WO2013105534A1 - 薄膜形成方法及び薄膜形成装置 - Google Patents

薄膜形成方法及び薄膜形成装置 Download PDF

Info

Publication number
WO2013105534A1
WO2013105534A1 PCT/JP2013/050057 JP2013050057W WO2013105534A1 WO 2013105534 A1 WO2013105534 A1 WO 2013105534A1 JP 2013050057 W JP2013050057 W JP 2013050057W WO 2013105534 A1 WO2013105534 A1 WO 2013105534A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
layer
organic layer
film forming
solution
Prior art date
Application number
PCT/JP2013/050057
Other languages
English (en)
French (fr)
Inventor
廣瀬 達也
蔵方 慎一
工藤 一良
正昭 栗山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013105534A1 publication Critical patent/WO2013105534A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers

Definitions

  • the present invention relates to a thin film forming method and a thin film forming apparatus.
  • Formation of an organic thin film is indispensable for the manufacture of organic EL (Electro Luminescence) elements and solar cells.
  • a spray method called a wet process a spin coating method, a casting method, a slot method, an ink jet method, a printing method and the like are used in addition to a vapor deposition method.
  • the spray method is a highly productive method capable of forming a large area in a short time (see, for example, Patent Document 1).
  • an organic EL element manufactured by a wet process does not provide sufficient performance in terms of element performance, particularly a light emission lifetime, compared to an organic EL element manufactured by a vapor deposition method. .
  • An object of the present invention is to provide a thin film forming method and a thin film forming apparatus with high productivity by suppressing interlayer mixing between laminated organic layers.
  • a thin film forming method of forming an organic layer on a substrate by applying or spraying a solution in which an organic material is dissolved or dispersed in a solvent by a wet process A thin film forming method is provided in which an organic layer made of the same organic material as the organic layer is formed on an upper layer or a lower layer of the organic layer by a trace solvent coating method.
  • the organic layer is formed by forming an organic layer in a supercritical fluid obtained by pressurizing and heating a gas and spraying the organic material on a substrate in the formation of the organic layer by the trace solvent coating method.
  • a method for forming a thin film is provided.
  • a film thickness of the organic layer formed by the trace solvent coating method is in a range of 1 to 10 nm.
  • the organic layer formed by the trace solvent coating method and the wet process is a light emitting layer of an organic EL element
  • a second film forming means for applying or spraying a solution in which an organic material is dissolved or dispersed in a solvent by a wet process to form an organic layer on the substrate;
  • a first film forming means for forming an organic layer made of the same organic material as the organic layer on an upper layer or a lower layer of the organic layer formed by the second film forming means by a trace solvent coating method; Is provided.
  • the organic layer can be formed by a wet process, and high productivity can be obtained. And since the organic layer is formed on the upper layer or the lower layer of the organic layer formed by the wet process by a small amount of solvent coating method, there is little action of the solvent between other adjacent organic layers, and between the stacked organic layers Interlayer mixing of organic materials can be suppressed. Accordingly, it is possible to provide a thin film forming method and a thin film forming apparatus with high productivity by suppressing interlayer mixing between the stacked organic layers.
  • the schematic block diagram of the 1st film-forming means which forms an organic layer by ESDUS method is shown.
  • the schematic block diagram of the 1st film-forming means which forms an organic layer with a supercritical spray method is shown.
  • FIG. 1 shows a main configuration of a thin film forming apparatus 100 according to an embodiment of the present invention.
  • the thin film forming apparatus 100 includes a first film forming unit A and a second film forming unit B, and forms an organic layer made of an organic material on a substrate T.
  • the substrate T is an object to be formed, and may be a substrate made of a flexible material such as a glass substrate or a resin film, or some layer may already be formed on these substrates. .
  • the thin film forming apparatus 100 shown in FIG. 1 forms an organic layer made of the same organic material on the same substrate T by the first film forming unit A and the second film forming unit B.
  • a transport unit may be provided between the second film forming units B, and the substrate T may be automatically transported according to the order in which the organic layers are formed. The operator may transfer the substrate T and place it on the first film forming means A or the second film forming means B.
  • the organic material can be selected according to the organic layer to be formed.
  • the organic EL element is configured by laminating an anode, a hole transport layer, a light emitting layer, an electron transport layer, a cathode, and the like in this order.
  • a hole injection layer, an electron injection layer, and the like may be provided between the anode and the light emitting layer and between the cathode and the light emitting layer as necessary.
  • organic materials for the hole transport layer include triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styryl.
  • organic materials for the hole transport layer include triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styryl.
  • conductive polymer oligomers such as anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and
  • the organic material for the light emitting layer may be a low molecular compound having no repeating unit, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group.
  • diazacarbazole derivatives are derivatives in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom.
  • a phosphorescent compound is also mentioned as an organic material of a light emitting layer.
  • the phosphorescent compound is a complex compound containing a metal of Group 8 to Group 10 in the periodic table of elements, and examples thereof include iridium compounds, osmium compounds, platinum compounds, and rare earth complexes.
  • organic material for the electron transport layer examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane, anthrone derivatives, oxadiazole derivatives, and the like.
  • the thin film forming apparatus 100 can form an organic layer in the manufacture of solar cells, transistors, memories, sensors, and the like.
  • organic material examples include pentacene, naphthalene and the like in addition to a conductive polymer such as polythiophene.
  • a solvent capable of dissolving or dispersing the organic material is used for the preparation of the organic material solution.
  • a solvent capable of dissolving or dispersing the organic material is used.
  • usable solvents include, for example, pure water, alcohols such as 2-ethoxyethanol and 2-methoxyethanol, chloroform, methylene chloride, tetrachloroethylene, dichloroethane, tetrahydrofuran and the like.
  • Halogen series aromatic hydrocarbon series such as xylene, toluene, hexane, cyclohexylbenzene, and anisole, ketone series such as acetone and methyl ethyl ketone, ester series such as acetic acid, methyl acetate, ethyl acetate, butyl acetate, and acetonitrile, diethyl ether And dimethyl sulfoxide.
  • aromatic hydrocarbon series such as xylene, toluene, hexane, cyclohexylbenzene, and anisole
  • ketone series such as acetone and methyl ethyl ketone
  • ester series such as acetic acid, methyl acetate, ethyl acetate, butyl acetate, and acetonitrile
  • diethyl ether And dimethyl sulfoxide dimethyl sulfoxide.
  • the same solution may be used for the first film forming means A and the second film forming means B. Further, according to each of the first film forming means A and the second film forming means B, the concentration of the organic material or a different solvent is selected, and the solutions for the first film forming means A and the second film forming means B are selected. It may be prepared.
  • the solvent for the first film forming means A is a solvent having a high vapor pressure under an assumed environmental temperature because the more easily the solvent is volatilized, the more the droplets are dried when sprayed. Is preferred.
  • the first film forming means forms the organic layer by a trace solvent coating method.
  • the “trace solvent coating method” in the present invention is to form droplets by spraying a solution obtained by dissolving and / or dispersing an organic material in a solvent, volatilizing and concentrating the solvent in the droplets, Depositing concentrated droplets on a substrate or on a thin film provided on the substrate.
  • Specific examples of the trace solvent coating method include an ESD (Electro Spray Deposition) method, an ESDUS (Evaporative Spray Deposition from Ultra-dilute Solution) method, and a supercritical spray method.
  • the first film forming means A in FIG. 1 is an embodiment of a first film forming means for forming an organic layer by a trace solvent coating method, and forms an organic layer by an ESD method.
  • the first film forming unit A applies a voltage to a solution in which an organic material is dissolved or dispersed in a solvent, sprays the charged solution, and forms an organic layer on the substrate T.
  • a power source 32 applies a voltage between a capillary 31 filled with an organic material solution and a support 34. Specifically, a positive voltage is applied to the capillary 31 and a negative voltage is applied to the support 34. As a result, the solution 33 in the capillary 31 is charged with positive polarity, and the substrate 35 placed on the support 34 is charged with negative polarity.
  • the support 34 may be grounded, or the polarity for charging the solution 33 and the support 34 may be reversed.
  • the solution 33 delivered from the capillary 31 is repelled by the Coulomb force and split into droplets having a positive charge. Since the solvent in the solution 33 is volatilized by the splitting and the charge density is increased by the volatilization, the droplet is further repelled and repeats the splitting. The droplets which are finely divided by repeating the division are attracted to the negative polarity substrate 35 and adhere to the substrate 35 to form an organic layer. Since the solvent is almost volatilized before reaching the substrate 35, there is almost no solvent in the formed organic layer, and a dry organic layer is formed.
  • the first film forming unit A includes a control unit 11, voltage application units 12 a and 12 b, a solution supply unit 13, a capillary 14, an electrode 15, and a support 16.
  • the control unit 11 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a non-volatile memory such as a hard disk, and the like.
  • the control unit 11 reads and executes a control program stored in the non-volatile memory. The operation of each part of the film means A is controlled.
  • the control unit 11 controls the voltage applied by the voltage application units 12 a and 12 b, the liquid supply speed at which the solution supply unit 13 supplies liquid to the capillary 14, and the like.
  • the voltage application unit 12 a applies a voltage to the electrode 15 provided in the capillary 14, and the voltage application unit 12 b applies a voltage to the support 16 of the substrate T, and the solution sprayed by the capillary 14 and the substrate T Are charged to opposite polarities.
  • the support 16 is made of a conductor such as metal. Either the solution or the substrate T may be charged to any polarity, but if the solution is charged with a positive polarity and the substrate T is charged with a negative polarity, the voltage application unit 12a applies a positive voltage to the electrode 15.
  • the voltage application unit 12 b applies a negative voltage to the support 16.
  • the voltage (V) to be applied can be appropriately set according to the distance Da from the spray port of the capillary 14 to the substrate T and the relationship with the spray amount of the solution.
  • the voltage to be applied is not particularly limited, but is preferably in the range of 5 to 20 kV, more preferably in the range of 10 to 15 kV.
  • the solution supply unit 13 stores an organic material solution and sends the solution to the capillary 14.
  • the flow rate of the solution to be fed and the liquid feeding speed can be set as appropriate.
  • the viscosity of the solution used by the first film forming means A is preferably 100 mPa ⁇ s or less, more preferably 5 mPa ⁇ s or less.
  • the viscosity is a value measured at 25 ° C. using a viscometer DV-II + Pro (manufactured by Brookfield) according to JIS Z 8803.
  • the solid concentration of the solution used by the first film forming means A is preferably 2.00% by mass or less, and preferably in the range of 0.01 to 1.00% by mass.
  • the capillary 14 sends out the organic material solution supplied from the solution supply unit 13 from the spray port at the tip.
  • An electrode 15 formed in a linear shape is installed in the tube of the capillary 14, and the solution in the capillary 14 is sent out in a charged state by the voltage applied to the electrode 15. As shown in FIG. 2, the solution repeats splitting by repulsion, is sprayed as fine particle droplets, and reaches the substrate T.
  • the capillary 14 can be made of a conductor such as metal.
  • One capillary 14 may be provided as shown in FIG. 1, or a plurality of capillaries 14 may be provided to increase productivity.
  • the inner diameter of the spray port of the capillary 14 can be appropriately set according to the flow rate of the solution, the desired size of the droplet, and the like.
  • the inner diameter is not particularly limited, but is preferably in the range of 10 to 300 ⁇ m, more preferably in the range of 30 to 50 ⁇ m.
  • the distance Da from the spray port of the capillary 14 to the film formation surface of the substrate T can be appropriately set to a distance at which the volatilization of the solvent from the solution becomes good. As the distance Da increases, the solvent volatilizes and the droplets easily dry. However, since the droplets are widely distributed and the film formation area is enlarged, it takes time to form a desired film thickness. From such a tendency, the distance Da is not particularly limited, but is preferably in the range of 3 to 20 cm, and more preferably in the range of 5 to 10 cm.
  • the second film forming means according to the present invention is not particularly limited as long as a solution in which an organic material is dissolved or dispersed in a solvent can be applied or sprayed by a wet process to form an organic layer on the substrate.
  • a wet process a known spin coating method, slot coating method, wire bar method, ink jet method and the like can be selected in addition to a spray method that is preferably used without actively heating a solution of an organic material. .
  • the second film forming means B in FIG. 1 is an embodiment of the second film forming means for forming an organic layer by a wet process, and forms the organic layer by a spray method.
  • the second film forming unit B sprays a solution in which an organic material is dissolved or dispersed in a solvent by a spray method to form an organic layer on the substrate T.
  • the second film forming unit B includes a control unit 21, a solution supply unit 22, a nozzle 23, a drive unit 24, a support 25, and the like.
  • the control unit 21 includes a CPU, a RAM, a non-volatile memory, and the like, and controls the operation of each unit of the second film forming unit B by reading and executing a control program stored in the non-volatile memory. For example, the control unit 21 controls the amount of solution fed to the nozzle 23 by the solution supply unit 22 and the driving of the nozzle 23 by the driving unit 24.
  • the solution supply unit 22 stores an organic material solution and sends the solution to the nozzle 23.
  • the liquid feeding flow rate and the like can be set as appropriate.
  • a liquid feeding method of the solution supply unit 22 a known method can be used, and examples thereof include pressure liquid feeding, syringe pump liquid feeding, tube liquid feeding, and the like.
  • An optimal liquid feeding method can be selected according to the required liquid feeding amount, liquid feeding accuracy, solid content concentration, viscosity, cost, and the like. Of these, pressure liquid feeding is preferable because it is easy to control the liquid feeding amount and the liquid feeding accuracy.
  • the solution used by the second film forming means B is for the purpose of controlling the coating range, and for the purpose of suppressing the liquid flow accompanying the surface tension gradient after adhering to the substrate T (for example, the liquid flow causing a phenomenon called coffee ring).
  • a surfactant or a plurality of solvents may be mixed.
  • the surfactant include an anionic or nonionic surfactant from the viewpoint of the influence of moisture contained in the solvent, leveling properties, wettability to the substrate T, and the like.
  • fluorine-containing surfactants, surfactants listed in International Publication No. 08/146661 pamphlet, JP-A-2-41308, and the like can be used.
  • the nozzle 23 sprays the solution of the organic material supplied from the solution supply unit 22 from the spray port.
  • a known method can be used, and is not particularly limited, and examples thereof include an ultrasonic method, a two-fluid method, and a rotary method in which the solution is atomized using an ultrasonic vibrator.
  • the distance Db from the spray port of the nozzle 23 to the film formation surface of the substrate T may be appropriately set according to the amount of solution fed, the solid content concentration, and the like.
  • the drive unit 24 includes a drive source such as a motor, and drives the movement of the nozzle 23.
  • the nozzle 23 is moved in one direction by the drive unit 24, and the relative position with respect to the substrate T varies.
  • the driving unit 24 may drive the support 25 of the substrate T instead of the nozzle 23 to move the position of the substrate T relative to the nozzle 23. Further, a free span may be used instead of the support body 25.
  • auxiliary means may be provided.
  • a shielding plate 61 may be provided around the capillary 14 or nozzle 23 and the substrate T to shield the airflow entering between the capillary 14 or nozzle 23 and the substrate T.
  • a rectifying plate 62 such as a slit or a punch plate is provided around the spray port of the capillary 14 or the nozzle 23, and the direction in which the solution is sprayed from the air flow that has entered between the capillary 14 or the nozzle 23 and the substrate T is provided. May be rectified.
  • a fan or the like may be installed to blow air for rectification.
  • a fan 63 for blowing accompanying air from the capillary 14 or the nozzle 23 toward the substrate T may be installed.
  • a mask may be provided between the capillary 14 or the nozzle 23 and the substrate T.
  • a configuration may be adopted in which a plurality of masks can be exchanged depending on the application.
  • the material and thickness of the mask are not particularly limited, but it is preferable to use a porous mask or a highly hygroscopic mask in order to prevent dripping.
  • Thin film formation method A thin film forming method when the thin film forming apparatus 100 of FIG. 1 forms an organic layer will be described.
  • a solution in which an organic material is dissolved or dispersed in a solvent is applied by a wet process to form an organic layer on a substrate, and an upper layer or a lower layer of the organic layer is formed from the same organic material as the organic layer.
  • the organic layer to be formed is formed by a trace solvent coating method.
  • the substrate T is placed on the support 16 of the first film forming means A.
  • the first film forming means A applies an organic material solution used for forming the organic layer to form the organic layer on the substrate T.
  • the film thickness of the organic layer formed by the first film forming means A is preferably 1 nm or more and 10 nm or less. When the film thickness is 1 nm or more, inter-layer mixing is unlikely to occur with another organic layer that is adjacent to the organic layer formed by the first film forming unit A and has a different organic material. On the other hand, when the film thickness is 10 nm or less, the film formation time is short and the productivity is improved.
  • a drying process may be performed.
  • the drying method is not particularly limited. Solid heat transfer drying such as hot air, infrared rays, and plane heating, internal heat generation drying such as microwaves, vacuum non-drying, supercritical drying, ultrasonic drying, and other non-heating drying, hygroscopic drying A known method such as gas drying such as cooling drying or condensation drying can be selected.
  • the second film forming unit B applies the same organic material solution as the first film forming unit A on the organic layer formed on the substrate T by the first film forming unit A to form an organic layer. After the organic layer is formed by the second film forming means B, a drying process may be performed.
  • the substrate T is transferred from the second film forming means B to the first film forming means A and supported. Install on the body 16.
  • the first film forming means A applies a solution of the same organic material as the organic layer formed by the second film forming means B, and the same organic material is applied onto the organic layer formed by the second film forming means B. An organic layer is formed.
  • the organic layer formed by the first film forming unit A and the second film forming unit B can suppress interlayer mixing with other organic layers having different organic materials.
  • Interlayer mixing will be described using an organic EL element as an example.
  • an organic EL element For example, when an anode, a hole transport layer, and a light emitting layer are laminated in this order on a resin substrate, light is emitted only by the highly productive second film forming means B on the hole transport layer L1 as shown in FIG. Layer L22 is formed.
  • the productivity of the light emitting layer L22 is high, as shown in FIG. 4, interlayer mixing is likely to occur between the light emitting layer L22 and the hole transport layer L1 below the light emitting layer L22.
  • the light emitting layer L22 formed by the wet process by the second film forming means B is in a wet state with a considerable amount of solvent remaining in the organic layer, although a little amount of solvent is volatilized during film formation.
  • the hole transport layer L1 is dissolved in the remaining solvent, the organic material in the light emitting layer L22 is eluted in the solvent in the hole transport layer L1, or the lower layer organic material is in a low viscosity solution state. Infiltrate into the interstices between the molecules, causing inter-layer mixing.
  • the action of the solvents is large, and interlayer mixing is more likely to occur.
  • Interlayer mixing is likely to occur when the organic material has a low molecular weight. This is because the organic material is likely to elute into other organic layers as compared with the case of a high molecular weight.
  • the low molecular weight organic material means a low molecular compound having no repeating unit, and generally has a weight average molecular weight of 5000 or less, preferably 3000 or less, more preferably 2000 or less.
  • Interlayer mixing is particularly likely to occur between the light emitting layer and the hole transport layer or electron transport layer. This is because the same solvent is likely to be used for the light emitting layer and the hole transport layer or the electron transport layer, and a low molecular organic material is often used as the light emitting layer. This is probably because a polymer having a relatively large molecular weight is often used, and the gap between the low molecular weight organic materials of the light emitting layer is likely to be formed.
  • the first layer between the hole transport layer L1 and the light emitting layer L22 formed by the second film forming unit B is 1
  • the light emitting layer L21 formed by the film forming means A is interposed. Since the light emitting layer L21 is formed by the ESD method, the light emitting layer L21 has no or almost no solvent and is in a dry state. Even if the same solvent is used for the hole transport layer L1 and the light emitting layer L21, the solvent that acts on the hole transport layer L1 is removed, so that no interlayer mixing occurs.
  • the light emitting layer L22 is formed by the highly productive second film forming means B using the light emitting layer L21 in which interlayer mixing does not occur as a barrier layer.
  • the productivity of the entire light emitting layer can be improved.
  • the same effect can be obtained not only in the lower layer of the light emitting layer L22 formed by the second film forming means B but also in the case where the light emitting layer L21 formed by the first film forming means A is provided in the upper layer.
  • the electron transport formed on the light emitting layer L21 is performed.
  • Interlayer mixing with the layer L3 can be suppressed.
  • an organic layer in which no solvent remains as a barrier layer is formed at the boundary with other organic layers by the first film forming means A, so that inter-layer mixing with the other organic layers is performed. Can be suppressed.
  • an aerosol of a solution in which an organic material is dissolved or dispersed in a solvent is formed, and the aerosol is heated and sprayed to form an organic layer on the substrate.
  • One of the features of the ESDUS method is that a thin film can be formed even if the organic material in the solution has a very low concentration.
  • FIG. 6 is a schematic configuration diagram of the first film forming means C using the ESDUS method.
  • the first film forming means C includes, for example, a gas supply unit 41, a solution supply unit 42, an aerosol formation unit 43, chambers 44a and 44b, a heating unit 45, a support 46, and the like. Yes.
  • the gas supply unit 41 provides the carrier gas to the aerosol forming unit 43.
  • a gas such as nitrogen, argon, helium, or air can be used.
  • the solution supply unit 42 stores an organic material solution and sends the solution to the aerosol forming unit 43.
  • the aerosol forming unit 43 forms an aerosol that floats in the carrier gas as a solution of the supplied organic material as liquid particles.
  • the aerosol forming means is not particularly limited, and an aerosol may be used as the aerosol forming portion 43 by mixing the solution and the carrier gas, and then spraying at high speed to form an aerosol.
  • the aerosol forming unit 43 sprays the formed aerosol into the chamber 44a.
  • the sprayed aerosol is transported by the transport gas and passes through the chamber 44a heated by the heating unit 45, whereby the solvent in the aerosol is vaporized and fine particles of the organic material are generated.
  • the fine particles of the organic material are further transported into the chamber 44b by the transport gas, and adhere to the substrate T provided on the support 46 in the chamber 44a, thereby forming an organic layer.
  • the aerosol and the substrate T may be charged with opposite characteristics, and the aerosol may be sprayed. In this case, fine particles can be formed by repulsion of charges.
  • the supercritical spray method is represented by the RESS (Rapid Expansion of Supercritical Solution) method, PGSS (Particles from Gas Saturated Solution) method, etc. This is a method of rapidly expanding and depositing dissolved solutes as fine particles from the difference in solubility (supersaturation) accompanying expansion.
  • the first film forming means using the supercritical spray method dissolves and sprays an organic material in a supercritical fluid obtained by pressurizing and heating a gas to form an organic layer on the substrate. Since the supercritical fluid used as the solvent for the organic material is vaporized at the time of spraying, an organic layer containing no solvent can be formed.
  • FIG. 7 is a schematic configuration diagram of the first film forming means E using the supercritical spray method.
  • the first film forming means E includes, for example, a gas supply unit 51, a cooler 52, a pressure pump 53, a preheater 54, a solute dissolution cell 55, a nozzle 56, a support 57, a valve V, and the like. It is prepared for.
  • the gas supply unit 51 supplies a gas that causes a phase change to a supercritical fluid.
  • the gas can be appropriately selected according to the organic material that is a solute.
  • gases that can be used include carbon dioxide (critical temperature 31 ° C., critical pressure 7.38 MPa), ethane (critical temperature 32 ° C., critical pressure 4.88 MPa), water (critical temperature 374 ° C., critical pressure 22.06 MPa), Examples include propane (critical temperature 97 ° C., critical pressure 4.25 MPa), ethylene, alcohol and the like. In consideration of cost and environmental load, water, carbon dioxide, and alcohol are preferably used.
  • the gas supplied from the gas supply unit 51 is cooled and liquefied by the cooler 52, and then pressurized by the pressurizing pump 53 and further heated by the preheater 54 to change into a supercritical fluid.
  • pressurization of gas means pressurization above the critical pressure of gas
  • heating of gas means heating above the critical temperature. Specifically, pressurization of 1 MPa or more and heating of 27 ° C. or more are performed.
  • the solute dissolution cell 55 is filled with an organic material as a solute, and when the supercritical fluid passes through the solute dissolution cell 55, the solute is dissolved in the supercritical fluid at the solute dissolution temperature and pressure.
  • the solute dissolution cell 55 after the preheater 54, piping to the nozzle 56, and the like are installed in a constant temperature bath 58 at a constant temperature.
  • the nozzle 56 is heated to a temperature higher than the solute dissolution temperature in order to prevent the supercritical fluid from expanding before spraying.
  • the supercritical fluid in which the solute is dissolved is delivered from the nozzle 56 and, when placed under atmospheric pressure, is separated into vapor phase carbon dioxide and solute clusters, and the solute is precipitated as fine particles and sprayed onto the substrate T.
  • the support 57 may incorporate a heater and heat the substrate T. By heating the substrate T, the adhesion of the sprayed solute to the substrate T is improved, and densification of the solute is promoted on the substrate T.
  • Valves V are provided at various points on the path of carbon dioxide gas and supercritical fluid, and the valves V are opened and closed at a predetermined timing. Moreover, a pressure gauge and a thermometer (not shown) are provided in the solute dissolution cell, and the pressure and temperature in the solute dissolution cell are managed.
  • the inner diameter of the spray port of the nozzle 56 can be set as appropriate, but is usually in the range of 1 to 100 ⁇ m.
  • the distance De from the spray port of the nozzle 56 to the film formation surface of the substrate T can be appropriately set according to the delivery amount from the nozzle 56, the delivery speed, and the like. In general, the larger the distance De, the larger the particle size of the solute fine particles and the smaller the film formation area.
  • the distance De is not particularly limited, but from such a tendency, it is preferably in the range of 0.1 to 10.0 cm, and more preferably in the range of 1 to 5 cm.
  • a substrate (NA45, manufactured by NH Techno Glass Co., Ltd.) having a film thickness of 100 nm of ITO (Indium Tin Oxide) as an anode was patterned on a 20 ⁇ 20 ⁇ 0.7 mm glass substrate. Then, it ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and further UV ozone cleaning was performed for 5 minutes. Next, a solution was prepared by diluting Baytron P Al 4083 (poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS)) manufactured by Bayer to 70% with pure water.
  • P Al 4083 poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS)
  • a film of the prepared solution was formed on the cleaned substrate under the conditions of a rotation speed of 3000 rpm and a film formation time of 30 sec by spin coating. Thereafter, the substrate was dried at a surface temperature of 200 ° C. for 1 hour to provide a hole injection layer having a thickness of 30 nm.
  • This substrate was transferred to a glove box under a nitrogen atmosphere according to JIS B 9920, with a measured cleanliness of class 100, a dew point temperature of ⁇ 80 ° C. or lower, and an oxygen concentration of 0.8 ppm.
  • the following hole transport layer solution was prepared, and film formation was performed in a glove box with a spin coater at a rotation speed of 1500 rpm and a film formation time of 30 sec.
  • This substrate was dried by heating at a substrate surface temperature of 150 ° C. for 30 minutes to provide a hole transport layer. It was 20 nm when it formed into a film on the conditions with the board
  • the light-emitting layer solution a1 had a solid content concentration of 0.01% by mass and a viscosity of 0.6 mPa ⁇ s.
  • the solid content concentration of the light emitting layer solution b1 was 1.00% by mass.
  • the viscosity was measured at a temperature of 25 ° C. according to JIS Z 8803 using a viscometer DV-II + Pro (manufactured by Brookfield).
  • the organic materials HA, DA, DB, and DC represent the following compounds.
  • a film forming apparatus using the ESD method was prototyped and filled with the light emitting layer solution a1.
  • ESD deposition conditions a film was formed on a substrate on which a hole transport layer was formed under nitrogen gas to form a light emitting layer. Film formation was performed under the same conditions on a separately prepared substrate, and the thickness of the formed light emitting layer was measured to be 10 nm.
  • Inner diameter of capillary spray port 40 ⁇ m
  • Liquid feeding speed to capillary 10 ⁇ l / min
  • Distance from spray port to substrate Da 5 cm Voltage applied between capillary and substrate: 15 kV Spraying time: 240 sec
  • a film forming apparatus using a spray method was made as a prototype.
  • a liquid feed pump using air pressure was used for the solution supply part of the prototype film forming apparatus.
  • the film-forming apparatus was filled with the light-emitting layer solution b1, and a light-emitting layer was formed on the light-emitting layer formed by the ESD method under nitrogen gas according to the film forming conditions of the following spray method. Thereafter, the substrate was dried at a surface temperature of 120 ° C. Film formation was performed under the same conditions on a separately prepared substrate, and the thickness of the formed light emitting layer was measured to be 50 nm. (Spray deposition conditions) Spray flow rate from nozzle: 1.50 g / min Air pressure during liquid feeding: 0.1 MPa Nozzle movement speed: 0.5 m / sec Distance Db from nozzle nozzle to substrate Db: 5cm
  • the prepared electron transport layer solution was formed under the same spray method film formation conditions as those for the light emitting layer using a prototype film formation apparatus using a spray method. Thereafter, the substrate was heated and dried at a surface temperature of 120 ° C. for 30 minutes to form an electron transport layer. When a film was formed under the same conditions on a separately prepared substrate and the film thickness of the formed electron transport layer was measured, the film thickness was 40 nm.
  • the substrate was moved to the vapor deposition machine without being exposed to the atmosphere, and the pressure was reduced to 4 ⁇ 10 ⁇ 4 Pa.
  • potassium fluoride and aluminum were each placed in a tantalum resistance heating boat and attached to a vapor deposition machine.
  • a resistance heating boat containing potassium fluoride was energized and heated to form a 3 nm electron injection layer made of potassium fluoride on the substrate.
  • a resistance heating boat containing aluminum was energized and heated to form a cathode having a thickness of 100 nm made of aluminum at a deposition rate of 1 to 2 nm / sec.
  • the glass sealing can which attached the barium oxide which is a water catching agent, and the organic EL element 11 was obtained.
  • Barium oxide, a water-absorbing agent is a high-purity barium oxide powder manufactured by Aldrich, and is attached to a glass sealed can with a fluorine-based semipermeable membrane (Microtex S-NTF8031Q, manufactured by Nitto Denko) with an adhesive.
  • the attached one was prepared and used in advance.
  • an ultraviolet curable adhesive was used, and both were adhered by irradiating with ultraviolet rays to produce a sealing element.
  • the light emitting layer solution a1 is changed to the light emitting layer solution a2 having the following composition
  • the light emitting layer solution b1 is changed to the light emitting layer solution b2 having the following composition
  • the film formation conditions of the ESD method and the spray method are changed.
  • the organic EL element 17 was produced in the same manner as the organic EL element 11 except that the changes were made as shown in Tables 1 and 2.
  • the solid content concentration of the light emitting layer solution a2 was 0.01% by mass, the viscosity was 0.6 mPa ⁇ s, and the solid content concentration of the light emitting layer solution b2 was 1.00% by mass.
  • Luminescent layer solution a2 THF (tetrahydrofuran) 1000.0 g MEH-PPV (Methoxyethylhexoxypolyphenylene vinylene) 0.1g
  • Luminescent layer solution b2 THF (tetrahydrofuran) 10.0 g MEH-PPV (Methoxyethylhexoxypolyphenylene vinylene) 0.1g
  • a film forming apparatus using a supercritical spray method was prototyped.
  • the prototype film forming apparatus using the ESD method is replaced with the prototype film forming apparatus using the supercritical spray method.
  • An organic EL element except that the light emitting layer is formed using the same organic materials HA, DA, DB, and DC as a1 and the film forming conditions of the spray method are changed as shown in Table 2.
  • an organic EL element 18 was produced.
  • the film thickness of the light emitting layer formed by the supercritical spray method of the organic EL element 18 was 10 nm.
  • solute dissolution cells 551 to 554 were prepared.
  • the same organic materials HA, DA, DB, and DC as the luminescent layer solution a1 were put as solutes.
  • HA: DA 1.000: 0.110
  • HA: DB 1.000: 0.002
  • DC 1.000: 0.002
  • the organic EL element 20 was produced in the same manner as the organic EL element 11 except that the film formation conditions of the ESD method and the spray method were changed as shown in Tables 1 and 2. .
  • the film thickness of the light emitting layer formed by the ESD method of the organic EL element 20 was 2 nm, and the film thickness of the light emitting layer formed by the spray method was 58 nm.
  • the light emitting layer is not formed by the prototype film forming apparatus using the ESD method, but only by the film formation of the light emitting layer solution b1 by the prototype film forming apparatus using the spray method.
  • An organic EL element 31 was produced in the same manner as the organic EL element 11 except that the light emitting layer was formed.
  • the film thickness of the light emitting layer of the organic EL element 31 was 60 nm.
  • the light emitting layer is not formed by the prototype film forming apparatus using the spray method, and light is emitted only by the film formation of the light emitting layer solution a1 by the prototype film forming apparatus using the ESD method.
  • An organic EL element 32 was produced in the same manner as the organic EL element 11 except that the layer was formed.
  • the thickness of the light emitting layer of the organic EL element 32 was 60 nm.
  • the produced organic EL elements 11 to 21 and 31 to 33 were evaluated for the following items.
  • Productivity In the production of the organic EL elements 11 to 21 and 31 to 33, the time required for forming the entire light emitting layer (not including the drying step) was measured, and rank evaluation was performed as follows.
  • the total time of the time required for forming the light emitting layer using the ESD method and the time required for forming the light emitting layer using the spray method is an object of rank evaluation. It is.
  • Luminescence life of each organic EL element (half life of each organic EL element) / (half life of organic EL element 11)
  • the obtained light emission lifetime was ranked as follows. ⁇ : 0.9 ⁇ light emission life ⁇ : 0.5 ⁇ light emission life ⁇ 0.9 ⁇ : Luminescence life ⁇ 0.5 The rank of ⁇ and ⁇ is set as the pass rank.
  • the interlayer mixing amount was measured by the following method.
  • (3) A light emitting layer is formed on the substrate formed up to the hole transport layer under the same conditions as in (1) above.
  • the hole transport layer is sputtered for a sputtering time t or longer.
  • the amount represents the interlayer mixing amount.
  • Ir iridium
  • the Ir amount peculiar to the light emitting layer in the hole transport layer is measured, and the measured value is obtained as the interlayer mixing amount.
  • sputtering is performed until Ir specific to the light emitting layer is not measured, and the thickness of the interlayer mixture is estimated from the sputtering time t at that time.
  • the organic EL elements 11 to 21 according to the examples have high productivity, and excellent light emission lifetime is obtained by suppressing interlayer mixing.
  • the organic EL elements 31 and 33 in which the light emitting layer is formed only by the wet process interlayer mixing occurs at 5 nm or more, and a sufficient light emission life cannot be obtained.
  • the organic EL element 32 in which the light emitting layer is formed only by the ESD method can obtain a good light emission lifetime, it takes a considerable time to form a film and the productivity is lowered.
  • It can be used for thin film formation technology, and can be applied to the formation of organic layers in the manufacture of organic EL elements, solar cells, transistors, memories, sensors, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Coating Apparatus (AREA)
  • Photovoltaic Devices (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 積層された有機層間の層間混合を抑制し、生産性の高い薄膜形成方法及び薄膜形成装置を提供する。 薄膜形成装置100は、有機材料が溶媒に溶解又は分散する溶液を、ウェットプロセスにより塗布又は噴霧し、基板上に有機層を形成する第2成膜手段Bと、第2成膜手段Bが形成する有機層の上層又は下層に、当該有機層と同じ有機材料からなる有機層を、微量溶媒塗布法により形成する第1成膜手段Aと、を備える。薄膜形成装置100は、第1成膜手段Aにより有機層を形成し、当該有機層上に第2成膜手段Bにより有機層を形成することができる。また、薄膜形成装置100は、第2成膜手段Bにより形成された有機層上に、第1成膜手段Aにより有機層を形成することができる。

Description

薄膜形成方法及び薄膜形成装置
 本発明は、薄膜形成方法及び薄膜形成装置に関する。
 有機EL(Electro Luminescence)素子や太陽電池等の製造には、有機薄膜の形成が不可欠である。薄膜の形成方法としては、蒸着法の他、ウェットプロセスと呼ばれるスプレー法、スピンコート法、キャスト法、スロット法、インクジェット法、印刷法等が用いられている。
 近年は、真空プロセスを必要とせず、連続生産が簡易にできるという点から、ウェットプロセスによる成膜方法が注目されている。ウェットプロセスのなかでも、スプレー法は、大面積を短時間で成膜することができる生産性の高い方法である(例えば、特許文献1参照)。
特開2010-226087号公報
 しかしながら、ウェットプロセスにより製造された有機EL素子は、蒸着法により製造された有機EL素子に比べて、素子性能、特に発光寿命に関して十分な性能が得られないことが、一般的に知られている。
 これは、有機材料が異なる有機層同士を積層する際に、上層の溶媒によって下層の有機層が溶解するか、又は上層の溶媒が下層に浸透することにより、上層と下層との間で有機材料が混じり合って、ミキシングと呼ばれる層間混合が生じることが、一因と考えられている。
 本発明の課題は、積層された有機層間の層間混合を抑制し、生産性の高い薄膜形成方法及び薄膜形成装置を提供することである。
 請求項1に記載の発明によれば、
 有機材料が溶媒に溶解又は分散する溶液を、ウェットプロセスにより塗布又は噴霧して基板上に有機層を形成する薄膜形成方法において、
 前記有機層の上層又は下層に、前記有機層と同じ有機材料からなる有機層を、微量溶媒塗布法により形成する薄膜形成方法が提供される。
 請求項2に記載の発明によれば、
 前記微量溶媒塗布法による有機層の形成において、有機材料の溶液に電圧を印加し、帯電した溶液を基板上に噴霧して有機層を形成する請求項1に記載の薄膜形成方法が提供される。
 請求項3に記載の発明によれば、
 前記微量溶媒塗布法による有機層の形成において、有機材料の溶液のエアロゾルを形成し、当該エアロゾルを加熱して基板上に噴霧し、有機層を形成する請求項1に記載の薄膜形成方法が提供される。
 請求項4に記載の発明によれば、
 前記微量溶媒塗布法による有機層の形成において、ガスを加圧及び加熱して得られた超臨界流体に、有機材料を溶解させて基板上に噴霧し、有機層を形成する請求項1に記載の薄膜形成方法が提供される。
 請求項5に記載の発明によれば、
 前記ウェットプロセスによる有機層の形成において、スプレー法により、有機材料の溶液を噴霧し、基板上に有機層を形成する請求項1~4の何れか一項に記載の薄膜形成方法が提供される。
 請求項6に記載の発明によれば、
 前記微量溶媒塗布法により形成された有機層の膜厚が、1~10nmの範囲内にあることを特徴とする請求項1~5の何れか一項に記載の薄膜形成方法が提供される。
 請求項7に記載の発明によれば、
 前記微量溶媒塗布法及び前記ウェットプロセスにより形成された有機層は、有機EL素子の発光層であり、
 前記発光層の上層又は下層が、正孔輸送層又は電子輸送層である請求項1~6の何れか一項に記載の薄膜形成方法。
 請求項8に記載の発明によれば、
 有機材料が溶媒に溶解又は分散する溶液を、ウェットプロセスにより塗布又は噴霧し、基板上に有機層を形成する第2成膜手段と、
 前記第2成膜手段が形成する有機層の上層又は下層に、当該有機層と同じ有機材料からなる有機層を、微量溶媒塗布法により形成する第1成膜手段と、
 を備える薄膜形成装置が提供される。
 本発明によれば、ウェットプロセスにより有機層を形成することができ、高い生産性が得られる。そして、ウェットプロセスによって形成された有機層の上層又は下層に、微量溶媒塗布法により有機層を形成するので、隣接する他の有機層との間で溶媒の作用が少なく、積層された有機層間の有機材料の層間混合を抑制することができる。従って、積層された有機層間の層間混合を抑制し、生産性の高い薄膜形成方法及び薄膜形成装置を提供することができる。
本実施の形態に係る薄膜形成装置の概略構成図である。 ESD法の基本原理を説明する図である。 均一な有機層を形成するために設けられた補助手段の例を示す図である。 発光層と正孔輸送層の積層により生じた層間混合の例を示す図である。 第2成膜手段により形成された発光層と、その下層に、第1成膜手段により形成された発光層とを示す図である。 第2成膜手段により形成された発光層と、その上層及び下層に、第1成膜手段により形成された発光層とを示す図である。 ESDUS法により有機層を形成する第1成膜手段の概略構成図を示している。 超臨界スプレー法により有機層を形成する第1成膜手段の概略構成図を示している。
 以下、図面を参照して本発明の薄膜形成方法及び薄膜形成装置の実施の形態について説明する。
〔薄膜形成装置〕
 図1は、本発明の実施の形態に係る薄膜形成装置100の主な構成を示す。
 図1に示すように、薄膜形成装置100は、第1成膜手段A、第2成膜手段Bを備えて構成され、基板T上に有機材料からなる有機層を形成する。
 基板Tは、成膜の対象物であり、ガラス基板、樹脂フィルム等の可撓性材料からなる基板等であってもよいし、これらの基板上に既に何らかの層が既に形成されていてもよい。
 図1に示す薄膜形成装置100は、同じ基板Tに対し、同じ有機材料からなる有機層を、第1成膜手段A及び第2成膜手段Bにより形成するが、第1成膜手段A、第2成膜手段B間に搬送手段を設け、有機層を形成する順番に応じて、基板Tが自動搬送されるように構成してもよい。また、オペレーターが、基板Tを搬送して第1成膜手段A又は第2成膜手段Bに設置してもよい。
〔有機材料〕
 有機材料は、形成する有機層に応じて選択することができる。
 例えば、有機EL素子は、陽極、正孔輸送層、発光層、電子輸送層、陰極等の順に積層されて構成される。他にも、正孔注入層、電子注入層等が、必要に応じて、陽極と発光層間、陰極と発光層間に設けられることがある。
 正孔輸送層の有機材料としては、例えばトリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、チオフェンオリゴマー等の導電性高分子オリゴマーが挙げられる。
 発光層の有機材料としては、繰り返し単位を持たない低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基等の重合性基を有する低分子化合物でもよい。
 具体的には、発光層の有機材料として、カルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有する化合物、カルボリン誘導体、ジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換された誘導体を表す。)等が挙げられる。
 また、発光層の有機材料として燐光性化合物も挙げられる。燐光性化合物は、元素の周期表で8族~10族の金属を含有する錯体系化合物であり、イリジウム化合物、オスミウム化合物、白金化合物、希土類錯体等が挙げられる。
 電子輸送層の有機材料としては、例えばニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン、アントロン誘導体、オキサジアゾール誘導体等が挙げられる。
 有機EL素子以外にも、薄膜形成装置100は、太陽電池、トランジスター、メモリー、センサー等の製造において、有機層を形成することができる。そのような有機材料としては、ポリチオフェン等の導電性高分子の他、ペンタセン、ナフタレン等が挙げられる。
 有機材料の溶液の調製には、有機材料を溶解又は分散できる溶媒が用いられる。成膜の際、溶液の液滴が小さければ小さいほど、均一で平滑な有機層を形成することができるため、有機材料に対する溶解度が高い溶媒であることが好ましい。
 このような観点から、選択された有機材料にもよるが、使用できる溶媒として、例えば純水、2-エトキシエタノール、2-メトキシエタノール等のアルコール類、クロロホルム、塩化メチレン、テトラクロロエチレン、ジクロロエタン、テトラヒドロフラン等のハロゲン系、キシレン、トルエン、へキサン、シクロヘキシルベンゼン、アニソール等の芳香族炭化水素系、アセトン、メチルエチルケトン等のケトン系、酢酸、酢酸メチル、酢酸エチル、酢酸ブチル、アセトニトリル等のエステル系、ジエチルエーテル、ジメチルスルホスキド等が挙げられる。
 有機材料の溶液は、第1成膜手段Aと第2成膜手段Bとで同じ溶液を使用してもよい。また、第1成膜手段Aと第2成膜手段Bのそれぞれに応じて、有機材料の濃度や異なる溶媒を選択し、第1成膜手段A用、第2成膜手段B用の溶液を調製してもよい。例えば、第1成膜手段A用の溶媒としては、溶媒が揮発しやすいほど、噴霧されたときの液滴の乾燥がすすむため、想定される環境温度下での蒸気圧が高い溶媒であることが好ましい。
〔第1成膜手段〕
 本発明に係る第1成膜手段は、微量溶媒塗布法により有機層を形成する。
 本発明における「微量溶媒塗布法」とは、有機材料を溶媒中に溶解及び/又は分散してなる溶液を噴霧して液滴を形成すること、液滴中の溶媒を揮発させ濃縮すること、濃縮された液滴を基板上もしくは基板上に設けられた薄膜の上に堆積させること、を含む塗布方法である。微量溶媒塗布法として、具体的には、ESD(Electro Spray Deposition)法、ESDUS(Evaporative Spray Deposition from Ultra-dilute Solution)法、超臨界スプレー法等が挙げられる。
 図1の第1成膜手段Aは、微量溶媒塗布法により有機層を形成する第1成膜手段の一実施の形態であり、ESD法により有機層を形成する。
 具体的には、第1成膜手段Aは、有機材料が溶媒に溶解又は分散する溶液に電圧を印加し、帯電した溶液を噴霧し、基板T上に有機層を形成する。
 図2を参照して、ESD法による成膜の基本原理を説明する。
 図2に示すように、ESD法によれば、有機材料の溶液が充填されたキャピラリー31と支持体34間に、電源32が電圧を印加する。具体的には、キャピラリー31に正電圧が印加され、支持体34に負電圧が印加される。これにより、キャピラリー31内の溶液33は正の極性に帯電し、支持体34上に設置された基板35は負の極性に帯電する。なお、負電圧の印加に代えて支持体34をアース接地してもよいし、溶液33と支持体34を帯電させる極性は逆でもよい。この状態で、キャピラリー31から送出された溶液33は、クーロン力により反発し、正電荷を持つ液滴に分裂する。分裂によって溶液33中の溶媒が揮発し、揮発によって電荷密度が上昇することから、液滴はさらに反発して分裂を繰り返す。分裂を繰り返して微粒子化された液滴は、負の極性の基板35に引き寄せられ、基板35上に付着して有機層を形成する。基板35に到達するまでに溶媒はほとんど揮発するため、形成された有機層中に溶媒はほとんど無く、ドライ状態の有機層が形成される。
 第1成膜手段Aは、例えば図1に示すように、制御部11、電圧印加部12a、12b、溶液供給部13、キャピラリー14、電極15、支持体16を備えて構成されている。
 制御部11は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ハードディスク等の不揮発性メモリー等により構成され、不揮発メモリーに記憶されている制御プログラムを読み出して実行することにより、第1成膜手段Aの各部の動作を制御する。例えば、制御部11は、電圧印加部12a、12bにより印加する電圧、溶液供給部13によりキャピラリー14に送液する送液速度等を制御する。
 電圧印加部12aは、キャピラリー14内に設けられた電極15に電圧を印加し、電圧印加部12bは、基板Tの支持体16に電圧を印加して、キャピラリー14によって噴霧される溶液と基板Tとを、それぞれ逆の極性に帯電させる。支持体16は、金属等の導電体で構成されている。溶液と基板Tのどちらをどの極性に帯電させてもよいが、溶液を正の極性、基板Tを負の極性に帯電させるのであれば、電圧印加部12aが電極15に正の電圧を印加し、電圧印加部12bが支持体16に負の電圧を印加する。
 印加する電圧(V)は、キャピラリー14の噴霧口から基板Tまでの距離Daや、溶液の噴霧量との関係によって適宜設定することができる。印加する電圧としては、特に限定されないが、好ましくは5~20kVの範囲内であり、より好ましくは10~15kVの範囲内である。
 溶液供給部13は、有機材料の溶液を貯蔵し、キャピラリー14に送液する。送液する溶液の流量、送液速度は、適宜設定することができる。
 第1成膜手段Aが用いる溶液の粘度は、100mPa・s以下であることが好ましく、より好ましくは5mPa・s以下である。なお、粘度は、JIS Z 8803に従い、粘度計DV-II+Pro(ブルックフィールド社製)により、25℃の条件にて測定した値である。
 また、第1成膜手段Aが用いる溶液の固形分濃度は、好ましくは2.00質量%以下であり、好ましくは0.01~1.00質量%の範囲内である。
 キャピラリー14は、溶液供給部13から供給された有機材料の溶液を、先端の噴霧口から送出する。キャピラリー14の管内には、線状に形成された電極15が設置され、電極15に印加された電圧によって、キャピラリー14内の溶液が帯電した状態で送出される。溶液は、図2に示したように反発によって分裂を繰り返し、微粒子状の液滴となって噴霧され、基板T上に到達する。
 キャピラリー14は、金属等の導電体から構成することができる。キャピラリー14は、図1に示すように1つでもよいし、生産性を上げるため、複数のキャピラリー14を備えてもよい。
 キャピラリー14の噴霧口の内径は、溶液の流量、液滴の所望サイズ等に応じて適宜設定することができる。内径としては、特に限定されないが、10~300μmの範囲内が好ましく、より好ましくは30~50μmの範囲内である。
 キャピラリー14の噴霧口から基板Tの被成膜面までの距離Daは、溶液からの溶媒の揮発が良好となる距離に、適宜設定することができる。距離Daが大きいほど、溶媒が揮発し、液滴が乾燥しやすいが、液滴が広く分布し、成膜面積が拡大するため、所望の膜厚を形成するまでに時間を要する。このような傾向からすると、距離Daとしては特に限定されないが、好ましくは3~20cmの範囲内であり、より好ましくは5~10cmの範囲内である。
〔第2成膜手段〕
 本発明に係る第2成膜手段としては、有機材料が溶媒に溶解又は分散する溶液を、ウェットプロセスにより塗布又は噴霧し、基板上に有機層を形成できるのであれば、特に限定されない。ウェットプロセスとしては、有機材料の溶液の積極的な加熱を伴わず好ましく用いられるスプレー法の他、ウェットプロセスとして公知のスピンコート法、スロット塗布法、ワイヤバー法、インクジェット法等も選択することができる。
 図1の第2成膜手段Bは、ウェットプロセスにより有機層を形成する第2成膜手段の一実施の形態であり、スプレー法により有機層を形成する。
 具体的には、第2成膜手段Bは、有機材料が溶媒に溶解又は分散する溶液を、スプレー法により噴霧し、基板T上に有機層を形成する。
 第2成膜手段Bは、例えば図1に示すように、制御部21、溶液供給部22、ノズル23、駆動部24、支持体25等を備えて構成されている。
 制御部21は、CPU、RAM、不揮発性メモリー等により構成され、不揮発メモリーに記憶されている制御プログラムを読み出して実行することにより、第2成膜手段Bの各部の動作を制御する。例えば、制御部21は、溶液供給部22によりノズル23に送液する溶液量、駆動部24によるノズル23の駆動を制御する。
 溶液供給部22は、有機材料の溶液を貯蔵し、ノズル23に当該溶液を送液する。送液流量等は、適宜設定することができる。
 溶液供給部22の送液方法としては、公知の方法を用いることができ、圧力送液、シリンジポンプ送液、チューブ送液等が挙げられる。求められる送液量、送液精度、溶液の固形分濃度、粘度、コスト等に応じて、最適な送液方法を選択することができる。なかでも、送液量と送液精度の制御が容易なことから、圧力送液が好ましい。
 第2成膜手段Bが用いる溶液は、塗布範囲を制御する目的や、基板T上に付着後の表面張力勾配に伴う液流動(例えば、コーヒーリングと呼ばれる現象を引き起こす液流動)を抑制する目的に応じて、界面活性剤や複数種の溶媒を混合してもよい。界面活性剤としては、溶媒に含まれる水分の影響、レベリング性、基板Tへの濡れ性等の観点から、例えばアニオン性又はノニオン性の界面活性剤等が挙げられる。具体的には、含フッ素系活性剤等、国際公開第08/146681パンフレット、特開平2-41308号公報等に挙げられた界面活性剤を用いることができる。
 ノズル23は、溶液供給部22から供給された有機材料の溶液を、噴霧口から噴霧する。
 溶液の噴霧方法としては、公知の方法を用いることができ、特に限定されないが、例えば超音波振動子を用いて溶液を微粒子化する超音波方式、2流体方式、回転式等が挙げられる。
 ノズル23の噴霧口から基板Tの被成膜面までの距離Dbは、溶液の送液量や固形分濃度等に応じて、適宜設定すればよい。ノズル23から噴霧された溶液は、基板T上に到達するまでに、若干ではあるが溶媒が徐々に揮発し、有機材料の固形分濃度が上昇して溶液の粘度が上昇する。距離Dbが大きいほど、溶液が広範囲に拡散し、生産性が上がるが、溶媒が揮発しやすく、固形分濃度が上昇するため、基板T上でのウェット性が低下し、均一な成膜が難しくなる。
 駆動部24は、モーター等の駆動源を備え、ノズル23の移動を駆動する。ノズル23は駆動部24によって一方向に移動し、基板Tとの相対位置が変動する。
 なお、駆動部24は、ノズル23ではなく、基板Tの支持体25を駆動し、ノズル23に対する基板Tの位置を移動させてもよい。
 また、支持体25に代えて、フリースパンを用いてもよい。
 第1成膜手段A及び第2成膜手段Bの何れについても、噴霧の過程で気流による乱流が発生し、均一な成膜の妨げになることがあるため、均一な成膜のための補助手段を設けることとしてもよい。
 例えば、補助手段として、図3に示すように、キャピラリー14又はノズル23と基板Tの周辺に遮蔽板61を設け、キャピラリー14又はノズル23と基板T間に入り込む気流を遮蔽してもよい。他の補助手段として、キャピラリー14又はノズル23の噴霧口周辺に、スリットやパンチ板等の整流板62を設け、キャピラリー14又はノズル23と基板T間に入り込んだ気流を、溶液が噴霧される方向に導き整流してもよい。または、整流板62に代えて、ファン等を設置し、整流のための送風を行ってもよい。さらに、補助手段として、キャピラリー14又はノズル23から基板Tに向けて同伴風を送風するファン63を設置してもよい。
 また、キャピラリー14又はノズル23と基板Tとの間に、マスクを設けることもできる。用途に応じて、複数のマスクを交換できる構成にしてもよい。
 マスクの材料や厚さは、特に限定されないが、液だれを防止するため、多孔質のマスクや吸湿性の高いマスクを用いることが好ましい。
〔薄膜形成方法〕
 図1の薄膜形成装置100が有機層を形成する際の薄膜形成方法を説明する。
 この薄膜形成方法は、有機材料が溶媒に溶解又は分散する溶液を、ウェットプロセスにより塗布して基板上に有機層を形成し、この有機層の上層又は下層に、当該有機層と同じ有機材料からなる有機層を、微量溶媒塗布法により形成する。
 ウェットプロセスにより形成された有機層の下層に、微量溶媒塗布法により同じ有機材料からなる有機層を形成する場合、まず、基板Tを、第1成膜手段Aの支持体16上に設置する。第1成膜手段Aは、有機層の形成に用いる有機材料の溶液を塗布して、基板T上に有機層を形成する。
 第1成膜手段Aにより形成する有機層の膜厚は、1nm以上10nm以下が好ましい。膜厚が1nm以上であれば、第1成膜手段Aにより形成された有機層に隣接する、有機材料が異なる他の有機層と層間混合が生じにくい。一方、膜厚が10nm以下であると、成膜時間が短く、生産性が向上する。
 第1成膜手段Aにより有機層を形成後、乾燥工程を経てもよい。
 乾燥方法は、特に限定されず、熱風、赤外線、平面加熱等の固体伝熱乾燥、マイクロ波等の内部発熱乾燥、真空乾燥、超臨界乾燥、超音波乾燥等の固定非加熱系乾燥、吸湿乾燥、冷却乾燥、凝縮乾燥等の気体乾燥等の公知の方法を選択できる。
 次に、基板Tを、第2成膜手段Bの支持体25上に設置する。
 第2成膜手段Bは、第1成膜手段Aにより基板Tに形成された有機層上に、第1成膜手段Aと同じ有機材料の溶液を塗布し、有機層を形成する。
 第2成膜手段Bにより有機層を形成後、乾燥工程を経てもよい。
 ウェットプロセスによって形成された有機層の上層に、微量溶媒塗布法により同じ有機材料からなる有機層を形成する場合、基板Tを、第2成膜手段Bから第1成膜手段Aに移し、支持体16上に設置する。第1成膜手段Aは、第2成膜手段Bにより形成された有機層と同じ有機材料の溶液を塗布して、第2成膜手段Bにより形成された有機層上に、同じ有機材料からなる有機層を形成する。
 このようにして第1成膜手段A及び第2成膜手段Bにより形成された有機層は、有機材料が異なる他の有機層との層間混合を抑制することができる。
 有機EL素子を例に、層間混合について説明する。
 例えば、樹脂製の基板上に陽極、正孔輸送層、発光層の順に積層する場合、図4に示すように正孔輸送層L1上に生産性の高い第2成膜手段Bのみにより、発光層L22を形成する。この場合、発光層L22の生産性は高いが、図4に示すように、発光層L22とその下層の正孔輸送層L1との間で、層間混合が生じやすい。第2成膜手段Bによりウェットプロセスで形成された発光層L22は、成膜時に若干量の溶媒が揮発するものの、有機層内にかなりの溶媒が残ってウェット状態にある。残った溶媒に、正孔輸送層L1が溶解するか、発光層L22内の有機材料が正孔輸送層L1内の溶媒に溶出するか、又は低粘度の溶液状態であることによって下層の有機材料の分子間の隙間へ浸潤し、層間混合が生じる。発光層L22と正孔輸送層L1とで同じ溶媒が用いられている場合は、溶媒同士の作用が大きく、層間混合はより生じやすい。
 また、層間混合は、有機材料が低分子量である場合に生じやすい。高分子量である場合に比べて、有機材料が他の有機層に溶出しやすいためである。ここで、低分子量の有機材料とは、繰り返し単位を持たない低分子化合物をいい、一般的に重量平均分子量が5000以下、好ましくは3000以下、さらに好ましくは2000以下をいう。
 また、層間混合は、特に発光層と正孔輸送層又は電子輸送層との間で生じやすい。これは、発光層と正孔輸送層又は電子輸送層とで同じ溶媒が用いられやすいこと、発光層として、低分子の有機材料が用いられることが多い一方、発光層の下層の正孔輸送層は、比較的分子量の大きいポリマーが用いられることが多く、発光層の低分子有機材料が入り込む隙間ができやすいこと等が一因と考えられる。
 これに対し、上述の薄膜形成方法によって発光層を形成した場合、図5Aに示すように、正孔輸送層L1と、第2成膜手段Bにより形成された発光層L22との間に、第1成膜手段Aにより形成された発光層L21が介在する。発光層L21は、ESD法により形成されているため、発光層L21中に溶媒が無いか、ほとんど無く、ドライ状態にある。正孔輸送層L1と発光層L21に同じ溶媒が用いられていても、正孔輸送層L1に作用する溶媒が除去されているため、層間混合が生じない。全ての発光層を、第1成膜手段Aにより形成するのではなく、層間混合が生じない発光層L21をバリアー層として、生産性の高い第2成膜手段Bにより発光層L22を形成することにより、発光層全体(発光層L21と発光層L22)の生産性を向上させることができる。
 第2成膜手段Bが形成する発光層L22の下層だけではなく、上層に第1成膜手段Aが形成する発光層L21が設けられた場合も同様の効果が得られる。
 例えば、図5Bに示すように、第2成膜手段Bにより形成された発光層L22上に、第1成膜手段Aにより発光層L21を形成した場合、発光層L21上に形成された電子輸送層L3との間で層間混合を抑制することができる。
 このように、下層でも上層でも、他の有機層との境界には、バリアー層として溶媒が残らない有機層を第1成膜手段Aにより形成することにより、他の有機層との層間混合を抑制することができる。
〔他の実施の形態〕
 微量溶媒塗布法による成膜が可能であれば、上記ESD法を用いた第1成膜手段Aに代えて、ESDUS法を用いた第1成膜手段、超臨界スプレー法を用いた第1成膜手段を使用することもできる。
 ESDUS法は、有機材料が溶媒に溶解又は分散する溶液のエアロゾルを形成し、当該エアロゾルを加熱して噴霧し、基板上に有機層を形成する。溶液中の有機材料が極めて低い濃度であっても薄膜の形成が可能であることが、ESDUS法の特徴の1つである。
 図6は、ESDUS法を用いた第1成膜手段Cの概略構成図である。
 図6に示すように、第1成膜手段Cは、例えばガス供給部41、溶液供給部42、エアロゾル形成部43、チャンバー44a、44b、加熱部45、支持体46等を備えて構成されている。
 ガス供給部41は、搬送ガスをエアロゾル形成部43に提供する。搬送ガスは、窒素、アルゴン、ヘリウム、空気等のガスを用いることができる。
 溶液供給部42は、有機材料の溶液を貯蔵し、エアロゾル形成部43に送液する。
 エアロゾル形成部43は、供給された有機材料の溶液が液体粒子として、搬送ガス中に浮遊するエアロゾルを形成する。エアロゾルの形成手段としては特に限定されず、エアロゾル形成部43として噴霧器を用い、溶液と搬送ガスを混合後、高速噴射してエアロゾル化してもよい。また、エアロゾル形成部43として、超音波振動子を用いて溶液を微粒子化し、搬送ガス中に浮遊させてエアロゾル化してもよい。
 エアロゾル形成部43は、形成したエアロゾルをチャンバー44a内に噴霧する。
 噴霧されたエアロゾルは、搬送ガスによって搬送され、加熱部45によって加熱されたチャンバー44a内を通過すると、エアロゾル中の溶媒が気化し、有機材料の微粒子が生成される。有機材料の微粒子は、搬送ガスによってさらにチャンバー44b内へと搬送され、チャンバー44a内の支持体46に設置されている基板T上に付着し、有機層が形成される。
 なお、ESDUS法においても、ESD法のように、エアロゾルと基板Tをそれぞれ逆の特性に帯電させて、エアロゾルを噴霧してもよい。この場合、電荷の反発による微粒子化が可能となる。
 超臨界スプレー法は、RESS(Rapid Expansion of Supercritical Solution)法、PGSS(Particles from Gas Saturated Solution)法等に代表されるように、溶質を溶解させた超臨界流体を、大気圧等の減圧下に置くことで、急激に膨張させ、膨張に伴う溶解度差(過飽和度)から、溶解していた溶質を微粒子として析出させる方法である。
 超臨界スプレー法を用いた第1成膜手段は、ガスを加圧及び加熱して得られた超臨界流体に、有機材料を溶解させて噴霧し、基板上に有機層を形成する。有機材料の溶媒として用いられる超臨界流体が噴霧時に気化するため、溶媒を含まない有機層を形成することができる。
 図7は、超臨界スプレー法を用いた第1成膜手段Eの概略構成図である。
 図7に示すように、第1成膜手段Eは、例えばガス供給部51、冷却器52、加圧ポンプ53、予熱器54、溶質溶解セル55、ノズル56、支持体57、バルブV等を備えて構成されている。
 ガス供給部51は、超臨界流体に相変化させるガスを供給する。ガスは、溶質である有機材料に応じて適宜選択することができる。使用できるガスとしては、例えば二酸化炭素(臨界温度31℃、臨界圧力7.38MPa)、エタン(臨界温度32℃、臨界圧力4.88MPa)、水(臨界温度374℃、臨界圧力22.06MPa)、プロパン(臨界温度97℃、臨界圧力4.25MPa)、エチレン、アルコール等が挙げられる。コスト、環境に対する負荷を考慮すると、水、二酸化炭素、アルコールが好ましく用いられる。
 ガス供給部51から供給されたガスは、冷却器52により冷却され、液化された後、加圧ポンプ53により加圧され、さらに予熱器54によって加熱されて、超臨界流体に相変化する。ここで、ガスの加圧とはガスの臨界圧力以上の加圧をいい、ガスの加熱とは臨界温度以上の加熱をいう。具体的には、1MPa以上の加圧、27℃以上の加熱が行われる。
 溶質溶解セル55には、溶質である有機材料が充填され、超臨界流体が溶質溶解セル55を通過すると、溶質の溶解温度及び溶解圧力下で、溶質が超臨界流体に溶解する。なお、超臨界流体の状態を維持するため、予熱器54以降の溶質溶解セル55、ノズル56までの配管等は、一定温度下の恒温槽58内に設置されている。また、ノズル56は、噴霧前に超臨界流体が膨張することを防ぐため、溶質溶解温度以上に加熱されている。
 溶質が溶解した超臨界流体は、ノズル56から送出され、大気圧下に置かれると、気相の二酸化炭素と、溶質のクラスターに分離し、溶質が微粒子として析出して基板T上に噴霧される。
 なお、支持体57がヒーターを内蔵し、基板Tを加熱することとしてもよい。基板Tが加熱されることにより、噴霧された溶質の基板Tに対する密着性が向上するとともに、基板T上で溶質の緻密化が促進される。
 二酸化炭素ガスや超臨界流体の経路上の各所には、バルブVが設けられ、所定のタイミングでバルブVが開閉される。また、図示しない圧力計や温度計が、溶質溶解セルに設けられ、溶質溶解セル内の圧力、温度が管理されている。
 ノズル56の噴霧口の内径は、適宜設定できるが、通常1~100μmの範囲内である。
 ノズル56の噴霧口から基板Tの被成膜面までの距離Deは、ノズル56からの送出量や送出速度等によって適宜設定することができる。一般に、距離Deが大きいほど、溶質の微粒子の粒子径が大きくなり、成膜面積が減少する。距離Deは特に限定されないが、このような傾向から、好ましくは0.1~10.0cmの範囲内であり、より好ましくは1~5cmの範囲内である。
 以下、実施例をあげて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 <有機EL素子11の作製>
 20×20×0.7mmのガラス基板上に、陽極としてITO(Indium Tin Oxide;酸化インジウムスズ)が膜厚100nmで成膜された基板(NA45、NHテクノグラス社製)を、パターニングした。その後、イソプロピルアルコールにより超音波洗浄し、乾燥窒素ガスで乾燥して、さらにUVオゾン洗浄を5分間行った。
 次に、Baytron P Al 4083(ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS))、Bayer社製)を、純水で70%に希釈した溶液を調製した。上記洗浄した基板上に、調製した溶液を、スピンコート法により回転速度3000rpm、成膜時間30secの条件で成膜した。その後、基板の表面温度200℃にて1時間乾燥し、膜厚30nmの正孔注入層を設けた。
 この基板を、窒素雰囲気下、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppmのグローブボックスへ移した。下記正孔輸送層溶液を調製し、グローブボックス内で、スピンコーターにより回転速度1500rpm、成膜時間30secの条件で成膜した。この基板を、基板の表面温度150℃で30分間加熱乾燥し、正孔輸送層を設けた。別途用意した基板にて、同条件にて成膜し、形成された正孔輸送層の膜厚を測定したところ、20nmであった。
(正孔輸送層溶液)
 モノクロロベンゼン                   100.0g
 ポリ-(N,N′-ビス(4-ブチルフェニル)-N,N′-ビス(フェニル)ベンジジン)(ADS254BE、アメリカン・ダイ・ソース社製)   0.5g
 次いで、窒素雰囲気下で、下記発光層溶液a1、b1を調製した。発光層溶液a1の固形分濃度は0.01質量%、粘度は0.6mPa・sであった。発光層溶液b1の固形分濃度は1.00質量%であった。粘度は、JIS Z 8803に従い、粘度計DV-II+Pro(ブルックフィールド社製)を用いて、温度25℃下で測定した。
 (発光層溶液a1)
 酢酸ブチル         1000.0000g
 H-A              0.1000g
 D-A              0.0110g
 D-B              0.0002g
 D-C              0.0002g
 (発光層溶液b1)
 酢酸ブチル           10.0000g
 有機材料H-A          0.1000g
 有機材料D-A          0.0110g
 有機材料D-B          0.0002g
 有機材料D-C          0.0002g
 上記有機材料H-A、D-A、D-B、D-Cは、下記化合物を表している。
Figure JPOXMLDOC01-appb-C000001
 図1に示した第1成膜手段Aのように、ESD法を用いた成膜装置を試作し、発光層溶液a1を充填した。下記ESD法の成膜条件により、窒素ガス下で、正孔輸送層が形成された基板上に成膜し、発光層を形成した。別途用意した基板にて、同条件にて成膜を行い、形成された発光層の膜厚を測定したところ、10nmであった。
 (ESD法の成膜条件)
 キャピラリーの噴霧口の内径 :40μm
 キャピラリーへの送液速度  :10μl/min
 噴霧口から基板までの距離Da:5cm
 キャピラリーと基板間に印加された電圧:15kV
 噴霧時間          :240sec
 また、図1に示した第2成膜手段Bのように、スプレー法を用いた成膜装置を試作した。試作した成膜装置の溶液供給部には、エアー圧力による送液ポンプを用いた。この成膜装置に、発光層溶液b1を充填して、ESD法により形成された発光層上に、下記スプレー法の成膜条件によって窒素ガス下で成膜し、発光層を形成した。その後、基板の表面温度120℃で乾燥した。別途用意した基板にて、同条件にて成膜を行い、形成された発光層の膜厚を測定したところ、50nmであった。
 (スプレー法の成膜条件)
 ノズルからのスプレー流量:1.50g/min
 送液時のエアー圧力   :0.1MPa
 ノズルの移動速度    :0.5m/sec
 ノズルの噴霧口から基板までの距離Db:5cm
 次に、窒素雰囲気下、下記電子輸送層溶液を調製した。
 (電子輸送層溶液)
 2,2,3,3-テトラフルオロ-1-プロパノール     100.00g
 有機材料ET-A                       0.75g
 有機材料ET-Aは、下記化合物を表している。
Figure JPOXMLDOC01-appb-C000002
 スプレー法を用いた試作の成膜装置を用いて、調製した電子輸送層溶液を、上記発光層と同じスプレー法の成膜条件により、成膜した。その後、基板の表面温度120℃で30分加熱乾燥し、電子輸送層を形成した。別途用意した基板にて同条件にて成膜し、形成された電子輸送層の膜厚を測定したところ、膜厚は40nmであった。
 電子輸送層まで形成されると、基板を大気曝露せずに蒸着機に移動し、4×10-4Paまで減圧した。なお、フッ化カリウム及びアルミニウムをそれぞれタンタル製抵抗加熱ボートに入れ、蒸着機に取り付けておいた。
 まず、フッ化カリウムの入った抵抗加熱ボートを通電して加熱し、基板上にフッ化カリウムからなる電子注入層を3nm形成した。次いで、アルミニウムの入った抵抗加熱ボートを通電、加熱し、蒸着速度1~2nm/secで、アルミニウムからなる膜厚100nmの陰極を形成した。
 陰極が形成された基板を、大気曝露させることなく、窒素雰囲気下、JIS B9920に準拠して測定された清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppmのグローブボックスへ移動した。グローブボックス内で、捕水剤である酸化バリウムを添付したガラス製の封止缶にて封止し、有機EL素子11を得た。なお、捕水剤である酸化バリウムは、アルドリッチ社製の高純度酸化バリウム粉末を、粘着剤付きのフッ素系半透過膜(ミクロテックスS-NTF8031Q、日東電工製)でガラス製封止缶に貼り付けたものを、予め準備して使用した。封止缶と有機EL素子の接着には、紫外線硬化型の接着剤を用い、紫外線を照射することで両者を接着し封止素子を作製した。
 <有機EL素子12~16の作製>
 上記有機EL素子11の作製において、ESD法及びスプレー法の成膜条件を、表1及び表2に示すように変更した以外は、有機EL素子11と同様にして、有機EL素子12~16を作製した。有機EL素子12~16のESD法により形成された発光層の膜厚、スプレー法により形成された発光層の膜厚を、下記表1及び表2に示す。
 <有機EL素子17の作製>
 上記有機EL素子11の作製において、発光層溶液a1を下記組成の発光層溶液a2に、発光層溶液b1を下記組成の発光層溶液b2にそれぞれ変更し、ESD法及びスプレー法の成膜条件を、表1及び表2に示すように変更した以外は、有機EL素子11と同様にして、有機EL素子17を作製した。発光層溶液a2の固形分濃度は0.01質量%、粘度は0.6mPa・s、発光層溶液b2の固形分濃度は1.00質量%だった。
 (発光層溶液a2)
 THF(テトラヒドロフラン)                1000.0g
 MEH-PPV(メトキシエチルヘキソシキポリフェニレンビニレン) 0.1g
 (発光層溶液b2)
 THF(テトラヒドロフラン)                  10.0g
 MEH-PPV(メトキシエチルヘキソシキポリフェニレンビニレン) 0.1g
 <有機EL素子18の作製>
 図7に示した第1成膜手段Eのように、超臨界スプレー法を用いた成膜装置を試作した。
 上記有機EL素子11の作製において、ESD法を用いた試作の成膜装置を、超臨界スプレー法を用いた試作の成膜装置に代え、下記超臨界スプレー法の成膜条件により、発光層溶液a1と同じ有機材料H-A、D-A、D-B、D-Cを用いて発光層を形成し、スプレー法の成膜条件を表2に示すように変更した以外は、有機EL素子11と同様にして、有機EL素子18を作製した。有機EL素子18の超臨界スプレー法により形成された発光層の膜厚は、10nmであった。
 (超臨界スプレー法の成膜条件)
 超臨界液のガス   :二酸化炭素
 ノズルの噴霧口の内径:50μm
 超臨界液の送液速度 :10μl/min
 超臨界液の噴霧時間 :100sec
 ノズルの噴霧口から基板までの距離De:3cm
 超臨界スプレー法を用いた試作の成膜装置では、4つの溶質溶解セル551~554を用意した。それぞれの溶質溶解セル551~554に、下記に示すように、上記発光層溶液a1と同じ有機材料H-A、D-A、D-B、D-Cを溶質として入れた。
 溶質溶解セル551:H-A
 溶質溶解セル552:D-A
 溶質溶解セル553:D-B
 溶質溶解セル554:D-C
 なお、各有機材料の重量濃度を、下記比率に調整した。
 H-A:D-A=1.000:0.110
 H-A:D-B=1.000:0.002
 H-A:D-C=1.000:0.002
 <有機EL素子19の作製>
 上記有機EL素子11の作製において、ESD法の成膜条件を表1に示すように変更し、スプレー法を用いた試作の成膜装置に代えて、市販のスピンコーターを用いて、スピンコート法により、発光層溶液b1の成膜を行った以外は、有機EL素子11と同様にして、有機EL素子19を作製した。
 スピンコート法の成膜条件は、以下の通りである。
(スピンコート法の成膜条件)
 スピンコーター:MS-A200(ミカサ株式会社製)
 回転速度   :2000rpm
 溶液の塗布時間:30sec
 <有機EL素子20の作製>
 上記有機EL素子11の作製において、ESD法及びスプレー法の成膜条件を、表1及び表2に示すように変更した以外は、有機EL素子11と同様にして、有機EL素子20を作製した。有機EL素子20のESD法により形成された発光層の膜厚は2nm、スプレー法により形成された発光層の膜厚は58nmであった。
 <有機EL素子21の作製>
 図6に示した第1成膜手段Cのように、ESDUS法を用いた成膜装置を試作した。
 上記有機EL素子11の作製において、ESD法を用いた試作の成膜装置を、ESDUS法を用いた試作の成膜装置に代え、下記ESDUS法の成膜条件により、発光層溶液a1の塗布を行い、スプレー法の成膜条件を下記表2に示すように変更した以外は、有機EL素子11と同様にして、有機EL素子21を作製した。
 (ESDUS法の成膜条件)
 エアロゾルの加熱温度:85℃
 チャンバーの開口部から基板までの距離:10mm
 搬送ガス      :窒素ガス
 <有機EL素子31の作製>
 上記有機EL素子11の作製において、ESD法を用いた試作の成膜装置による発光層の成膜は行わず、スプレー法を用いた試作の成膜装置により、発光層溶液b1の成膜のみによって発光層を形成した以外は、有機EL素子11と同様にして、有機EL素子31を作製した。有機EL素子31の発光層の膜厚は、60nmであった。
 <有機EL素子32の作製>
 上記有機EL素子11の作製において、スプレー法を用いた試作の成膜装置による発光層の形成は行わず、ESD法を用いた試作の成膜装置により、発光層溶液a1の成膜のみによって発光層を形成した以外は、有機EL素子11と同様にして、有機EL素子32を作製した。有機EL素子32の発光層の膜厚は、60nmであった。
 <有機EL素子33の作製>
 上記有機EL素子31の作製において、発光層溶液b1を、発光層溶液b2に代えて、スプレー法を用いた試作の成膜装置により発光層を形成した以外は、有機EL素子21と同様にして、有機EL素子33を作製した。有機EL素子33の発光層は、膜厚が60nmであった。
 <評価>
 作製された有機EL素子11~21、31~33について、下記項目を評価した。
・生産性
 有機EL素子11~21、31~33の作製において、発光層全体の成膜(乾燥工程は含まず)に要した時間を測定し、下記のようにランク評価した。例えば、有機EL素子11であれば、ESD法を用いた発光層の成膜に要した時間と、スプレー法を用いた発光層の成膜に要した時間との合計時間が、ランク評価の対象である。
 ○:      成膜時間<4min
 △: 4min≦成膜時間<10min
 ×:10min≦成膜時間
 △、○を、合格ランクとする。
・発光寿命
 各有機EL素子11~21、31~33に対し、正面輝度1000cd/mとなるように電流を与え、連続駆動した。正面輝度が、初期の半分の500cd/mになるまでに要した時間を、半減期として測定した。有機EL素子11の半減期の測定値を100とし、下記式により、各有機EL素子11~21、31~33の発光寿命を求めた。
 各有機EL素子の発光寿命=(各有機EL素子の半減期)/(有機EL素子11の半減期)
 求めた発光寿命を、下記のようにランク評価した。
 ○:0.9<発光寿命
 △:0.5<発光寿命≦0.9
 ×:    発光寿命≦0.5
 △、○のランクを、合格ランクとする。
・層間混合
 走査型X線光電子分光分析装置PHI 5000(アルバック・ファイ株式会社製)を用いて、次の方法により、層間混合量を測定した。
(1)ガラス基板上に、各有機EL素子11~21、31~33の発光層の形成と同様にして、発光層のみを40nm成膜する。
(2)成膜後、走査型X線光電子分光分析装置PHI 5000を用いて、Arガスクラスターイオンで基板のガラス成分が検出されるまでスパッターする。そのときのスパッター時間tから膜厚を推定できる。
(3)正孔輸送層まで成膜された基板に、発光層を上記(1)と同じ条件で成膜する。
(4)上記(2)と同じようにスパッターするが、このとき、スパッター時間t以上、正孔輸送層をスパッターする。
(5)正孔輸送層内に、正孔輸送層の有機材料に含まれず、発光層の有機材料に含まれる特有の材料があれば、その量が層間混合量を表す。例えば、有機EL素子11であれば、発光層の有機材料にのみ特有の材料としてIr(イリジウム)が挙げられる。正孔輸送層における発光層に特有のIr量を測定し、その測定値を層間混合量として得る。また、発光層に特有のIrが測定されなくなるまでスパッターし、そのときのスパッター時間tから、層間混合している膜厚を推定する。
 発光層と正孔輸送層間で層間混合が生じた膜厚に着目し、下記のようにランク評価した。
 ○ :    膜厚<2nm
 △ :2nm≦膜厚<5nm
 × :5nm≦膜厚
 △、○のランクが、許容範囲である。
 下記表2は、評価結果を示している。
 なお、有機EL素子32については、層間混合が生じにくいことが想定されるため、層間混合の評価を省略した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1及び表2から分かるように、実施例に係る有機EL素子11~21は、生産性が高く、層間混合を抑制して優れた発光寿命が得られている。
 これに対し、ウェットプロセスのみにより発光層が形成された有機EL素子31、33は、層間混合が5nm以上生じており、十分な発光寿命が得られない。また、ESD法のみにより発光層が形成された有機EL素子32は、良好な発光寿命が得られるが、成膜にかなりの時間を要し、生産性が低下している。
 薄膜の形成技術に利用することが可能であり、例えば有機EL素子、太陽電池、トランジスター、メモリー、センサーの製造における有機層の形成に適用することができる。
T  基板
A  第1成膜手段
12a、12b  電圧印加部
13  溶液供給部
14  キャピラリー
15  電極
16  支持体
B  第2成膜手段
22  溶液供給部
23  ノズル
25  支持体
C  第1成膜手段(他の実施の形態)
41  ガス供給部
42  溶液供給部
43  エアロゾル形成部
E  第1成膜手段(他の実施の形態)
51  ガス供給部
53  加圧ポンプ
54  予熱器
55  溶質溶解セル
56  ノズル

Claims (8)

  1.  有機材料が溶媒に溶解又は分散する溶液を、ウェットプロセスにより塗布又は噴霧して基板上に有機層を形成する薄膜形成方法において、
     前記有機層の上層又は下層に、前記有機層と同じ有機材料からなる有機層を、微量溶媒塗布法により形成する薄膜形成方法。
  2.  前記微量溶媒塗布法による有機層の形成において、有機材料の溶液に電圧を印加し、帯電した溶液を基板上に噴霧して有機層を形成する請求項1に記載の薄膜形成方法。
  3.  前記微量溶媒塗布法による有機層の形成において、有機材料の溶液のエアロゾルを形成し、当該エアロゾルを加熱して基板上に噴霧し、有機層を形成する請求項1に記載の薄膜形成方法。
  4.  前記微量溶媒塗布法による有機層の形成において、ガスを加圧及び加熱して得られた超臨界流体に、有機材料を溶解させて基板上に噴霧し、有機層を形成する請求項1に記載の薄膜形成方法。
  5.  前記ウェットプロセスによる有機層の形成において、スプレー法により、有機材料の溶液を噴霧し、基板上に有機層を形成する請求項1~4の何れか一項に記載の薄膜形成方法。
  6.  前記微量溶媒塗布法により形成された有機層の膜厚が、1~10nmの範囲内にあることを特徴とする請求項1~5の何れか一項に記載の薄膜形成方法。
  7.  前記微量溶媒塗布法及び前記ウェットプロセスにより形成された有機層は、有機EL素子の発光層であり、
     前記発光層の上層又は下層が、正孔輸送層又は電子輸送層である請求項1~6の何れか一項に記載の薄膜形成方法。
  8.  有機材料が溶媒に溶解又は分散する溶液を、ウェットプロセスにより塗布又は噴霧し、基板上に有機層を形成する第2成膜手段と、
     前記第2成膜手段が形成する有機層の上層又は下層に、当該有機層と同じ有機材料からなる有機層を、微量溶媒塗布法により形成する第1成膜手段と、
     を備える薄膜形成装置。
PCT/JP2013/050057 2012-01-11 2013-01-08 薄膜形成方法及び薄膜形成装置 WO2013105534A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012002912 2012-01-11
JP2012-002912 2012-01-11

Publications (1)

Publication Number Publication Date
WO2013105534A1 true WO2013105534A1 (ja) 2013-07-18

Family

ID=48781482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050057 WO2013105534A1 (ja) 2012-01-11 2013-01-08 薄膜形成方法及び薄膜形成装置

Country Status (2)

Country Link
JP (1) JPWO2013105534A1 (ja)
WO (1) WO2013105534A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880550A (zh) * 2018-09-05 2020-03-13 杭州纤纳光电科技有限公司 含有表面活性剂的前驱体溶液的涂布设备及其方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210083A (ja) * 1988-02-17 1989-08-23 Kansai Paint Co Ltd 上塗り塗装方法
JPH0810691A (ja) * 1994-07-05 1996-01-16 Honda Motor Co Ltd 複層塗膜形成法
JP2004160388A (ja) * 2002-11-14 2004-06-10 Matsushita Electric Ind Co Ltd 薄膜の作成方法と作成装置
JP2007305507A (ja) * 2006-05-15 2007-11-22 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JP2010045222A (ja) * 2008-08-13 2010-02-25 Fuji Xerox Co Ltd 有機電界発光素子、及び表示装置
WO2011001613A1 (ja) * 2009-07-02 2011-01-06 シャープ株式会社 有機el素子、有機el素子の製造方法、および有機el表示装置
JP2012164533A (ja) * 2011-02-07 2012-08-30 Fujifilm Corp 有機積層薄膜の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210083A (ja) * 1988-02-17 1989-08-23 Kansai Paint Co Ltd 上塗り塗装方法
JPH0810691A (ja) * 1994-07-05 1996-01-16 Honda Motor Co Ltd 複層塗膜形成法
JP2004160388A (ja) * 2002-11-14 2004-06-10 Matsushita Electric Ind Co Ltd 薄膜の作成方法と作成装置
JP2007305507A (ja) * 2006-05-15 2007-11-22 Toppan Printing Co Ltd 有機エレクトロルミネッセンス素子の製造方法
JP2010045222A (ja) * 2008-08-13 2010-02-25 Fuji Xerox Co Ltd 有機電界発光素子、及び表示装置
WO2011001613A1 (ja) * 2009-07-02 2011-01-06 シャープ株式会社 有機el素子、有機el素子の製造方法、および有機el表示装置
JP2012164533A (ja) * 2011-02-07 2012-08-30 Fujifilm Corp 有機積層薄膜の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880550A (zh) * 2018-09-05 2020-03-13 杭州纤纳光电科技有限公司 含有表面活性剂的前驱体溶液的涂布设备及其方法

Also Published As

Publication number Publication date
JPWO2013105534A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
US9138771B2 (en) Apparatus and method for solution coating thin layers
US20110223340A1 (en) Electro-form nozzle apparatus and method for solution coating
JP3868280B2 (ja) 有機電界発光素子の製造装置
JP5125585B2 (ja) 有機エレクトロルミネッセンスパネルの製造方法とその製造装置
Bail et al. Inkjet printing of blue phosphorescent light-emitting layer based on bis (3, 5-di (9 H-carbazol-9-yl)) diphenylsilane
KR100656230B1 (ko) 테이블 장치, 성막 장치, 광학 소자, 반도체 소자 및 전자기기
Chen et al. High definition digital fabrication of active organic devices by molecular jet printing
WO2013105534A1 (ja) 薄膜形成方法及び薄膜形成装置
JP2002075641A (ja) 有機エレクトロルミネッセンス薄膜の作製方法と作製装置
JP7259847B2 (ja) インク組成物及び有機エレクトロルミネッセンス素子の製造方法
JP5900164B2 (ja) 塗布膜の乾燥装置及び乾燥方法
JP2013249999A (ja) 塗布膜の乾燥装置及び乾燥方法
JP5677253B2 (ja) 成膜方法および成膜装置
KR101067344B1 (ko) 인버티드 투명 유기 발광다이오드 및 인버티드 투명 유기 발광다이오드 제조방법
JP2012514299A (ja) 電鋳ノズル装置および溶液コーティング法
JP6003241B2 (ja) 塗布膜の乾燥装置及び乾燥方法
JP5772826B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5316493B2 (ja) 塗布方法および塗布装置
JP2007273229A (ja) 有機el素子の有機薄膜層成膜方法、有機el素子の有機薄膜層成膜装置及び有機el素子。
US8702202B2 (en) Apparatus and method for preventing splatter for continuous printing
JP2014009880A (ja) 塗布膜の乾燥装置及び乾燥方法
JP2013249998A (ja) 塗布膜の乾燥装置及び乾燥方法
JP2002313566A (ja) 有機エレクトロルミネッセンス素子の製造方法及びその製造装置
Seike et al. P‐164L: Late‐News Poster: The Study of Film Formation Process by Electrospray Method to Manufacture High Productivity Organic Light‐Emitting Diode Devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013553281

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13736280

Country of ref document: EP

Kind code of ref document: A1