existing chassis structure is relatively small, and the front side of the chassis does not need to reserve a dedicated air inlet channel, thereby further compressing the air duct structure and improving cooling. effectiveness.
  • a blade server is also provided, which blade server may include the aforementioned heat sink device 100.
  • the blade server can be equipped with other necessary components and equipment as needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

提供一种用于刀片服务器的散热设备。所述散热设备包括:机箱,背板,至少一个后插板以及至少一个风扇;所述机箱包括水平壁板、垂直壁板和后壁板;所述机箱包括一个或多个隔板,所述后插板包括一个或多个第二开孔区,所述隔板与所述水平壁板,所述垂直壁板,所述后壁板,所述背板以及所述后插板形成不经过所述前插板的冷却风道,使得冷却气流在所述风扇的作用下,经过所述后插板,所述第二开孔区,所述风扇后向所述机箱外排出,以实现对所述后插板上的功能模块进行散热。根据本发明的散热设备,其散热风道结构简单,冷却气流流经后插板时,不存在级联加热效应,提升了后插板的散热能力。

Description

散热设备及刀片服务器 技术领域
本发明涉及散热领域, 更具体地说, 涉及用于刀片服务器的散热设备及 刀片服务器。 背景技术
曰益增加的高昂运维费用和供电冷却费用,快速增长的存储容量和数据 流量带宽要求, 是企业数据中心面临的最大挑战, 也是数据中心设备商的巨 大商机。 解决高密服务器散热及节能设计, 同时为应对同一设备可以适应不 同的环境, 对散热都提出了很高要求, 特别是含多个光模板的高密交换单板 散热。 常见的服务器的结构为, 前侧是服务器运算节点单板, 后侧是输入输 出交换单板, 运算节点单板与输入输出交换单板通过背板垂直地互联在一 起, 例如预算接点单板水平设置而输入输出交换单板垂直设置。
通常的刀片服务器采用前单板竖插而后单板横插的垂直方式,其散热风 道为: 前面单板竖插在打孔背板, 冷却气流从前面板进入, 经过背板上的通 风孔, 由后壁板上的风扇抽出的散热方式。 风扇在后壁板上水平设置在上下 边缘, 机箱两侧留进风通道, 由后插板两侧顶面进风, 风道结构经历从垂直 到水平的转换过程, 由此导致风道复杂, 流体阻力大, 不利于散热。 而且冷 却气流经过后插板上的功能模块时, 存在级联加热效应, 导致散热困难。
另一种通常的刀片服务器采用前单板横插而后单板竖插的垂直方式, 其 散热风道为: 前面单板横插在打孔背板, 冷却气流从前面板进入, 经过背板 上的通风孔, 由后壁板上的风扇抽出的散热方式。 风扇在后壁板上垂直设置 在中部区域, 机箱下侧留进风通道, 由后插板底部向上流过后插板上的功能 模块, 由此导致风道复杂, 流体阻力大, 不利于散热。 而且冷却气流经过后 插板上的功能模块时, 存在级联加热效应, 导致后插板散热较差。 发明内容
本发明的目的是提供一种散热效率更高的用于刀片服务器的散热设备, 用于解决现有技术存在着的因级联加热效应导致后插板散热能力差的问题。
根据本发明实施例, 提出了一种用于刀片服务器的散热设备, 所述设备 包括:
机箱, 背板, 至少一个后插板以及至少一个风扇;
所述机箱包括水平壁板、 垂直壁板和后壁板;
所述背板设置在所述机箱中, 用于与从所述机箱前方插入的前插板以及 从机箱后方插入的所述后插板相连;
所述风扇设置在所述机箱后部, 用于从所述机箱向外散热;
所述背板中具有一个或多个第一开孔区,使得所述前插板产生的热量在 所述风扇的作用下通过所述第一开孔区经过所述背板、所述风扇后向所述机 箱外排出;
所述机箱包括一个或多个隔板, 所述后插板包括一个或多个第二开孔 区, 所述隔板与所述水平壁板、 所述垂直壁板、 所述后壁板、 所述背板以及 所述后插板形成不经过所述前插板的冷却风道,使得冷却气流在所述风扇的 作用下,经过所述后插板、所述第二开孔区、所述风扇后向所述机箱外排出, 以实现对所述后插板上的功能模块进行散热。
根据本发明实施例, 提出了一种刀片服务器, 所述刀片服务器包括本发 明实施例的散热设备。
根据本发明实施例的散热设备, 其散热风道结构筒单, 冷却气流流经后 插板时, 不存在级联加热效应, 提升了后插板的散热能力。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 la至 Id是根据本发明实施例的刀片服务器散热设备的示意结构图, 其中图 la是该设备的左视图左视图, 图 lb是该设备的右视图, 图 lc是该 设备的俯视图, 图 Id是图 lc所示俯视图的一部分的放大视图;
图 2a至 2c为根据本发明进一步实施例的刀片服务器散热设备的示意结 构图, 其中图 2a为散热设备的左视图, 图 2b为散热设备的右视图, 图 2c 为散热设备的俯视图;
图 3是本发明实施例进一步的改进方案的俯视图; 图 4a至 4c是根据本发明实施例的进一步改进方案的示意结构图, 其中 图 4a是散热设备的左视图左视图, 图 4b是散热设备的右视图, 图 4c是散 热设备的俯视图;
图 5a至 5c是根据本发明实施例的进一步改进方案的示意结构图, 其中 图 5a是散热设备的左视图, 图 5b是散热设备的右视图, 图 5c是散热设备 的正视图;
图 6a至 6c为根据本发明进一步实施例的刀片服务器散热设备的示意结 构图, 其中图 6a是散热设备的左视图左视图, 图 6b是散热设备的右视图, 图 6c是散热设备的正视图;
图 7是本发明实施例进一步的改进方案的正视图;
图 8a至 8c是根据本发明实施例的进一步改进方案的示意结构图, 其中 图 8a是散热设备的左视图, 图 8b是散热设备的右视图, 图 8c是散热设备 的正视图;
图 9a至 9c是根据本发明实施例的替代方案的示意结构图, 其中图 9a 是散热设备的左视图, 图 9b是散热设备的右视图, 而图 9c是散热设备 100 的正视图;
图 10a至 10c是根据本发明实施例的替代方案的示意结构图,其中图 10 是散热设备的左视图, 图 10b是散热设备的右视图, 图 10c是散热设备的俯 视图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 构图, 其中图 la是该设备的左视图, 图 lb是该设备的右视图, 图 lc是该 设备的俯视图, 图 Id是图 lc所示俯视图的一部分的放大视图。
结合图 la至 lc来看,根据本发明实施例的散热设备 100包括机箱 110, 机箱 110包括水平壁板 120、 垂直壁板 130和后壁板 140;
其中,机箱 110的水平壁板 120指的是构成机箱 110的顶部和底部壁板, 垂直壁板 130指的是构成机箱 110的左右两侧的壁板, 后壁板 140指的是构 成机箱的后侧壁板(后侧壁板可能只有一小部分, 并不需要全部覆盖住后 侧)。 根据本发明实施例, 机箱 110可以根据需要设置前面板, 也可以为了 便于安装前插板 168而不设置前面板。
本实施例中, 在机箱左右侧都形成一个(也可以只在一侧形成)单独的 风道来对后插板散热, 这个风道里的对流气体并不从经过前插板, 而是单独 地形成, 这样可以更有效地对后插板进行散热(不会经过前插板, 风道里的 风温度就不会因为经过前插板上需要散热的功能模块而升高)。
风道的形成有多种方式, 比如利用一些导风的隔板, 利用机箱的各种壁 板(水平壁板, 垂直壁板, 后壁板等)来, 本实施例以及下面各个实施例都 将对各种形成方法进行介绍。
此外, 当在机箱一侧有多个后插板时, 为了形成有效的风道, 可以通过 在一个后插板上两端开孔,在另一个后插板上一端开孔的方式来形成有效的 散热风道(如图 6c所示的实施例 ); 或者也通过将机箱后部 (靠近风扇侧 ) 设置成一个槽形罩的方式来实现(如图 3所示的实施例), 这样两个板的开 孔方式都可以一样, 可以方便地进行统一加工。 以下各实施例中也会对这几 种方法进行具体介绍。
下面, 将详细介绍本实施例的实现, 具体的, 本实施例的散热设备 100 包括:
机箱 110, 背板 150, 至少一个后插板 160以及至少一个风扇 170; 机箱 110包括水平壁板 120、 垂直壁板 130和后壁板 140;
背板 150设置在机箱 110中, 用于与从机箱 110前方插入的前插板 168 以及从机箱 110后方插入的后插板 160相连;
风扇 170设置在机箱 110后部, 用于从机箱 110向外散热;
背板 150中具有一个或多个第一开孔区 152, 使得前插板 168产生的热 量在风扇 170的作用下通过第一开孔区 152经过背板 150、 风扇 170后向机 箱 110外排出;
机箱 110包括一个或多个隔板 180, 后插板 160包括一个或多个第二开 孔区 162, 隔板 180与水平壁板 120、 垂直壁板 130、 后壁板 140、 背板 150 以及后插板 160形成不经过前插板 168的冷却风道,使得冷却气流在风扇 170 的作用下, 经过后插板 160、 第二开孔区 162、 风扇 170后向机箱 110外排 出, 以实现对后插板 160上的功能模块进行散热。 这里需要说明的是, 术语 "后侧" 在本文中用来指代靠近后壁板一侧, 而术语 "前侧" 在本文中指代 与 "后侧" 相对的一侧。 术语 "水平" 在本文中用来表示机箱放置在平面上 的时候, 与放置平面平行的方向, 而术语 "垂直" 在本文中用来表示垂直于 所述放置平面的方向。 术语 "顶部" 在本文中指的是在垂直方向远离机箱放 置平面的一侧, 而术语 "底部" 在本文中指的是靠近机箱放置平面的一侧。 术语 "左侧" 在本文中指的是面对放置在平面上的机箱的后壁板时的左侧, 而术语 "右侧" 在本文中指的是在这种情况下的右侧。 术语 "平行" 在本文 中用于表示两个部件大致平行, 并不限定两者绝对地平行, 两者之间可以存 在一定的误差或者两者成一定的角度, 只要在两者之间隔开一定的间隔即 可。 板。
以下结合图 la至 Id具体地说明散热设备 100的实例。
如图 la的左视图所示, 前插板 168相互间隔地水平地插接在背板 150
(示于图 lc )上。前插板 168两端与两侧的垂直壁板 130之间预留一定宽度 的进风通道 192。 本领域技术人员可以根据实际情况选择进风通道的宽度, 例如 lcm、 2cm等尺寸。
如图 lb的右视图所示, 后插板 160垂直地插接在背板 150 (示于图 lc 中)上, 与两侧的垂直壁板 130大致平行。 在本例中, 后插板 160靠近垂直 壁板 130设置在两侧。 多个风扇 170呈阵列形式大致布置在后壁板 140的中 部区域。 在当前实施例中, 未在图中示出的多个功能模块, 诸如 I/O端口模 块、 光模块等安装在后插板 160上背离风扇 170的一侧上, 即面对垂直壁版 130的一侧。
如图 lc所示, 背板 150上与前插板 168彼此之间的间隔对应的区域开 设一个或多个第一开孔区 152, 以便在风扇 170工作时, 冷却前插板 168上 的功能模块。 以下各实施例中, 前板 162的冷却方式均采用这样的结构。 为 了筒洁, 前插板 168的冷却结构以下不再赘述。
隔板 180与后插板 160大致平行地间隔设置,隔板 180设置在后插板 160 和垂直壁板 130之间并且隔板 180较之后插板 160更远离风扇 170, 即更靠 近两侧的垂直壁板 130, 由此在隔板 180与后插板 160之间形成预设宽度例 如 2cm宽度的冷却风道 190, 而在隔板 180与垂直壁板 130之间形成进风通 道 192。本领域技术人员应该理解,冷却风道 190的宽度可以根据后插板 160 上安装的功能模块的高度来确定。 如图 Id更清楚地表示, 隔板 180向后侧 延伸至后壁板 140附近,在隔板 180后端部与后壁板 140之间形成预定宽度 的隔板间隙 182 , 例如宽度 2cm的隔板间隙, 以便从进风通道 192进入的冷 却气流可以经由所述隔板间隙 182进入冷却风道 190。 根据可选的本发明实 施例, 隔板 180可以向前延伸, 延伸至机箱 110前侧或其附近, 以便更有效 地限定进风通道 192。 后插板 160靠近背板 150的端部开设一个或者多个第 二开孔区 162, 以便冷却气流从冷却风道 190通过第二开孔区 162进入机箱 中部空间, 接着被风扇 170抽出机箱 110。
根据如图 la至 lc所示的散热设备 100在工所时, 风扇 170操作, 从机 箱 110抽出空气, 导致冷却气流从前面板经由进风通道 192, 隔板间隙 182 进入冷却风道 190。在冷却风道 190中,冷却气流受到隔板 180和后插板 160 的结构限制, 与后插板 160大致平行地流过后插板 160上安装的功能模块, 实现对这些功能模块的冷却效果, 然后冷却气流经由后插板 160上的第二开 孔区 162进入机箱 110中部空间, 最后经由风扇 170被抽出机箱 110。 在这 种情况下, 冷却气流在风扇 170的作用下, 先经过后插板 160设置有需要散 热的功能模块的一侧, 再经过第二开孔区 162、 风扇 170后向机箱 110外排 出。
根据本发明实施例, 可以将散热要求高的光模块安装在后插板 160的后 部,即靠近风扇 170—侧远离背板 150的部分,使得冷却气流经过后插板 160 上设置有功能模块的一侧时, 先经过所述光模块对所述光模块进行散热, 再 对后插板 160上的其他需要散热的功能模块进行散热。
一般来说, 后插板 160的长度相对较短, 所以冷却风道 190的长度也相 对较短。 因此, 根据图 la至 Id所示的刀片服务器散热设备 100的风道结构 筒单, 冷却效果好。
图 2a至 2c为根据本发明进一步实施例的刀片服务器散热设备 100, 其 中图 2a为散热设备 100的左视图, 图 2b为散热设备 100的右视图, 图 2c 为散热设备 100的俯视图。 图 2a至图 2c所示本发明实施例与图 la至 Id所 示实施例的区别在于, 图 2a至 2c所示实施例中后插板 160为多个, 例如 4 块后插板以每侧 2块的形式、 彼此平行地并排垂直插接在背板 150上, 相互 之间隔开而形成多个平行的冷却风道 190。这里以图 2c中图面上部的部分进 行说明。 本领域技术人员可以理解, 后插板 160、 隔板 180关于机箱纵轴线 大致对称设置。每块后插板 160上的功能模块分别安装在每块后插板 160上 背离风扇 170的一侧。在这种情况下,最靠近风扇 170的那一块后插板 160, 即最远离隔板 180的那块后插板 160 (以下称为第二后插板 160 )在靠近背 板 150的端部开设一个或多个第二开孔区 162, 剩余后插板 160 (以下称为 第一后插板 160 )在靠近后壁板 140的后端和靠近背板 150的前端开设一个 或者多个第二开孔区 162, 以便来自进风通道 192中的冷却气流可以分别进 入多个冷却风道 190, 在多块后插板 160与隔板 180彼此之间限定的冷却风 道 190中, 同时流过每一块后插板 160上的功能模块, 对多块后插板 160上 的功能模块同时进行冷却。 本领域技术人员应该理解, 本发明实施例并不限 制后插板 160的数量。 本领域技术人员可以根据具体应用需求, 设置不同数 量的后插板 160, 并借助隔板 180, 在后插板 160彼此之间以及后插板 160 与隔板 180之间形成多个平行于后插板 160的冷却风道 190。通过上述设置, 使得冷却气流在风扇 170 的作用下到达第一后插板 160后端的第二开孔区 162后一部分经过所述第一后插板 160上设置有需要散热的功能模块一侧以 对功能模块进行散热, 并经过第二后插板 160上的第二开孔区 162后通过风 扇 170排出机箱 110外; 另一部分到达第二后插板 160上设置有需要散热的 功能模块的一侧以对功能模块进行散热, 并经过第二后插板 160前端的第二 开孔区 162后通过风扇排出到机箱外。
图 3是本发明实施例进一步的改进方案的俯视图。 图 3所示实施例中, 散热设备 100可以包括外凸的槽形罩 142, 该槽形罩 142连接在后壁板 140 上, 密封地覆盖后壁板 140上与进风通道 192、 冷却风道 190对应的区域。 在这种情况下,后壁板 140上被外凸的槽形罩 142覆盖下的后壁板 140的区 域开设用来通风的槽口 144。 槽口 144分别与进风通道 192、 冷却风道 190 对应,以便来自进风通道 192的冷却气流经由与进风通道 192对应的槽口 144 进入槽形罩 142中的槽形区域, 然后再经由与冷却风道 190对应的槽口 144 进入各冷却风道 190。 在这种情况下, 也可以省略设置在第一后插板 160的 后端的第二开孔区 162。 这样一来, 所有的后插板 160结构相同, 有利于统 一力口工。
或者, 机箱 110中的后壁板 140、 垂直壁板 130以及水平壁板 120形成 所述外凸的槽形罩 142, 所述槽形罩 142密封地覆盖在机箱 110后部, 机箱 后部为靠近风扇 170侧且远离背板 150的部分。
在这种情况下,使得冷却气流在风扇 170的作用下到达槽形罩 142后分 别经过第一后插板 160设置有需要散热的功能模块的一侧以及第二后插板 160设置有需要散热的功能模块的一侧, 并分别从第一后插板 160的前端的 第二开孔区 162以及第二后插板 160的前端的第二开孔区 162流出, 并通过 风扇 170排出到所述机箱外。 设置所述外凸的槽形罩 142, 有利于罩住端口 以及线缆, 使得机箱整体结构整齐美观, 并且便于维护。
图 4a至 4c是根据本发明实施例的进一步改进方案的示意结构图, 其中 图 4a是散热设备 100的左视图, 图 4b是散热设备 100的右视图, 图 4c是 散热设备 100的俯视图。
图 4a至 4c所示实施例不同于图 la-lc至图 3所示实施例之处在于, 图 4a至 4c所示实施例中, 后插板 160上的功能模块设置在面向风扇的一侧。 在这种情况下,后插板 160未安装功能模块的一侧与邻近的垂直壁板 130之 间形成进风通道 192。 隔板 180在这种情况下与后插板 160间隔地设置在后 插板 160更靠近风扇 170的一侧, 即更靠近机箱 110中部的一侧, 并与后插 板 160隔开, 与所述后插板 160之间形成冷却风道 190。 为了通风, 如果后 插板 160延伸到后壁板 140, 则在后插板 160靠近后壁板 140的端部开设一 个或多个第二开孔区 162, 以便来自进风通道 192的冷却气流经由第二开孔 区 162进入冷却风道 190。 背板 150侧向延伸到所述后插板 160, 以使背板 150的端部与垂直壁板 130隔开, 后插板 160与所述垂直壁板 130之间形成 进风通道 192。 在图 4所示实施例中, 在一种情况下, 隔板 180后侧延伸到 后壁板 140, 而隔板 180前端部延伸到背板 150。 在这种情况下, 隔板 180 靠近背板 150的端部开设用于通风的隔板间隙 182, 以便在冷却风道 190中 流经功能模块的冷却气流经由隔板间隙 182进入机箱 110中部区域, 随后被 风扇 170抽出。
在这种实施例中, 冷却气流在风扇 170的作用下, 先经过后插板 160上 未设置有需要散热的功能模块的一侧, 再经过第二开孔区 162, 经过后插板 160设置有需要散热的功能模块的一侧, 风扇 170后向机箱 110外排出。
同样,根据本发明实施例,可以将散热要求高的光模块安装在后插板 160 的后部, 即靠近风扇 170—侧远离所述背板 150的部分, 使得冷却气流经过 后插板 160上设置有功能模块的一侧时,先经过所述光模块对所述光模块进 行散热, 再对后插板 160上的其他需要散热的功能模块进行散热。
根据本发明实施例, 后插板 160和隔板 180关于机箱 110的纵轴线大致 对称地设置在机箱 110内的两侧。
虽然图 4a至 4c中未示出, 但是图 4a至 4c所示实施例中也可以存在多 块间隔开的后插板 160。 所述多块后插板 160上的功能模块均设置在面向风 扇的一侧。 隔板 180较之各后插板 160设置地离垂直壁板 130最远, 也就是 说, 隔板 180设置在所述多块后插板 160中最靠近风扇 170的那一块后插板 160的靠近风扇 170的一侧, 即按照距离风扇从远到近的顺序为: 垂直壁板 130、 多块间隔开的后插板 160、 隔板 180、 风扇 170。 这样的结构在所述多 块后插板 160之间以及在最靠近隔板 180的后插板 160与隔板 180之间形成 多个冷却风道 190。 在这种情况下, 最远离隔板 180的那块后插板 160 (以 下称为第一后插板 160 )在靠近后壁板 140的端部开设一个或多个第二开孔 区 162, 剩余后插板 160 (以下称为第二后插板 160 )在靠近背板 150的前端 和靠近后壁板 140的后端开设一个或多个第二开孔区 162, 以便来自进风通 道 192的冷却气流可以同时经由各第二开孔区 162进入多个冷却风道 190, 在冷却风道 190中同时流过各后插板 160上的功能模块, 对多块后插板 160 上的功能模块同时进行冷却。 与图 la-lc至 3所示实施例相同, 冷却气流依 次经由进风通道 192、 第二开孔区 162、 冷却风道 190、 隔板间隙 182流过, 在冷却风道 190中流过后插板 160上的功能模块,避免了后插板 160上的功 能模块在冷却过程中产生的级联加热效应, 提高了冷却效率。 而且, 与图 la-lc至图 3所示实施例相同, 图 4a至 4c所示实施例中的风道整体结构筒 单, 有利于制造, 并且提高冷却效率。
虽然未在图中示出, 但是本领域技术人员应该理解, 图 4a至 4c所示实 施例中同样可以设置如图 3所示的槽形罩 142, 有利于罩住端口以及线缆, 使得机箱整体结构整齐美观, 并且便于维护。
虽然未在图中示出,但是本领域技术人员可以理解,在某些应用场合下, 图 1所示实施例可以与图 4所示实施例相组合, 即机箱一侧的后插板 160和 隔板 180可以按照图 1 a至 1 c实施例的情形布置, 而另一侧的后插板 160和 隔板 180可以按照图 4a至 4c所示实施例的情形布置。 这样的实施例也落入 本发明实施例的范围之内。 在图 la-lc至图 4a-4c所示实施例中, 前插板水平地插接在背板上, 而 后插板 160垂直地插接在背板 150上。 本发明实施例并不限于这种结构。 根 据本发明实施例的进一步改进方案,前插板 168也可以垂直地插接在背板上, 而后插板 160水平地插接在背板 150上。 在这种情况下, 进风通道可以设置 在机箱 110的顶部和底部。
图 5a至 5c是根据本发明实施例的进一步改进方案的示意结构图, 显示 了前插板垂直地插接在背板上, 而后插板插接在背板上, 进风通道设置在顶 部和底部的情形。 图 5a是散热设备 100的左视图, 图 5b是散热设备 100的 右视图, 图 5c是散热设备 100的正视图。
如图 5a的左视图所示, 前插板 168相互间隔地垂直地插接在背板 150 上。前插板 168两端与顶部和底部的水平壁板 120之间预留一定宽度的进风 通道 192。 本领域技术人员可以根据实际情况选择进风通道的宽度, 例如 lcm、 2cm等尺寸。
如图 5b的右视图所示, 后插板 160大致平行于所述水平壁板 120设置 在所述水平壁板 120附近, 且后插板 160水平地插接在背板 150上。 多个风 扇 170呈阵列形式大致布置在后壁板 140的中部区域。 在当前实施例中, 未 在图中示出的多个功能模块,诸如 I/O端口模块、光模块等安装在后插板 160 上背离风扇 170的一侧上。
如图 5c所示, 隔板 180平行于后插板 160和水平壁板 120设置在后插 板 160和水平壁板 120之间, 且隔板 180与后插板 160间隔设置, 并且隔板 180较之后插板 160更远离风扇 170, 即更靠近顶部和底部的水平壁板 120, 由此在隔板 180与后插板 160之间形成预设宽度例如 2cm宽度的冷却风道 190, 而在隔板 180与水平壁板 120之间形成进风通道 192, 以使所述背板的 端部与所述水平壁板隔开。 本领域技术人员应该理解, 冷却风道 190的宽度 可以根据后插板 160上安装的功能模块的高度来确定。 如图 5d所示, 隔板 180向后侧延伸至后壁板 140附近, 在隔板 180后端与后壁板 140之间形成 预定宽度的隔板间隙 182, 例如宽度 2cm的隔板间隙, 以便从进风通道 192 进入的冷却气流可以经由所述隔板间隙 182进入冷却风道 190。 根据可选的 本发明实施例, 隔板 180可以向前延伸, 延伸至机箱 110前端或其附近, 以 便更有效地限定进风通道 192。 后插板 160靠近背板 150的前端开设一个或 多个第二开孔区 162, 以便冷却气流从所述进风通道 192,经由隔板间隙 182 在冷却风道 190中流过后插板 160上的功能模块, 然后经由所述后插板 160 上的第二开孔区 162进入机箱中部空间, 接着被风扇 170抽出机箱 110。
根据如图 5a至 5c所示的散热设备 100在工所时, 风扇 170操作, 从机 箱 110抽出空气, 导致冷却气流从前面板经由进风通道 192, 隔板间隙 182 进入冷却风道 190。在冷却风道 190中,冷却气流受到隔板 180和后插板 160 的结构限制, 与后插板 160流过后插板 160上安装的功能模块, 实现对这些 功能模块的冷却效果, 然后冷却气流经由后插板 160上的第二开孔区 162进 入机箱 110中部空间, 最后经由风扇 170被抽出机箱 110。
在这种情况下, 冷却气流在风扇 170的作用下, 先经过后插板 160设置 有需要散热的功能模块的一侧, 再经过第二开孔区 162、 风扇 170后向机箱 110外排出。
根据本发明实施例, 可以将散热要求高的光模块安装在后插板 160的后 部,即靠近风扇 170—侧远离背板 150的部分,使得冷却气流经过后插板 160 上设置有功能模块的一侧时, 先经过所述光模块对所述光模块进行散热, 再 对后插板 160上的其他需要散热的功能模块进行散热。
虽然未在图中示出, 但是本领域技术人员应该理解, 图 5所示实施例中 同样可以设置如图 3所示的槽形罩 142, 有利于罩住端口以及线缆, 使得机 箱整体结构整齐美观, 并且便于维护。 在这种情况下, 槽形罩 142水平地设 置在后壁板 140的上部和下部, 与进风通道 192、 冷却风道 190相对应。
根据本发明实施例, 后插板 160和隔板 180可以关于机箱 110纵轴线大 致对称地设置在机箱 110内的顶部和顶部。 在存在槽形罩 142的情况下, 槽 形罩 142也相应地对称设置。
图 6a至 6c为根据本发明进一步实施例的散热设备 100,其中图 6a是散 热设备 100的左视图,图 6b是散热设备 100的右视图,图 6c是散热设备 100 的正视图。 图 6所示本发明实施例与图 5所示实施例的区别在于, 图 6所示 实施例中后插板 160为多个, 例如 4块后插板以上部和下部各 2块的形式、 彼此水平地并排插接在背板 150上,相互之间隔开而形成多个大致平行的冷 却风道 190。 每块后插板 160上的功能模块分别安装在每块后插板 160上背 离风扇 170的一侧。 在这种情况下, 最靠近风扇 170的那一块后插板 160, 即最远离隔板 180的后插板 160 (以下称为第二后插板 160 )在靠近背板 150 的前端开设一个或多个第二开孔区 162, 剩余后插板 160 (以下称为第一后 插板 160 )在靠近后壁板 140的后端和靠近背板 150的前端开设一个或多个 第二开孔区 162, 以便来自进风通道 192中的冷却气流可以分别进入多个冷 却风道 190,在多块后插板 160与隔板 180彼此之间限定的冷却风道 190中, 同时流过各后插板 160上的功能模块,对多块后插板 160上的功能模块同时 进行冷却。 本领域技术人员应该理解, 本发明实施例并不限制后插板 160的 数量。本领域技术人员可以根据具体应用需求,设置不同数量的后插板 160, 并借助隔板 180, 在后插板 160彼此之间以及后插板 160与隔板 180之间形 成多个平行于后插板 160的冷却风道 190。 通过上述设置, 使得冷却气流在 风扇 170的作用下到达第一后插板 160后端的第二开孔区 162后一部分经过 所述第一后插板 160上设置有需要散热的功能模块一侧以对功能模块进行散 热,并经过第二后插板 160上的第二开孔区 162后通过风扇 170排出机箱 110 夕卜; 另一部分到达第二后插板 160上设置有需要散热的功能模块的一侧以对 功能模块进行散热, 并经过第二后插板 160前端的第二开孔区 162后通过风 扇排出到机箱外。
图 7是本发明实施例进一步的改进方案的正视图。 图 7所示实施例中, 散热设备 100可以包括外凸的槽形罩 142, 该槽形罩 142密封地覆盖在后壁 板 140后侧上, 覆盖后壁板 140上与进风通道 192、 冷却风道 190对应的区 域。 在这种情况下, 后壁板 140上被外凸的槽形罩 142覆盖的区域开设用来 通风的槽口 144。 槽口分别与进风通道 192、 冷却风道 190对应, 以便来自 进风通道 192的冷却气流经由与进风通道 192对应的槽口 144进入槽形罩 142中的槽形区域, 然后在经由与冷却风道 190对应的槽口 144进入各冷却 风道 190。 在这种情况下, 也可以省略设置在第一后插板 160的后端的第二 开孔区 162。
或者, 机箱 110中的后壁板 140、 垂直壁板 130以及水平壁板 120形成 所述外凸的槽形罩 142, 所述槽形罩 142密封地覆盖在机箱 110后部, 机箱 后部为靠近风扇 170侧且远离背板 150的部分。
在这种情况下,使得冷却气流在风扇 170的作用下到达槽形罩 142后分 别经过第一后插板 160设置有需要散热的功能模块的一侧以及第二后插板 160设置有需要散热的功能模块的一侧, 并分别从第一后插板 160的前端的 第二开孔区 162以及第二后插板 160的前端的第二开孔区 162流出, 并通过 风扇 170排出到所述机箱外。 设置所述外凸的槽形罩 142, 有利于罩住端口 以及线缆, 使得机箱整体结构整齐美观, 并且便于维护。
图 8a至 8c是根据本发明实施例的进一步改进方案的示意结构图, 其中 图 8a是散热设备 100的左视图, 图 8b是散热设备 100的右视图, 图 8c是 散热设备 100的正视图。
图 8a至 8c所示实施例不同于图 5至 7所示实施例之处在于, 图 8a至
8c所示实施例中,后插板 160上的功能模块设置在面对风扇 170的一侧。在 这种情况下, 背板 150垂直延伸到后插板 160, 以使背板 150的端部与水平 壁板 120隔开, 以便后插板 150与水平壁板 120之间形成进风通道 192。 在 本实施例中,后插板 160未安装功能模块的一侧与邻近的水平壁板 120之间 形成进风通道 192。隔板 180在这种情况下设置在后插板 160更靠近风扇 170 的一侧,即更靠近机箱 110中部的一侧,并与后插板 160隔开而与后插板 160 之间形成冷却风道 190。 为了通风, 如果后插板 160延伸到后壁板 140, 则 在后插板 160靠近后壁板 140的后端开设一个或多个第二开孔区 162, 以便 来自进风通道 192的冷却气流经由第二开孔区 162进入冷却风道 190。 在图 8所示实施例中, 在一种情况下, 隔板 180后端部延伸到后壁板 140并与后 壁板 140密封连接, 而隔板 180前端部延伸到背板 150。 在这种情况下, 隔 板 180靠近背板 150的前端开设用于通风的隔板间隙 182, 以便冷却气流从 进风通道 192, 经由所述第二开孔区 162在冷却风道 190中流经功能模块, 然后经由隔板间隙 182进入机箱 110中部区域, 随后被风扇 170抽出。
在这种实施例中, 冷却气流在风扇 170的作用下, 先经过后插板 160上 未设置有需要散热的功能模块的一侧, 再经过第二开孔区 162, 经过后插板 160设置有需要散热的功能模块的一侧, 风扇 170后向机箱 110外排出。
同样,根据本发明实施例,可以将散热要求高的光模块安装在后插板 160 的后部, 即靠近风扇 170—侧远离所述背板 150的部分, 使得冷却气流经过 后插板 160上设置有功能模块的一侧时,先经过所述光模块对所述光模块进 行散热, 再对后插板 160上的其他需要散热的功能模块进行散热。
虽然图 8a至 8c中未示出, 但是图 8a至 8c所示实施例中也可以存在多 块平行间隔开的后插板 160。 所述多块后插板 160上的功能模块均设置在面 向风扇的一侧。 隔板 180设置在所述多块后插板 160中最靠近风扇 170的那 一块后插板 160的靠近风扇 170的一侧, 也就是说, 隔板 180较之各后插板 160设置地离所述水平壁板 120最远, 即按照距离风扇从远到近的顺序为: 水平壁板 120、 多块平行间隔开的后插板 160、 隔板 180、 风扇 170。 这样的 结构在所述多块后插板 160之间以及在最靠近隔板 180的后插板 160与隔板 180之间形成多个大致平行的冷却风道 190。在这种情况下,最远离隔板 180 的那块后插板 160 (以下称为第一后插板 160 )在靠近后壁板 140的后端开 设一个或多个第二开孔区 162, 剩余后插板 160 (以下称为第二后插板 160 ) 在靠近背板 150的前端和靠近后壁板 140的后端都开设第二开孔区 162, 以 便来自进风通道 192的冷却气流可以同时经由各第二开孔区 162进入多个冷 却风道 190, 在冷却风道 190中同时流过各后插板 160上的功能模块, 对多 块后插板 160上的功能模块同时进行冷却。 与图 1至 3所示实施例相同, 冷 却气流依次经由进风通道 192、 第二开孔区 162、 冷却风道 190、 隔板间隙 182流过, 在冷却风道 190中流过后插板 160上的功能模块, 避免了后插板 160上的功能模块在冷却过程中产生的级联加热效应, 提高了冷却效率。 而 且,与图 5至图 7所示实施例相同,图 8所示实施例中的风道整体结构筒单, 有利于制造, 并且提高冷却效率。
虽然未在图中示出, 但是本领域技术人员应该理解, 图 8所示实施例中 同样可以设置如图 3所示的槽形罩 142, 有利于罩住端口以及线缆, 使得机 箱整体结构整齐美观, 并且便于维护。 在这种情况下, 槽形罩 142水平地设 置在后壁板 140的上部和下部, 与进风通道 192、 冷却风道 190相对应。
根据本发明实施例, 后插板 160和隔板 180以及可能存在的槽形罩 142 关于机箱 110的纵轴线大致对称地设置在机箱 110内的顶部和底部。
虽然未在图中示出,但是本领域技术人员可以理解,在某些应用场合下, 图 5所示实施例可以与图 8所示实施例相组合, 即机箱上部的后插板 160和 隔板 180可以按照图 5实施例的情形布置, 而机箱下部的后插板 160和隔板 180可以按照图 8所示实施例的情形布置。 或者, 机箱上部的后插板 160和 隔板 180可以按照图 8实施例的情形布置, 而机箱下部的后插板 160和隔板 180可以按照图 5所示实施例的情形布置。 这样的实施例也落入本发明实施 例的范围之内。
本发明实施例不仅适用于前插板与后插板垂直的情况, 即前插板水平插 接在背板上而后插板垂直插接在背板上, 或者前插板垂直插接在背板上而后 插板水平插接在背板上, 而且本发明实施例同样适用于前插板与后插板平行 的情况, 即前插板与后插板均水平插接在背板上, 或者前插板与后插板均垂 直插接在背板上, 以下分别叙述这两种情况。
图 9a至 9c是根据本发明实施例的替代方案的示意结构图, 示出了前插 板与后插板均水平插接在背板上的情况, 其中图 9a是散热设备 100的左视 图, 图 9b是散热设备 100的右视图, 而图 9c是散热设备 100的正视图。
如图 9a所示, 散热设备 100的前插板 168相互间隔地水平地插接在背 板 150上。 背板 150的垂直高度的大致中部区域开设一个或多个第一开孔区 152, 用于向背板后部通风, 以便冷却后插板 160上的功能模块。 在这种实 施例中, 与图 1至 8所示的实施例不同, 不需要在前部预留专门的进风通道 192, 进一步筒化了风道结构, 并且对原有机箱机构改动不大, 有利于降低 制造成本。
如图 9b所示, 后插板 160水平地插接在背板 150的大致中部区域上, 与顶部和底部的水平壁板 120大致平行。 多个风扇 170呈阵列形式大致布置 在后壁板 140的上下部区域。 在当前实施例中, 未在图中示出的多个功能模 块, 诸如 I/O端口模块、 光模块等安装在后插板 160上背离风扇 170的一侧 表面上, 即位于上部的后插板 160上的功能模块安装在该后插板的下侧, 而 居于下部的后插板 160上的功能模块安装在该后插板的上侧。
如图 9c所示, 在当前实施例中, 分别与上下部的后插板 160对应, 设 置两块隔板 180 , 与上部的后插板 160对应的上部隔板 180设置在上部后插 板 160的下侧, 而与下部后插板 160对应的下部隔板 180设置在下部后插板 160的上侧, 由此在上下部隔板 180之间形成进风通道 193 , 而上部隔板 180 与上部后插板 160之间形成冷却风道 190, 下部隔板 180与下部后插板 160 之间形成冷却风道 190, 并且进风通道 193与背板 150上的第一开孔区 152 对应。 在本例中, 风扇 170、 后插板 160以及隔板 180关于机箱 110纵轴线 大致对称地设置在机箱内。 上下部隔板 180延伸到后壁板 140附近, 使得上 下部隔板 180靠近后壁板 140的后端与后壁板 140之间形成隔板间隙 182, 以便从进风通道 193进入的冷却气流可以经由隔板间隙 182进入冷却风道 190, 在冷却风道 190中流过后插板 160上的所述功能模块。 上下部后插板 160靠近背板 150的端部开设一个或多个第二开孔区 162, 以便冷却气流从 冷却风道 190通过第二开孔区 162进入机箱上下部空间,接着被风扇 170抽 出机箱 110。
在这种情况下, 冷却气流在风扇 170的作用下, 先经过后插板 160设置 有需要散热的功能模块的一侧, 再经过第二开孔区 162、 风扇 170后向机箱 110外排出。
根据本发明实施例, 可以将散热要求高的光模块安装在后插板 160的后 部,即靠近风扇 170—侧远离背板 150的部分,使得冷却气流经过后插板 160 上设置有功能模块的一侧时, 先经过所述光模块对所述光模块进行散热, 再 对后插板 160上的其他需要散热的功能模块进行散热。
虽然未在图中示出, 图 9a至 9c所示实施例中的后插板 160可以包括多 块平行并排设置的后插板。 在这种情况下, 隔板 180较之各后插板 160设置 地离水平壁板 120最远,以便在后插板 160彼此之间以及最远离水平壁板 120 的后插板 160与隔板 180之间形成冷却风道 190, 以使冷却气流通过隔板间 隙 182和第二开孔区 162在所述冷却风道中同时流过各所述后插板 160上的 功能模块。
图 10a至 10c是根据本发明实施例的替代方案的示意结构图, 示出了前 插板与后插板均垂直插接在背板上的情况, 其中图 10a是散热设备 100的左 视图, 图 10b是散热设备 100的右视图, 图 10c是散热设备 100的俯视图。 如果在图 10c的图面上, 认为上方为机箱 110的右侧, 而下方为机箱 110的 左侧, 则后插板 160垂直地插接在背板 150的大致中部区域上, 与左右侧的 垂直壁板 130平行。 多个风扇 170呈阵列形式大致布置在后壁板 140的左右 侧区域, 即沿着垂直壁板 130设置在后壁板 140的边缘区域。 在当前实施例 中, 未在图中示出的多个功能模块, 诸如 I/O端口模块、 光模块等安装在后 插板 160上背离风扇 170的一侧表面上, 即位于左侧的后插板 160上的功能 模块安装在该后插板的右侧, 而居于右侧的后插板 160上的功能模块安装在 该后插板的左侧。
在当前实施例中,分别与左右侧的后插板 160对应,设置两块隔板 180, 与左侧的后插板 160对应的左侧隔板 180设置在左侧后插板 160的右侧, 而 与右侧后插板 160对应的右侧隔板 180设置在右侧后插板 160的左侧, 由此 在左右侧隔板 180之间形成进风通道 193 ,而左侧隔板 180与左侧后插板 160 之间形成冷却风道 190, 右侧隔板 180与右侧后插板 160之间形成冷却风道 190, 并且进风通道 193与背板 150上的第一开孔区 152对应。 左右侧隔板 180延伸到后壁板 140附近, 使得左右侧隔板 180靠近后壁板 140的端部与 后壁板 140之间形成隔板间隙 182, 以便从进风通道 193进入的冷却气流可 以经由隔板间隙 182进入冷却风道 190。 左右侧后插板 160靠近背板 150的 端部开设一个或多个第二开孔区 162, 以便冷却气流从冷却风道 190通过第 二开孔区 162进入机箱上下部空间, 接着被风扇 170抽出机箱 110。
虽然未在图中示出,但是本例中后插板 160包括多块平行并排设置的后 插板。 在这种情况下, 所述隔板 180较之各后插板 160设置地离风扇 170最 远, 以便在所述后插板 160彼此之间以及最远离所述垂直壁板的所述后插板 160与所述隔板 180之间形成所述冷却风道 190, 以使冷却气流通过所述隔 板间隙 1060和所述第二开孔区在所述冷却风道 190中同时流过各所述后插 板上的功能模块。
图 9和图 10所示本发明实施例的共同优点在于, 对现有机箱结构的改 动比较小,机箱前侧不需要预留专用的进风通道,由此进一步筒化风道结构, 提高冷却效率。
本发明实施例的另一方面, 还提出了一种刀片服务器, 这种刀片服务器 可以包括前述的散热设备 100。 此外, 所述刀片服务器可以根据需要装配其 他必要的部件和设备。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1. 一种用于刀片服务器的散热设备, 其特征在于, 所述设备包括: 机箱, 背板, 至少一个后插板以及至少一个风扇;
所述机箱包括水平壁板、 垂直壁板和后壁板;
所述背板设置在所述机箱中, 用于与从所述机箱前方插入的前插板以及 从机箱后方插入的所述后插板相连;
所述风扇设置在所述机箱后部, 用于从所述机箱向外散热;
所述背板中具有一个或多个第一开孔区,使得所述前插板产生的热量在 所述风扇的作用下通过所述第一开孔区经过所述背板、所述风扇后向所述机 箱外排出;
所述机箱包括一个或多个隔板, 所述后插板包括一个或多个第二开孔 区, 所述隔板与所述水平壁板、 所述垂直壁板、 所述后壁板、 所述背板以及 所述后插板形成不经过所述前插板的冷却风道,使得冷却气流在所述风扇的 作用下,经过所述后插板、所述第二开孔区、所述风扇后向所述机箱外排出, 以实现对所述后插板上的功能模块进行散热。
2. 如权利要求 1所述的设备, 其特征在于:
所述冷却气流在所述风扇的作用下,先经过所述后插板设置有需要散热 的功能模块的一侧,再经过所述第二开孔区、所述风扇后向所述机箱外排出; 或者,
所述冷却气流在所述风扇的作用下,先经过所述后插板上未设置有散热 功能模块的一侧, 再经过所述第二开孔区, 经过所述后插板设置有需要散热 的功能模块的一侧, 所述风扇后向所述机箱外排出。
3. 如权利要求 1或 2所述的设备, 其特征在于, 所述后插板后部安装 有光模块, 所述冷却气流经过所述后插板上设置有功能模块的一侧时, 先经 过所述光模块对所述光模块进行散热,再对所述后插板上其他需要散热的功 能模块进行散热; 其中, 所述后插板的后部为靠近所述风扇一侧远离所述背 板的部分。
4. 如权利要求 2所述的设备, 其特征在于,
所述后插板为两个或多个, 包括第一后插板以及第二后插板, 两个所述 后插板并排设置在所述风扇的一侧;
所述第一后插板为所述冷却气流首先到达的后插板,所述第二后插板为 所述冷却气流其次到达的后插板;
所述第一后插板靠近所述背板的前端以及靠近所述后壁板的后端分别 设置有所述第二开孔区, 所述第二后插板的靠近所述背板的前端设置有所述 第二开孔区, 通过上述设置, 使得冷却气流在风扇的作用下到达所述第一后 插板后端的第二开孔区后一部分经过所述第一后插板上设置有需要散热的 功能模块一侧以对功能模块进行散热, 并经过所述第二后插板上的第二开孔 区后通过风扇排出所述机箱外; 另一部分到达所述第二后插板上设置有需要 散热的功能模块的一侧以对功能模块进行散热, 并经过所述第二后插板上的 第二开孔区后通过风扇排出到机箱外。
5. 如权利要求 2所述的设备, 其特征在于:
所述机箱中的所述后壁板, 所述垂直壁板以及所述水平壁板形成外凸的 槽形罩, 所述槽形罩密封地覆盖在机箱后部, 机箱后部为靠近风扇侧且远离 背板的部分;
所述后插板为两个或多个, 包括第一后插板以及第二后插板, 两个所述 后插板并排设置在所述风扇的一侧;
所述第一后插板为所述冷却气流首先到达的后插板,所述第二后插板为 所述冷却气流其次到达的后插板;
所述第一后插板靠近所述背板的前端设置有所述第二开孔区, 所述第二 后插板的靠近所述背板的前端设置有所述第二开孔区, 通过上述设置, 使得 冷却气流在风扇的作用下到达所述槽形罩后分别经过所述第一后插板设置 有需要散热的功能模块的一侧以及所述第二后插板设置有需要散热的功能 模块的一侧, 并分别从所述第一后插板的前端的第二开孔区以及所述第二后 插板的前端的第二开孔区流出, 并通过所述风扇排出到所述机箱外。
6. 如权利要求 1所述的设备, 其特征在于, 所述冷却风道位于所述机 箱的左侧或右侧, 或同时位于所述机箱的左侧及右侧。
7. 一种刀片服务器, 其特征在于, 包括:
机箱, 背板, 至少一个前插板, 至少一个后插板以及至少一个风扇; 所述机箱包括水平壁板、 垂直壁板和后壁板;
所述背板设置在所述机箱中, 用于与从所述机箱前方插入的前插板以及 从机箱后方插入的所述后插板相连;
所述风扇设置在所述机箱后部, 用于从所述机箱向外散热; 所述背板中具有一个或多个第一开孔区,使得所述前插板产生的热量在 所述风扇的作用下通过所述第一开孔区经过所述背板、所述风扇后向所述机 箱外排出;
所述机箱包括一个或多个隔板, 所述后插板包括一个或多个第二开孔 区, 所述隔板与所述水平壁板、 所述垂直壁板、 所述后壁板、 所述背板以及 所述后插板形成不经过所述前插板的冷却风道,使得冷却气流在所述风扇的 作用下,经过所述后插板、所述第二开孔区、所述风扇后向所述机箱外排出, 以实现对所述后插板上的功能模块进行散热。
8. 如权利要求 7所述的服务器, 其特征在于:
所述冷却气流在所述风扇的作用下,先经过所述后插板设置有需要散热 的功能模块的一侧,再经过所述第二开孔区,所述风扇后向所述机箱外排出; 或者,
所述冷却气流在所述风扇的作用下,先经过所述后插板上未设置有散热 功能模块的一侧, 再经过所述第二开孔区, 经过所述后插板设置有需要散热 的功能模块的一侧, 所述风扇后向所述机箱外排出。
9. 如权利要求 7或 8所述的服务器, 其特征在于:
所述后插板后部安装有光模块,所述冷却气流经过所述后插板上设置有 散热功能模块的一侧时, 先经过所述光模块对所述光模块进行散热, 再对所 述后插板上其他需要散热的功能模块进行散热; 其中, 所述后插板的后部为 靠近所述风扇一侧远离所述背板的部分。
10. 如权利要求 8所述的服务器, 其特征在于:
所述后插板为两个或多个, 包括第一后插板以及第二后插板, 两个所述 后插板并排设置在所述风扇的一侧;
所述第一后插板为所述冷却气流首先到达的后插板,所述第二后插板为 所述冷却气流其次到达的后插板;
所述第一后插板靠近所述背板的前端以及靠近所述后壁板的后端分别 设置有所述第二开孔区,所述第二后插板的靠近所述背板的前端设置有所述 第二开孔区, 通过上述设置, 使得冷却气流在风扇的作用下到达所述第一后 插板后端的第二开孔区后一部分经过所述第一后插板上设置有需要散热的 功能模块一侧以对功能模块进行散热, 并经过所述第二后插板上的第二开孔 区后通过风扇排出所述机箱外; 另一部分到达所述第二后插板上设置有需要 散热的功能模块的一侧以对功能模块进行散热, 并经过所述第二后插板上的 第二开孔区后通过风扇排出到机箱外。
PCT/CN2012/080699 2012-01-20 2012-08-29 散热设备及刀片服务器 WO2013107180A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/077,455 US9351426B2 (en) 2012-01-20 2013-11-12 Heat dissipating device and blade server

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210018965.4 2012-01-20
CN201210018965.4A CN102436298B (zh) 2012-01-20 2012-01-20 散热设备及刀片服务器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/077,455 Continuation US9351426B2 (en) 2012-01-20 2013-11-12 Heat dissipating device and blade server

Publications (1)

Publication Number Publication Date
WO2013107180A1 true WO2013107180A1 (zh) 2013-07-25

Family

ID=45984395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080699 WO2013107180A1 (zh) 2012-01-20 2012-08-29 散热设备及刀片服务器

Country Status (3)

Country Link
US (1) US9351426B2 (zh)
CN (1) CN102436298B (zh)
WO (1) WO2013107180A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987894A (zh) * 2021-04-15 2021-06-18 深圳市智微智能科技股份有限公司 一种夹层式易清洁风冷散热机箱

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102436298B (zh) * 2012-01-20 2015-09-09 华为技术有限公司 散热设备及刀片服务器
CN103582387B (zh) 2012-08-09 2016-03-02 华为技术有限公司 一种插板散热系统
WO2014101201A1 (zh) * 2012-12-31 2014-07-03 华为技术有限公司 用于通信设备的散热系统
CN104142718B (zh) * 2013-05-10 2017-08-29 华为技术有限公司 服务器及散热结构
CN103488265B (zh) * 2013-09-25 2017-12-29 杭州华为数字技术有限公司 服务器及散热结构
CN104640417A (zh) * 2013-11-08 2015-05-20 中兴通讯股份有限公司 散热装置、散热方法及机柜
FR3015178B1 (fr) * 2013-12-13 2016-01-01 Sagemcom Broadband Sas Equipement electronique a double refroidissement
EP3266289B1 (en) 2015-04-30 2023-08-23 Hewlett Packard Enterprise Development LP Cooling via a sleeve connector
CN105718006A (zh) * 2016-01-18 2016-06-29 上海源耀信息科技有限公司 正交散热机箱
CN108738275A (zh) * 2017-04-24 2018-11-02 中兴通讯股份有限公司 一种散热架构和通信设备
CN107509372A (zh) * 2017-09-18 2017-12-22 北京百卓网络技术有限公司 一种通信设备机箱
EP4120050A1 (en) * 2018-03-30 2023-01-18 Huawei Technologies Co., Ltd. Chassis of server and server
CN109101095A (zh) * 2018-10-09 2018-12-28 郑州云海信息技术有限公司 一种应用于4u存储机型的散热结构及方法
CN210666674U (zh) * 2019-12-18 2020-06-02 中兴通讯股份有限公司 一种刀片服务器
CN113641222A (zh) * 2020-05-11 2021-11-12 华为技术有限公司 一种机箱和电子设备
CN113471843B (zh) * 2021-09-02 2021-11-09 江苏衡融实业有限公司 一种独立分区轴流式高低压开关柜
CN115811858A (zh) * 2021-09-13 2023-03-17 中兴通讯股份有限公司 散热架构和通讯设备
CN116501143B (zh) * 2023-06-29 2023-09-05 中国电子科技集团公司第十五研究所 一种多路h型风道加固电子设备
CN118466723B (zh) * 2024-07-11 2024-10-01 国家超级计算天津中心 计算机多级散热结构及计算机系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090262495A1 (en) * 2008-04-16 2009-10-22 Julius Neudorfer High efficiency heat removal system for rack mounted computer equipment
CN101799709A (zh) * 2009-12-24 2010-08-11 曙光信息产业(北京)有限公司 一种三风道散热风道结构的刀片服务器
CN201716631U (zh) * 2010-06-28 2011-01-19 英业达科技有限公司 机箱
CN102436298A (zh) * 2012-01-20 2012-05-02 华为技术有限公司 散热设备及刀片服务器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6836409B1 (en) * 2001-07-10 2004-12-28 Nortel Networks Limited Component cooling in electronic devices
CN101211205B (zh) 2006-12-26 2010-05-19 联想(北京)有限公司 一种刀片式服务器系统及其散热方法
TWI423013B (zh) * 2007-11-06 2014-01-11 Legend Beijing Ltd A blade server system and its heat dissipation method
WO2010064299A1 (ja) * 2008-12-02 2010-06-10 株式会社日立製作所 演算処理装置
JP2013509638A (ja) * 2009-10-30 2013-03-14 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. ブレード・エンクロージャ用の熱バスバー
CN201955725U (zh) * 2011-02-26 2011-08-31 武汉同亨精密制造有限公司 具有三个独立散热区的服务器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090262495A1 (en) * 2008-04-16 2009-10-22 Julius Neudorfer High efficiency heat removal system for rack mounted computer equipment
CN101799709A (zh) * 2009-12-24 2010-08-11 曙光信息产业(北京)有限公司 一种三风道散热风道结构的刀片服务器
CN201716631U (zh) * 2010-06-28 2011-01-19 英业达科技有限公司 机箱
CN102436298A (zh) * 2012-01-20 2012-05-02 华为技术有限公司 散热设备及刀片服务器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987894A (zh) * 2021-04-15 2021-06-18 深圳市智微智能科技股份有限公司 一种夹层式易清洁风冷散热机箱
CN112987894B (zh) * 2021-04-15 2023-07-04 深圳市智微智能科技股份有限公司 一种夹层式易清洁风冷散热机箱

Also Published As

Publication number Publication date
CN102436298A (zh) 2012-05-02
CN102436298B (zh) 2015-09-09
US9351426B2 (en) 2016-05-24
US20140071618A1 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
WO2013107180A1 (zh) 散热设备及刀片服务器
KR101492320B1 (ko) 네트워크 통신 장치
US8913382B2 (en) Server
TWI566679B (zh) 伺服器系統
WO2014101201A1 (zh) 用于通信设备的散热系统
WO2017185840A1 (zh) 背板装置、通信设备
CN201600636U (zh) 电子装置壳体
US8644014B2 (en) Server system with heat dissipation device
TW201249322A (en) Rack mounted computer system and cooling structure thereof
TW201408179A (zh) 導風件及具有該導風件的電子裝置
TW201423028A (zh) 導風罩
CN103164003A (zh) 电子装置散热系统
TW201328553A (zh) 電子裝置散熱系統
WO2016015513A1 (zh) 一种机柜
CN107454810B (zh) 一种具有多个后插卡的通信设备
WO2021088771A1 (zh) 一种散热插箱、散热柜及背板通信系统
WO2012119440A1 (zh) 单板散热方法、散热装置及通信设备
CN103687449A (zh) 电子设备和数据中心
US9372515B2 (en) Heat and airflow management in a data storage device
CN105718006A (zh) 正交散热机箱
CN217386282U (zh) 服务器
CN214427650U (zh) 一种基于正交机框的具有双层后出光端口的通信装置
WO2021017595A1 (zh) 一种通讯设备
WO2021121263A1 (zh) 一种刀片服务器
TWI523598B (zh) The wiring management structure for the cabinet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865834

Country of ref document: EP

Kind code of ref document: A1