WO2013105531A1 - 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物 - Google Patents

銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物 Download PDF

Info

Publication number
WO2013105531A1
WO2013105531A1 PCT/JP2013/050049 JP2013050049W WO2013105531A1 WO 2013105531 A1 WO2013105531 A1 WO 2013105531A1 JP 2013050049 W JP2013050049 W JP 2013050049W WO 2013105531 A1 WO2013105531 A1 WO 2013105531A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
amine
aliphatic hydrocarbon
mol
silver nanoparticles
Prior art date
Application number
PCT/JP2013/050049
Other languages
English (en)
French (fr)
Inventor
和樹 岡本
由紀 井口
正人 栗原
Original Assignee
株式会社ダイセル
国立大学法人山形大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, 国立大学法人山形大学 filed Critical 株式会社ダイセル
Priority to KR1020147018777A priority Critical patent/KR20140113936A/ko
Priority to EP13736204.2A priority patent/EP2803431A1/en
Priority to CN201380005177.4A priority patent/CN104136154A/zh
Priority to US14/371,548 priority patent/US20140346412A1/en
Publication of WO2013105531A1 publication Critical patent/WO2013105531A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/107Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing organic material comprising solvents, e.g. for slip casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/047Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method non-pressurised baking of the paste or slurry containing metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a method for producing silver nanoparticles and silver nanoparticles. Moreover, this invention relates to the silver coating composition containing the said silver nanoparticle. Furthermore, this invention is applied also to the manufacturing method of metal nanoparticle containing metals other than silver, and this metal nanoparticle.
  • Silver nanoparticles can be sintered even at low temperatures. Utilizing this property, in the manufacture of various electronic devices, a silver coating composition containing silver nanoparticles is used to form electrodes and conductive circuit patterns on a substrate. Silver nanoparticles are usually dispersed in an organic solvent. Silver nanoparticles have an average primary particle size of about several nanometers to several tens of nanometers, and the surface thereof is usually coated with an organic stabilizer (protective agent). When the substrate is a plastic film or sheet, it is necessary to sinter the silver nanoparticles at a low temperature (for example, 200 ° C. or less) lower than the heat resistance temperature of the plastic substrate.
  • a low temperature for example, 200 ° C. or less
  • Japanese Patent Application Laid-Open No. 2010-265543 discloses a silver compound that decomposes by heating to produce metallic silver, a medium / short chain alkylamine having a boiling point of 100 ° C. to 250 ° C., and a medium / short chain alkyl diamine having a boiling point of 100 ° C. to 250 ° C.
  • a method for producing coated silver ultrafine particles comprising a first step of preparing a complex compound containing a silver compound, the alkylamine and the alkyldiamine, and a second step of thermally decomposing the complex compound is disclosed. (Claim 3, paragraphs [0061] and [0062]).
  • Silver nanoparticles have an average primary particle diameter of about several nanometers to several tens of nanometers, and are more likely to aggregate than micron ( ⁇ m) size particles. Therefore, the reduction reaction of the silver compound (thermal decomposition reaction in the above patent document) is organic so that the surface of the obtained silver nanoparticles is coated with an organic stabilizer (protective agent such as aliphatic amine or aliphatic carboxylic acid). It is carried out in the presence of a stabilizer.
  • an organic stabilizer protecting agent such as aliphatic amine or aliphatic carboxylic acid
  • the silver nanoparticles are a silver coating composition (silver ink, silver paste) containing the particles in an organic solvent.
  • the organic stabilizer In order to develop conductivity, it is necessary to remove the organic stabilizer covering the silver nanoparticles and sinter the silver particles at the time of firing after application on the substrate. If the firing temperature is low, the organic stabilizer is difficult to remove. If the degree of sintering of the silver particles is not sufficient, a low resistance value cannot be obtained. That is, the organic stabilizer present on the surface of the silver nanoparticles contributes to the stabilization of the silver nanoparticles, but prevents the silver nanoparticles from being sintered (particularly, sintering at low temperature firing).
  • an aliphatic amine compound and / or an aliphatic carboxylic acid compound having a relatively long chain for example, having 8 or more carbon atoms
  • the distance between the individual silver nanoparticles is easily secured. Nanoparticles are easy to stabilize.
  • long-chain aliphatic amine compounds and / or aliphatic carboxylic acid compounds are difficult to remove if the firing temperature is low.
  • an oleylamine having 18 carbon atoms and a saturated aliphatic amine having 1 to 18 carbon atoms are used in combination as the aliphatic amine compound.
  • oleylamine is used as the main component of the protective agent, sintering of silver nanoparticles during low-temperature firing is hindered.
  • the reaction rate of the complex compound formation reaction between oleylamine and silver oxalate is not sufficient.
  • a medium / short chain alkylamine having a boiling point of 100 ° C. to 250 ° C. (paragraph [0061]) and a medium / short chain having a boiling point of 100 ° C. to 250 ° C.
  • An alkyldiamine (paragraph [0062]) is used in combination. According to this method, problems caused by using oleylamine as the main component of the protective agent are improved. However, further improvement of the performance of silver nanoparticles to be produced (expression of a low resistance value at low temperature firing) is desired.
  • an object of the present invention is to provide silver nanoparticles that are excellent in stability and exhibit excellent conductivity (low resistance value) by low-temperature firing, and a method for producing the same. Moreover, the objective of this invention is providing the silver coating composition containing the said silver nanoparticle.
  • the present inventors have studied an aliphatic amine compound that functions as a complexing agent and / or a protective agent, and is excellent in stability, at a low temperature of 200 ° C. or lower (eg, 150 ° C. or lower, preferably 120 ° C. or lower) and for 2 hours.
  • the present inventors have found a method in which silver nanoparticles exhibiting excellent conductivity (low resistance value) can be obtained by firing in a short time (for example, 1 hour or less, preferably 30 minutes or less).
  • the present invention includes the following inventions.
  • a method for producing silver nanoparticles An aliphatic hydrocarbon monoamine (A) consisting of an aliphatic hydrocarbon group and one amino group, wherein the aliphatic hydrocarbon group has a total carbon number of 6 or more;
  • the amine (A) may be 5 mol% or more and 19 mol% or less, and the amine (B) may be 81 mol% or more and 95 mol% or less.
  • the amine (A) and the amine (B) are used in an amount of 1 to 72 moles as a total of the amine (A) and the amine (B) with respect to 1 mole of silver atoms of the silver compound.
  • a silver paint composition comprising silver nanoparticles produced by the method described in any one of (1) to (6) above and an organic solvent.
  • the silver coating composition can take various forms without limitation. For example, a silver coating composition in which silver nanoparticles are dispersed in an organic solvent in a suspended state. Alternatively, a silver coating composition in which silver nanoparticles are dispersed in a kneaded state in an organic solvent.
  • a method for producing metal nanoparticles An aliphatic hydrocarbon monoamine (A) consisting of an aliphatic hydrocarbon group and one amino group, wherein the aliphatic hydrocarbon group has a total carbon number of 6 or more; An aliphatic hydrocarbon monoamine (B) consisting of an aliphatic hydrocarbon group and one amino group, the total number of carbons of the aliphatic hydrocarbon group being 5 or less, Based on the total of the amine (A) and the amine (B), Preparing an amine mixture containing 5 mol% or more and less than 20 mol% of the amine (A) and more than 80 mol% of the amine (B) and 95 mol% or less; A metal compound and the amine mixture are mixed to form a complex compound containing the metal compound and the amine, The complex compound is heated and thermally decomposed to form metal nanoparticles. The manufacturing method of the metal nanoparticle containing this.
  • the amine (A) may be 5 mol% or more and 19 mol% or less, and the amine (B) may be 81 mol% or more and 95 mol% or less.
  • a metal coating composition containing metal nanoparticles produced by the above method and an organic solvent can take various forms without limitation.
  • a metal coating composition in which metal nanoparticles are dispersed in an organic solvent in a suspended state is preferably dispersed in a metal coating composition in which metal nanoparticles are dispersed in a kneaded state in an organic solvent.
  • an aliphatic hydrocarbon monoamine (A) having 6 or more carbon atoms and an aliphatic hydrocarbon monoamine (B) having 5 or less carbon atoms On the basis of the total of the amine (A) and the amine (B), the amine (A) is 5 mol% or more and less than 20 mol% (for example, 5 mol% or more and 19 mol% or less), and the amine (B ) More than 80 mol% and 95 mol% or less (for example, 81 mol% or more and 95 mol% or less).
  • the aliphatic hydrocarbon monoamine (B) having a total carbon number of 5 or less has a shorter carbon chain length than the aliphatic hydrocarbon monoamine (A) having a total carbon number of 6 or more, it itself functions as a protective agent (stabilizer). However, it is considered that it is more polar than the aliphatic hydrocarbon monoamine (A) and has a high coordination ability to the silver of the silver compound, and is therefore effective in promoting complex formation.
  • the aliphatic hydrocarbon monoamine (A) having 6 or more carbon atoms has a high function as a protective agent (stabilizer) for the surface of the silver particles to be produced. Furthermore, the aliphatic hydrocarbon monoamine (B) having a total number of carbon atoms of 5 or less adheres to the surface portion of the silver particles to which the aliphatic hydrocarbon monoamine (A) has not adhered, thereby covering the surface. That is, although the aliphatic hydrocarbon monoamine (B) itself is considered to have a low function as a protective agent, the protective agent for the aliphatic hydrocarbon monoamine (A) is coated with a part of the surface of silver particles. It is thought that there is a role to assist the function.
  • the amount of the amine (A) is 5 mol% or more and less than 20 mol% (for example, 5 mol% or more and 19 mol% or less)
  • the silver of the aliphatic hydrocarbon monoamine (A) having 6 or more carbon atoms in total is used. Proper stabilization of the silver nanoparticles can be obtained with less adhesion on the particle surface.
  • the complex compound generation step can be performed efficiently, and the production of stabilized silver nanoparticles can be performed efficiently.
  • the proportion of the amine (B) more than 80 mol% and 95 mol% or less (for example, 81 mol% or more and 95 mol% or less), even in the case of firing at a low temperature in a short time.
  • the effect that the sintering of the silver particles proceeds sufficiently is obtained. That is, since the aliphatic hydrocarbon monoamine (B) having a total carbon number of 5 or less has a short carbon chain length, it is 2 hours or less even when firing at a low temperature of 200 ° C. or less, for example 150 ° C. or less, preferably 120 ° C. or less. For example, it is easily removed from the surface of the silver particles in a short time of 1 hour or less, preferably 30 minutes or less.
  • the amount of the aliphatic hydrocarbon monoamine (A) having 6 or more carbon atoms on the surface of the silver particles can be reduced. Accordingly, even in the case of firing at the low temperature, these aliphatic amine compounds are easily removed from the surface of the silver particles in the short time, and the sintering of the silver particles proceeds sufficiently. Improved sintering promotion in low-temperature firing contributes to thickening of the silver fired film.
  • the stability is excellent, a low temperature of 200 ° C. or less, such as 150 ° C. or less, preferably 120 ° C. or less, and 2 hours or less, such as 1 hour or less, preferably 30 minutes or less.
  • silver nanoparticles that exhibit excellent conductivity (low resistance value) by firing at, and a method for producing the same.
  • the silver coating composition which contains the said silver nanoparticle in the organic solvent in the stable dispersion state is provided.
  • a conductive film and conductive wiring can be formed on various plastic substrates having low heat resistance such as PET and polypropylene.
  • the present invention is effective for obtaining a silver fired film having a relatively low film thickness of, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more, especially 5 ⁇ m to 20 ⁇ m.
  • Example 2 is a scanning electron microscope (SEM) photograph of the surface of the silver fired film obtained in Example 1 (firing conditions: 80 ° C., 60 minutes).
  • SEM scanning electron microscope
  • an aliphatic hydrocarbon monoamine (A) comprising an aliphatic hydrocarbon group and one amino group, and the total number of carbons of the aliphatic hydrocarbon group is 6 or more;
  • An aliphatic hydrocarbon monoamine (B) consisting of an aliphatic hydrocarbon group and one amino group, wherein the aliphatic hydrocarbon group has a total carbon number of 5 or less, the amine (A) and the amine (B ) Based on the total of the amine (A) 5 mol% or more and less than 20 mol% (for example, 5 mol% or more and 19 mol% or less), and the amine (B) more than 80 mol% and 95 mol% or less ( For example, an amine mixed solution containing 81 mol% or more and 95 mol% or less) is prepared.
  • the method for producing silver nanoparticles of the present invention mainly includes an amine mixed solution preparation step, a complex compound generation step, and a complex compound thermal decomposition step.
  • the term “nanoparticles” means that the size of primary particles (average primary particle diameter) is less than 1000 nm.
  • the particle size is intended to exclude the protective agent (stabilizer) present (coated) on the surface (that is, the size of silver itself).
  • the silver nanoparticles have an average primary particle diameter of, for example, 0.5 nm to 100 nm, preferably 0.5 nm to 50 nm, more preferably 0.5 nm to 25 nm, and still more preferably 0.5 nm to 10 nm. Yes.
  • the silver compound a silver compound that is easily decomposed by heating to form metallic silver.
  • examples of such silver compounds include silver formate, silver acetate, silver oxalate, silver malonate, silver benzoate, and silver phthalate; silver fluoride, silver chloride, silver bromide, silver iodide, etc.
  • silver halides such as sulfate, silver nitrate, silver carbonate and the like can be used
  • silver oxalate is preferably used from the viewpoint that metal silver is easily generated by decomposition and impurities other than silver are hardly generated.
  • Silver oxalate is advantageous in that it has a high silver content and does not require a reducing agent, so that metallic silver can be obtained as it is by thermal decomposition, and impurities derived from the reducing agent do not easily remain.
  • a metal compound that is easily decomposed by heating to produce a target metal is used instead of the silver compound.
  • a metal salt corresponding to the above silver compound for example, a metal carboxylate; a metal halide; a metal salt compound such as a metal sulfate, a metal nitrate, or a metal carbonate is used. be able to.
  • metal oxalate is preferably used from the viewpoint of easily generating metal by decomposition and hardly generating impurities other than metal.
  • other metals include Al, Au, Pt, Pd, Cu, Co, Cr, In, and Ni.
  • the above silver compound and a metal compound other than the above silver may be used in combination.
  • other metals include Al, Au, Pt, Pd, Cu, Co, Cr, In, and Ni.
  • the silver composite is composed of silver and one or more other metals, and examples thereof include Au—Ag, Ag—Cu, Au—Ag—Cu, and Au—Ag—Pd. Based on the total metal, silver accounts for at least 20% by weight, usually 50% by weight, for example 80% by weight.
  • the aliphatic hydrocarbon amine compounds functioning as a complexing agent and / or a protective agent
  • the aliphatic hydrocarbon amine (A) having 6 or more carbon atoms and the aliphatic hydrocarbon amine having 5 or less carbon atoms are used.
  • (B) is used.
  • an “aliphatic hydrocarbon monoamine” is a compound composed of 1 to 3 monovalent aliphatic hydrocarbon groups and one amino group.
  • a “hydrocarbon group” is a group consisting only of carbon and hydrogen.
  • the aliphatic hydrocarbon amine (A) and the aliphatic hydrocarbon amine (B) are, as necessary, a hetero atom (an atom other than carbon and hydrogen) such as an oxygen atom or a nitrogen atom. ).
  • the aliphatic hydrocarbon monoamine (A) having a total carbon number of 6 or more has a high function as a protective agent (stabilizer) on the surface of the silver particles to be generated by the hydrocarbon chain.
  • the aliphatic monohydrocarbon amine (A) includes primary amines, secondary amines, and tertiary amines.
  • primary amines include hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecylamine, hexadecylamine, heptadecylamine, octadecylamine
  • saturated aliphatic hydrocarbon monoamines such as amines (that is, alkyl monoamines).
  • saturated aliphatic hydrocarbon monoamine examples include branched aliphatic hydrocarbon amines such as isohexylamine, 2-ethylhexylamine, and tert-octylamine, in addition to the above-mentioned linear aliphatic monoamine. Also included is cyclohexylamine. Furthermore, unsaturated aliphatic hydrocarbon monoamines (namely, alkenyl monoamines) such as oleylamine can be mentioned.
  • Secondary amines include N, N-dipropylamine, N, N-dibutylamine, N, N-dipentylamine, N, N-dihexylamine, N, N-dipeptylamine, N, N-dioctylamine, N , N-dinonylamine, N, N-didecylamine, N, N-diundecylamine, N, N-didodecylamine, N-methyl-N-propylamine, N-ethyl-N-propylamine, N-propyl-N -Dialkyl monoamines such as butylamine.
  • Examples of the tertiary amine include tributylamine and trihexylamine.
  • saturated aliphatic hydrocarbon monoamines having 6 or more carbon atoms are preferred.
  • the upper limit of the number of carbon atoms is not particularly defined, but saturated aliphatic monoamines having up to 18 carbon atoms are usually preferred in consideration of availability, ease of removal during firing, and the like.
  • alkyl monoamines having 6 to 12 carbon atoms such as hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, and dodecylamine are preferably used.
  • alkyl monoamines having 6 to 12 carbon atoms such as hexylamine, heptylamine, octylamine, nonylamine, decylamine, undecylamine, and dodecylamine are preferably used.
  • aliphatic hydrocarbon monoamines (A) only one type may be used, or two or more types may be used in combination.
  • the aliphatic hydrocarbon monoamine (B) having a total carbon number of 5 or less has a shorter carbon chain length than the aliphatic monoamine (A) having a total carbon number of 6 or more, it itself has a low function as a protective agent (stabilizer).
  • the polarity is higher and the coordination ability of the silver compound to silver is higher, which is considered to be effective in promoting complex formation.
  • the carbon chain length is short, it can be removed from the surface of the silver particles in a short time of 30 minutes or less or 20 minutes or less even in low-temperature firing of 120 ° C. or less, or about 100 ° C. or less. Effective for low-temperature firing of silver nanoparticles.
  • Examples of the aliphatic hydrocarbon monoamine (B) include ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, tert-pentylamine and the like.
  • Examples thereof include saturated aliphatic hydrocarbon monoamines having 2 to 5 carbon atoms (that is, alkyl monoamines).
  • dialkyl monoamines such as N, N-dimethylamine and N, N-diethylamine are also included.
  • n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, isopentylamine, tert-pentylamine and the like are preferable, and the above butylamines are particularly preferable.
  • the aliphatic hydrocarbon monoamines (B) only one type may be used, or two or more types may be used in combination.
  • the proportions of the aliphatic hydrocarbon monoamine (A) having 6 or more carbon atoms and the aliphatic hydrocarbon monoamine (B) having 5 or less carbon atoms are used as the amine (A) and the amine (B). Based on the sum of The amine (A): 5 mol% or more and less than 20 mol% (for example, 5 mol% or more and 19 mol% or less), and the amine (B): more than 80 mol% and 95 mol% or less (for example, 81 mol%) Or more and 95 mol% or less).
  • the amine liquid mixture of this invention can contain amines other than the said amine (A) and (B).
  • the function of protecting and stabilizing the surface of the silver particles to be produced can be obtained by the carbon chain of the component (A).
  • the protective stabilization function may be weakly expressed.
  • the protective stabilization function is sufficient, but the component (A) is formed by low-temperature firing when forming a relatively thick sintered film. It becomes difficult to be removed.
  • About the minimum of content of the said (A) component 10 mol% or more, for example, 13 mol% or more is preferable.
  • About the upper limit of content of the said (A) component 19 mol% or less, for example, 17 mol% or less is preferable.
  • the effect of promoting complex formation can be easily obtained, and itself can contribute to low temperature and short time baking.
  • the content of the component (B) is 80 mol% or less, the effect of promoting complex formation is weak, or the component (A) is on the surface of silver particles during firing when forming a relatively thick sintered film. May be difficult to remove.
  • the content of the component (B) exceeds 95 mol%, a complex formation promoting effect can be obtained, but the content of the aliphatic monoamine (A) is relatively decreased, and silver particles are produced. It is difficult to achieve surface protection and stabilization.
  • the minimum of content of the said (B) component 81 mol% or more, for example, 83 mol% or more is preferable.
  • About the upper limit of content of the said (B) component 90 mol% or less, for example, 87 mol% or less is preferable.
  • the aliphatic monoamine (B) having a high coordination ability to silver of the silver compound is used in the above ratio, the aliphatic monoamine (A) having 6 or more carbon atoms on the silver particle surface is used. Less adhesion is required. Therefore, even in the case of firing at a low temperature for a short time, these aliphatic amine compounds are easily removed from the surface of the silver particles, and the silver particles are sufficiently sintered.
  • the total amount of the amine (A) and the amine (B) is not particularly limited, but the amine [(A) + (B )] Is preferably about 1 to 72 mol. If the amount of the amine [(A) + (B)] is less than 1 mole relative to 1 mole of the silver atom, a silver compound that cannot be converted into the complex compound may remain in the complex compound formation step. In the subsequent pyrolysis step, the uniformity of the silver particles may be impaired and the particles may be enlarged, or the silver compound may remain without being pyrolyzed.
  • the amount of the amine [(A) + (B)] exceeds about 72 mol with respect to 1 mol of the silver atom.
  • the amine [(A) + (B)] may be, for example, about 2 mol or more.
  • the amine mixed solution further includes an aliphatic hydrocarbon diamine (C) which is composed of an aliphatic hydrocarbon group and two amino groups, and the total number of carbon atoms of the aliphatic hydrocarbon group is 8 or less. But you can.
  • C aliphatic hydrocarbon diamine
  • “Aliphatic hydrocarbon diamine” means a divalent aliphatic hydrocarbon group (alkylene group), two amino groups intervening the aliphatic hydrocarbon group, and, in some cases, a hydrogen atom of the amino group. It is a compound composed of a substituted aliphatic hydrocarbon group (alkyl group).
  • the aliphatic hydrocarbon amine (C) does not contain a hetero atom (atom other than carbon and hydrogen) such as an oxygen atom or a nitrogen atom in its hydrocarbon group.
  • Aliphatic hydrocarbon diamine (C) having a total carbon number of 8 or less has high coordination ability to silver of silver compounds and is effective in promoting complex formation.
  • the aliphatic hydrocarbon diamine generally has a higher polarity than the aliphatic hydrocarbon monoamine, and the coordination ability of silver compounds to silver is increased.
  • the aliphatic hydrocarbon diamine (C) has an effect of promoting thermal decomposition at a lower temperature and in a shorter time in the thermal decomposition step of the complex compound, and can produce silver nanoparticles more efficiently. .
  • the protective film of the silver particle containing the said aliphatic diamine (C) has high polarity, the dispersion stability of the silver particle in the dispersion medium containing a highly polar solvent improves. Furthermore, since the aliphatic diamine (C) has a short carbon chain length, the surface of the silver particles can be obtained in a short time of 30 minutes or less or 20 minutes or less even when firing at a low temperature of 120 ° C. or less, or about 100 ° C. or less. Therefore, it is effective for low-temperature and short-time firing of the obtained silver nanoparticles.
  • the aliphatic hydrocarbon diamine (C) is not particularly limited, but includes ethylenediamine, N, N-dimethylethylenediamine, N, N′-dimethylethylenediamine, N, N-diethylethylenediamine, N, N′-diethylethylenediamine, 1 , 3-propanediamine, 2,2-dimethyl-1,3-propanediamine, N, N-dimethyl-1,3-propanediamine, N, N′-dimethyl-1,3-propanediamine, N, N— Diethyl-1,3-propanediamine, N, N′-diethyl-1,3-propanediamine, 1,4-butanediamine, N, N-dimethyl-1,4-butanediamine, N, N′-dimethyl- 1,4-butanediamine, N, N-diethyl-1,4-butanediamine, N, N′-diethyl-1,4-butanediamine 1,5-pentanediamine, 1,5-d
  • alkylene diamines having a total carbon number of 8 or less, in which at least one of the two amino groups is a primary amino group or a secondary amino group, and the ability of the silver compound to coordinate to silver is high, Effective in promoting complex formation.
  • one of the two amino groups is a primary amino group
  • An alkylenediamine having a total carbon number of 8 or less, wherein —NH 2 ) and the other one is a tertiary amino group (—NR 1 R 2 ) is preferred.
  • a preferred alkylenediamine is represented by the following structural formula.
  • R 1 and R 2 may be the same or different and each represents an alkyl group, provided that the total number of carbon atoms of R, R 1 and R 2 is 8 It is as follows.
  • the alkylene group does not contain a hetero atom such as an oxygen atom or a nitrogen atom.
  • the alkyl group does not contain a hetero atom such as an oxygen atom or a nitrogen atom.
  • one of the two amino groups is a primary amino group
  • the ability of the silver compound to coordinate to silver is increased, which is advantageous for complex formation
  • the other is a tertiary amino group. Since the tertiary amino group has poor coordination ability to silver atoms, the complex formed is prevented from having a complex network structure.
  • a high temperature may be required for the thermal decomposition process of the complex.
  • a diamine having a total carbon number of 6 or less is preferable, and a diamine having a total carbon number of 5 or less is more preferable from the viewpoint that it can be removed from the surface of the silver particles in a short time even in low-temperature firing.
  • the aliphatic hydrocarbon diamine (C) only one type may be used, or two or more types may be used in combination.
  • an aliphatic carboxylic acid (D) may be further used as a stabilizer.
  • the aliphatic carboxylic acid (D) can be used by being included in the amine mixed solution.
  • aliphatic carboxylic acid (D) a saturated or unsaturated aliphatic carboxylic acid is used.
  • aliphatic carboxylic acid a saturated or unsaturated aliphatic carboxylic acid is used.
  • saturated aliphatic monocarboxylic acids having 4 or more carbon atoms such as icosanoic acid and eicosenoic acid
  • unsaturated aliphatic monocarboxylic acids having 8 or more carbon atoms such as oleic acid
  • saturated or unsaturated aliphatic monocarboxylic acids having 8 to 18 carbon atoms are preferable.
  • the number of carbon atoms By setting the number of carbon atoms to 8 or more, when the carboxylic acid group is adsorbed on the surface of the silver particle, a space between the silver particle and other silver particles can be secured.
  • saturated or unsaturated aliphatic monocarboxylic acid compounds having up to 18 carbon atoms are usually preferred.
  • octanoic acid, oleic acid and the like are preferably used.
  • the aliphatic carboxylic acids (D) only one type may be used, or two or more types may be used in combination.
  • an amine mixed solution containing an aliphatic hydrocarbon monoamine (A) having 6 or more carbon atoms and an aliphatic hydrocarbon monoamine (B) having 5 or less carbon atoms is prepared.
  • the amine mixed solution can be prepared by stirring the components (A) and (B) at a predetermined ratio at room temperature.
  • the said amine (C) component and / or the said carboxylic acid (D) component it is good to mix in this case.
  • the silver compound and the amine mixed solution are mixed to generate a complex compound containing the silver compound and the amine [complex compound generating step].
  • a metal compound containing the target metal may be used instead of the silver compound.
  • Powdered silver compound (or metal compound) and a predetermined amount of amine mixture are mixed.
  • the mixing is preferably carried out while stirring at room temperature, or while appropriately cooling to room temperature or lower and stirring because the coordination reaction of amines to the silver compound (or metal compound) involves heat generation.
  • An excess of amines serves as a reaction medium. Since the complex compound to be formed generally exhibits a color corresponding to its constituent components, the end point of the complex compound formation reaction can be detected by detecting the end of the color change of the reaction mixture by appropriate spectroscopy or the like. .
  • the complex compound formed by silver oxalate is generally colorless (observed as white when visually observed), but even in such a case, the complex compound is formed on the basis of a change in form such as a change in viscosity of the reaction mixture. The generation state can be detected. In this way, a silver-amine complex (or metal-amine complex) is obtained in a medium mainly composed of amines.
  • the obtained complex compound is heated and pyrolyzed to form silver nanoparticles [complex compound pyrolysis step].
  • a metal compound containing a metal other than silver is used, target metal nanoparticles are formed.
  • Silver nanoparticles (metal nanoparticles) are formed without using a reducing agent. However, if necessary, an appropriate reducing agent may be used as long as the effects of the present invention are not impaired.
  • amines control the manner in which atomic metals generated by the decomposition of metal compounds aggregate to form fine particles, and on the surface of the formed metal fine particles.
  • a film By forming a film, it plays the role of preventing reaggregation between the fine particles. That is, by heating a complex compound of a metal compound and an amine, the metal compound is thermally decomposed while maintaining the coordinate bond of the amine to the metal atom to produce an atomic metal, and then the amine is coordinated. It is considered that the metal atoms are aggregated to form metal nanoparticles covered with an amine protective film.
  • the thermal decomposition may be performed while stirring the complex compound in a reaction medium mainly composed of amines.
  • the thermal decomposition is preferably performed within a temperature range in which the coated silver nanoparticles (or coated metal nanoparticles) are generated. From the viewpoint of preventing amine from being removed from the silver particle surface (or metal particle surface), the above temperature range is used. It is preferable to carry out at as low a temperature as possible.
  • a complex compound of silver oxalate it can be set to, for example, about 80 ° C. to 120 ° C., preferably about 95 ° C. to 115 ° C., more specifically about 100 ° C. to 110 ° C.
  • the thermal decomposition of the complex compound is preferably performed in an inert gas atmosphere such as argon, but the thermal decomposition can also be performed in the air.
  • a brown suspension is formed by thermal decomposition of the complex compound. From this suspension, removal of excess amine, etc., for example, precipitation of silver nanoparticles (or metal nanoparticles), decantation / washing with an appropriate solvent (water or organic solvent), Thus, stable coated silver nanoparticles (or coated metal nanoparticles) can be obtained. If it dries after washing
  • Use water or organic solvent for decantation and cleaning operations examples include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, and tetradecane; aromatic hydrocarbon solvents such as toluene, xylene, and mesitylene; methanol Alcohol solvents such as ethanol, propanol, butanol, etc .; acetonitrile; and mixed solvents thereof may be used.
  • aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, and tetradecane
  • aromatic hydrocarbon solvents such as toluene, xylene, and mesitylene
  • methanol Alcohol solvents such as ethanol, propanol, butano
  • a reducing agent may be used, there are no by-products derived from the reducing agent, the separation of the coated silver nanoparticles from the reaction system is simple, and high-purity coated silver nanoparticles are obtained.
  • an appropriate reducing agent may be used as long as the effects of the present invention are not impaired.
  • a silver coating composition can be prepared using the obtained silver nanoparticles.
  • the silver coating composition can take various forms without limitation. For example, by dispersing silver nanoparticles in an appropriate organic solvent (dispersion medium) in a suspended state, a silver coating composition called a so-called silver ink can be produced. Alternatively, a silver coating composition called a so-called silver paste can be produced by dispersing silver nanoparticles in a state of being kneaded in an organic solvent.
  • organic solvent for obtaining the coating composition examples include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, and tetradecane; aromatics such as toluene, xylene, and mesitylene Hydrocarbon solvents: alcohol solvents such as methanol, ethanol, propanol, n-butanol, n-pentanol, n-hexanol, n-heptanol, n-octanol, n-nonanol, n-decanol and the like.
  • aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, and tetradecane
  • aromatics such as tol
  • Examples of the organic solvent for obtaining a silver coating composition include terpene solvents such as terpineol and dihydroxyterpineol for obtaining a silver paste.
  • the type and amount of the organic solvent may be appropriately determined according to the concentration and viscosity of the desired silver coating composition (silver ink, silver paste). The same applies to metal nanoparticles.
  • silver nanoparticles (or metal nanoparticles) whose surface is coated with a protective agent can be obtained.
  • the protective agent contains an aliphatic hydrocarbon monoamine (A) having 6 or more carbon atoms and an aliphatic hydrocarbon monoamine (B) having 5 or less carbon atoms.
  • Application is spin coating, inkjet printing, screen printing, dispenser printing, letterpress printing (flexographic printing), sublimation printing, offset printing, laser printer printing (toner printing), intaglio printing (gravure printing), contact printing, microcontact printing It can carry out by well-known methods, such as.
  • a printing technique is used, a patterned silver coating composition layer is obtained, and a patterned silver conductive layer is obtained by firing.
  • Calcination can be performed at a temperature of 200 ° C. or lower, for example, room temperature (25 ° C.) or higher and 150 ° C. or lower, preferably room temperature (25 ° C.) or higher and 120 ° C. or lower.
  • a temperature of 60 ° C. to 200 ° C. for example, 80 ° C. to 150 ° C., preferably 90 ° C. to 120 ° C. .
  • the firing time may be appropriately determined in consideration of the amount of silver ink applied, the firing temperature, etc., for example, within several hours (eg, 3 hours or 2 hours), preferably within 1 hour, more preferably within 30 minutes, More preferably, it may be 10 minutes to 20 minutes.
  • the silver nanoparticles are configured as described above, the sintering of the silver particles sufficiently proceeds even by such a firing process at a low temperature and in a short time. As a result, excellent conductivity (low resistance value) is exhibited.
  • a silver conductive layer having a relatively low film resistance value of 1 ⁇ m or more, preferably 3 ⁇ m or more, especially 5 ⁇ m to 20 ⁇ m is formed.
  • the substrate can be a glass substrate, a heat resistant plastic substrate such as a polyimide film, or a polyester film such as a polyethylene terephthalate (PET) film or a polyethylene naphthalate (PEN) film.
  • a general-purpose plastic substrate having low heat resistance such as a polyolefin-based film such as polypropylene can also be suitably used.
  • baking in a short time reduces the load on these general-purpose plastic substrates having low heat resistance, and improves production efficiency.
  • the silver conductive material of the present invention includes an electromagnetic wave control material, a circuit board, an antenna, a heat sink, a liquid crystal display, an organic EL display, a field emission display (FED), an IC card, an IC tag, a solar cell, an LED element, an organic transistor, and a capacitor.
  • FED field emission display
  • IC card an IC tag
  • solar cell an LED element, an organic transistor, and a capacitor.
  • Capacitor Capacitor
  • electronic paper flexible battery, flexible sensor, membrane switch, touch panel, EMI shield, etc.
  • the thickness of the silver conductive layer may be appropriately determined according to the intended use. For example, it may be selected from the range of 5 nm to 20 ⁇ m, preferably 100 nm to 20 ⁇ m, more preferably 300 nm to 20 ⁇ m.
  • the present invention is effective for obtaining a silver fired film having a relatively low film thickness of, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more, especially 5 ⁇ m to 20 ⁇ m.
  • the obtained silver fired film was measured using a four-terminal method (Loresta GP MCP-T610).
  • the measuring range limit of this device is 10 7 ⁇ cm.
  • n-Butylamine (MW: 73.14): Reagent n-hexylamine (MW: 101.19) manufactured by Tokyo Chemical Industry Co., Ltd.
  • Reagent n-octylamine (MW: 129.25) manufactured by Tokyo Chemical Industry Co., Ltd.
  • Silver oxalate (MW: 303.78): Tokyo Chemical Co., Ltd.
  • reagent methanol Wako Pure Chemical Industries, Ltd. reagent special grade dihydroxy terpineol: Nippon Terpene Co., Ltd.
  • Example 1 (Preparation of silver nanoparticles) To a 50 mL flask, 10.84 g (150 mmol) of n-butylamine and 3.00 g (30 mmol) of n-hexylamine were added and stirred at room temperature to prepare a uniform amine mixed solution.
  • reaction mixture was heated and stirred at 85 ° C. to 90 ° C.
  • the white silver oxalate-amine complex was gradually decomposed and turned brown, and the suspension in which the silver nanoparticles were suspended in the amine mixed solution was stirred by heating and stirring for 2 hours. Obtained.
  • the coating film was baked in a blow drying oven under the following conditions to form a silver fired film of each thickness.
  • the specific resistance value of the obtained silver fired film was measured by a four-terminal method.
  • Firing condition 80 ° C., 30 minutes Film thickness after firing: 6.77 ⁇ m Specific resistance of fired film: 1.70E-05 ⁇ cm (ie, 17 ⁇ cm) [2] Firing conditions: 80 ° C., 60 minutes Film thickness after firing: 4.96 ⁇ m Specific resistance of fired film: 1.00E-05 ⁇ cm [3] Firing condition: 120 ° C., 15 minutes Film thickness after firing: 5.42 ⁇ m Specific resistance of fired film: 6.03E-06 ⁇ cm
  • FIG. 1 is a scanning electron microscope (SEM) photograph ( ⁇ 100,000 times magnification) of the surface of a silver fired film obtained under the firing condition [2]. It can be confirmed that multiple particles are fused by sintering.
  • Example 2 A silver nanoparticle-containing paste was prepared in the same manner as in Example 1 except that the composition of the amine mixed solution was changed from 3.00 g (30 mmol) of n-hexylamine to 3.88 g (30 mmol) of n-octylamine. The coating film was formed and fired.
  • Firing condition 80 ° C., 30 minutes Film thickness after firing: 6.38 ⁇ m Specific resistance of fired film: 6.23E-05 ⁇ cm
  • Firing condition 80 ° C., 60 minutes Film thickness after firing: 4.70 ⁇ m
  • Specific resistance of fired film 2.21E-05 ⁇ cm
  • Firing conditions 120 ° C., 15 minutes Film thickness after firing: 4.73 ⁇ m
  • Specific resistance of fired film 8.34E-06 ⁇ cm
  • Firing conditions 80 ° C., 30 minutes Film thickness after firing: 6.14 ⁇ m Specific resistance of fired film: 3.21E-05 ⁇ cm [2] Firing conditions: 80 ° C., 60 minutes Film thickness after firing: 5.11 ⁇ m Specific resistance of fired film: 1.72E-05 ⁇ cm [3] Firing conditions: 120 ° C., 15 minutes Film thickness after firing: 4.63 ⁇ m Specific resistance of fired film: 7.42E-06 ⁇ cm
  • FIG. 2 is a scanning electron microscope (SEM) photograph ( ⁇ 100,000 times magnification) of the surface of the silver fired film obtained under the firing condition [2]. It can be seen that the degree of fusion by sintering is inferior to that of Example 1.
  • Firing conditions 80 ° C., 30 minutes Film thickness after firing: 6.04 ⁇ m Specific resistance of fired film: 2.17E-02 ⁇ cm [2] Firing condition: 80 ° C., 60 minutes Film thickness after firing: 6.45 ⁇ m Specific resistance of fired film: 2.88E-04 ⁇ cm [3] Firing condition: 120 ° C., 15 minutes Film thickness after firing: 7.15 ⁇ m Specific resistance of fired film: 1.10E-04 ⁇ cm

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

 安定性に優れ、低温焼成によって優れた導電性が発現する銀ナノ粒子、及びその製造方法、及び前記銀ナノ粒子を含む銀塗料組成物を提供する。脂肪族炭化水素基と1つのアミノ基とからなり、該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、脂肪族炭化水素基と1つのアミノ基とからなり、該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)とを、前記アミン(A)と前記アミン(B)の合計を基準として、前記アミン(A)5モル%以上20モル%未満、及び前記アミン(B)80モル%を超えて95モル%以下の割合で含むアミン混合液を調製し; 銀化合物と前記アミン混合液とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させ; 前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する; ことを含む銀ナノ粒子の製造方法。

Description

銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
  本発明は、銀ナノ粒子の製造方法及び銀ナノ粒子に関する。また、本発明は、前記銀ナノ粒子を含む銀塗料組成物に関する。さらに、本発明は、銀以外の金属を含む金属ナノ粒子の製造方法及び該金属ナノ粒子にも適用される。
 銀ナノ粒子は、低温でも焼結させることができる。この性質を利用して、種々の電子素子の製造において、基板上に電極や導電回路パターンを形成するために、銀ナノ粒子を含む銀塗料組成物が用いられている。銀ナノ粒子は、通常、有機溶剤中に分散されている。銀ナノ粒子は、数nm~数十nm程度の平均一次粒子径を有しており、通常、その表面は有機安定剤(保護剤)で被覆されている。基板がプラスチックフィルム又はシートの場合には、プラスチック基板の耐熱温度未満の低温(例えば、200℃以下)で銀ナノ粒子を焼結させることが必要である。
 特に最近では、フレキシブルプリント配線基板として、すでに使用されている耐熱性のポリイミドのみならず、ポリイミドよりも耐熱性は低いが加工が容易で且つ安価なPET(ポリエチレンテレフタレート)やポリプロピレンなどの各種プラスチック製の基板に対しても、微細な金属配線(例えば、銀配線)を形成する試みがなされている。耐熱性の低いプラスチック製の基板を用いた場合には、金属ナノ粒子(例えば、銀ナノ粒子)をさらに低温で焼結させることが必要である。
 例えば、特開2008-214695号公報には、シュウ酸銀とオレイルアミンとを反応させて少なくとも銀とオレイルアミンとシュウ酸イオンとを含む錯化合物を生成し、生成した前記錯化合物を加熱分解させて銀超微粒子を生成することを含む銀超微粒子の製造方法が開示されている(請求項1)。また、前記方法において、前記シュウ酸銀と前記オレイルアミンに加えて総炭素数1~18の飽和脂肪族アミンを反応させる(請求項2、3)と、錯化合物を容易に生成でき、銀超微粒子の製造に要する時間を短縮でき、しかも、これらのアミンで保護された銀超微粒子をより高収率で生成することができることが開示されている(段落[0011])。
 特開2010-265543号公報には、加熱により分解して金属銀を生成する銀化合物と、沸点100℃~250℃の中短鎖アルキルアミン及び沸点100℃~250℃の中短鎖アルキルジアミンとを混合して、銀化合物と前記アルキルアミン及び前記アルキルジアミンを含む錯化合物を調製する第1工程と、前記錯化合物を加熱分解させる第2工程とを含む被覆銀超微粒子の製造方法が開示されている(請求項3、段落[0061]、[0062])。
特開2008-214695号公報 特開2010-265543号公報
 銀ナノ粒子は、数nm~数十nm程度の平均一次粒子径を有しており、ミクロン(μm)サイズの粒子に比べ、凝集しやすい。そのため、得られる銀ナノ粒子の表面が有機安定剤(脂肪族アミンや脂肪族カルボン酸などの保護剤)で被覆されるように、銀化合物の還元反応(上記特許文献における熱分解反応)は有機安定剤の存在下で行われる。
 一方、銀ナノ粒子は、該粒子を有機溶剤中に含む銀塗料組成物(銀インク、銀ペースト)とされる。導電性発現のためには、基板上への塗布後の焼成時において、銀ナノ粒子を被覆している有機安定剤は除去されて銀粒子が焼結することが必要である。焼成の温度が低ければ、有機安定剤は除去されにくくなる。銀粒子の焼結度合いが十分でなければ、低い抵抗値は得られない。すなわち、銀ナノ粒子の表面に存在する有機安定剤は、銀ナノ粒子の安定化に寄与するが、一方、銀ナノ粒子の焼結(特に、低温焼成での焼結)を妨げる。
 有機安定剤として比較的長鎖(例えば、炭素数8以上)の脂肪族アミン化合物及び/又は脂肪族カルボン酸化合物を用いると、個々の銀ナノ粒子同士の互いの間隔が確保されやすいため、銀ナノ粒子が安定化されやすい。一方、長鎖の脂肪族アミン化合物及び/又は脂肪族カルボン酸化合物は、焼成の温度が低ければ、除去されにくい。
 このように、銀ナノ粒子の安定化と、低温焼成での低抵抗値の発現とは、トレードオフの関係にある。
 特開2008-214695号公報においては、上述のように、脂肪族アミン化合物として、炭素数18のオレイルアミンと炭素数1~18の飽和脂肪族アミンとが組み合わされて用いられる。しかしながら、オレイルアミンを保護剤の主成分として用いると、低温焼成での銀ナノ粒子の焼結は妨げられる。また、オレイルアミンとシュウ酸銀との錯化合物形成反応の反応速度は十分ではない。
 特開2010-265543号公報においては、上述のように、脂肪族アミン化合物として、沸点100℃~250℃の中短鎖アルキルアミン(段落[0061])と沸点100℃~250℃の中短鎖アルキルジアミン(段落[0062])とが組み合わされて用いられる。この方法によれば、オレイルアミンを保護剤の主成分として用いることに起因する問題は改善される。しかしながら、製造される銀ナノ粒子の性能(低温焼成での低抵抗値の発現)のさらなる向上が望まれる。例えば、同号公報の開示の銀ナノ粒子を用いて銀焼成膜を作製すると、200nm程度の薄膜の場合には優れた導電性が得られるが、5μm~20μm程度の厚膜の場合には導電性が低下してしまう。
 そこで、本発明の目的は、安定性に優れ、低温焼成によって優れた導電性(低い抵抗値)が発現する銀ナノ粒子、及びその製造方法を提供することにある。また、本発明の目的は、前記銀ナノ粒子を含む銀塗料組成物を提供することにある。
 本発明者らは、錯形成剤及び/又は保護剤として機能する脂肪族アミン化合物について検討し、安定性に優れ、200℃以下(例えば150℃以下、好ましくは120℃以下)の低温且つ2時間以下(例えば1時間以下、好ましくは30分間以下)の短い時間での焼成によって優れた導電性(低い抵抗値)が発現する銀ナノ粒子が得られる方法を見出した。
  本発明には、以下の発明が含まれる。
 (1)  銀ナノ粒子の製造方法であって、
 脂肪族炭化水素基と1つのアミノ基とからなり、該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、
 脂肪族炭化水素基と1つのアミノ基とからなり、該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)とを、
 前記アミン(A)と前記アミン(B)の合計を基準として、
 前記アミン(A)  5モル%以上20モル%未満、及び
 前記アミン(B) 80モル%を超えて95モル%以下
の割合で含むアミン混合液を調製し、
 銀化合物と、前記アミン混合液とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させ、
 前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する、
ことを含む銀ナノ粒子の製造方法。
 前記アミン混合液において、例えば、前記アミン(A)と前記アミン(B)の合計を基準として、
 前記アミン(A)  5モル%以上19モル%以下、及び
 前記アミン(B) 81モル%以上95モル%以下
としてもよい。
 (2)  前記脂肪族炭化水素モノアミン(A)は、炭素数6以上12以下のアルキルモノアミンである、上記(1) に記載の銀ナノ粒子の製造方法。
 (3)  前記脂肪族炭化水素モノアミン(B)は、炭素数2以上5以下のアルキルモノアミンである、上記(1) 又は(2) に記載の銀ナノ粒子の製造方法。
 (4)  前記脂肪族炭化水素モノアミン(B)は、ブチルアミンである、上記(1) ~(3) のうちのいずれかに記載の銀ナノ粒子の製造方法。
 (5)  前記銀化合物は、シュウ酸銀である、上記(1) ~(4) のうちのいずれかに記載の銀ナノ粒子の製造方法。
 (6)  前記銀化合物の銀原子1モルに対して、前記アミン(A)及び前記アミン(B)を前記アミン(A)と前記アミン(B)の合計として1~72モル用いる、上記(1) ~(5) のうちのいずれかに記載の銀ナノ粒子の製造方法。
 (7)  上記(1) ~(6) のうちのいずれかに記載の方法により製造される銀ナノ粒子。
 (8)  上記(1) ~(6) のうちのいずれかに記載の方法により製造される銀ナノ粒子と、有機溶剤とを含む銀塗料組成物。該銀塗料組成物は、制限されることなく、種々の形態をとり得る。例えば、銀ナノ粒子が、有機溶剤中に懸濁状態で分散されている銀塗料組成物。あるいは、銀ナノ粒子が、有機溶剤中に混練された状態で分散されている銀塗料組成物。
 (9)  基板と、
 前記基板上に、上記(1) ~(6) のうちのいずれかに記載の方法により製造される銀ナノ粒子と有機溶剤とを含む銀塗料組成物が塗布され、焼成されてなる銀導電層と、
を含む銀導電材料。
 ・ 金属ナノ粒子の製造方法であって、
 脂肪族炭化水素基と1つのアミノ基とからなり、該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、
 脂肪族炭化水素基と1つのアミノ基とからなり、該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)とを、
 前記アミン(A)と前記アミン(B)の合計を基準として、
 前記アミン(A)  5モル%以上20モル%未満、及び
 前記アミン(B) 80モル%を超えて95モル%以下
の割合で含むアミン混合液を調製し、
 金属化合物と、前記アミン混合液とを混合して、前記金属化合物及び前記アミンを含む錯化合物を生成させ、
 前記錯化合物を加熱して熱分解させて、金属ナノ粒子を形成する、
ことを含む金属ナノ粒子の製造方法。
 前記アミン混合液において、例えば、前記アミン(A)と前記アミン(B)の合計を基準として、
 前記アミン(A)  5モル%以上19モル%以下、及び
 前記アミン(B) 81モル%以上95モル%以下
としてもよい。
 ・ 上記の方法により製造される金属ナノ粒子。
 ・ 上記の方法により製造される金属ナノ粒子と、有機溶剤とを含む金属塗料組成物。該金属塗料組成物は、制限されることなく、種々の形態をとり得る。例えば、金属ナノ粒子が、有機溶剤中に懸濁状態で分散されている金属塗料組成物。あるいは、金属ナノ粒子が、有機溶剤中に混練された状態で分散されている金属塗料組成物。
 本発明において、錯形成剤及び/又は保護剤として機能する脂肪族アミン化合物類として、炭素総数6以上の脂肪族炭化水素モノアミン(A)と炭素総数5以下の脂肪族炭化水素モノアミン(B)とを、前記アミン(A)と前記アミン(B)の合計を基準として、前記アミン(A)5モル%以上20モル%未満(例えば、5モル%以上19モル%以下)、及び前記アミン(B)80モル%を超えて95モル%以下(例えば、81モル%以上95モル%以下)の割合で用いる。
 炭素総数5以下の脂肪族炭化水素モノアミン(B)は、炭素総数6以上の脂肪族炭化水素モノアミン(A)に比べると炭素鎖長が短いのでそれ自体は保護剤(安定化剤)としての機能は低いと考えられるが、前記脂肪族炭化水素モノアミン(A)に比べると極性が高く銀化合物の銀への配位能が高く、そのため錯体形成促進に効果があると考えられる。
 また、炭素総数6以上の脂肪族炭化水素モノアミン(A)は、生成する銀粒子表面への保護剤(安定化剤)としての高い機能を有する。さらに、前記脂肪族炭化水素モノアミン(A)が付着していない銀粒子表面部分には、炭素総数5以下の脂肪族炭化水素モノアミン(B)が付着して、表面を被覆する。つまり、前記脂肪族炭化水素モノアミン(B)はそれ自体では保護剤としての機能は低いと考えられるが、銀粒子表面の一部を被覆して、前記脂肪族炭化水素モノアミン(A)の保護剤機能を補助する役割があると考えられる。そのため、前記アミン(A)の上記5モル%以上20モル%未満(例えば、5モル%以上19モル%以下)という少ない割合としても、炭素総数6以上の脂肪族炭化水素モノアミン(A)の銀粒子表面上へのより少ない付着量で、銀ナノ粒子の適切な安定化が得られる。
 このようにして、錯化合物の生成工程を効率よく行うことができると共に、安定化した銀ナノ粒子の製造を効率的に行うことができる。
 さらに、前記アミン(B)の上記80モル%を超えて95モル%以下(例えば、81モル%以上95モル%以下)という多い割合とすることにより、低温での焼成の場合にも短い時間で、銀粒子の焼結が十分に進行するという効果が得られる。つまり、炭素総数5以下の脂肪族炭化水素モノアミン(B)は炭素鎖長が短いため、200℃以下、例えば150℃以下、好ましくは120℃以下の低温での焼成の場合にも、2時間以下、例えば1時間以下、好ましくは30分間以下の短い時間で、銀粒子表面から除去されやすい。また、前記モノアミン(B)の存在により、炭素総数6以上の脂肪族炭化水素モノアミン(A)の銀粒子表面上への付着量は少なくて済む。従って、前記低温での焼成の場合にも前記短い時間で、これら脂肪族アミン化合物類は銀粒子表面から除去されやすく、銀粒子の焼結が十分に進行する。低温焼成での改善された焼結促進は、銀焼成膜の厚膜化に寄与する。
 このようにして、本発明によれば、安定性に優れ、200℃以下、例えば150℃以下、好ましくは120℃以下の低温且つ2時間以下、例えば1時間以下、好ましくは30分間以下の短い時間での焼成によって優れた導電性(低い抵抗値)が発現する銀ナノ粒子、及びその製造方法が提供される。また、本発明によれば、前記銀ナノ粒子を有機溶剤中に安定な分散状態で含む銀塗料組成物が提供される。さらに、本発明によれば、銀以外の金属を含む金属ナノ粒子の製造方法及び該金属ナノ粒子にも適用される。本発明によれば、PET及びポリプロピレンなどの耐熱性の低い各種プラスチック基板上にも、導電膜、導電配線を形成することができる。本発明は、例えば1μm以上、好ましくは3μm以上、とりわけ5μm~20μmという比較的厚膜の低抵抗値の銀焼成膜を得る場合に有効である。
実施例1で得られた銀焼成膜(焼成条件:80℃、60分間)の表面の走査型電子顕微鏡(SEM)写真である。 比較例1で得られた銀焼成膜(焼成条件:80℃、60分間)の表面の走査型電子顕微鏡(SEM)写真である。
 本発明の銀ナノ粒子の製造方法において、まず、脂肪族炭化水素基と1つのアミノ基とからなり、該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、脂肪族炭化水素基と1つのアミノ基とからなり、該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)とを、前記アミン(A)と前記アミン(B)の合計を基準として、前記アミン(A)5モル%以上20モル%未満(例えば、5モル%以上19モル%以下)、及び前記アミン(B)80モル%を超えて95モル%以下(例えば、81モル%以上95モル%以下)の割合で含むアミン混合液を調製する。次に、銀化合物と、前記アミン混合液とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させる。次に、前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する。このように、本発明の銀ナノ粒子の製造方法は、アミン混合液の調製工程と、錯化合物の生成工程と、錯化合物の熱分解工程とを主として含む。
 本明細書において、「ナノ粒子」なる用語は、一次粒子の大きさ(平均一次粒子径)が1000nm未満であることを意味している。また、粒子の大きさは、表面に存在(被覆)している保護剤(安定剤)を除外した大きさ(すなわち、銀自体の大きさ)を意図している。本発明において、銀ナノ粒子は、例えば0.5nm~100nm、好ましくは0.5nm~50nm、より好ましくは0.5nm~25nm、さらに好ましくは0.5nm~10nmの平均一次粒子径を有している。
 本発明において、銀化合物としては、加熱により容易に分解して、金属銀を生成する銀化合物を用いる。このような銀化合物としては、ギ酸銀、酢酸銀、シュウ酸銀、マロン酸銀、安息香酸銀、フタル酸銀などのカルボン酸銀;フッ化銀、塩化銀、臭化銀、ヨウ化銀などのハロゲン化銀;硫酸塩、硝酸銀、炭酸銀等を用いることができるが、分解により容易に金属銀を生成し且つ銀以外の不純物を生じにくいという観点から、シュウ酸銀が好ましく用いられる。シュウ酸銀は、銀含有率が高く、且つ、還元剤を必要とせず熱分解により金属銀がそのまま得られ、還元剤に由来する不純物が残留しにくい点で有利である。
 銀以外の他の金属を含む金属ナノ粒子を製造する場合には、上記の銀化合物に代えて、加熱により容易に分解して、目的とする金属を生成する金属化合物を用いる。このような金属化合物としては、上記の銀化合物に対応するような金属の塩、例えば、金属のカルボン酸塩;金属ハロゲン化物;金属硫酸塩、金属硝酸塩、金属炭酸塩等の金属塩化合物を用いることができる。これらのうち、分解により容易に金属を生成し且つ金属以外の不純物を生じにくいという観点から、金属のシュウ酸塩が好ましく用いられる。他の金属としては、Al、Au、Pt、Pd、Cu、Co、Cr、In、及びNi等が挙げられる。
 また、銀との複合物を得るために、上記の銀化合物と、上記の銀以外の他の金属化合物を併用してもよい。他の金属としては、Al、Au、Pt、Pd、Cu、Co、Cr、In、及びNi等が挙げられる。銀複合物は、銀と1又は2以上の他の金属からなるものであり、Au-Ag、Ag-Cu、Au-Ag-Cu、Au-Ag-Pd等が例示される。金属全体を基準として、銀が少なくとも20重量%、通常は50重量%、例えば80重量%を占める。
 本発明において、錯形成剤及び/又は保護剤として機能する脂肪族炭化水素アミン化合物類として、前記炭素総数6以上の脂肪族炭化水素アミン(A)、前記炭素総数5以下の脂肪族炭化水素アミン(B)を用いる。
 本明細書において、確立された用語であるが、「脂肪族炭化水素モノアミン」とは、1~3個の1価の脂肪族炭化水素基と1つのアミノ基とからなる化合物である。「炭化水素基」とは、炭素と水素とのみからなる基である。ただし、前記脂肪族炭化水素アミン(A)、及び前記脂肪族炭化水素アミン(B)は、その炭化水素基に、必要に応じて酸素原子あるいは窒素原子の如きヘテロ原子(炭素及び水素以外の原子)を含む置換基を有していてもよい。
 炭素総数6以上の脂肪族炭化水素モノアミン(A)は、その炭化水素鎖によって、生成する銀粒子表面への保護剤(安定化剤)としての高い機能を有する。
 前記脂肪族モノ炭化水素アミン(A)としては、第一級アミン、第二級アミン、及び第三級アミンが含まれる。第一級アミンとしては、例えば、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ペンタデシルアミン、ヘキサデシルアミン、ヘプタデシルアミン、オクタデシルアミン等の飽和脂肪族炭化水素モノアミン(すなわち、アルキルモノアミン)が挙げられる。飽和脂肪族炭化水素モノアミンとして、上記の直鎖脂肪族モノアミンの他に、イソヘキシルアミン、2-エチルヘキシルアミン、tert-オクチルアミン等の分枝脂肪族炭化水素アミンが挙げられる。また、シクロヘキシルアミンも挙げられる。さらに、オレイルアミン等の不飽和脂肪族炭化水素モノアミン(すなわち、アルケニルモノアミン)が挙げられる。
 第二級アミンとしては、N,N-ジプロピルアミン、N,N-ジブチルアミン、N,N-ジペンチルアミン、N,N-ジヘキシルアミン、N,N-ジペプチルアミン、N,N-ジオクチルアミン、N,N-ジノニルアミン、N,N-ジデシルアミン、N,N-ジウンデシルアミン、N,N-ジドデシルアミン、N-メチル-N-プロピルアミン、N-エチル-N-プロピルアミン、N-プロピル-N-ブチルアミン等のジアルキルモノアミンが挙げられる。第三級アミンとしては、トリブチルアミン、トリヘキシルアミン等が挙げられる。
 これらの内でも、炭素数6以上の飽和脂肪族炭化水素モノアミンが好ましい。炭素数6以上とすることにより、アミノ基が銀粒子表面に吸着した際に他の銀粒子との間隔を確保できるため、銀粒子同士の凝集を防ぐ作用が向上する。炭素数の上限は特に定められないが、入手のし易さ、焼成時の除去のし易さ等を考慮して、通常、炭素数18までの飽和脂肪族モノアミンが好ましい。特に、ヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン等の炭素数6~12のアルキルモノアミンが好ましく用いられる。前記脂肪族炭化水素モノアミン(A)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 炭素総数5以下の脂肪族炭化水素モノアミン(B)は、炭素総数6以上の脂肪族モノアミン(A)に比べると炭素鎖長が短いのでそれ自体は保護剤(安定化剤)としての機能は低いと考えられるが、前記脂肪族モノアミン(A)に比べると極性が高く銀化合物の銀への配位能が高く、そのため錯体形成促進に効果があると考えられる。また、炭素鎖長が短いため、例えば120℃以下の、あるいは100℃程度以下の低温焼成においても、30分間以下、あるいは20分間以下の短時間で銀粒子表面から除去され得るので、得られた銀ナノ粒子の低温焼成に効果がある。
 前記脂肪族炭化水素モノアミン(B)としては、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、イソブチルアミン、 sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等の炭素数2~5の飽和脂肪族炭化水素モノアミン(すなわち、アルキルモノアミン)が挙げられる。また、N,N-ジメチルアミン、N,N-ジエチルアミン等のジアルキルモノアミンが挙げられる。
 これらの内でも、n-ブチルアミン、イソブチルアミン、 sec-ブチルアミン、tert-ブチルアミン、ペンチルアミン、イソペンチルアミン、tert-ペンチルアミン等が好ましく、上記ブチルアミン類が特に好ましい。前記脂肪族炭化水素モノアミン(B)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明において、前記炭素総数6以上の脂肪族炭化水素モノアミン(A)、及び前記炭素総数5以下の脂肪族炭化水素モノアミン(B)の使用割合は、前記アミン(A)と前記アミン(B)の合計を基準として、
 前記アミン(A): 5モル%以上20モル%未満(例えば、5モル%以上19モル%以下)、及び
 前記アミン(B):80モル%を超えて95モル%以下(例えば、81モル%以上95モル%以下)である。なお、本発明による効果を阻害しない範囲で、本発明のアミン混合液には、前記アミン(A)、(B)以外のアミン等を含むことができる。
 前記脂肪族モノアミン(A)の含有量を5モル%以上20モル%未満とすることによって、該(A)成分の炭素鎖によって、生成する銀粒子表面の保護安定化機能が得られる。前記(A)成分の含有量が5モル%未満では、保護安定化機能の発現が弱いことがある。一方、前記(A)成分の含有量が20モル%以上となると、保護安定化機能は十分であるが、膜厚が比較的厚い焼結膜を形成する際の低温焼成によって該(A)成分が除去されにくくなる。前記(A)成分の含有量の下限については、10モル%以上、例えば13モル%以上が好ましい。前記(A)成分の含有量の上限については、19モル%以下、例えば17モル%以下が好ましい。
 前記脂肪族モノアミン(B)の含有量を80モル%を超えて95モル%以下とすることによって、錯体形成促進効果が得られやすく、また、それ自体で低温且つ短時間焼成に寄与できる。前記(B)成分の含有量が80モル%以下では、錯体形成促進効果が弱かったり、あるいは、膜厚が比較的厚い焼結膜を形成する際の焼成時において前記(A)成分が銀粒子表面から除去されにくいことがある。一方、前記(B)成分の含有量が95モル%を超えると、錯体形成促進効果は得られるが、相対的に前記脂肪族モノアミン(A)の含有量が少なくなってしまい、生成する銀粒子表面の保護安定化が得られにくい。前記(B)成分の含有量の下限については、81モル%以上、例えば83モル%以上が好ましい。前記(B)成分の含有量の上限については、90モル%以下、例えば87モル%以下が好ましい。
 本発明においては、銀化合物の銀への配位能が高い前記脂肪族モノアミン(B)を上記の割合で用いるので、前記炭素総数6以上の脂肪族モノアミン(A)の銀粒子表面上への付着量は少なくて済む。従って、前記低温短時間での焼成の場合にも、これら脂肪族アミン化合物類は銀粒子表面から除去されやすく、銀粒子の焼結が十分に進行する。
 本発明において、前記アミン(A)と前記アミン(B)の合計の量としては、特に限定されないが、原料の前記銀化合物の銀原子1モルに対して、前記アミン[(A)+(B)]を1~72モル程度とするとよい。前記アミン[(A)+(B)]の量が、前記銀原子1モルに対して、1モル未満であると、錯化合物の生成工程において、錯化合物に変換されない銀化合物が残存する可能性があり、その後の熱分解工程において、銀粒子の均一性が損なわれ粒子の肥大化が起こったり、熱分解せずに銀化合物が残存する可能性がある。一方、前記アミン[(A)+(B)]の量が、前記銀原子1モルに対して、72モル程度を超えてもあまりメリットはないと考えられる。実質的に無溶剤中において銀ナノ粒子の分散液を作製するためには、前記アミン[(A)+(B)]を例えば2モル程度以上とするとよい。前記全アミンの量を2~72モル程度とすることにより、錯化合物の生成工程及び熱分解工程を良好に行うことができる。前記アミン[(A)+(B)]の量の下限については、前記銀化合物の銀原子1モルに対して、2モル%以上が好ましく、6モル%以上がより好ましく、10モル%以上がさらに好ましい。
 本発明において、前記アミン混合液は、さらに、脂肪族炭化水素基と2つのアミノ基とからなり、該脂肪族炭化水素基の炭素総数が8以下である脂肪族炭化水素ジアミン(C)を含んでもよい。
 「脂肪族炭化水素ジアミン」とは、2価の脂肪族炭化水素基(アルキレン基)と、該脂肪族炭化水素基を介在した2つのアミノ基と、場合によっては、該アミノ基の水素原子を置換した脂肪族炭化水素基(アルキル基)とからなる化合物である。脂肪族炭化水素アミン(C)は、その炭化水素基に酸素原子、あるいは窒素原子の如きヘテロ原子(炭素及び水素以外の原子)を含まない。
 炭素総数8以下の脂肪族炭化水素ジアミン(C)は、銀化合物の銀への配位能が高く、錯体形成促進に効果がある。脂肪族炭化水素ジアミンは、一般に、脂肪族炭化水素モノアミンと比べて極性が高く、銀化合物の銀への配位能が高くなる。また、前記脂肪族炭化水素ジアミン(C)は、錯化合物の熱分解工程において、より低温且つ短時間での熱分解を促進する効果があり、銀ナノ粒子製造をより効率的に行うことができる。さらに、前記脂肪族ジアミン(C)を含む銀粒子の保護被膜は極性が高いので、極性の高い溶剤を含む分散媒体中での銀粒子の分散安定性が向上する。さらに、前記脂肪族ジアミン(C)は、炭素鎖長が短いため、例えば120℃以下の、あるいは100℃程度以下の低温焼成においても、30分間以下、あるいは20分間以下の短い時間で銀粒子表面から除去され得るので、得られた銀ナノ粒子の低温且つ短時間焼成に効果がある。
 前記脂肪族炭化水素ジアミン(C)としては、特に限定されないが、エチレンジアミン、N,N-ジメチルエチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、1,3-プロパンジアミン、2,2-ジメチル-1,3-プロパンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N’-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N’-ジエチル-1,3-プロパンジアミン、1,4-ブタンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N’-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N’-ジエチル-1,4-ブタンジアミン、1,5-ペンタンジアミン、1,5-ジアミノ-2-メチルペンタン、1,6-ヘキサンジアミン、N,N-ジメチル-1,6-ヘキサンジアミン、N,N’-ジメチル-1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン等が挙げられる。これらはいずれも、2つのアミノ基のうちの少なくとも1つが第一級アミノ基又は第二級アミノ基である炭素総数8以下のアルキレンジアミンであり、銀化合物の銀への配位能が高く、錯体形成促進に効果がある。
 これらの内でも、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N-ジメチル-1,6-ヘキサンジアミン等の2つのアミノ基のうちの1つが第一級アミノ基(-NH)であり、他の1つが第三級アミノ基(-NR)である炭素総数8以下のアルキレンジアミンが好ましい。好ましいアルキレンジアミンは、下記構造式で表される。
 RN-R-NH
 ここで、Rは、2価のアルキレン基を表し、R及びRは、同一又は異なっていてもよく、アルキル基を表し、ただし、R、R及びRの炭素数の総和は8以下である。該アルキレン基は、酸素原子又は窒素原子等のヘテロ原子を含まない。また、該アルキル基は、酸素原子又は窒素原子等のヘテロ原子を含まない。
 2つのアミノ基のうちの1つが第一級アミノ基であると、銀化合物の銀への配位能が高くなり、錯体形成に有利であり、他の1つが第三級アミノ基であると、第三級アミノ基は銀原子への配位能に乏しいため、形成される錯体が複雑なネットワーク構造となることが防止される。錯体が複雑なネットワーク構造となると、錯体の熱分解工程に高い温度が必要となることがある。さらに、これらの内でも、低温焼成においても短時間で銀粒子表面から除去され得るという観点から、炭素総数6以下のジアミンが好ましく、炭素総数5以下のジアミンがより好ましい。前記脂肪族炭化水素ジアミン(C)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明において、銀ナノ粒子の分散媒への分散性をさらに向上させるため、安定剤として、さらに脂肪族カルボン酸(D)を用いてもよい。前記脂肪族カルボン酸(D)は、前記アミン混合液中に含ませて用いることができる。前記脂肪族カルボン酸(D)を用いることにより、銀ナノ粒子の安定性、特に有機溶剤中に分散された塗料状態での安定性が向上することがある。
 前記脂肪族カルボン酸(D)としては、飽和又は不飽和の脂肪族カルボン酸が用いられる。例えば、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸; オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸が挙げられる。
 これらの内でも、炭素数8~18の飽和又は不飽和の脂肪族モノカルボンが好ましい。炭素数8以上とすることにより、カルボン酸基が銀粒子表面に吸着した際に他の銀粒子との間隔を確保できるため、銀粒子同士の凝集を防ぐ作用が向上する。入手のし易さ、焼成時の除去のし易さ等を考慮して、通常、炭素数18までの飽和又は不飽和の脂肪族モノカルボン酸化合物が好ましい。特に、オクタン酸、オレイン酸等が好ましく用いられる。前記脂肪族カルボン酸(D)のうち、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明において、まず、炭素総数6以上の脂肪族炭化水素モノアミン(A)と、炭素総数5以下の脂肪族炭化水素モノアミン(B)とを含むアミン混合液を調製する[アミン混合液の調製工程]。
 アミン混合液は、各アミン(A)、及び(B)成分を、所定割合で室温にて攪拌して調製することができる。前記アミン(C)成分、及び/又は前記カルボン酸(D)成分を用いる場合には、この際に混合するとよい。
 次に、銀化合物と前記アミン混合液とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させる[錯化合物生成工程]。銀以外の他の金属を含む金属ナノ粒子を製造する場合には、上記の銀化合物に代えて、目的とする金属を含む金属化合物を用いるとよい。
 粉末状の銀化合物(あるいは金属化合物)と、所定量のアミン混合液とを混合する。この際の混合は、室温で攪拌しながら、あるいは銀化合物(あるいは金属化合物)へのアミン類の配位反応は発熱を伴うため室温以下に適宜冷却して攪拌しながら行うとよい。アミン類の過剰分が反応媒体の役割を果たす。生成する錯化合物が一般にその構成成分に応じた色を呈するので、反応混合物の色の変化の終了を適宜の分光法等により検出することにより、錯化合物の生成反応の終点を検知することができる。また、シュウ酸銀が形成する錯化合物は一般に無色(目視では白色として観察される)であるが、このような場合においても、反応混合物の粘性の変化などの形態変化に基づいて、錯化合物の生成状態を検知することができる。このようにして、アミン類を主体とする媒体中に銀-アミン錯体(あるいは金属-アミン錯体)が得られる。
 次に、得られた錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する[錯化合物の熱分解工程]。銀以外の他の金属を含む金属化合物を用いた場合には、目的とする金属ナノ粒子が形成される。還元剤を用いることなく、銀ナノ粒子(金属ナノ粒子)が形成される。ただし、必要に応じて本発明の効果を阻害しない範囲で適宜の還元剤を用いてもよい。
 このような金属アミン錯体分解法において、一般に、アミン類は、金属化合物の分解により生じる原子状の金属が凝集して微粒子を形成する際の様式をコントロールすると共に、形成された金属微粒子の表面に被膜を形成することで微粒子相互間の再凝集を防止する役割を果たしている。すなわち、金属化合物とアミンの錯化合物を加熱することにより、金属原子に対するアミンの配位結合を維持したままで金属化合物が熱分解して原子状の金属を生成し、次に、アミンが配位した金属原子が凝集してアミン保護膜で被覆された金属ナノ粒子が形成されると考えられる。
 この際の熱分解は、錯化合物をアミン類を主体とする反応媒体中で攪拌しながら行うとよい。熱分解は、被覆銀ナノ粒子(あるいは被覆金属ナノ粒子)が生成する温度範囲内において行うとよいが、銀粒子表面(あるいは金属粒子表面)からのアミンの脱離を防止する観点から前記温度範囲内のなるべく低温で行うことが好ましい。シュウ酸銀の錯化合物の場合には、例えば80℃~120℃程度、好ましくは95℃~115℃程度、より具体的には100℃~110℃程度とすることができる。シュウ酸銀の錯化合物の場合には、概ね100℃程度の加熱により分解が起こると共に銀イオンが還元され、被覆銀ナノ粒子を得ることができる。なお、一般に、シュウ酸銀自体の熱分解は200℃程度で生じるのに対して、シュウ酸銀-アミン錯化合物を形成することで熱分解温度が100℃程度も低下する理由は明らかではないが、シュウ酸銀とアミンとの錯化合物を生成する際に、純粋なシュウ酸銀が形成している配位高分子構造が切断されているためと推察される。
 また、錯化合物の熱分解は、アルゴンなどの不活性ガス雰囲気内において行うことが好ましいが、大気中においても熱分解を行うことができる。
 錯化合物の熱分解により、茶色を呈する懸濁液となる。この懸濁液から、過剰のアミン等の除去操作、例えば、銀ナノ粒子(あるいは金属ナノ粒子)の沈降、適切な溶剤(水、又は有機溶剤)によるデカンテーション・洗浄操作を行うことによって、目的とする安定な被覆銀ナノ粒子(あるいは被覆金属ナノ粒子)が得られる。洗浄操作の後、乾燥すれば、目的とする安定な被覆銀ナノ粒子(あるいは被覆金属ナノ粒子)の粉体が得られる。
 デカンテーション・洗浄操作には、水、又は有機溶剤を用いる。有機溶剤としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶剤; トルエン、キシレン、メシチレン等のような芳香族炭化水素溶剤; メタノール、エタノール、プロパノール、ブタノール等のようなアルコール溶剤; アセトニトリル; 及びそれらの混合溶剤を用いるとよい。
 本発明の方法においては還元剤を用いくてもよいので、還元剤に由来する副生成物がなく、反応系から被覆銀ナノ粒子の分離も簡単であり、高純度の被覆銀ナノ粒子が得られるが、必要に応じて本発明の効果を阻害しない範囲で適宜の還元剤を用いてもよい。
 得られた銀ナノ粒子を用いて銀塗料組成物を作製することができる。該銀塗料組成物は、制限されることなく、種々の形態をとり得る。例えば、銀ナノ粒子を適切な有機溶剤(分散媒体)中に懸濁状態で分散させることにより、いわゆる銀インクと呼ばれる銀塗料組成物を作製することができる。あるいは、銀ナノ粒子を有機溶剤中に混練された状態で分散させることにより、いわゆる銀ペーストと呼ばれる銀塗料組成物を作製することができる。塗料組成物を得るための有機溶剤としては、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン等の脂肪族炭化水素溶剤; トルエン、キシレン、メシチレン等のような芳香族炭化水素溶剤; メタノール、エタノール、プロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール、n-ヘプタノール、n-オクタノール、n-ノナノール、n-デカノール等のようなアルコール溶剤等が挙げられる。また、銀塗料組成物を得るための有機溶剤としては、銀ペーストを得るためにターピネオール、ジヒドロキシターピネオールのようなテルペン系溶剤等が挙げられる。所望の銀塗料組成物(銀インク、銀ペースト)の濃度や粘性に応じて、有機溶剤の種類や量を適宜定めるとよい。金属ナノ粒子についても同様である。
 本発明によれば、保護剤によって表面が被覆された銀ナノ粒子(あるいは金属ナノ粒子)が得られる。前記保護剤は、炭素総数6以上の脂肪族炭化水素モノアミン(A)、及び炭素総数5以下の脂肪族炭化水素モノアミン(B)を含んでいる。
 調製された銀塗料組成物を基板上に塗布し、その後、焼成する。
 塗布は、スピンコート、インクジェット印刷、スクリーン印刷、ディスペンサ印刷、凸版印刷(フレキソ印刷)、昇華型印刷、オフセット印刷、レーザープリンタ印刷(トナー印刷)、凹版印刷(グラビア印刷)、コンタクト印刷、マイクロコンタクト印刷などの公知の方法により行うことができる。印刷技術を用いると、パターン化された銀塗料組成物層が得られ、焼成により、パターン化された銀導電層が得られる。
 焼成は、200℃以下、例えば室温(25℃)以上150℃以下、好ましくは室温(25℃)以上120℃以下の温度で行うことができる。しかしながら、短い時間での焼成によって、銀の焼結を完了させるためには、60℃以上200℃以下、例えば80℃以上150℃以下、好ましくは90℃以上120℃以下の温度で行うことがよい。焼成時間は、銀インクの塗布量、焼成温度などを考慮して、適宜定めるとよく、例えば数時間(例えば3時間、あるいは2時間)以内、好ましくは1時間以内、より好ましくは30分間以内、さらに好ましくは10分間~20分間とするとよい。
 銀ナノ粒子は上記のように構成されているので、このような低温短時間での焼成工程によっても、銀粒子の焼結が十分に進行する。その結果、優れた導電性(低い抵抗値)が発現する。例えば1μm以上、好ましくは3μm以上、とりわけ5μm~20μmという比較的厚膜の低い抵抗値を有する銀導電層が形成される。
 低温での焼成が可能であるので、基板として、ガラス製基板、ポリイミド系フィルムのような耐熱性プラスチック基板の他に、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルムなどのポリエステル系フィルム、ポリプロピレンなどのポリオレフィン系フィルムのような耐熱性の低い汎用プラスチック基板をも好適に用いることができる。また、短時間での焼成は、これら耐熱性の低い汎用プラスチック基板に対する負荷を軽減するし、生産効率を向上させる。
 本発明の銀導電材料は、電磁波制御材、回路基板、アンテナ、放熱板、液晶ディスプレイ、有機ELディスプレイ、フィールドエミッションディスプレイ(FED)、ICカード、ICタグ、太陽電池、LED素子、有機トランジスタ、コンデンサー(キャパシタ)、電子ペーパー、フレキシブル電池、フレキシブルセンサ、メンブレンスイッチ、タッチパネル、EMIシールド等に適用することができる。
 銀導電層の厚みは、目的とする用途に応じて適宜定めるとよい。例えば5nm~20μm、好ましくは100nm~20μm、より好ましくは300nm~20μmの範囲から選択するとよい。本発明は、例えば1μm以上、好ましくは3μm以上、とりわけ5μm~20μmという比較的厚膜の低抵抗値の銀焼成膜を得る場合に有効である。
 以上、主として銀ナノ粒子を中心に説明したが、本発明によれば、銀以外の金属を含む金属ナノ粒子の製造方法及び該金属ナノ粒子にも適用される。
  以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。まず、各測定方法について示す。
[銀焼成膜の比抵抗値]
 得られた銀焼成膜について、4端子法(ロレスタGP MCP-T610)を用いて測定した。この装置の測定範囲限界は、10Ωcmである。
 以下の試薬を各実施例及び比較例で用いた。
n-ブチルアミン(MW:73.14):東京化成社製試薬
n-ヘキシルアミン(MW:101.19):東京化成社製試薬
n-オクチルアミン(MW:129.25):東京化成社製試薬
シュウ酸銀(MW:303.78):東京化成社製試薬
メタノール:和光純薬社製試薬特級
ジヒドロキシターピネオール:日本テルペン株式会社製
[実施例1]
(銀ナノ粒子の調製)
 50mLフラスコに、n-ブチルアミン10.84g(150mmol)、及びn-ヘキシルアミン3.00g(30mmol)を加えて室温で攪拌し、均一なアミン混合溶液を調製した。
 調製した混合溶液にシュウ酸銀3.04g(10mmol)を加え、室温で攪拌して、シュウ酸銀を粘性のある白色の物質へと変化させ、この変化が外見的に終了したと認められる時点で攪拌を終了した。このようにして、白色のシュウ酸銀-アミン錯体を形成した。
 次に、得られた反応混合物を85℃~90℃に加熱攪拌した。加熱攪拌を開始したところ、徐々に白色シュウ酸銀-アミン錯体は分解し茶色へと変色し、2時間加熱攪拌することで、銀ナノ粒子がアミン混合溶液物中に懸濁した懸濁液を得た。
 次に、得られた懸濁液にメタノール10mLを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。銀ナノ粒子に対して、再度、メタノール10mLを加えて攪拌し、その後、遠心分離により銀ナノ粒子を沈降させ、上澄み液を除去した。このようにして、湿った状態の銀ナノ粒子を得た。
(銀ナノ塗料の調製と焼成)
 次に、湿った銀ナノ粒子に、ジヒドロキシターピネオールを銀濃度70wt%となるように加えて攪拌し、銀ナノ粒子含有ペーストを調製した。この銀ナノ粒子含有ペーストをアプリケーターにより無アルカリガラス板上に塗布し、塗膜を形成した。
 塗膜を次に示す各条件で、送風乾燥炉にて焼成し、各厚みの銀焼成膜を形成した。得られた銀焼成膜の比抵抗値を4端子法により測定した。
[1] 焼成条件:80℃、30分間
  焼成後膜厚:6.77μm
  焼成膜の比抵抗値:1.70E-05Ωcm(すなわち、17μΩcm)
[2] 焼成条件:80℃、60分間
  焼成後膜厚:4.96μm
  焼成膜の比抵抗値:1.00E-05Ωcm
[3] 焼成条件:120℃、15分間
  焼成後膜厚:5.42μm
  焼成膜の比抵抗値:6.03E-06Ωcm
  図1は、上記[2] の焼成条件にて得られた銀焼成膜の表面の走査型電子顕微鏡(SEM)写真(x100,000 倍)である。焼結による複数粒子の融着が起こっていることが確認できる。
(シュウ酸銀-アミン錯体について)
 上記銀ナノ粒子の調製中に得られた粘性のある白色物質について、IRスペクトル測定を行ったところ、アルキルアミンのアルキル基に由来する吸収(2900cm-1付近、1000cm-1付近)が観察された。このことからも、上記銀ナノ粒子の調製中に得られた粘性のある白色物質は、シュウ酸銀とアルキルアミンとが結合してなるものであることが示され、シュウ酸銀の銀原子に対してアミノ基が配位結合しているシュウ酸銀-アミン錯体であると推察された。
[実施例2]
 アミン混合溶液の組成において、n-ヘキシルアミン3.00g(30mmol)をn-オクチルアミン3.88g(30mmol)に変更した以外は、実施例1と同様にして、銀ナノ粒子含有ペーストを調製し、塗膜の形成、焼成を行った。
[1] 焼成条件:80℃、30分間
  焼成後膜厚:6.38μm
  焼成膜の比抵抗値:6.23E-05Ωcm
[2] 焼成条件:80℃、60分間
  焼成後膜厚:4.70μm
  焼成膜の比抵抗値:2.21E-05Ωcm
[3] 焼成条件:120℃、15分間
  焼成後膜厚:4.73μm
  焼成膜の比抵抗値:8.34E-06Ωcm
[比較例1]
 アミン混合溶液の組成において、n-ブチルアミン10.84g(150mmol)及びn-ヘキシルアミン3.00g(30mmol)を、n-ブチルアミン8.67g(120mmol)及びn-ヘキシルアミン6.00g(60mmol)にそれぞれ変更した以外は、実施例1と同様にして、銀ナノ粒子含有ペーストを調製し、塗膜の形成、焼成を行った。
[1] 焼成条件:80℃、30分間
  焼成後膜厚:6.14μm
  焼成膜の比抵抗値:3.21E-05Ωcm
[2] 焼成条件:80℃、60分間
  焼成後膜厚:5.11μm
  焼成膜の比抵抗値:1.72E-05Ωcm
[3] 焼成条件:120℃、15分間
  焼成後膜厚:4.63μm
  焼成膜の比抵抗値:7.42E-06Ωcm
  図2は、上記[2] の焼成条件にて得られた銀焼成膜の表面の走査型電子顕微鏡(SEM)写真(x100,000 倍)である。焼結による融着度合いは、実施例1のものと比較すると劣っていることが分かる。
[比較例2]
 アミン混合溶液の組成において、n-ブチルアミン10.84g(150mmol)及びn-オクチルアミン3.88g(30mmol)を、n-ブチルアミン8.67g(120mmol)及びn-オクチルアミン7.66g(60mmol)にそれぞれ変更した以外は、実施例2と同様にして、銀ナノ粒子含有ペーストを調製し、塗膜の形成、焼成を行った。
[1] 焼成条件:80℃、30分間
  焼成後膜厚:6.04μm
  焼成膜の比抵抗値:2.17E-02Ωcm
[2] 焼成条件:80℃、60分間
  焼成後膜厚:6.45μm
  焼成膜の比抵抗値:2.88E-04Ωcm
[3] 焼成条件:120℃、15分間
  焼成後膜厚:7.15μm
  焼成膜の比抵抗値:1.10E-04Ωcm
 以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1、2のように、n-ブチルアミンを80mol%を超えた割合で用いると、80℃での低温焼成の場合にも、良好な比抵抗値が得られた。

Claims (9)

  1.  銀ナノ粒子の製造方法であって、
     脂肪族炭化水素基と1つのアミノ基とからなり、該脂肪族炭化水素基の炭素総数が6以上である脂肪族炭化水素モノアミン(A)と、
     脂肪族炭化水素基と1つのアミノ基とからなり、該脂肪族炭化水素基の炭素総数が5以下である脂肪族炭化水素モノアミン(B)とを、
     前記アミン(A)と前記アミン(B)の合計を基準として、
     前記アミン(A)  5モル%以上20モル%未満、及び
     前記アミン(B) 80モル%を超えて95モル%以下
    の割合で含むアミン混合液を調製し、
     銀化合物と、前記アミン混合液とを混合して、前記銀化合物及び前記アミンを含む錯化合物を生成させ、
     前記錯化合物を加熱して熱分解させて、銀ナノ粒子を形成する、
    ことを含む銀ナノ粒子の製造方法。
  2.  前記脂肪族炭化水素モノアミン(A)は、炭素数6以上12以下のアルキルモノアミンである、請求項1に記載の銀ナノ粒子の製造方法。
  3.  前記脂肪族炭化水素モノアミン(B)は、炭素数2以上5以下のアルキルモノアミンである、請求項1又は2に記載の銀ナノ粒子の製造方法。
  4.  前記脂肪族炭化水素モノアミン(B)は、ブチルアミンである、請求項1~3のうちのいずれかに記載の銀ナノ粒子の製造方法。
  5.  前記銀化合物は、シュウ酸銀である、請求項1~4のうちのいずれかに記載の銀ナノ粒子の製造方法。
  6.  前記銀化合物の銀原子1モルに対して、前記アミン(A)及び前記アミン(B)を前記アミン(A)と前記アミン(B)の合計として1~72モル用いる、請求項1~5のうちのいずれかに記載の銀ナノ粒子の製造方法。
  7.  請求項1~6のうちのいずれかに記載の方法により製造される銀ナノ粒子。
  8.  請求項1~6のうちのいずれかに記載の方法により製造される銀ナノ粒子と、有機溶剤とを含む銀塗料組成物。
  9.  基板と、
     前記基板上に、請求項1~6のうちのいずれかに記載の方法により製造される銀ナノ粒子と有機溶剤とを含む銀塗料組成物が塗布され、焼成されてなる銀導電層と、
    を含む銀導電材料。
PCT/JP2013/050049 2012-01-11 2013-01-07 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物 WO2013105531A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147018777A KR20140113936A (ko) 2012-01-11 2013-01-07 은 나노 입자의 제조 방법 및 은 나노 입자, 및 은 도료 조성물
EP13736204.2A EP2803431A1 (en) 2012-01-11 2013-01-07 Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition
CN201380005177.4A CN104136154A (zh) 2012-01-11 2013-01-07 银纳米粒子的制造方法及银纳米粒子以及银涂料组合物
US14/371,548 US20140346412A1 (en) 2012-01-11 2013-01-07 Method for producing silver nanoparticles, silver nanoparticles, and silver coating composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-002984 2012-01-11
JP2012002984A JP6001861B2 (ja) 2012-01-11 2012-01-11 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物

Publications (1)

Publication Number Publication Date
WO2013105531A1 true WO2013105531A1 (ja) 2013-07-18

Family

ID=48781479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050049 WO2013105531A1 (ja) 2012-01-11 2013-01-07 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物

Country Status (7)

Country Link
US (1) US20140346412A1 (ja)
EP (1) EP2803431A1 (ja)
JP (1) JP6001861B2 (ja)
KR (1) KR20140113936A (ja)
CN (1) CN104136154A (ja)
TW (1) TW201334894A (ja)
WO (1) WO2013105531A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024630A1 (ja) * 2012-08-07 2014-02-13 田中貴金属工業株式会社 銀微粒子インク、銀微粒子焼結体及び銀微粒子インクの製造方法
CN105453287A (zh) * 2013-08-14 2016-03-30 欧-弗莱克斯科技有限公司 用于沉积热电材料的方法
WO2016052036A1 (ja) 2014-10-02 2016-04-07 株式会社ダイセル 銀粒子塗料組成物
CN105813782A (zh) * 2013-12-11 2016-07-27 田中贵金属工业株式会社 银粒子的制造方法及通过该方法制造的银粒子
US9422443B2 (en) 2012-08-02 2016-08-23 Daicel Corporation Method for manufacturing silver nanoparticle-containing ink, and silver nanoparticle-containing ink
US9656322B2 (en) 2012-08-07 2017-05-23 Daicel Corporation Method for producing silver nanoparticles, silver nanoparticles, and silver coating material composition
KR20170121206A (ko) 2015-02-19 2017-11-01 주식회사 다이셀 은 입자 도료 조성물
US11091663B2 (en) 2013-10-24 2021-08-17 Daicel Corporation Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102109390B1 (ko) * 2011-12-23 2020-05-12 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 전도성 은 구조체 제조용 잉크 조성물
TWI635918B (zh) * 2012-08-07 2018-09-21 大賽璐股份有限公司 銀奈米粒子之製造方法及銀奈米粒子
JP6099472B2 (ja) * 2013-04-26 2017-03-22 Dowaエレクトロニクス株式会社 金属ナノ粒子分散体、金属ナノ粒子分散体の製造方法および接合方法
JP6189740B2 (ja) * 2013-05-24 2017-08-30 田中貴金属工業株式会社 銀粒子の製造方法
JP6303392B2 (ja) * 2013-10-22 2018-04-04 日立化成株式会社 銀ペースト及びそれを用いた半導体装置、並びに銀ペーストの製造方法
WO2015075929A1 (ja) 2013-11-20 2015-05-28 国立大学法人山形大学 銀ナノ粒子、銀ナノ粒子の製造方法及び銀ナノ粒子インク
FR3013607B1 (fr) * 2013-11-27 2016-04-29 Genesink Sas Composition d'encre a base de nanoparticules
WO2015151941A1 (ja) * 2014-04-01 2015-10-08 株式会社ダイセル 凹版オフセット印刷用銀ナノ粒子含有インク及びその製造方法
US9982154B2 (en) 2014-04-17 2018-05-29 Electroninks Incorporated Solid ink composition
JP6599891B2 (ja) 2014-04-17 2019-10-30 エレクトロニンクス インコーポレイテッド 導電性インク組成物
KR102321619B1 (ko) 2014-04-25 2021-11-05 주식회사 다이셀 은 입자 도료 조성물
EP3156156B1 (en) 2014-06-11 2020-05-13 Bando Chemical Industries, Ltd. Fine silver particle dispersion, fine silver particles, and method for producing same
KR102035115B1 (ko) 2015-03-23 2019-10-22 반도 카가쿠 가부시키가이샤 도전성 피막 복합체 및 그 제조방법
JP2017088734A (ja) * 2015-11-10 2017-05-25 株式会社アルバック 導電性金属インク
JPWO2017094166A1 (ja) * 2015-12-03 2018-09-20 ハリマ化成株式会社 導電性ペーストの製造方法
KR102237717B1 (ko) * 2016-04-04 2021-04-09 주식회사 다이셀 스크린 인쇄용 잉크
JP7156831B2 (ja) 2017-09-20 2022-10-19 矢崎総業株式会社 導電性組成物及びそれを用いた配線板
US10553506B2 (en) * 2017-12-28 2020-02-04 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Repair method and apparatus for flexible display panel and the flexible display panel thereof
CN111565872A (zh) * 2018-01-09 2020-08-21 株式会社则武 银纳米微粒的制造方法和包含银纳米微粒的银糊
CA3108631A1 (en) 2018-08-03 2020-02-06 National Research Council Of Canada Uv-sinterable molecular ink and processing thereof using broad spectrum uv light
US20220288680A1 (en) 2019-08-26 2022-09-15 Kyocera Corporation Method for producing silver particles, thermosetting resin compositions, semiconductor device, and electrical and/or electronic components
EP4023361A4 (en) 2019-08-26 2023-08-30 Kyocera Corporation SILVER PARTICLES, SILVER PARTICLE PRODUCTION METHOD, PASTE COMPOSITION, SEMICONDUCTOR DEVICE AND ELECTRICAL/ELECTRONIC COMPONENTS
JP2021125520A (ja) 2020-02-04 2021-08-30 矢崎総業株式会社 プリント回路板、及びプリント回路板の製造方法
JP2021125521A (ja) 2020-02-04 2021-08-30 矢崎総業株式会社 プリント配線板、プリント回路板、及びプリント配線板の製造方法
JP7474122B2 (ja) 2020-06-12 2024-04-24 株式会社ダイセル 銀ナノ粒子及びその製造方法
EP4205888A1 (en) 2020-08-31 2023-07-05 Kyocera Corporation Paste composition and semiconductor device
CN111992737B (zh) * 2020-09-02 2023-03-10 深圳市普瑞威科技有限公司 一种导电银浆的制备方法
CN114029505B (zh) * 2021-10-27 2022-09-23 南京大学 一种激光烧蚀制备金属单原子的方法
CN114743716A (zh) * 2022-04-15 2022-07-12 北京大学深圳研究生院 一种可低温烧结银粉及其制备方法和应用
CN114918424A (zh) * 2022-05-18 2022-08-19 浙江海钛新材料科技股份有限公司 一种甲酸银高效制备低温纳米银浆的方法和装置
CN116000280A (zh) * 2023-01-13 2023-04-25 武汉长海船舶科技发展有限公司 一种低温可烧结银粉及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039718A (ja) * 2005-08-01 2007-02-15 Dowa Holdings Co Ltd 銀粒子粉末の製造法
JP2008081814A (ja) * 2006-09-28 2008-04-10 Mitsuboshi Belting Ltd 金属微粒子の製造方法
JP2008214695A (ja) 2007-03-05 2008-09-18 Shoei Chem Ind Co 銀超微粒子の製造方法
JP2010265543A (ja) 2009-04-17 2010-11-25 Yamagata Univ 被覆銀超微粒子とその製造方法
JP2011068936A (ja) * 2009-09-25 2011-04-07 Yamagata Univ 銀コア銀銅合金シェルナノ微粒子とその微粒子被着物及びその焼結被着物
JP2012162767A (ja) * 2011-02-04 2012-08-30 Yamagata Univ 被覆金属微粒子とその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050129843A1 (en) * 2003-12-11 2005-06-16 Xerox Corporation Nanoparticle deposition process
JP4872663B2 (ja) * 2006-12-28 2012-02-08 株式会社日立製作所 接合用材料及び接合方法
KR20090012605A (ko) * 2007-07-30 2009-02-04 삼성전기주식회사 금속 나노입자의 제조방법
JP2011080094A (ja) * 2009-10-02 2011-04-21 Toda Kogyo Corp 銀微粒子及びその製造方法、並びに該銀微粒子を含有する導電性ペースト、導電性膜及び電子デバイス
CN102120265B (zh) * 2010-01-07 2013-04-10 中国科学院化学研究所 单分散的银纳米粒子的胶体、纳米银粉的制备方法及其导电油墨
CN102211203B (zh) * 2010-04-06 2013-01-23 中国科学院理化技术研究所 银纳米粒子和银纳米粒子阵列的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039718A (ja) * 2005-08-01 2007-02-15 Dowa Holdings Co Ltd 銀粒子粉末の製造法
JP2008081814A (ja) * 2006-09-28 2008-04-10 Mitsuboshi Belting Ltd 金属微粒子の製造方法
JP2008214695A (ja) 2007-03-05 2008-09-18 Shoei Chem Ind Co 銀超微粒子の製造方法
JP2010265543A (ja) 2009-04-17 2010-11-25 Yamagata Univ 被覆銀超微粒子とその製造方法
JP2011068936A (ja) * 2009-09-25 2011-04-07 Yamagata Univ 銀コア銀銅合金シェルナノ微粒子とその微粒子被着物及びその焼結被着物
JP2012162767A (ja) * 2011-02-04 2012-08-30 Yamagata Univ 被覆金属微粒子とその製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422443B2 (en) 2012-08-02 2016-08-23 Daicel Corporation Method for manufacturing silver nanoparticle-containing ink, and silver nanoparticle-containing ink
JP2014034602A (ja) * 2012-08-07 2014-02-24 Tanaka Kikinzoku Kogyo Kk 銀微粒子インク、銀微粒子焼結体及び銀微粒子インクの製造方法
WO2014024630A1 (ja) * 2012-08-07 2014-02-13 田中貴金属工業株式会社 銀微粒子インク、銀微粒子焼結体及び銀微粒子インクの製造方法
US9656322B2 (en) 2012-08-07 2017-05-23 Daicel Corporation Method for producing silver nanoparticles, silver nanoparticles, and silver coating material composition
US9674953B2 (en) 2012-08-07 2017-06-06 Tanaka Kikinzoku Kogyo K.K. Fine silver particle ink, fine silver particle sintered body, and method for producing fine silver particle ink
CN105453287A (zh) * 2013-08-14 2016-03-30 欧-弗莱克斯科技有限公司 用于沉积热电材料的方法
US11091663B2 (en) 2013-10-24 2021-08-17 Daicel Corporation Method for producing dispersion liquid containing silver nanoparticles, and dispersion liquid containing silver nanoparticles
CN105813782A (zh) * 2013-12-11 2016-07-27 田中贵金属工业株式会社 银粒子的制造方法及通过该方法制造的银粒子
CN105813782B (zh) * 2013-12-11 2017-08-29 田中贵金属工业株式会社 银粒子的制造方法及通过该方法制造的银粒子
WO2016052036A1 (ja) 2014-10-02 2016-04-07 株式会社ダイセル 銀粒子塗料組成物
KR20220145418A (ko) 2014-10-02 2022-10-28 주식회사 다이셀 은 입자 도료 조성물
KR20170121206A (ko) 2015-02-19 2017-11-01 주식회사 다이셀 은 입자 도료 조성물
US11254827B2 (en) 2015-02-19 2022-02-22 Daicel Corporation Silver particle coating composition

Also Published As

Publication number Publication date
US20140346412A1 (en) 2014-11-27
KR20140113936A (ko) 2014-09-25
JP2013142173A (ja) 2013-07-22
JP6001861B2 (ja) 2016-10-05
EP2803431A1 (en) 2014-11-19
TW201334894A (zh) 2013-09-01
CN104136154A (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
JP6001861B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP6037494B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子、並びに銀塗料組成物
JP5986636B2 (ja) 銀ナノ粒子の製造方法、銀塗料組成物の製造方法および銀導電材料の製造方法
JP5923608B2 (ja) 銀ナノ粒子含有インクの製造方法及び銀ナノ粒子含有インク
JP6026565B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子
JP5972479B2 (ja) 銀ナノ粒子含有分散液の製造方法及び銀ナノ粒子含有分散液
TWI806438B (zh) 銀粒子塗料組成物及其製造方法、以及電子裝置
JP6151893B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子
WO2016052036A1 (ja) 銀粒子塗料組成物
WO2015151941A1 (ja) 凹版オフセット印刷用銀ナノ粒子含有インク及びその製造方法
JPWO2016052033A1 (ja) 銀粒子塗料組成物
JP6370936B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子
JP6378880B2 (ja) 銀ナノ粒子の製造方法及び銀ナノ粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013736204

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147018777

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14371548

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE