WO2013105659A1 - 活性種照射装置、活性種照射方法及び活性種被照射物作製方法 - Google Patents

活性種照射装置、活性種照射方法及び活性種被照射物作製方法 Download PDF

Info

Publication number
WO2013105659A1
WO2013105659A1 PCT/JP2013/050465 JP2013050465W WO2013105659A1 WO 2013105659 A1 WO2013105659 A1 WO 2013105659A1 JP 2013050465 W JP2013050465 W JP 2013050465W WO 2013105659 A1 WO2013105659 A1 WO 2013105659A1
Authority
WO
WIPO (PCT)
Prior art keywords
active species
gas
chamber
plasma
irradiation
Prior art date
Application number
PCT/JP2013/050465
Other languages
English (en)
French (fr)
Inventor
北野 勝久
篤史 谷
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to US14/371,893 priority Critical patent/US20150010430A1/en
Priority to JP2013553331A priority patent/JP5818176B2/ja
Priority to EP13736091.3A priority patent/EP2804448A4/en
Publication of WO2013105659A1 publication Critical patent/WO2013105659A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/14Plasma, i.e. ionised gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/0005Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts
    • A61L2/0011Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor for pharmaceuticals, biologicals or living parts using physical methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/03Electric current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/2465Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated by inductive coupling, e.g. using coiled electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0815Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes involving stationary electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation

Definitions

  • the present invention relates to an active species irradiation apparatus, an active species irradiation method, and an active species irradiated object preparation method.
  • the epoch-making sterilization power was obtained by the low pH method described in Patent Document 1, and the physicochemical mechanism has been known.
  • the plasma discharge device the LF plasma jet described in Patent Document 2 was used for sterilization. Only active species are generated, and the plasma discharge device is not particularly elaborate.
  • the present invention provides an active species irradiation apparatus and an active species irradiation method capable of efficiently irradiating active species (active oxygen and active nitrogen) with a non-contact plasma source with respect to an irradiation object. Furthermore, it aims at providing the active species irradiated object preparation method.
  • an active species irradiation apparatus is a chamber into which a plasma generation gas and an active species generation gas flow, and a chamber having an active species irradiation port through which active species are irradiated.
  • an upstream electrode that is part of the chamber and is located in an upstream part of the flow of the plasma generating gas, and is part of the chamber and is located in a downstream part of the flow of the plasma generating gas relative to the upstream electrode.
  • the active species irradiation apparatus includes a downstream electrode, and the chamber is configured such that the active species generation gas flows between the upstream electrode and the active species irradiation port.
  • the chamber includes a plasma generation region where the plasma is generated, and the active species is disposed between the plasma generation region and the active species irradiation port.
  • the product gas is configured to flow in.
  • the chamber is configured to have an inlet for the plasma generation gas and an inlet for the active species generation gas.
  • the chamber includes a first tube portion having an inlet for the plasma generation gas, a second tube portion having an inlet for the active species generation gas, and the activity.
  • a third tube portion having a seed irradiation port, and the first tube portion, the second tube portion, and the third tube portion are connected in one place to form a multi-way tube.
  • the chamber includes a fourth tube portion having the plasma generation gas inlet and the active species irradiation port, and the active species generation gas inlet.
  • a fifth pipe portion having an outlet for the active species product gas, and the fourth pipe portion includes an outlet portion for the active species product gas in the fifth pipe portion.
  • the chamber is configured such that the active species product gas flows between the upstream electrode and the downstream electrode.
  • the chamber is configured such that the active species generation gas flows between the downstream electrode and the active species irradiation port.
  • the active species irradiation device further includes a needle member connectable to the active species irradiation port, and the active species are irradiated from the tip of the needle member.
  • the active species are a hydroxy radical, a superoxide anion radical, a hydroperoxyl radical, a singlet oxygen, an oxygen atom, and peroxynitrite (ONOO ⁇ / ONOH). At least one of them.
  • a higher voltage is applied to the upstream electrode than to the downstream electrode.
  • a characteristic configuration of the active species irradiation method according to the present invention is a chamber into which a plasma generation gas and an active species generation gas flow, and a chamber having an active species irradiation port through which the active species are irradiated.
  • an upstream electrode that is part of the chamber and is located in an upstream part of the flow of the plasma generating gas, and is part of the chamber and is located in a downstream part of the flow of the plasma generating gas relative to the upstream electrode.
  • a method of irradiating active species using an active species irradiation apparatus including a downstream electrode, wherein a plasma generation step of generating plasma by flowing in the plasma generating gas, the upstream electrode and the active species irradiation port
  • the active species generating gas flows in between the active species to generate the active species, and the active species irradiation step of irradiating the active species from the active species irradiation port.
  • a plasma generation region is formed by executing the plasma generation step, and the active species generation step is performed between the plasma generation region and the active species irradiation port. This is performed by flowing the activated species product gas.
  • the active species irradiation object manufacturing method is characterized in that a plasma generation gas and an active species generation gas flow into a chamber into which an active species is irradiated.
  • a method for producing an active species irradiation object using an active species irradiation apparatus including a downstream electrode located in a part, wherein a plasma generation step of generating plasma by flowing in the plasma generation gas, and the upstream electrode
  • the active species generating gas flows between the active species irradiation port and the active species irradiation port to generate the active species, and the target is irradiated with the active species from the active species irradiation port
  • the object is water
  • the active species irradiated object is active species-containing water containing a larger amount of active species than the water.
  • the active species irradiation apparatus further includes a needle-like member connectable to the active species irradiation port, and the active species irradiation step includes the needle A step of irradiating the inside of the object with the active species from the tip of the member, wherein the object is a root canal, and the active species irradiated object is an active species-treated root canal.
  • the schematic diagram of the active species irradiation apparatus 100 by this embodiment is shown. It is a flowchart which shows the active species irradiation method using the active species irradiation apparatus 100 by this embodiment. The graph which shows the active species production
  • generation amount using a conventional apparatus is shown.
  • the schematic diagram of the activated species irradiation apparatus 400 which concerns on this embodiment is shown.
  • the graph which shows the relationship between the oxygen supply amount to the active species irradiation apparatus 100 and bactericidal power is shown.
  • the graph which shows the comparison with the system (medium mixing system, post-mixing system) based on this invention (premixing system) and the system based on this invention is shown.
  • the active species irradiation apparatus the active species irradiation method, and the active species irradiated object preparation method of the present invention will be described.
  • the present invention is not intended to be limited to the configurations described in the embodiments and drawings described below, and includes configurations equivalent to those configurations.
  • FIG. 1 is a schematic diagram of an active species irradiation apparatus 100 according to the present embodiment.
  • the active species irradiation apparatus 100 can irradiate the target A with active species to produce an active species irradiated object.
  • the active species irradiation apparatus 100 includes a chamber 110, an upstream electrode 120, a downstream electrode 130, and a plasma power source 140.
  • the plasma generation gas and the active species generation gas flow into the chamber 110.
  • the plasma generation gas is helium gas, and the active species generation gas is oxygen gas.
  • the chamber 110 includes a plasma generation gas inlet 110a, an active species generation gas inlet 110b, and an active species irradiation port 110c.
  • the active species are irradiated from the active species irradiation port 110c.
  • the active species is a superoxide anion radical.
  • the active species is irradiated to the object A from the active species irradiation port 110c to produce an active species irradiated object.
  • the object A is water
  • the active species irradiated object is active species-containing water containing a larger amount of active species than water.
  • the chamber 110 includes a first tube portion 110A, a second tube portion 110B, and a third tube portion 110C.
  • 110A of 1st pipe parts have the inflow port 110a of plasma production gas
  • 2nd pipe part 110B has the inflow port 110b of activated species production gas
  • 3rd pipe part 110C has the activated species irradiation port 110c.
  • the chamber 110 is configured such that the first tube portion 110A, the second tube portion 110B, and the third tube portion 110C are connected at one place (joint portion) to form a T-shaped tube.
  • the chamber 110 is a T-shaped glass tube.
  • the outer diameter of the tube of the chamber 110 is 4 mm, and the inner diameter is 2 mm.
  • the length of the first tube portion 110A is 10 cm
  • the length of the second tube portion 110B is 10 cm
  • the length of the third tube portion 110C is 20 cm.
  • 110A of 1st pipe parts are the upstream parts of the flow of plasma production gas
  • 110C of 3rd pipe parts is the downstream part of the flow of plasma production gas
  • the second pipe portion 110B is an upstream portion of the flow of the activated species product gas
  • the third tube portion 110C is a downstream portion of the flow of the activated species product gas.
  • a gas cylinder containing the plasma generation gas is connected to the plasma generation gas inlet 110a of the first pipe portion 110A via a gas tube, and the plasma generation gas sequentially flows from the gas cylinder into the first pipe portion 110A.
  • a gas cylinder containing the activated species production gas is connected to the inlet 110b of the activated species production gas of the second pipe portion 110B through a gas tube, and the activated species production gas sequentially flows from the gas cylinder into the second tube portion 110B.
  • the mixing ratio of the active species generating gas can be adjusted by controlling the relative ratio between the inflow amount of the plasma generating gas into the chamber 110 and the inflow amount of the active species generating gas into the chamber 110.
  • the upstream electrode 120 is located in a part of the chamber 110 (first pipe portion 110A).
  • the upstream electrode 120 is coaxially provided on the outer periphery of the first tube portion 110A.
  • the downstream electrode 130 is located in a part of the chamber 110 (the third tube portion 110C).
  • the downstream electrode 130 is coaxially provided on the outer periphery of the third tube portion 110C.
  • the downstream electrode 130 is located in the downstream part of the flow of the plasma generation gas from the upstream electrode 120.
  • the plasma power source 140 applies a voltage to the upstream electrode 120 and the downstream electrode 130.
  • the plasma power source 140 can apply a pulse train-like positive voltage having a predetermined frequency to the upstream electrode 120 and the downstream electrode 130.
  • the voltage value of the positive voltage in the form of a pulse train applied by the plasma power source 140 is set to 7 kV for the upstream electrode 120, for example, and the frequency is set to about 10 kHz, for example.
  • the downstream electrode 130 is grounded.
  • size of the voltage of the upstream electrode 120 and the downstream electrode 130 is not limited.
  • the applied voltage to the upstream electrode 120 may be lower than the applied voltage to the downstream electrode 130.
  • plasma can be generated stably.
  • the plasma generation gas flows in from the plasma generation gas inlet 110a, and the plasma power source 140 applies a voltage to the upstream electrode 120 and the downstream electrode 130, whereby plasma is generated from the plasma generation gas.
  • the chamber includes a region where the plasma is generated (plasma generation region B).
  • the chamber is configured such that the active species product gas flows between the upstream electrode 120 and the downstream electrode 130. More specifically, the chamber 110 is configured such that the active species generated gas flows into the plasma generation region B.
  • FIG. 2 is a flowchart showing the active species irradiation method using the active species irradiation apparatus 100 according to the present embodiment.
  • the active species irradiation method of the present invention can be realized by using the active species irradiation apparatus 100 and executing Step 1 to Step 4.
  • Step 1 application process: A voltage is applied to the upstream electrode 120 and the downstream electrode 130.
  • the voltage value of the pulse train-like positive voltage applied by the plasma power source 140 is set to 7 kV with respect to the upstream electrode 120, for example, and the frequency is set to, for example, about 10 kHz. .
  • the downstream electrode 130 is grounded.
  • Step 2 Plasma generation gas is introduced from the plasma generation gas inlet 110a of the chamber 110 to generate plasma.
  • the plasma generation region B is formed by executing the plasma generation process.
  • Step 3 active species generation step: An active species generation gas is introduced between the upstream electrode 120 and the downstream electrode 130 to generate active species.
  • Step 4 active species irradiation process: The active species are irradiated from the active species irradiation port 110c.
  • the active species irradiation port 110c is directed toward the object A, and the active species is irradiated onto the object A.
  • an active species irradiated object can be produced from the object.
  • the execution order of the above steps is performed. It doesn't matter.
  • the plasma generation process may include an application process.
  • FIG. 3 is a graph showing the amount of active species generated using the active species irradiation apparatus 100 and the amount of active species generated using the conventional apparatus.
  • the amount of active species generated was measured by an electron spin resonance (ESR) measuring device.
  • ESR electron spin resonance
  • the horizontal axis indicates the magnetic field (mT).
  • Graph A shows the amount of active species generated by using a conventional apparatus.
  • the conventional apparatus is configured such that the activated species product gas flows upstream of the upstream electrode.
  • Graph B shows the amount of active species generated by using the active species irradiation apparatus 100
  • Graph C shows the amount of active species generated by using another active species irradiation apparatus.
  • the configuration of the other active species irradiation apparatus is the same as that of the active species irradiation apparatus 100, but the distance from the plasma generation region B to the active species irradiation port 110c in the other active species irradiation apparatus 100 is the same as that of the active species irradiation apparatus 100. It is longer than the distance from the plasma generation region B to the active species irradiation port 110c.
  • the active species irradiation apparatus 100 when the active species irradiation apparatus 100 is used, at least a hydroxy radical (OH radical) and a superoxide anion radical (O2 anion radical) are generated. ing.
  • the production amount of the hydroxy radical and the superoxide anion radical is larger than the production amount of these active species produced by using the conventional apparatus.
  • the shorter the distance from the plasma generation region B to the active species irradiation port 110c the higher the efficiency of introducing the active species into the irradiated object.
  • the active species irradiation treatment can be performed on the object A, and the active species coverage can be applied from the object A (for example, water). Irradiated matter (for example, active species-containing water containing a larger amount of active species than water) can be produced.
  • object A for example, water
  • Irradiated matter for example, active species-containing water containing a larger amount of active species than water
  • FIG. 4 is a graph showing the progress of sterilization using the active species irradiation apparatus 100.
  • Escherichia coli suspension (10 7 CFU / ml) is adopted as the object A, 450 sccm of helium gas is used as the plasma generating gas, and 50 sccm of oxygen gas is used as the active species generating gas.
  • the number of bacteria was evaluated.
  • the D value (necessary for reducing the number of bacteria to 1/10) when the pH of the bacterial suspension is 3.7. Time) was 5.6 sec.
  • the pH of the bacterial suspension was 4.2, the D value was 9.6 sec.
  • the pH of the bacterial suspension was 4.8, the D value was 15.7 sec.
  • the pH of the bacterial suspension was 6.5, the D value was 44.8 sec. High bactericidal power was obtained by lowering the pH of the bacterial suspension.
  • the active species irradiation apparatus 100 of the present invention has been described above with reference to FIGS.
  • a large amount of sterilizing active species could be generated by generating a mixed phase flow of plasma generating gas and active species generating gas in the middle of the plasma generating portion. Although it was not in contact with the liquid surface, the same level of bactericidal power as that obtained when the LF plasma jet was brought into contact with the liquid surface could be obtained. Further, by connecting a pipe from the plasma generation region B (plasma source) to the active species irradiation port (irradiation part), a high sterilizing power can be obtained even if it is about 4 m, which is advantageous in terms of device creation.
  • a method in which activated species generation gas flows between the upstream electrode and the downstream electrode can be executed, but the chamber is formed between the upstream electrode and the activated species irradiation port.
  • the structure of the chamber is not limited to the T shape as long as the active species product gas is configured to flow in between.
  • the structure of the chamber can be coaxial.
  • FIG. 5 is a schematic diagram of an active species irradiation apparatus 200 according to the embodiment of the present invention.
  • the structure of the chamber provided in the active species irradiation apparatus 200 is coaxial.
  • the active species can be irradiated to the object A from the active species irradiation apparatus 200 to produce an active species irradiated object.
  • the active species irradiation apparatus 200 includes a chamber 210, an upstream electrode 120, a downstream electrode 130, and a plasma power source 140. Since the upstream electrode 120, the downstream electrode 130, and the plasma power supply 140 have the same functions as the constituent elements of the active species irradiation apparatus 100, detailed description thereof is omitted.
  • the plasma generation gas and the active species generation gas flow into the chamber 210.
  • the plasma generation gas is helium gas
  • the active species generation gas is oxygen gas.
  • the chamber 210 includes a plasma generation gas inlet 210a, an activated species generation gas inlet 210b, and an activated species irradiation port 210c. Active species are irradiated from the active species irradiation port 210c.
  • the active species is a superoxide anion radical.
  • the active species is irradiated to the object A from the active species irradiation port 210c, and the active species irradiated object is produced.
  • the object A is water
  • the active species irradiated object is active species-containing water containing a larger amount of active species than water.
  • the chamber 210 includes a fourth pipe part 210D and a fifth pipe part 210E.
  • the fourth pipe section 210D has a plasma generation gas inlet 210a and an activated species irradiation port 210c
  • the fifth pipe section 210E has an activated species generation gas inlet 210b and an activated species generation gas outlet 210d.
  • the chamber 210 is configured such that the fourth pipe portion 210D includes the portion 210d of the active species product gas outlet of the fifth pipe portion 210E.
  • the chamber 210 is a coaxial glass tube.
  • the outer diameter of the tube of the fourth tube portion 210D is 8 mm, and the inner diameter is 6 mm.
  • the outer diameter of the tube of the fifth tube portion 210E is 4 mm, and the inner diameter is 2 mm.
  • the length of the fourth tube portion 210D is 20 cm
  • the length of the fifth tube portion 210E is 15 cm.
  • the chamber 210 is configured such that the active species product gas flows between the upstream electrode 120 and the downstream electrode 130.
  • the chamber 210 is configured such that the active species product gas flows between the upstream electrode 120 and the downstream electrode 130.
  • the plasma generation gas inlet 210a of the fourth tube portion 210D is an upstream portion of the flow of the plasma generation gas, and the active species irradiation port 210c of the fourth tube portion 210D is a downstream portion of the flow of the plasma generation gas.
  • the activated species generating gas inlet 210b of the fifth pipe portion 210E is an upstream portion of the activated species generated gas flow, and the activated species generated gas outlet 210d of the fifth tube portion 210E is downstream of the activated species generated gas flow. Part.
  • the gas cylinder containing the plasma generation gas is connected to the plasma generation gas inlet 210a of the fourth pipe section 210D, and the plasma generation gas sequentially flows from the gas cylinder into the fourth pipe section 210D.
  • a gas cylinder containing the activated species production gas is connected to the inlet 210b of the activated species production gas in the fifth pipe section 210E, and the activated species production gas sequentially flows from the gas cylinder into the fifth pipe section 210E.
  • the mixing ratio of the active species generating gas can be adjusted by controlling the relative ratio between the inflow amount of the plasma generating gas into the chamber 210 and the inflow amount of the active species generating gas into the chamber 210.
  • the upstream electrode 120 is provided in the upstream portion of the flow of the plasma generation gas in the fourth tube portion 210D, and the downstream electrode 130 is the downstream portion of the flow of the plasma generation gas in the fourth tube portion 210D (the upstream electrode 120). More downstream part).
  • the activated species generation gas outlet 210d of the fifth pipe portion 210E is located between the upstream electrode 120 and the downstream electrode 130. With this configuration, the activated species irradiating apparatus 200 can execute a method (an intermediate mixing method) in which activated species generated gas flows between the upstream electrode 120 and the downstream electrode 130.
  • the active species irradiation apparatus 100 and the active species irradiation apparatus 200 according to the embodiment of the present invention have been described above with reference to FIGS.
  • the active species irradiation device 100 and the active species irradiation device 200 are “mixed”, but as long as the chamber is configured so that the active species generation gas flows between the upstream electrode and the active species irradiation port. , It is not limited to the “medium mixing method”.
  • the chamber may be of a type (post-mixing type) in which the active species product gas flows between the downstream electrode and the active species irradiation port.
  • FIG. 6 is a schematic diagram of the active species irradiation apparatus 300 according to the present embodiment.
  • the active species irradiation apparatus 300 can irradiate the target A with active species to produce an active species irradiated object.
  • the active species irradiation apparatus 300 includes a chamber 310, an upstream electrode 120, a downstream electrode 130, and a plasma power source 140. Since the upstream electrode 120, the downstream electrode 130, and the plasma power supply 140 have the same functions as the constituent elements of the active species irradiation apparatus 100, detailed description thereof is omitted.
  • the plasma generation gas and the active species generation gas flow into the chamber 310.
  • the plasma generation gas is helium gas
  • the active species generation gas is oxygen gas.
  • the chamber 310 includes a plasma generation gas inlet 110a, an activated species generation gas inlet 110b, and an activated species irradiation port 110c.
  • the active species are irradiated from the active species irradiation port 110c.
  • the active species is a superoxide anion radical.
  • the active species is irradiated onto the object A from the active species irradiation port 110 c, thereby producing an active species irradiated object.
  • the object A is water
  • the active species irradiated object is active species-containing water containing a larger amount of active species than water.
  • the chamber 310 includes a first tube portion 110A, a second tube portion 110B, and a third tube portion 110C.
  • 110A of 1st pipe parts have the inflow port 110a of plasma production gas
  • 2nd pipe part 110B has the inflow port 110b of activated species production gas
  • 3rd pipe part 110C has the activated species irradiation port 110c.
  • the chamber 110 is configured such that the first tube portion 110A, the second tube portion 110B, and the third tube portion 110C are connected at one place to form a T-shaped tube.
  • the chamber 110 is a T-shaped glass tube.
  • the outer diameter of the tube of the chamber 110 is 4 mm, and the inner diameter is 2 mm.
  • the length of the first tube portion 110A is 20 cm
  • the length of the second tube portion 110B is 10 cm
  • the length of the third tube portion 110C is 10 cm.
  • 110A of 1st pipe parts are the upstream parts of the flow of plasma production gas
  • 110C of 3rd pipe parts is the downstream part of the flow of plasma production gas
  • the second pipe portion 110B is an upstream portion of the flow of the activated species product gas
  • the third tube portion 110C is a downstream portion of the flow of the activated species product gas.
  • a gas cylinder containing the plasma generation gas is connected to the plasma generation gas inlet 110a of the first pipe portion 110A via a gas tube, and the plasma generation gas sequentially flows from the gas cylinder into the first pipe portion 110A.
  • a gas cylinder containing the activated species production gas is connected to the inlet 110b of the activated species production gas of the second pipe portion 110B through a gas tube, and the activated species production gas sequentially flows from the gas cylinder into the second tube portion 110B.
  • the mixing ratio of the active species generating gas can be adjusted by controlling the relative ratio between the inflow amount of the plasma generating gas into the chamber 310 and the inflow amount of the active species generating gas into the chamber 310.
  • the upstream electrode 120 is located in a part of the chamber 110 (first pipe portion 110A).
  • the upstream electrode 120 is coaxially provided on the outer periphery of the first tube portion 110A.
  • the downstream electrode 130 is located in a part of the chamber 110 (first pipe portion 110A).
  • the downstream electrode 130 is coaxially provided on the outer periphery of the first tube portion 110A.
  • the downstream electrode 130 is located in the downstream part of the flow of the plasma generation gas from the upstream electrode 120.
  • the first tube portion 110A, the second tube portion 110B, and the third tube portion 110C are connected to each other at a portion further downstream than the downstream electrode 130.
  • the plasma power source 140 applies a voltage to the upstream electrode 120 and the downstream electrode 130.
  • the plasma power source 140 can apply a pulse train-like positive voltage having a predetermined frequency to the upstream electrode 120 and the downstream electrode 130.
  • the voltage value of the positive voltage in the form of a pulse train applied by the plasma power source 140 is set to 7 kV for the upstream electrode 120, for example, and the frequency is set to about 10 kHz, for example.
  • the downstream electrode 130 is grounded.
  • size of the voltage of the upstream electrode 120 and the downstream electrode 130 is not limited.
  • the applied voltage to the upstream electrode 120 may be lower than the applied voltage to the downstream electrode 130.
  • plasma can be generated stably.
  • the plasma generation gas flows in from the plasma generation gas inlet 110a, and the plasma power source 140 applies a voltage to the upstream electrode 120 and the downstream electrode 130, whereby plasma is generated from the plasma generation gas.
  • the chamber 310 defines a region (plasma generation region B) where plasma is generated.
  • the chamber 310 is configured such that the activated species generating gas flows between the downstream electrode 130 and the activated species irradiation port 110c of the third tube portion 110C. More specifically, the chamber 310 is configured such that the active species generation gas flows between the plasma generation region B and the active species irradiation port 110c of the third tube portion 110C.
  • FIG. 7 is a graph showing the amount of active species generated using the active species irradiation apparatus 300 and the amount of active species generated using the conventional apparatus. The amount of active species produced was measured with an ESR measuring device. In FIG. 7, the horizontal axis indicates the magnetic field (mT).
  • Graph D shows the amount of active species generated using a conventional apparatus.
  • the conventional apparatus is configured such that the activated species product gas flows upstream of the upstream electrode.
  • Graph E shows the amount of active species generated using the active species irradiation apparatus 300.
  • the active species irradiation apparatus 300 When the active species irradiation apparatus 300 is used, at least a hydroxy radical (OH radical) and a superoxide anion radical (O2 anion radical) are generated.
  • the amount of superoxide anion radicals produced is greater than the amount of active species produced using conventional devices.
  • the amount of superoxide anion radicals generated is far greater than the amount of hydroxy radicals generated compared to the case where the active species irradiation apparatus 100 is used.
  • the active species irradiation apparatus 300 of the present invention has been described above with reference to FIGS. According to the active species irradiation apparatus 300, a method (post-mixing method) in which the active species generation gas flows between the downstream electrode and the active species irradiation port can be executed.
  • the structure of the chamber is not limited to the T shape as long as the active species product gas is configured to flow between the active species irradiation port and the active species irradiation port.
  • the structure of the chamber can be coaxial.
  • FIG. 8 is a schematic diagram of an active species irradiation apparatus 400 according to an embodiment of the present invention.
  • the structure of the chamber provided in the active species irradiation apparatus 400 is coaxial.
  • the active species can be irradiated to the object A from the active species irradiation apparatus 400 to produce an active species irradiated object.
  • the active species irradiation apparatus 400 includes a chamber 410, an upstream electrode 120, a downstream electrode 130, and a plasma power source 140. Since the upstream electrode 120, the downstream electrode 130, and the plasma power source 140 have the same functions as the constituent elements of the active species irradiation apparatus 200, detailed description thereof is omitted. Furthermore, since the chamber 410 has the same function as the chamber 210 of the active species irradiation apparatus 200, detailed description other than the configuration is omitted.
  • the chamber 410 is configured such that activated species generated gas flows between the downstream electrode 130 and the activated species irradiation port 110c.
  • the upstream electrode 120 is provided in the upstream portion of the flow of the plasma generation gas in the fourth tube portion 210D, and the downstream electrode 130 is the downstream portion of the flow of the plasma generation gas in the fourth tube portion 210D (the upstream electrode 120). More downstream part).
  • the activated species generation gas outlet 210d of the fifth pipe portion 210E is located between the downstream electrode 130 and the activated species irradiation port 110c.
  • the activated species irradiating apparatus 200 can execute a method (post-mixing method) in which the activated species generation gas flows between the downstream electrode 130 and the activated species irradiation port 110c.
  • the active species is irradiated to the object A from the active species irradiation port 110c, and the active species irradiated object is produced.
  • the active species irradiation apparatus, the active species irradiation, and the active species irradiation material manufacturing method according to the embodiment of the present invention have been described with reference to FIGS. 1 to 8. It is not intended to be limited to the described configuration, and includes a configuration equivalent to the configuration.
  • the plasma generating gas is not limited to helium gas as long as it is a source gas that generates plasma. It can be argon gas, xenon gas or neon gas.
  • the active species is not limited to the superoxide anion radical.
  • the active species can be an active oxygen species or an active nitrogen species.
  • the configuration of the activated species irradiation apparatus is not limited to a T shape or a coaxial shape as long as the activated species generation gas can be configured to flow between the upstream electrode and the activated species irradiation port.
  • the chamber provided in the active species irradiation apparatus may be a Y-shaped three-way tube in addition to the T-shaped three-way tube (T-shaped tube).
  • the chamber may be a multi-way tube composed of four or more tube parts.
  • the size of the chamber is also arbitrary.
  • the polarity of voltage application to the upstream electrode 120 and the downstream electrode 130 is not limited. For example, a higher voltage can be applied to the upstream electrode 120 than to the downstream electrode 130. Further, a lower voltage can be applied to the upstream electrode 120 than to the downstream electrode 130.
  • the shapes of the upstream electrode 120 and the downstream electrode 130 are not limited to be coaxial with the tube portion as long as they can be located in a part of the chamber.
  • the shapes of the upstream electrode 120 and the downstream electrode 130 may be polygonal shapes.
  • the active species generating gas is not limited to oxygen gas as long as it is a raw material gas for generating active species. It can be air. Further, the gas may be a mixture of 20% oxygen and 80% nitrogen. Furthermore, in the active species product gas, the mixing ratio of oxygen can be adjusted to 1% to 20%. Further, the active species generating gas may be a gas obtained by diluting oxygen gas with helium gas.
  • FIG. 9 is a graph showing the relationship between the oxygen supply amount to the active species irradiation apparatus 100 and the sterilizing power.
  • a bacterial suspension of E. coli (10 7 CFU / ml, pH is 3.7) was used as the object A, helium gas was used as the plasma generation gas, and oxygen gas was used as the active species generation gas.
  • the flow rate was adjusted so that the total flow rate of the plasma generation gas and the active species generation gas was 500 sccm, and the oxygen mixing ratio was changed from 0.04% to 20% to evaluate the viable count of E. coli.
  • the oxygen mixing ratio was 0.04%
  • the D value was 53.5 sec.
  • the oxygen mixing ratio was 0.2%
  • the D value was 51.0 sec.
  • the oxygen mixing ratio was 2%
  • the D value was 24.2 sec.
  • the oxygen mixing ratio was 5%
  • the D value was 8.5 sec.
  • the oxygen mixing ratio was 10%
  • the D value was 8.3 sec. High sterilizing power was obtained by increasing the oxygen mixing ratio.
  • FIG. 10 is a graph showing a comparison between a conventional method (premixing method) and a method based on the present invention (an intermediate mixing method using the active species irradiation apparatus 100 and a postmixing method using the active species irradiation apparatus 300).
  • a bacterial suspension of E. coli (10 7 CFU / ml, pH 3.5) was employed. The flow rate is adjusted so that the total flow rate of the plasma generating gas and the active species generating gas is 2000 sccm, using 1950 sccm helium gas as the plasma generating gas, and using 50 sccm oxygen gas as the active species generating gas, The viable count of E. coli was evaluated.
  • the D value was 144 sec.
  • the D value was 67 sec.
  • the D value was 24 sec.
  • the D value of the intermediate mixing method is about 45% of the D value of the premixing method, and the sterilizing power is increased. Further, even when the mixing ratio of the active species generating gas was the same, the D value of the post-mixing method was about 15% of the D value of the pre-mixing method, and the sterilizing power was further increased.
  • active oxygen necessary for sterilization can be efficiently generated using a non-contact plasma source with respect to an object by introducing an active species generating gas between the upstream electrode and the active species irradiation port.
  • a mixed phase flow of the plasma generation gas and the active species generation gas is present, and there is a region where the purity of the plasma generation gas is high. In this region, short-circuit discharge occurs, so that high density plasma is efficiently generated.
  • High sterilization power can be obtained by contacting high density plasma with oxygen gas having a high partial pressure.
  • the method of the present invention (medium mixing method or post-mixing method), it is easy to increase the mixing ratio of the active species generating gas. That is, in the conventional method “premixing method” in which oxygen is mixed in advance with the plasma generating gas for discharge prior to plasma generation, the helium purity is lowered at the portion where the electric field is applied, and therefore, it is difficult for the discharge to occur. Therefore, in the conventional method (premix method), discharge can be performed only up to an oxygen mixture ratio of about several percent.
  • an active species generating gas having a high discharge voltage is mixed with a plasma generating gas having a low discharge voltage (easily discharged) by generating a mixed phase flow. Therefore, the discharge is relatively easy to occur. Therefore, as described with reference to FIG. 9, in the method of the present invention, it is possible to increase the oxygen mixing ratio to 20% or more, compared with the case of an oxygen mixing ratio of about several percent, Furthermore, high sterilization power can be obtained. Thus, in the present invention, stable discharge can be performed at a high oxygen mixing ratio, and an overwhelmingly high sterilizing power can be obtained as compared with the conventional method.
  • the active species generating gas is controlled by controlling the relative ratio between the inflow amount of the plasma generating gas into the chamber and the inflow amount of the active species generating gas into the chamber.
  • the mixing ratio can be adjusted. Therefore, when the desired sterilizing power cannot be obtained, the mixing ratio of the active species generating gas can be adjusted during use to increase the sterilizing power.
  • the active species product gas mixed portion (if the chamber is a three-way tube, the first tube portion 110A, the second tube portion 110B, and the third tube portion 110C). (If the chamber is coaxial, near the outlet 210d of the active species product gas, discharge is relatively less likely to occur in the downstream portion than in the upstream portion.) As a result, the overall electric discharge is more likely to occur.
  • the generation efficiency of active oxygen is good. Even in the “post-mixing method” in which the active species generation gas is mixed after discharging only with the plasma generation gas, there is a sufficient area where the purity of the plasma generation gas is maintained. Therefore, even in the gas after discharge, the metastable atoms of helium in a high energy state are difficult to disappear and the metastable atoms come into contact with the active species generating gas, so that the generation efficiency of active oxygen is good.
  • the plasma itself containing high energy electrons does not directly contact the active species generation gas, so that generation of ozone can be suppressed.
  • the required active species for example, superoxide anion radical
  • the required active species can be selectively generated.
  • a root canal can be employ
  • the activated species irradiation apparatus according to the present embodiment may further include a needle member that can be connected to the activated species irradiation port. Active species are irradiated from the tip of the needle member. By inserting the tip of the needle member into the root canal, the active species can be efficiently irradiated into the root canal, and the active species-treated root canal can be produced as the active species irradiated object.
  • a plurality of pipes can be connected to the tip of the needle member.
  • gas is released from the root canal to the outside of the root canal. It becomes possible to prevent an increase in pressure in the canal and prevent emphysema from occurring due to an increase in gas pressure in the root canal.
  • teeth, living bodies, and medical devices are adopted as objects, and as active species irradiated objects, active species-treated teeth, active species-treated living bodies, and active species-treated Can make medical equipment. Sterilization treatment and sterilization treatment are performed on teeth, living bodies, and medical devices by the sterilization action by the active species, and the active species irradiation apparatus and the active species irradiation method of the present invention can be used for sterilization.
  • the processing target is sterilized or sterilized.
  • the method of applying the active species irradiation-treated liquid to the processing target is a method of indirectly irradiating the processing target with active species irradiation.
  • the disinfection effect, sterilization effect, and sterilization effect equivalent to the method of directly irradiating active species can be expected.
  • the active species (active oxygen and active nitrogen) are efficiently irradiated with a non-contact plasma source to the irradiated object. Therefore, it can be suitably used for sterilization of irradiated objects.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Plasma Technology (AREA)
  • Physical Water Treatments (AREA)

Abstract

 被照射物に対して非接触なプラズマ源で活性種(活性酸素や活性窒素)を効率よく照射させることができる活性種照射装置を提供する。 本発明に係る活性種照射装置100は、プラズマ生成ガスと活性種生成ガスとが流れ込むチャンバ110であって、活性種が照射される活性種照射口110cを有するチャンバ110と、前記チャンバ110の一部分であって、前記プラズマ生成ガスの流れの上流部分に位置する上流電極120と、前記チャンバ110の一部分であって、前記上流電極120よりも前記プラズマ生成ガスの流れの下流部分に位置する下流電極130とを備えた活性種照射装置100であって、前記チャンバ110は、前記上流電極120と前記活性種照射口110cとの間に前記活性種生成ガスが流入するように構成されている。

Description

活性種照射装置、活性種照射方法及び活性種被照射物作製方法
 本発明は、活性種照射装置、活性種照射方法及び活性種被照射物作製方法に関する。
 大気圧低温プラズマの活用例の一つとして殺菌消毒への活用がある。生体は濡れ環境にあるために液体中での殺菌が重要となるが、これまでに液体のpHを下げて液体にプラズマを照射することでD値(生菌数を1/10にするために必要な時間)を1/100以下にする高い殺菌力が得られることがわかっており(特許文献1)、これを生体に応用することを試みている。また、プラズマ照射源として機能するプラズマ放電装置として、LFプラズマジェット(特許文献2)を用いることができる。更にプラズマ放電装置において、プラズマ生成に先立って予め放電用のプラズマ生成ガスに酸素を混ぜておく方式(先混ぜ方式)が用いられている(特許文献3)。
WO2009/041049公報 WO2008/072390公報 特開2002-313599号公報
 しかし、プラズマと生体とが接触すると、プラズマ中に含まれる自由電子により、予想しない化学反応がおこり得る。従って、生体の安全性を担保するためには、プラズマと生体との接触は好ましくない。特許文献1に記載の低pH法により画期的な殺菌力が得られ、その物理化学的メカニズムがわかってきたが、プラズマ放電装置としては、特許文献2に記載のLFプラズマジェットを用い、殺菌活性種を生成しているだけであり、プラズマ放電装置としては特に凝ったものではなかった。
 更に、特許文献3に記載のプラズマ放電装置においては、電界が印加される部分でプラズマ生成ガスの純度が下がってしまい、放電がおこりにくくなる。
 本発明は、被照射物に対して非接触なプラズマ源で活性種(活性酸素や活性窒素)を効率よく照射させることができる活性種照射装置を提供すること、活性種照射方法を提供すること、さらに、活性種被照射物作製方法を提供することを目的とする。
 上記課題を解決するために、本発明に係る活性種照射装置の特徴構成は、プラズマ生成ガスと活性種生成ガスとが流れ込むチャンバであって、活性種が照射される活性種照射口を有するチャンバと、前記チャンバの一部分であって、前記プラズマ生成ガスの流れの上流部分に位置する上流電極と、前記チャンバの一部分であって、前記上流電極よりも前記プラズマ生成ガスの流れの下流部分に位置する下流電極とを備えた活性種照射装置であって、前記チャンバは、前記上流電極と前記活性種照射口との間に前記活性種生成ガスが流入するように構成されている。
 本発明の活性種照射装置の好適な態様によれば、前記チャンバは、前記プラズマが生成するプラズマ生成領域を包有し、前記プラズマ生成領域内と前記活性種照射口との間に前記活性種生成ガスが流入するように構成されている。
 本発明の活性種照射装置の好適な態様によれば、前記チャンバは、前記プラズマ生成ガスの流入口と、前記活性種生成ガスの流入口とを有するように構成されている。
 本発明の活性種照射装置の好適な態様によれば、前記チャンバは、前記プラズマ生成ガスの流入口を有する第1管部と前記活性種生成ガスの流入口を有する第2管部と前記活性種照射口を有する第3管部とを含み、前記第1管部と前記第2管部と前記第3管部とが一か所で繋がり多方管を形成するように構成されている。
 本発明の活性種照射装置の好適な態様によれば、前記チャンバは、前記プラズマ生成ガスの流入口と前記活性種照射口とを有する第4管部と、前記活性種生成ガスの流入口と前記活性種生成ガスの流出口とを有する第5管部とを含み、前記第5管部の有する前記活性種生成ガスの流出口部分を前記第4管部が内部に包有するように構成されている。
 本発明の活性種照射装置の好適な態様によれば、前記チャンバは、前記上流電極と前記下流電極との間に前記活性種生成ガスが流入するように構成されている。
 本発明の活性種照射装置の好適な態様によれば、前記チャンバは、前記下流電極と前記活性種照射口との間に前記活性種生成ガスが流入するように構成されている。
 本発明の活性種照射装置の好適な態様によれば、前記活性種照射口に接続可能な針部材を更に備え、前記針部材の先端から、前記活性種が照射される。
 本発明の活性種照射装置の好適な態様によれば、前記活性種は、ヒドロキシラジカル、スーパーオキシドアニオンラジカル、ヒドロペルオキシルラジカル、一重項酸素、酸素原子およびパーオキシナイトライト(ONOO-/ONOOH)のうちの少なくとも一種である。
 本発明の活性種照射装置の好適な態様によれば、前記上流電極に対しては、前記下流電極に対するよりも高電圧が印加される。
 上記課題を解決するために、本発明に係る活性種照射方法の特徴構成は、プラズマ生成ガスと活性種生成ガスとが流れ込むチャンバであって、活性種が照射される活性種照射口を有するチャンバと、前記チャンバの一部分であって、前記プラズマ生成ガスの流れの上流部分に位置する上流電極と、前記チャンバの一部分であって、前記上流電極よりも前記プラズマ生成ガスの流れの下流部分に位置する下流電極とを備えた活性種照射装置を用いて活性種を照射する方法であって、前記プラズマ生成ガスを流入し、プラズマを生成するプラズマ生成工程と、前記上流電極と前記活性種照射口との間に前記活性種生成ガスを流入し、前記活性種を生成する活性種生成工程と、前記活性種照射口から前記活性種を照射する活性種照射工程とを包含するところにある。
 本発明の活性種照射方法の好適な態様によれば、前記プラズマ生成工程の実行によってプラズマ生成領域が形成され、前記活性種生成工程は、前記プラズマ生成領域内と前記活性種照射口との間に前記活性種生成ガスを流入することにより実行される。
 上記課題を解決するために、本発明に係る活性種被照射物作製方法の特徴構成は、プラズマ生成ガスと活性種生成ガスとが流れ込むチャンバであって、活性種が照射される活性種照射口を有するチャンバと、前記チャンバの一部分であって、前記プラズマ生成ガスの流れの上流部分に位置する上流電極と、前記チャンバの一部分であって、前記上流電極よりも前記プラズマ生成ガスの流れの下流部分に位置する下流電極とを備えた活性種照射装置を用いて活性種被照射物を作製する方法であって、前記プラズマ生成ガスを流入し、プラズマを生成するプラズマ生成工程と、前記上流電極と前記活性種照射口との間に前記活性種生成ガスを流入し、前記活性種を生成する活性種生成工程と、前記活性種照射口から前記活性種を対象物に照射する活性種照射工程とを包含するところにある。
 本発明の活性種被照射物作製方法の好適な態様によれば、前記対象物は水であり、前記活性種被照射物は、前記水よりも多量の活性種を含む活性種含有水である。
 本発明の活性種被照射物作製方法の好適な態様によれば、前記活性種照射装置は、前記活性種照射口に接続可能な針状部材を更に備え、前記活性種照射工程は、前記針状部材の先端から前記活性種を前記対象物の内部に照射する工程を含み、前記対象物は歯根管であり、前記活性種被照射物は、活性種処理済歯根管である。
本実施形態による活性種照射装置100の模式図を示す。 本実施形態による活性種照射装置100を用いた活性種照射方法を示すフローチャートである。 活性種照射装置100を用いた活性種生成量と従来装置を用いた活性種生成量とを示すグラフを示す。 活性種照射装置100を用いた殺菌の進捗を示すグラフを示す。 本実施形態に係る活性種照射装置200の模式図を示す。 本実施形態による活性種照射装置300の模式図を示す。 活性種照射装置300を用いた活性種生成量と従来装置を用いた活性種生成量とを示すグラフを示す。 本実施形態に係る活性種照射装置400の模式図を示す。 活性種照射装置100への酸素供給量と殺菌力との関係を示すグラフを示す。 従来方式(先混ぜ方式)と本発明に基づく方式(中混ぜ方式、後混ぜ方式)との比較を示すグラフを示す。
 図1~図10を参照して、本発明の活性種照射装置、活性種照射方法及び活性種被照射物作製方法を説明する。本発明は、以下に説明する実施形態や図面に記載される構成に限定されることを意図せず、当該構成と均等な構成も含む。
 [活性種照射装置100]
図1は、本実施形態による活性種照射装置100の模式図を示す。活性種照射装置100によって対象物Aに活性種を照射し、活性種被照射物を作製することができる。活性種照射装置100は、チャンバ110と上流電極120と下流電極130とプラズマ電源140とを備える。
 チャンバ110には、プラズマ生成ガスと活性種生成ガスとが流れ込む。プラズマ生成ガスはヘリウムガスであり、活性種生成ガスは酸素ガスである。チャンバ110は、プラズマ生成ガスの流入口110aと、活性種生成ガスの流入口110bと活性種照射口110cとを有する。活性種照射口110cからは活性種が照射される。活性種はスーパーオキシドアニオンラジカルである。活性種照射口110cから対象物Aに活性種を照射し、活性種被照射物を作製する。例えば、対象物Aは水であり、活性種被照射物は水よりも多量の活性種を含む活性種含有水である。
 チャンバ110は、第1管部110Aと第2管部110Bと第3管部110Cとを含む。第1管部110Aはプラズマ生成ガスの流入口110aを有し、第2管部110Bは活性種生成ガスの流入口110bを有し、第3管部110Cは活性種照射口110cを有する。チャンバ110は、第1管部110Aと第2管部110Bと第3管部110Cとが一か所(接合部分)で繋がりT字管を形成するように構成されている。チャンバ110は、T字状のガラス管である。チャンバ110の管の外径は4mmであり、内径は2mmである。第1管部110Aの長さは10cmであり、第2管部110Bの長さは10cmであり、第3管部110Cの長さは20cmである。
 第1管部110Aはプラズマ生成ガスの流れの上流部分であり、第3管部110Cはプラズマ生成ガスの流れの下流部分である。第2管部110Bは活性種生成ガスの流れの上流部分であり、第3管部110Cは活性種生成ガスの流れの下流部分である。第1管部110Aのプラズマ生成ガスの流入口110aには、プラズマ生成ガスが入ったガスボンベがガスチューブを介して繋がっており、ガスボンベから第1管部110Aに順次プラズマ生成ガスが流入する。第2管部110Bの活性種生成ガスの流入口110bには、活性種生成ガスが入ったガスボンベがガスチューブを介して繋がっており、ガスボンベから第2管部110Bに順次活性種生成ガスが流入する。例えば、プラズマ生成ガスのチャンバ110への流入量と活性種生成用ガスのチャンバ110への流入量との相対比を制御することで活性種生成用ガスの混合比を調整し得る。
 上流電極120は、チャンバ110の一部分(第1管部110A)に位置する。上流電極120は、第1管部110Aの外周上に同軸状に設けられている。下流電極130は、チャンバ110の一部分(第3管部110C)に位置する。下流電極130は、第3管部110Cの外周上に同軸状に設けられている。下流電極130は、上流電極120よりもプラズマ生成ガスの流れの下流部分に位置する。チャンバ110の構成物として石英管やセラミック管など誘電体(絶縁物)を採用することで、上流電極120と下流電極130との両電極が誘電体でバリアされたような電極形状となる。プラズマ生成ガスとしてヘリウムなどの希ガスを採用し、希ガスをチャンバ110に流すことで、大気圧グロープラズマと呼ばれる安定したプラズマの生成が可能となる。
 プラズマ電源140は、上流電極120と下流電極130とに電圧を印加する。プラズマ電源140は、所定周波数のパルス列状の正電圧を上流電極120と下流電極130とに印加することができる。プラズマ電源140により印加するパルス列状の正電圧の電圧値を例えば上流電極120に対して7kVに設定し、周波数を例えば10kHz程度に設定する。下流電極130はグランドとなるようにする。
 なお、プラズマ電源140は、上流電極120と下流電極130とに電圧を印加する限りは、上流電極120と下流電極130との電圧の大きさは限定されない。上流電極120への印加電圧が下流電極130への印加電圧より低いことがあり得る。上流電極120に対して、下流電極130に対するよりも高電圧が印加される場合には、プラズマを安定して生成し得る。
 以下、チャンバ110の構成を更に詳細に説明する。プラズマ生成ガスの流入口110aからプラズマ生成ガスを流入し、プラズマ電源140が、上流電極120と下流電極130とに電圧を印加することで、プラズマ生成ガスからプラズマが生成される。チャンバは、プラズマが生成された領域(プラズマ生成領域B)を包有する。チャンバは、上流電極120と下流電極130との間に活性種生成ガスが流入するように構成されている。より具体的には、チャンバ110は、プラズマ生成領域Bに活性種生成ガスが流入するように構成されている。
 [活性種照射方法]
図2は、本実施形態による活性種照射装置100を用いた活性種照射方法を示すフローチャートである。本発明の活性種照射方法は活性種照射装置100を用い、ステップ1~ステップ4を実行することで実現され得る。
 ステップ1(印加工程):上流電極120と下流電極130とに電圧を印加する。プラズマ電源140により印加するパルス列状の正電圧の電圧値をプラズマ電源140により印加するパルス列状の正電圧の電圧値を例えば上流電極120に対して7kVに設定し、周波数を例えば10kHz程度に設定する。下流電極130はグランドとなるようにする。
 ステップ2(プラズマ生成工程):チャンバ110のプラズマ生成ガスの流入口110aからプラズマ生成ガスを流入し、プラズマを生成する。プラズマ生成工程の実行によってプラズマ生成領域Bが形成される。
 ステップ3(活性種生成工程):上流電極120と下流電極130との間に活性種生成ガスを流入し、活性種を生成する。
 ステップ4(活性種照射工程):活性種照射口110cから活性種が照射される。活性種照射口110cを対象物Aに向け、活性種を対象物Aに照射する。
 ステップ1~ステップ4を実行することで、対象物から活性種被照射物を作製することができるが、活性種が生成され、活性種を対象物に照射し得る限りは、上記ステップの実行順序を問わない。例えば、プラズマ生成工程は、印加工程を含み得る。ただし、ステップ2を実行した後(プラズマ生成領域Bにおいてプラズマ生成ガスのみが存在する状態にしてプラズマを生成した後)に、ステップ3を実行することで、放電開始電圧を低く抑えることが可能となる。
 図3は、活性種照射装置100を用いた活性種生成量と従来装置を用いた活性種生成量とを示すグラフである。活性種生成量を電子スピン共鳴(ESR:Electron Spin Resonance)測定装置によって測定した。図3において、横軸は磁場(mT)を示す。
 グラフAは、従来装置を用いることによって生成された活性種の生成量を示す。従来装置は、上流電極の上流で活性種生成ガスが流入するように構成されている。グラフBは活性種照射装置100を用いることによって生成された活性種の生成量を示し、グラフCは他の活性種照射装置を用いることによって生成された活性種の生成量を示す。他の活性種照射装置の構成は活性種照射装置100の構成と同様であるが、他の活性種照射装置におけるプラズマ生成領域Bから活性種照射口110cまでの距離は、活性種照射装置100におけるプラズマ生成領域Bから活性種照射口110cまでの距離よりも長い。
 グラフA、グラフB及びグラフCを比較して判断し得るように、活性種照射装置100を用いた場合は、少なくともヒドロキシラジカル(OHラジカル)とスーパーオキシドアニオンラジカル(O2アニオンラジカル)とが生成している。ヒドロキシラジカルとスーパーオキシドアニオンラジカルとの生成量は、従来装置を用いることにより生成したこれらの活性種の生成量よりも多い。また、プラズマ生成領域Bから活性種照射口110cまでの距離が短い方が、長い方より高効率で活性種を照射物に導入することが可能となる。
  [活性種被照射物]
本発明の活性種照射装置100を用い、本発明の活性種照射方法を実行することで、対象物Aに活性種照射処理を施すことができ、対象物A(例えば、水)から活性種被照射物(例えば、水よりも多量の活性種を含む活性種含有水)を作製することができる。以下、活性種被照射物(活性種処理済対象物)の詳細を説明する。
 図4は、活性種照射装置100を用いた殺菌の進捗を示すグラフである。対象物Aとして大腸菌の菌懸濁液(107CFU/ml)を採用し、プラズマ生成ガスとして450sccmのヘリウムガスを用いて、活性種生成用ガスとして50sccmの酸素ガスを用いて、大腸菌の生菌数を評価した。活性種照射装置100を用いて大腸菌の菌懸濁液に活性種を照射した場合、菌懸濁液のpHが3.7の時、D値(菌数を1/10にするのに必要な時間)は5.6secであった。さらに、菌懸濁液のpHが4.2の時は、D値は9.6secであった。菌懸濁液のpHが4.8の時は、D値は15.7secであった。菌懸濁液のpHが6.5の時は、D値は44.8secであった。菌懸濁液のpHを下げることで高い殺菌力が得られた。
 以上、図1~図4を参照して本発明の活性種照射装置100を説明した。プラズマ生成部の中間部でプラズマ生成ガスと活性種生成ガスとの混相流を生成することで殺菌活性種を大量に生成し得た。液面に非接触であるにもかかわらずLFプラズマジェットを液面に接触させた場合と同程度の殺菌力を得ることができた。また、プラズマ生成領域B(プラズマ源)から活性種照射口(照射部)までパイプを接続することで4m程度にしても高い殺菌力が得られており、装置作成面で有利である。
 なお、活性種照射装置100によれば、上流電極と下流電極との間に活性種生成ガスを流入する方式(中混ぜ方式)を実行し得るが、チャンバが上流電極と活性種照射口との間に活性種生成ガスが流入するように構成されている限りは、チャンバの構造はT字状に限定されない。例えば、チャンバの構造は同軸状であり得る。
 [活性種照射装置200]
図5は、本発明の実施形態に係る活性種照射装置200の模式図を示す。活性種照射装置200が備えたチャンバの構造は同軸状である。活性種照射装置200から対象物Aに活性種を照射し、活性種被照射物を作製することができる。
 活性種照射装置200は、チャンバ210と上流電極120と下流電極130とプラズマ電源140とを備える。上流電極120と下流電極130とプラズマ電源140とは、活性種照射装置100が有する構成要素と同様の機能であるので、詳細な説明は省略する。
 チャンバ210には、プラズマ生成ガスと活性種生成ガスとが流れ込む。プラズマ生成ガスはヘリウムガスであり、活性種生成ガスは酸素ガスである。チャンバ210は、プラズマ生成ガスの流入口210aと、活性種生成ガスの流入口210bと活性種照射口210cとを有する。活性種照射口210cからは活性種が照射される。活性種はスーパーオキシドアニオンラジカルである。図2を参照して説明したようにステップ1~ステップ4を実行することで、活性種照射口210cから対象物Aに活性種を照射し、活性種被照射物を作製する。例えば、対象物Aは水であり、活性種被照射物は水よりも多量の活性種を含む活性種含有水である。
 チャンバ210は、第4管部210Dと第5管部210Eとを含む。第4管部210Dはプラズマ生成ガスの流入口210aと活性種照射口210cとを有し、第5管部210Eは活性種生成ガスの流入口210bと活性種生成ガスの流出口210dとを有する。チャンバ210は、第5管部210Eの有する活性種生成ガスの流出口210d部分を第4管部210Dが内部に包有するように構成されている。チャンバ210は、同軸状のガラス管である。第4管部210Dの管の外径は8mmであり、内径は6mmである。第5管部210Eの管の外径は4mmであり、内径は2mmである。さらに、第4管部210Dの長さは20cmであり、第5管部210Eの長さは15cmである。
 チャンバ210は、上流電極120と下流電極130との間に活性種生成ガスが流入するように構成されている。以下、チャンバ210と上流電極120と下流電極130との具体的な位置関係を詳細に説明する。
 第4管部210Dのプラズマ生成ガスの流入口210aはプラズマ生成ガスの流れの上流部分であり、第4管部210Dの活性種照射口210cはプラズマ生成ガスの流れの下流部分である。第5管部210Eの活性種生成ガスの流入口210bは活性種生成ガスの流れの上流部分であり、第5管部210Eの活性種生成ガスの流出口210dは活性種生成ガスの流れの下流部分である。
 第4管部210Dのプラズマ生成ガスの流入口210aには、プラズマ生成ガスが入ったガスボンベが繋がっており、ガスボンベから第4管部210Dに順次プラズマ生成ガスが流入する。第5管部210Eの活性種生成ガスの流入口210bには、活性種生成ガスが入ったガスボンベが繋がっており、ガスボンベから第5管部210Eに順次活性種生成ガスが流入する。例えば、プラズマ生成ガスのチャンバ210への流入量と活性種生成用ガスのチャンバ210への流入量との相対比を制御することで活性種生成用ガスの混合比を調整し得る。
 上流電極120は、第4管部210Dのうちプラズマ生成ガスの流れの上流部分に設けられており、下流電極130は、第4管部210Dのうちプラズマ生成ガスの流れの下流部分(上流電極120よりも下流部分)に設けられている。第5管部210Eの活性種生成ガスの流出口210dは上流電極120と下流電極130との間に位置する。この構成により、活性種照射装置200は、上流電極120と下流電極130との間に活性種生成ガスを流入する方式(中混ぜ方式)を実行し得る。
 以上、図1~図5を参照して、本発明による実施の形態の活性種照射装置100と活性種照射装置200とを説明した。活性種照射装置100と活性種照射装置200とは「中混ぜ方式」であるが、チャンバが上流電極と活性種照射口との間に活性種生成ガスが流入するように構成されている限りは、「中混ぜ方式」に限定されない。チャンバが下流電極と活性種照射口との間に活性種生成ガスが流入するように構成された方式(後混ぜ方式)であり得る。
 [活性種照射装置300]
図6は、本実施形態による活性種照射装置300の模式図を示す。活性種照射装置300によって対象物Aに活性種を照射し、活性種被照射物を作製することができる。活性種照射装置300は、チャンバ310と上流電極120と下流電極130とプラズマ電源140とを備える。上流電極120と下流電極130とプラズマ電源140とは、活性種照射装置100が有する構成要素と同様の機能であるので、詳細な説明は省略する。
 チャンバ310には、プラズマ生成ガスと活性種生成ガスとが流れ込む。プラズマ生成ガスはヘリウムガスであり、活性種生成ガスは酸素ガスである。チャンバ310は、プラズマ生成ガスの流入口110aと、活性種生成ガスの流入口110bと活性種照射口110cとを有する。活性種照射口110cからは活性種が照射される。活性種はスーパーオキシドアニオンラジカルである。図2を参照して説明したようにステップ1~ステップ4を実行することで、活性種照射口110cから対象物Aに活性種を照射し、活性種被照射物を作製する。例えば、対象物Aは水であり、活性種被照射物は水よりも多量の活性種を含む活性種含有水である。
 チャンバ310は、第1管部110Aと第2管部110Bと第3管部110Cとを含む。第1管部110Aはプラズマ生成ガスの流入口110aを有し、第2管部110Bは活性種生成ガスの流入口110bを有し、第3管部110Cは活性種照射口110cを有する。チャンバ110は、第1管部110Aと第2管部110Bと第3管部110Cとが一か所で繋がりT字管を形成するように構成されている。チャンバ110は、T字状のガラス管である。チャンバ110の管の外径は4mmであり、内径は2mmである。第1管部110Aの長さは20cmであり、第2管部110Bの長さは10cmであり、第3管部110Cの長さは10cmである。
 第1管部110Aはプラズマ生成ガスの流れの上流部分であり、第3管部110Cはプラズマ生成ガスの流れの下流部分である。第2管部110Bは活性種生成ガスの流れの上流部分であり、第3管部110Cは活性種生成ガスの流れの下流部分である。第1管部110Aのプラズマ生成ガスの流入口110aには、プラズマ生成ガスが入ったガスボンベがガスチューブを介して繋がっており、ガスボンベから第1管部110Aに順次プラズマ生成ガスが流入する。第2管部110Bの活性種生成ガスの流入口110bには、活性種生成ガスが入ったガスボンベがガスチューブを介して繋がっており、ガスボンベから第2管部110Bに順次活性種生成ガスが流入する。例えば、プラズマ生成ガスのチャンバ310への流入量と活性種生成用ガスのチャンバ310への流入量との相対比を制御することで活性種生成用ガスの混合比を調整し得る。
 上流電極120は、チャンバ110の一部分(第1管部110A)に位置する。上流電極120は、第1管部110Aの外周上に同軸状に設けられている。下流電極130は、チャンバ110の一部分(第1管部110A)に位置する。下流電極130は、第1管部110Aの外周上に同軸状に設けられている。下流電極130は、上流電極120よりもプラズマ生成ガスの流れの下流部分に位置する。下流電極130よりもさらに下流部分で、第1管部110Aと第2管部110Bと第3管部110Cとが一か所で繋がる。
 プラズマ電源140は、上流電極120と下流電極130とに電圧を印加する。プラズマ電源140は、所定周波数のパルス列状の正電圧を上流電極120と下流電極130とに印加することができる。プラズマ電源140により印加するパルス列状の正電圧の電圧値を例えば上流電極120に対して7kVに設定し、周波数を例えば10kHz程度に設定する。下流電極130はグランドとなるようにする。
 なお、プラズマ電源140は、上流電極120と下流電極130とに電圧を印加する限りは、上流電極120と下流電極130との電圧の大きさは限定されない。上流電極120への印加電圧が下流電極130への印加電圧より低いことがあり得る。上流電極120に対して、下流電極130に対するよりも高電圧が印加される場合には、プラズマを安定して生成し得る。
 以下、チャンバ310の構成を更に詳細に説明する。プラズマ生成ガスの流入口110aからプラズマ生成ガスを流入し、プラズマ電源140が、上流電極120と下流電極130とに電圧を印加することで、プラズマ生成ガスからプラズマが生成される。チャンバ310は、プラズマが生成された領域(プラズマ生成領域B)を規定する。チャンバ310は、下流電極130と第3管部110Cの活性種照射口110cとの間に活性種生成ガスが流入するように構成されている。より具体的には、チャンバ310は、プラズマ生成領域Bと第3管部110Cの活性種照射口110cとの間に活性種生成ガスが流入するように構成されている。
 図7は、活性種照射装置300を用いた活性種生成量と従来装置を用いた活性種生成量とを示すグラフである。活性種生成量をESR測定装置によって測定した。図7において、横軸は磁場(mT)を示す。
 グラフDは、従来装置を用いた活性種生成量を示す。従来装置は、上流電極の上流で活性種生成ガスが流入するように構成されている。グラフEは、活性種照射装置300を用いた活性種生成量を示す。
 活性種照射装置300を用いた場合は、少なくともヒドロキシラジカル(OHラジカル)とスーパーオキシドアニオンラジカル(O2アニオンラジカル)とが生成している。スーパーオキシドアニオンラジカルの生成量は、従来装置を用いた活性種生成量よりも多い。また、活性種照射装置300を用いた場合は、活性種照射装置100を用いた場合と比較すると、ヒドロキシラジカルの生成量よりもスーパーオキシドアニオンラジカルの生成量の方が圧倒的に多い。
 以上、図6及び図7を参照して本発明の活性種照射装置300を説明した。活性種照射装置300によれば、チャンバが下流電極と活性種照射口との間に活性種生成ガスが流入するように構成された方式(後混ぜ方式)を実行し得るが、チャンバが下流電極と活性種照射口との間に活性種生成ガスが流入するように構成されている限りは、チャンバの構造はT字状に限定されない。例えば、チャンバの構造は同軸状であり得る。
 [活性種照射装置400]
図8は、本発明の実施形態に係る活性種照射装置400の模式図を示す。活性種照射装置400が備えたチャンバの構造は同軸状である。活性種照射装置400から対象物Aに活性種を照射し、活性種被照射物を作製することができる。
 活性種照射装置400は、チャンバ410と上流電極120と下流電極130とプラズマ電源140とを備える。上流電極120と下流電極130とプラズマ電源140とは、活性種照射装置200が有する構成要素と同様の機能であるので、詳細な説明は省略する。さらに、チャンバ410は、活性種照射装置200が有するチャンバ210と同様の機能であるので、構成以外の詳細な説明は省略する。
 チャンバ410は、下流電極130と活性種照射口110cとの間に活性種生成ガスが流入するように構成されている。上流電極120は、第4管部210Dのうちプラズマ生成ガスの流れの上流部分に設けられており、下流電極130は、第4管部210Dのうちプラズマ生成ガスの流れの下流部分(上流電極120よりも下流部分)に設けられている。第5管部210Eの活性種生成ガスの流出口210dは、下流電極130と活性種照射口110cとの間に位置する。この構成により、活性種照射装置200は、下流電極130と活性種照射口110cとの間に活性種生成ガスを流入する方式(後混ぜ方式)を実行し得る。図2を参照して説明したようにステップ1~ステップ4を実行することで、活性種照射口110cから対象物Aに活性種を照射し、活性種被照射物を作製する。
 以上、図1~図8を参照して本発明の実施形態の活性種照射装置、活性種照射、活性種照射物作製方法を説明したが、本発明は、上記に説明した実施形態や図面に記載される構成に限定されることを意図せず、当該構成と均等な構成も含む。
 本実施形態において、プラズマ生成ガスは、プラズマを生成する原料ガスである限りは、ヘリウムガスに限定されない。アルゴンガス、キセノンガス又はネオンガスであり得る。活性種は、スーパーオキシドアニオンラジカルに限定されない。活性種は、活性酸素種や活性窒素種であり得る。例えば、ヒドロキシラジカル(OHラジカル)、スーパーオキシドアニオンラジカル(O2アニオンラジカル)、ヒドロペルオキシルラジカル、一重項酸素、酸素原子、パーオキシナイトライト(ONOO-/ONOOH)のうちの少なくとも一種の活性種を想定し得る。
 活性種照射装置の構成は、上流電極と活性種照射口との間に活性種生成ガスが流入するように構成し得る限りは、T字状、同軸状に限定されない。種々構成を想定し得る。例えば、活性種照射装置に備えられたチャンバは、T字状の三方管(T字管)以外にY字状等の三方管であり得る。また、チャンバは4つ以上の管部から構成された多方管であり得る。さらに、チャンバのサイズも任意である。
 本実施形態において、上流電極120と下流電極130への電圧印加の極性は限定されない。例えば、上流電極120に対しては、下流電極130に対するよりも高電圧が印加され得る。また、上流電極120に対しては、下流電極130に対するよりも低電圧が印加され得る。
 本実施形態において、上流電極120と下流電極130の形状は、チャンバの一部分に位置し得る限りは、管部に対して同軸状に限定されない。上流電極120と下流電極130の形状は、多角形状であり得る。
 本実施形態において、活性種生成ガスは、活性種を生成する原料ガスである限りは、酸素ガスに限定されない。空気であり得る。更に酸素20%と窒素80%とを混合したガスであり得る。更に活性種生成ガスにおいて、酸素の混合比を1%~20%に調整し得る。更に活性種生成ガスは、酸素ガスをヘリウムガスで希釈したガスでもあり得る。
 図9は、活性種照射装置100への酸素供給量と殺菌力との関係を示すグラフである。対象物Aとして大腸菌の菌懸濁液(107CFU/ml、pHは3.7)を採用し、プラズマ生成ガスとしてヘリウムガスを採用し、活性種生成用ガスとして酸素ガスを採用した。プラズマ生成ガスと活性種生成用ガスとの総流量が500sccmになるように流量を調整し、更に酸素混合比を0.04%から20%まで変更して、大腸菌の生菌数を評価した。酸素混合比が0.04%の場合は、D値は53.5secであった。酸素混合比が0.2%の場合は、D値は51.0secであった。酸素混合比が2%の場合は、D値は24.2secであった。酸素混合比が5%の場合は、D値は8.5secであった。酸素混合比が10%の場合は、D値は8.3secであった。酸素混合比を上げることで高い殺菌力が得られた。
 図10は、従来方式(先混ぜ方式)と本発明に基づく方式(活性種照射装置100を用いた中混ぜ方式、活性種照射装置300を用いた後混ぜ方式)との比較を示すグラフを示す。対象物Aとして大腸菌の菌懸濁液(107CFU/ml、pHは3.5)を採用した。プラズマ生成ガスと活性種生成用ガスとの総流量が2000sccmになるように流量を調整し、プラズマ生成ガスとして1950sccmのヘリウムガスを用いて、活性種生成用ガスとして50sccmの酸素ガスを用いて、大腸菌の生菌数を評価した。
 従来方式を用いて大腸菌の菌懸濁液に活性種を照射した場合、D値は144secであった。一方、活性種照射装置100を用いて大腸菌の菌懸濁液に活性種を照射した場合(即ち、中混ぜ方式の場合)、D値は67secであった。活性種照射装置300を用いて大腸菌の菌懸濁液に活性種を照射した場合(即ち、後混ぜ方式の場合)、D値は24secであった。つまり、活性種生成用ガスの混合比が同じ場合でも中混ぜ方式のD値は先混ぜ方式のD値の45%程度になり、殺菌力が増した。また、活性種生成用ガスの混合比が同じ場合でも後混ぜ方式のD値は先混ぜ方式のD値の15%程度になり、殺菌力が更に増した。
 本発明によれば、上流電極と活性種照射口との間に活性種生成ガスを導入することで、対象物に対して非接触なプラズマ源を用いて殺菌に必要な活性酸素を効率よく発生させ得る。チャンバの下流部においては、プラズマ生成ガスと活性種生成ガスとの混相流になっており、プラズマ生成ガスの純度が高い領域が存在している。この領域において、短絡放電が生じるために密度の高いプラズマが効率よく発生する。密度の高いプラズマが分圧の高い酸素ガスと接触することで高い殺菌力が得られる。
 さらに、本発明の方式(中混ぜ方式や後混ぜ方式)では、活性種生成用ガスの混合比を上げることが容易である。つまり、プラズマ生成に先立って予め放電用のプラズマ生成ガスに酸素を混ぜておく従来方式「先混ぜ方式」は、電界が印加される部分でヘリウム純度が下がってしまうため、放電がおこりにくくなる。従って、従来方式(先混ぜ方式)では数%程度の酸素混合比までしか放電が行えない。
 一方、本発明の方式(中混ぜ方式や後混ぜ方式)では、混相流を生成することで、放電電圧の高い活性種生成ガスが、放電電圧の低い(放電がしやすい)プラズマ生成ガスと混合するのを回避しているために、放電が比較的生じやすい。そのため、図9を参照して説明したように、本発明の方式では、酸素混合比を20%以上に上げていくことが可能であり、数%程度の酸素混合比の場合と比較して、さらに高い殺菌力を得ることが出来る。このように、本発明では高い酸素混合比で安定した放電を行うことができ、従来方法と比べて圧倒的に高い殺菌力を得ることが可能となった。
 また、本発明による活性種照射装置を使用の際、プラズマ生成ガスのチャンバへの流入量と活性種生成用ガスのチャンバへの流入量との相対比を制御することで活性種生成用ガスの混合比を調整し得る。従って、所望の殺菌力を得ることができない場合には、使用中に活性種生成用ガスの混合比を調整し、殺菌力を高めることができる。
 なお、混相流に対して効率よく放電を行うためには、プラズマ生成ガスの流れ方向に対して平行に電圧を印加する電極配置が好ましい。また、中混ぜ方式では、活性種生成ガスが混入してくるために、活性種生成ガス混入部分(チャンバが三方管の場合は第1管部110Aと第2管部110Bと第3管部110Cとの接合部分。チャンバが同軸状の場合は活性種生成ガスの流出口210d近辺。)より下流部分では上流部分と比べて放電が比較的起こりにくいが、下流電極を高電圧にし、下流部分での電界強度を上流部分での電界強度よりも高くすることで、全体としての放電が起こり易くなる。
 本発明の「中混ぜ方式」では、プラズマ生成ガスの純度が保たれている領域が充分にあるため、活性酸素の生成効率が良い。プラズマ生成ガスのみで放電した後に活性種生成ガスを混ぜる「後混ぜ方式」でも、プラズマ生成ガスの純度が保たれている領域が充分にある。従って、放電後のガス中においても、高エネルギー状態のヘリウムのメタステーブル原子が消滅しにくく、メタステーブル原子が活性種生成ガスに接触するため、活性酸素の生成効率が良い。
 また、プラズマ生成ガスの純度が保たれている領域が充分にある条件下では、高エネルギー電子を含むプラズマそのものが活性種生成ガスに直接触れないために、オゾンの生成を抑えることができる。その結果、必要とされる活性種(例えば、スーパーオキシドアニオンラジカル)を選択的に生成することが可能となる。ガラス管内でのみ放電することで、安定した活性主の生成が可能となり、高い殺菌力も得られる。
 非接触のプラズマ源であることから、プラズマ生成領域を患部の近くに設置する必要もなく、離れたところで設置できるため、実施上のメリットは大きい。本実施形態に記載のように、プラズマと液体とが非接触な活性種発生源を利用することで、多量の活性種を含んだ水を製造することも可能となる。
 なお、本実施形態に係る活性種照射装置によれば、対象物として歯根管を採用することができる。本実施形態に係る活性種照射装置は、活性種照射口に接続可能な針部材を更に備え得る。針部材の先端から、活性種が照射される。針部材の先端を歯根管内に挿入することによって、歯根管の内部への活性種照射を効率よく実行することができ、活性種被照射物として活性種処理済歯根管を作製し得る。
 本実施形態に係る活性種照射装置によれば、針部材の先端に複数のパイプを接続することも可能である。複数のパイプを接続した場合には、根管内へ挿入した系のコンダクタンスが悪化し圧力上昇が起こるような状況になったとしても、別の系からガスが歯根管の外部に放出されて歯根管内の圧力上昇を防ぐことが可能になり、根管内でのガス圧上昇に起因する気腫発症を予防し得る。
 以上、図1~図10を参照して本発明の実施形態の活性種照射装置、活性種照射、活性種照射物作製方法を説明した。本発明の実施形態によれば、対象物として、歯や生体、医療機器を採用することで、活性種被照射物として、活性種処理済みの歯や活性種処理済みの生体、活性種処理済みの医療機器を作り得る。活性種による滅菌作用によって、歯や生体、医療機器には消毒処理や滅菌処理がなされることになり、本発明の活性種照射装置、活性種照射方法は殺菌用途に用いる事が可能である。
 さらに、対象物として、水や油等の液体を採用することで、活性種被照射物として、多くの活性種を含有させた液体(活性種照射処理済みの液体)が作られる。活性種照射処理済みの液体を処理対象に塗布することで処理対象に対して消毒処理や滅菌処理がなされる。処理対象に対して直接的に活性種照射を照射する方法と異なり、活性種照射処理済みの液体を処理対象に塗布する方法は、処理対象に対して間接的に活性種照射を照射する方法であるが、直接的に活性種照射を照射する方法と同等の消毒効果、滅菌効果、及び殺菌効果を期待することができる。
 本発明の活性種照射装置、活性種照射方法及び活性種被照射物作製方法によれば、被照射物に対して非接触なプラズマ源で活性種(活性酸素や活性窒素)を効率よく照射させることができるため、被照射物の殺菌等に好適に用いられる。
A    対象物
B    プラズマ生成領域
100  活性種照射装置
110  チャンバ
110a プラズマ生成ガスの流入口
110b 活性種生成ガスの流入口
110c 活性種照射口
110A 第1管部
110B 第2管部
110C 第3管部
120  上流電極
130  下流電極
140  プラズマ電源
200  活性種照射装置
210  チャンバ
210a プラズマ生成ガスの流入口
210b 活性種生成ガスの流入口
210c 活性種照射口
210D 第4管部
210E 第5管部
300  活性種照射装置
310  チャンバ
400  活性種照射装置
410  チャンバ

Claims (15)

  1.  プラズマ生成ガスと活性種生成ガスとが流れ込むチャンバであって、活性種が照射される活性種照射口を有するチャンバと、
     前記チャンバの一部分であって、前記プラズマ生成ガスの流れの上流部分に位置する上流電極と、
     前記チャンバの一部分であって、前記上流電極よりも前記プラズマ生成ガスの流れの下流部分に位置する下流電極と
     を備えた活性種照射装置であって、
     前記チャンバは、前記上流電極と前記活性種照射口との間に前記活性種生成ガスが流入するように構成されている、活性種照射装置。
  2.  前記チャンバは、前記プラズマが生成するプラズマ生成領域を包有し、
     前記プラズマ生成領域内と前記活性種照射口との間に前記活性種生成ガスが流入するように構成されている、請求項1に記載の活性種照射装置。
  3.  前記チャンバは、前記プラズマ生成ガスの流入口と、前記活性種生成ガスの流入口とを有するように構成されている、請求項1又は請求項2に記載の活性種照射装置。
  4.  前記チャンバは、
     前記プラズマ生成ガスの流入口を有する第1管部と、
     前記活性種生成ガスの流入口を有する第2管部と、
     前記活性種照射口を有する第3管部と
     を含み、前記第1管部と前記第2管部と前記第3管部とが一か所で繋がり多方管を形成するように構成されている、請求項1~請求項3のうちの一項に記載の活性種照射装置。
  5.  前記チャンバは、
     前記プラズマ生成ガスの流入口と前記活性種照射口とを有する第4管部と、
     前記活性種生成ガスの流入口と前記活性種生成ガスの流出口とを有する第5管部と
     を含み、前記第5管部の有する前記活性種生成ガスの流出口部分を前記第4管部が内部に包有するように構成されている、請求項1~請求項3のうちの一項に記載の活性種照射装置。
  6.  前記チャンバは、前記上流電極と前記下流電極との間に前記活性種生成ガスが流入するように構成されている、請求項1~請求項5のうちの一項に記載の活性種照射装置。
  7.  前記チャンバは、前記下流電極と前記活性種照射口との間に前記活性種生成ガスが流入するように構成されている、請求項1~請求項5のうちの一項に記載の活性種照射装置。
  8.  前記活性種照射口に接続可能な針部材を更に備え、
     前記針部材の先端から、前記活性種が照射される、請求項1~請求項7のうちの一項に記載の活性種照射装置。
  9.  前記活性種は、ヒドロキシラジカル、スーパーオキシドアニオンラジカル、ヒドロペルオキシルラジカル、一重項酸素、酸素原子およびパーオキシナイトライト(ONOO-/ONOOH)のうちの少なくとも一種である、請求項1~請求項8のうちの一項に記載の活性種照射装置。
  10.  前記上流電極に対しては、前記下流電極に対するよりも高電圧が印加される、請求項1~請求項9のうちの一項に記載の活性種照射装置。
  11.  プラズマ生成ガスと活性種生成ガスとが流れ込むチャンバであって、活性種が照射される活性種照射口を有するチャンバと、
     前記チャンバの一部分であって、前記プラズマ生成ガスの流れの上流部分に位置する上流電極と、
     前記チャンバの一部分であって、前記上流電極よりも前記プラズマ生成ガスの流れの下流部分に位置する下流電極と
     を備えた活性種照射装置を用いて活性種を照射する方法であって、
     前記プラズマ生成ガスを流入し、プラズマを生成するプラズマ生成工程と、
     前記上流電極と前記活性種照射口との間に前記活性種生成ガスを流入し、前記活性種を生成する活性種生成工程と、
     前記活性種照射口から前記活性種を照射する活性種照射工程と
     を包含する、活性種照射方法。
  12.  前記プラズマ生成工程の実行によってプラズマ生成領域が形成され、
     前記活性種生成工程は、前記プラズマ生成領域内と前記活性種照射口との間に前記活性種生成ガスを流入することにより実行される、請求項11に記載の活性種照射方法。
  13.  プラズマ生成ガスと活性種生成ガスとが流れ込むチャンバであって、活性種が照射される活性種照射口を有するチャンバと、
     前記チャンバの一部分であって、前記プラズマ生成ガスの流れの上流部分に位置する上流電極と、
     前記チャンバの一部分であって、前記上流電極よりも前記プラズマ生成ガスの流れの下流部分に位置する下流電極と
     を備えた活性種照射装置を用いて活性種被照射物を作製する方法であって、
     前記プラズマ生成ガスを流入し、プラズマを生成するプラズマ生成工程と、
     前記上流電極と前記活性種照射口との間に前記活性種生成ガスを流入し、前記活性種を生成する活性種生成工程と、
     前記活性種照射口から前記活性種を対象物に照射する活性種照射工程と
     を包含する、活性種被照射物作製方法。
  14.  前記対象物は水であり、
     前記活性種被照射物は、前記水よりも多量の活性種を含む活性種含有水である、請求項13に記載の活性種被照射物作製方法。
  15.  前記活性種照射装置は、前記活性種照射口に接続可能な針状部材を更に備え、
     前記活性種照射工程は、前記針状部材の先端から前記活性種を前記対象物の内部に照射する工程を含み、
     前記対象物は歯根管であり、
     前記活性種被照射物は、活性種処理済歯根管である、請求項13に記載の活性種被照射物作製方法。
PCT/JP2013/050465 2012-01-13 2013-01-11 活性種照射装置、活性種照射方法及び活性種被照射物作製方法 WO2013105659A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/371,893 US20150010430A1 (en) 2012-01-13 2013-01-11 Active species radiation device and active species radiation method
JP2013553331A JP5818176B2 (ja) 2012-01-13 2013-01-11 活性種照射装置、活性種照射方法
EP13736091.3A EP2804448A4 (en) 2012-01-13 2013-01-11 APPARATUS FOR IRRADIATION WITH ACTIVE SPECIES, METHOD FOR IRRADIATION WITH ACTIVE SPECIES AND METHOD FOR FORMING OBJECTS IRRADIATED WITH ACTIVE SPECIES

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012005358 2012-01-13
JP2012-005358 2012-01-13

Publications (1)

Publication Number Publication Date
WO2013105659A1 true WO2013105659A1 (ja) 2013-07-18

Family

ID=48781599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050465 WO2013105659A1 (ja) 2012-01-13 2013-01-11 活性種照射装置、活性種照射方法及び活性種被照射物作製方法

Country Status (4)

Country Link
US (1) US20150010430A1 (ja)
EP (1) EP2804448A4 (ja)
JP (1) JP5818176B2 (ja)
WO (1) WO2013105659A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144982A (ja) * 2014-01-31 2015-08-13 日本碍子株式会社 プラズマ処理方法
WO2016035342A1 (ja) * 2014-09-02 2016-03-10 北野 勝久 殺菌方法、殺菌用製剤、および殺菌液の製造装置
JP2017074376A (ja) * 2015-10-13 2017-04-20 サントリーホールディングス株式会社 殺菌方法
KR101916029B1 (ko) * 2017-09-04 2018-11-07 한국표준과학연구원 플라즈마 활성종 발생 장치
WO2018230689A1 (ja) * 2017-06-16 2018-12-20 積水化学工業株式会社 医療用治療器具、医療用治療器具の使用方法及び活性ガスの照射方法
KR20190037448A (ko) * 2017-09-29 2019-04-08 한국기계연구원 플렉서블 활성종 발생기 및 이의 용도
US11540380B2 (en) 2017-09-29 2022-12-27 Korea Institute Of Materials Science Flexible active species generator and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI486996B (zh) * 2013-12-04 2015-06-01 Ind Tech Res Inst 電漿裝置及電漿裝置的操作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313599A (ja) 2001-04-18 2002-10-25 Matsushita Electric Works Ltd プラズマ処理装置及びプラズマ点灯方法
JP2003249490A (ja) * 2001-12-20 2003-09-05 Mitsubishi Heavy Ind Ltd ラジカルガン
JP2007323812A (ja) * 2006-05-30 2007-12-13 Matsushita Electric Ind Co Ltd 大気圧プラズマ発生方法及び装置
JP2008047446A (ja) * 2006-08-17 2008-02-28 Matsushita Electric Ind Co Ltd 大気圧プラズマ発生装置
WO2008072390A1 (ja) 2006-12-12 2008-06-19 Osaka Industrial Promotion Organization プラズマ生成装置およびプラズマ生成方法
WO2009041049A1 (ja) 2007-09-27 2009-04-02 Satoshi Ikawa 殺菌方法および装置
WO2010082561A1 (ja) * 2009-01-13 2010-07-22 リバーベル株式会社 プラズマ生成装置及び方法
JP2010247126A (ja) * 2009-04-20 2010-11-04 Sharp Corp 反応種生成方法、および反応種生成装置、並びに反応種による処理方法、および反応種による処理装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3541379A (en) * 1967-09-11 1970-11-17 Ppg Industries Inc Method for initiating gaseous plasmas
CA2205817C (en) * 1996-05-24 2004-04-06 Sekisui Chemical Co., Ltd. Treatment method in glow-discharge plasma and apparatus thereof
JP2005503250A (ja) * 2001-08-31 2005-02-03 アピト コープ.エス.アー. 複合材粒からなる粉体を製造する方法およびその方法を実施する装置
KR100737969B1 (ko) * 2002-02-20 2007-07-12 마츠시다 덴코 가부시키가이샤 플라즈마 처리 장치 및 플라즈마 처리 방법
KR101174405B1 (ko) * 2004-03-31 2012-08-16 아키라 미즈노 멸균방법 및 장치
JP4423393B2 (ja) * 2005-03-28 2010-03-03 独立行政法人産業技術総合研究所 マイクロプラズマデポジション方法及び装置
TW200816880A (en) * 2006-05-30 2008-04-01 Matsushita Electric Ind Co Ltd Atmospheric pressure plasma generating method, plasma processing method and component mounting method using same, and device using these methods
TWI381827B (zh) * 2007-06-28 2013-01-11 Ind Tech Res Inst 表面處理裝置及方法
US8519354B2 (en) * 2008-02-12 2013-08-27 Purdue Research Foundation Low temperature plasma probe and methods of use thereof
US8994270B2 (en) * 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
GB0920112D0 (en) * 2009-11-17 2009-12-30 Linde Ag Treatment device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313599A (ja) 2001-04-18 2002-10-25 Matsushita Electric Works Ltd プラズマ処理装置及びプラズマ点灯方法
JP2003249490A (ja) * 2001-12-20 2003-09-05 Mitsubishi Heavy Ind Ltd ラジカルガン
JP2007323812A (ja) * 2006-05-30 2007-12-13 Matsushita Electric Ind Co Ltd 大気圧プラズマ発生方法及び装置
JP2008047446A (ja) * 2006-08-17 2008-02-28 Matsushita Electric Ind Co Ltd 大気圧プラズマ発生装置
WO2008072390A1 (ja) 2006-12-12 2008-06-19 Osaka Industrial Promotion Organization プラズマ生成装置およびプラズマ生成方法
WO2009041049A1 (ja) 2007-09-27 2009-04-02 Satoshi Ikawa 殺菌方法および装置
WO2010082561A1 (ja) * 2009-01-13 2010-07-22 リバーベル株式会社 プラズマ生成装置及び方法
JP2010247126A (ja) * 2009-04-20 2010-11-04 Sharp Corp 反応種生成方法、および反応種生成装置、並びに反応種による処理方法、および反応種による処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2804448A4

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144982A (ja) * 2014-01-31 2015-08-13 日本碍子株式会社 プラズマ処理方法
WO2016035342A1 (ja) * 2014-09-02 2016-03-10 北野 勝久 殺菌方法、殺菌用製剤、および殺菌液の製造装置
JP6087029B2 (ja) * 2014-09-02 2017-03-01 北野 勝久 殺菌方法、殺菌用製剤、および殺菌液の製造装置
JPWO2016035342A1 (ja) * 2014-09-02 2017-04-27 北野 勝久 殺菌方法、殺菌用製剤、および殺菌液の製造装置
US10499648B2 (en) 2014-09-02 2019-12-10 Katsuhisa Kitano Sterilization method, formulation for sterilization use, and device for producing sterilizing liquid
JP2017074376A (ja) * 2015-10-13 2017-04-20 サントリーホールディングス株式会社 殺菌方法
WO2018230689A1 (ja) * 2017-06-16 2018-12-20 積水化学工業株式会社 医療用治療器具、医療用治療器具の使用方法及び活性ガスの照射方法
US10462892B2 (en) 2017-06-16 2019-10-29 Sekisui Chemical Co., Ltd. Medical therapeutic apparatus, method of using medical therapeutic apparatus, and method of applying reactive gas
JPWO2018230689A1 (ja) * 2017-06-16 2019-11-07 積水化学工業株式会社 医療用治療器具、医療用治療器具の使用方法及び活性ガスの照射方法
JP2020172498A (ja) * 2017-06-16 2020-10-22 積水化学工業株式会社 細胞賦活化剤、創傷治療薬、抗炎症薬、歯肉炎治療薬及び歯周病治療薬
TWI772443B (zh) * 2017-06-16 2022-08-01 日商積水化學工業股份有限公司 醫療用治療器具、及創傷治療用或抗炎症用之細胞活化劑之生成方法
KR101916029B1 (ko) * 2017-09-04 2018-11-07 한국표준과학연구원 플라즈마 활성종 발생 장치
KR20190037448A (ko) * 2017-09-29 2019-04-08 한국기계연구원 플렉서블 활성종 발생기 및 이의 용도
KR102197548B1 (ko) * 2017-09-29 2021-01-07 한국재료연구원 플렉서블 활성종 발생기 및 이의 용도
US11540380B2 (en) 2017-09-29 2022-12-27 Korea Institute Of Materials Science Flexible active species generator and use thereof

Also Published As

Publication number Publication date
JPWO2013105659A1 (ja) 2015-05-11
JP5818176B2 (ja) 2015-11-18
US20150010430A1 (en) 2015-01-08
EP2804448A4 (en) 2015-08-12
EP2804448A1 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5818176B2 (ja) 活性種照射装置、活性種照射方法
EP2206521B1 (en) Apparatus for sterilization
US8383038B2 (en) Method and apparatus for supplying liquid with ions, sterilization method and apparatus
US20100021340A1 (en) Method and device for the disinfection of objects
JP2012509689A (ja) 創傷治療用非熱的プラズマ及び関連する装置並びに方法
KR101056097B1 (ko) 대기압 플라즈마 발생장치
KR101320291B1 (ko) 국부소독 및 살균 가능한 핸드피스형 플라즈마 장치
WO2014171138A1 (ja) 液体処理装置及び液体処理方法
JP2014167913A (ja) 生体膜の処理のためのシステムおよび方法
JP6678338B2 (ja) 液体処理装置
WO2013094309A1 (ja) オゾン生成及びオゾン溶解装置
Stepanova et al. Bactericidal effect of a dielectric barrier discharge plasma jet generated in laminar and preturbulent helium flows
KR102091512B1 (ko) 치료 및 건강 관리용 양자에너지 조사장치
CN110693692A (zh) 一种等离子体活化雾制备装置
JP5170743B2 (ja) 滅菌方法およびプラズマ滅菌装置
Ni et al. Plasma inactivation of Escherichia coli cells by atmospheric pressure air brush-shape plasma
KR20180057809A (ko) 저온 대기압 플라즈마 발생장치
KR101647480B1 (ko) 고농도 과산화수소 증기 제거용 대기압 플라즈마 장치
Nur et al. Development of DDBD and plasma jet reactors for production reactive species plasma chemistry
TWI691237B (zh) 常壓電漿束產生裝置
JP2012176347A (ja) 活性種の生成方法及び生成装置
CN118851345A (zh) 一种水下气泡放电制备等离子体活化水的装置
CN117277064A (zh) 基于微等离子体放电制备负氧离子的装置及方法
CZ304814B6 (cs) Atmosférický zdroj plazmatu, zejména pro využití v medicínských bioaplikacích
CZ27679U1 (cs) Zdroj nízkoteplotního plazmatu, zejména pro deaktivací bakteri

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736091

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013553331

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371893

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013736091

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013736091

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE