WO2013099885A1 - ドライフィルム、積層構造体、プリント配線板、及び積層構造体の製造方法 - Google Patents
ドライフィルム、積層構造体、プリント配線板、及び積層構造体の製造方法 Download PDFInfo
- Publication number
- WO2013099885A1 WO2013099885A1 PCT/JP2012/083527 JP2012083527W WO2013099885A1 WO 2013099885 A1 WO2013099885 A1 WO 2013099885A1 JP 2012083527 W JP2012083527 W JP 2012083527W WO 2013099885 A1 WO2013099885 A1 WO 2013099885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- photosensitive resin
- resin layer
- dry film
- manufactured
- group
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/095—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0045—Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/0047—Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
- G03F7/032—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/038—Macromolecular compounds which are rendered insoluble or differentially wettable
- G03F7/0388—Macromolecular compounds which are rendered insoluble or differentially wettable with ethylenic or acetylenic bands in the side chains of the photopolymer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/094—Multilayer resist systems, e.g. planarising layers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/09—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
- G03F7/105—Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
- H05K3/285—Permanent coating compositions
- H05K3/287—Photosensitive compositions
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0209—Inorganic, non-metallic particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09009—Substrate related
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09818—Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
- H05K2201/09827—Tapered, e.g. tapered hole, via or groove
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/05—Patterning and lithography; Masks; Details of resist
- H05K2203/0562—Details of resist
- H05K2203/0577—Double layer of resist having the same pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/05—Patterning and lithography; Masks; Details of resist
- H05K2203/0562—Details of resist
- H05K2203/0594—Insulating resist or coating with special shaped edges
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3452—Solder masks
Definitions
- the present invention relates to a laminated structure such as a dry film and a printed wiring board that can be used for producing a solder resist, an interlayer resin insulating layer, and the like, and a method for producing the laminated structure.
- solder resists are also required to have improved workability and higher performance in response to the increase in the density of printed wiring boards as electronic devices become lighter, thinner and shorter.
- BGA ball grid array
- CSP chip
- QFP quad flat pack package
- SOP small outline package
- An IC package called “Scale Package” has appeared.
- various photosensitive resin compositions have been proposed as solder resists used for such package substrates and in-vehicle printed wiring boards (see, for example, Patent Document 1).
- Inorganic fillers generally have high concealability or UV absorption ability depending on the material. Therefore, when the photosensitive resin composition contains a large amount of inorganic filler, the substantial UV irradiation amount to the photosensitive resin. There is a problem that it is less likely to cause poor curing.
- the photosensitive resin layer has a two-layer structure, a first photosensitive resin layer containing an inorganic filler is formed on a substrate, and a second photosensitive resin not containing an inorganic filler is formed thereon. Laminating a resin layer has been proposed (see Patent Document 2).
- the photosensitive resist described in Patent Document 2 has a two-layer structure as described above, so that it has less irradiation compared to the case where only a photosensitive resin layer containing an inorganic filler is conventionally patterned. It is intended to enable patterning in quantity. This is because the second photosensitive resin layer does not block or absorb ultraviolet rays due to the inorganic filler, and therefore the net ultraviolet ray irradiation amount increases even with the same irradiation amount, and the overall sensitivity is expected to be improved. .
- the light is When irradiated, light that has passed through the second photosensitive resin layer reaches the first photosensitive resin layer. Since the first photosensitive resin layer further has a light shielding effect by the inorganic filler, the amount of radicals generated is much higher in the second photosensitive resin layer than in the first photosensitive resin layer. Therefore, excessive photocuring reaction, that is, halation occurs in the second photosensitive resin layer.
- the concave portion When the first photosensitive resin layer and the second photosensitive resin layer are exposed and developed to form a concave portion such as a via hole, the concave portion has an inversely tapered structure (FIG. 2B). reference).
- FOG. 2B inversely tapered structure
- Patent Document 2 has a problem that a solder resist having inferior resolution performance during patterning is obtained.
- an object of the present invention is to provide a dry film and a printed wiring that can solve the above-described problems of the prior art and obtain a solder resist with excellent resolution while maintaining various characteristics such as PCT resistance. It is providing the laminated structure, such as a board, and its manufacturing method.
- the present inventors have found that in a dry film having a film and a photosensitive resin layer formed on the film, the photosensitive resin layer has an absorption coefficient ( ⁇ It has been found that the above-mentioned problems can be solved by having a gradient of), and the present invention has been completed.
- the dry film of the present invention is a dry film having a film and a photosensitive resin layer formed on the film, wherein the photosensitive resin layer has an absorption coefficient ( ⁇ ) with respect to a wavelength of 365 nm. It has an increasing or decreasing gradient from the surface of the functional resin layer toward the film surface.
- the dry film of the present invention is preferably such that a gradient of the absorption coefficient ( ⁇ ) in the photosensitive resin layer is formed by a photopolymerization initiator or a colorant.
- the slope of the absorption coefficient ( ⁇ ) in the photosensitive resin layer is preferably continuous or stepwise.
- the photosensitive resin layer is preferably composed of two or more layers.
- the photosensitive resin layer is composed of a photosensitive resin composition containing a carboxyl group-containing photosensitive resin, a photopolymerization initiator or colorant, a thermosetting component, and an inorganic filler. preferable.
- the laminated structure of the present invention has a base material and a photosensitive resin layer formed on the base material, the absorption coefficient ( ⁇ ) for a wavelength of 365 nm having an increasing gradient from the resin layer surface toward the base material surface. And a pattern layer formed by exposing and developing the substrate, wherein the pattern layer has a concave portion having a forward taper structure.
- the printed wiring board of the present invention includes a base material, and a photosensitive resin layer formed on the base material, the absorption coefficient ( ⁇ ) for a wavelength of 365 nm having an increasing gradient from the resin layer surface toward the base material surface. And a pattern layer formed by exposing and developing the pattern layer, wherein the pattern layer is a solder resist having a concave portion with a forward taper structure.
- the photosensitive resin layer in the laminated structure and the printed wiring board of the present invention is preferably formed of a photosensitive resin layer constituting any one of the above dry films.
- the photosensitive resin layer of any one of the above dry films is formed on a substrate, and the absorption coefficient ( ⁇ ) with respect to a wavelength of 365 nm is from the surface of the photosensitive resin layer to the surface of the substrate.
- the present invention it is possible to provide a laminated structure such as a dry film and a printed wiring board capable of obtaining a solder resist excellent in resolution while maintaining various properties such as PCT resistance, and a method for producing the same. It becomes possible.
- FIG. 1 is a schematic view showing a preferred embodiment of the dry film of the present invention.
- FIG. 2 is a schematic diagram illustrating a cross-sectional structure of the opening (concave portion) in the resolution evaluation of the example.
- 2A shows a forward taper structure
- FIG. 2B shows a reverse taper structure
- FIG. 2C shows an undercut structure.
- 3 is a resolution cross-sectional photograph showing a forward tapered structure of Example 1.
- FIG. 5 is a resolution cross-sectional photograph showing an inverted tapered structure of Comparative Example 1.
- FIG. 3 is an SEM photograph of a cross section in Example 2.
- FIG. It is a P element elemental analysis result of the cross section in Example 2, and the figure of the state which P element is increasing toward a base material.
- 4 is an SEM photograph of a cross section in Comparative Example 2. It is an elemental analysis result of the P element of the cross section in the specific application example 2, and the figure of the state in which the P element is decreasing toward the base material
- the dry film of the present invention is a dry film having a film and a photosensitive resin layer formed on the film, and the photosensitive resin layer has an absorption coefficient ( ⁇ ) with respect to a wavelength of 365 nm of the photosensitive resin layer. It has an increasing or decreasing gradient from the surface toward the film surface. That is, in the dry film of the present invention, the absorption coefficient ( ⁇ ) with respect to the wavelength of 365 nm of the photosensitive resin layer has an increasing or decreasing gradient in the Z-axis direction.
- the Z-axis direction is the Z-axis direction when the plane of the film is the XY plane.
- the absorption coefficient forming a gradient means that the absorption coefficient at a certain point of the photosensitive resin layer is higher or lower than the absorption coefficient at another point having a different position in the Z-axis direction.
- the photosensitive resin layer When laminating the dry film of the present invention on the base material of the laminated structure, the photosensitive resin layer is laminated so that the extinction coefficient on the side in contact with the base material is increased. In this state, the portion of the photosensitive resin layer in contact with the base material has a larger extinction coefficient than the surface portion of the photosensitive resin layer opposite to the base material, so that photocuring further proceeds. Therefore, when such a photosensitive resin layer is exposed and developed to form a concave portion, the opening shape of the concave portion becomes a forward tapered structure that gradually narrows toward the base material. In the forward taper structure, soldering is good in the soldering process. Therefore, a solder resist (pattern layer) excellent in resolution can be formed by using the dry film of the present invention.
- the dry film of the present invention can be preferably used for producing the laminated structure of the present invention.
- the cover film 1 is provided.
- the cover film and the carrier film are the same film material, but different films may be used.
- the dry film of FIG. 1 is an example in which the absorption coefficient ( ⁇ ) of the photosensitive resin layer forms a stepwise gradient.
- the photosensitive resin layer of the dry film should be bonded to the substrate so that the absorption coefficient ( ⁇ ) on the side in contact with the substrate is high.
- the gradient of the absorption coefficient ( ⁇ ) may be formed so that ( ⁇ ) is high, and conversely, the gradient may be formed so as to be low.
- the absorption coefficient ( ⁇ ) can be obtained from the slope of a graph plotting the film thickness and absorbance by measuring the absorbance of a photosensitive resin layer having a different thickness with respect to a wavelength of 365 nm.
- the gradient of the absorption coefficient ( ⁇ ) in the photosensitive resin layer can also be created by adjusting the concentration of a substance having a high absorption at 365 nm. For example, it is formed by the absorption coefficient by a photopolymerization initiator or a colorant. Preferably there is.
- the photosensitive resin composition is uniformly applied to the carrier film by an appropriate method such as a blade coater, a lip coater, a comma coater, or a film coater, and dried to form the above-described photosensitive resin layer.
- a blade coater e.g., a blade coater, a lip coater, a comma coater, or a film coater
- the dry film of the present invention creates a layer structure in which the absorption coefficient ( ⁇ ) has “step gradient” and “continuous gradient” depending on the method of applying the photosensitive resin composition when forming the layer structure. I can do it.
- a dry film having a layer structure in which the absorption coefficient ( ⁇ ) has a “step gradient” is obtained.
- the photosensitive resin composition is applied to a carrier film, and is not dried, or remains slightly fluid after being dried. By applying the photosensitive resin composition, diffusion occurs at the interface of the composition, and as a result, a dry film having a “continuous gradient” can be obtained.
- a photosensitive resin layer 2 (also referred to as L1) having a higher absorption coefficient than the carrier film, and a photosensitive resin layer 3 (L2) having a lower absorption coefficient. Or may be formed in the order of photosensitive resin layer 3 and photosensitive resin layer 2.
- the film on the side of the photosensitive resin layer (L1) having a higher absorption coefficient may be peeled off and pasted on the base material.
- the remaining one film (carrier film or cover film) may be peeled off before or after the exposure described later. The same applies to the case of a multilayer structure having three or more layers.
- the total film thickness of the photosensitive resin layer in the dry film of the present invention is preferably 100 ⁇ m or less, and more preferably in the range of 5 to 50 ⁇ m.
- the first photosensitive resin layer (L1) having a higher absorption coefficient is 1 to 50 ⁇ m
- the second photosensitive resin layer (L2) having a lower absorption coefficient is The thickness is preferably 1 to 50 ⁇ m.
- the ratio of the first photosensitive resin layer (L1) to the second photosensitive resin layer (L2) is preferably in the range of 1: 9 to 9: 1.
- the film material for the carrier film and the cover film any known materials used for the dry film can be used.
- the carrier film for example, a thermoplastic film such as a polyester film such as polyethylene terephthalate having a thickness of 2 to 150 ⁇ m is used.
- the cover film a polyethylene film, a polypropylene film, or the like can be used, but a cover film having an adhesive force with the photosensitive resin layer smaller than that of the carrier film is preferable.
- the photosensitive resin layer is preferably composed of a photosensitive resin composition containing a carboxyl group-containing photosensitive resin, a photopolymerization initiator or colorant, a thermosetting component, and an inorganic filler.
- various conventionally known carboxyl group-containing resins having a carboxyl group in the molecule can be used, and in particular, a carboxyl group-containing photosensitive resin having an ethylenically unsaturated double bond in the molecule is light. It is preferable from the viewpoint of curability and resolution.
- the ethylenically unsaturated double bond is preferably derived from acrylic acid or methacrylic acid or a derivative thereof.
- carboxyl group-containing non-photosensitive resin having no ethylenically unsaturated double bond
- Specific examples of the carboxyl group-containing resin include the following compounds (any of oligomers and polymers).
- Reaction product obtained by reacting a reaction product obtained by reacting a compound having a plurality of phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide, with an unsaturated group-containing monocarboxylic acid.
- a carboxyl group-containing photosensitive resin obtained by reacting a product with a polybasic acid anhydride.
- Diisocyanate and bifunctional epoxy resin such as bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing photosensitive urethane resin obtained by a polyaddition reaction of (meth) acrylate or a partially acid anhydride-modified product thereof, a carboxyl group-containing dialcohol compound, and a diol compound.
- bisphenol A type epoxy resin hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bixylenol type epoxy resin, biphenol type epoxy resin ( A carboxyl group-containing photosensitive urethane resin obtained by a polyaddition reaction of (meth) acrylate or a partially acid anhydride-modified product thereof, a carboxyl group-containing dialcohol compound, and a diol compound.
- a carboxyl group-containing non-photosensitive material obtained by copolymerization of an unsaturated carboxylic acid such as (meth) acrylic acid and an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth) acrylate, and isobutylene. Resin.
- Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, and aromatic diisocyanates; carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers Carboxyl group-containing non-photosensitive property by polyaddition reaction of diol compounds such as polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A alkylene oxide adduct diols, compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups Urethane resin.
- diol compounds such as polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A alkylene oxide adduct diols, compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups Urethane resin.
- a dicarboxylic acid such as adipic acid, phthalic acid or hexahydrophthalic acid is reacted with a bifunctional oxetane resin as described later, and the resulting primary hydroxyl group is phthalic anhydride, tetrahydrophthalic anhydride or hexahydrophthalic anhydride.
- a carboxyl group-containing non-photosensitive polyester resin to which a dibasic acid anhydride such as
- one isocyanate group and one or more (meth) acryloyl groups are introduced into the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate.
- a carboxyl group-containing photosensitive urethane resin obtained by adding a compound having a terminal (meth) acrylate.
- a carboxyl group-containing photosensitive resin obtained by adding a compound having one epoxy group and one or more (meth) acryloyl groups in one molecule to the resins (1) to (10).
- (meth) acrylate is a term that collectively refers to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
- the acid value of the carboxyl group-containing resin is suitably in the range of 40 to 200 mgKOH / g, more preferably in the range of 45 to 120 mgKOH / g.
- the acid value of the carboxyl group-containing resin is less than 40 mgKOH / g, alkali development becomes difficult.
- the acid value exceeds 200 mgKOH / g, dissolution of the exposed area by the developer proceeds and the line becomes thinner than necessary.
- the exposed portion and the unexposed portion are not distinguished from each other by dissolution and peeling with a developer, which makes it difficult to draw a normal resist pattern.
- the weight average molecular weight of the carboxyl group-containing resin varies depending on the resin skeleton, but is generally in the range of 2,000 to 150,000, more preferably 5,000 to 100,000.
- the weight average molecular weight is less than 2,000, tack-free performance may be inferior, the moisture resistance of the coated film after exposure may be poor, film thickness may be reduced during development, and resolution may be greatly inferior.
- the weight average molecular weight exceeds 150,000, developability may be remarkably deteriorated, and storage stability may be inferior.
- the amount of such a carboxyl group-containing resin is 20 to 60% by mass, preferably 30 to 50% by mass in the total composition.
- the amount of the carboxyl group-containing resin is less than the above range, the coating strength is lowered, which is not preferable.
- the amount is larger than the above range, the viscosity of the composition is increased or the coating property is lowered, which is not preferable.
- carboxyl group-containing resins are not limited to those listed above, and one kind may be used alone, or a plurality of kinds may be mixed and used.
- resins having an aromatic ring are preferable because they have a high refractive index and excellent resolution, and those having a novolak structure not only have resolution but also PCT and It is preferable because of excellent crack resistance.
- the carboxyl group-containing photosensitive resins (1) and (2) are preferable because a solder resist having excellent resolution can be obtained while satisfying various properties such as PCT resistance.
- the photosensitive resin composition for forming the photosensitive resin layer contains a photopolymerization initiator.
- photopolymerization initiators include oxime ester photopolymerization initiators having an oxime ester group, alkylphenone photopolymerization initiators, ⁇ -aminoacetophenone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, and titanocene photopolymerization initiators.
- One or more photopolymerization initiators selected from the group consisting of polymerization initiators can be suitably used.
- the oxime ester-based initiator can be added in a small amount and outgassing is suppressed, it is effective and effective in PCT resistance and crack resistance.
- oxime ester photopolymerization initiator examples include CGI-325, Irgacure OXE01, Irgacure OXE02 manufactured by BASF Japan, N-1919, NCI-831 manufactured by Adeka, and the like as commercially available products.
- numerator can also be used suitably, Specifically, the oxime ester compound which has a carbazole structure represented with the following general formula is mentioned.
- X is a hydrogen atom, an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a phenyl group, a phenyl group (an alkyl group having 1 to 17 carbon atoms, an alkoxy group having 1 to 8 carbon atoms).
- Y and Z are each a hydrogen atom, an alkyl group having 1 to 17 carbon atoms, or a carbon atom having 1 carbon atom), substituted with an alkyl group having a C 1-8 alkyl group or a dialkylamino group.
- X and Y are each a methyl group or an ethyl group
- Z is methyl or phenyl
- n is 0, and Ar is a bond, phenylene, naphthylene, thiophene or thienylene. It is preferable.
- the compound which can be represented by the following general formula can also be mentioned as a preferable carbazole oxime ester compound.
- R 1 represents an alkyl group having 1 to 4 carbon atoms, or a phenyl group optionally substituted with a nitro group, a halogen atom, or an alkyl group having 1 to 4 carbon atoms).
- R 2 represents an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group optionally substituted with an alkyl group having 1 to 4 carbon atoms or an alkoxy group.
- R 3 may be linked with an oxygen atom or a sulfur atom, and may be substituted with an alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 4 carbon atoms which may be substituted with a phenyl group.
- R 4 represents a nitro group or an acyl group represented by X—C ( ⁇ O) —.
- X represents an aryl group, a thienyl group, a morpholino group, a thiophenyl group, or a structure represented by the following formula, which may be substituted with an alkyl group having 1 to 4 carbon atoms.
- the blending amount of such an oxime ester photopolymerization initiator is preferably 0.01 to 5 parts by mass and preferably 0.25 to 3 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin. More preferred.
- a solder resist with excellent photocurability and resolution, improved adhesion and PCT resistance, and excellent chemical resistance such as electroless gold plating resistance is obtained. be able to.
- the photocurability on copper is insufficient, the solder resist coating film is peeled off, and the coating properties such as chemical resistance are deteriorated.
- it exceeds 5 parts by mass light absorption on the surface of the solder resist coating film becomes violent, and the deep curability tends to decrease.
- alkylphenone photopolymerization initiators include Irgacure 184, Darocur 1173, Irgacure 2959, Irgacure 127 (2-Hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-hydroxy)) manufactured by BASF Japan Ltd. And ⁇ -hydroxyalkylphenone types such as methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one).
- ⁇ -aminoacetophenone photopolymerization initiators include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, N , N-dimethylaminoacetophenone and the like.
- Examples of commercially available products include Irgacure 907, Irgacure 369, and Irgacure 379 manufactured by BASF Japan.
- acylphosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and bis (2,6-dimethoxy). And benzoyl) -2,4,4-trimethyl-pentylphosphine oxide.
- examples of commercially available products include Lucilin TPO manufactured by BASF, Irgacure 819 manufactured by BASF Japan, and the like.
- the blending amount of these ⁇ -aminoacetophenone photopolymerization initiator and acylphosphine oxide photopolymerization initiator is preferably 0.1 to 25 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin. More preferably, it is 20 parts by mass.
- a solder resist having excellent photocurability and resolution, improved adhesion and PCT resistance, and excellent chemical resistance such as electroless gold plating resistance is obtained. be able to.
- the photo-curability on copper is similarly insufficient, the solder resist is peeled off, and the coating properties such as chemical resistance are lowered.
- the amount exceeds 25 parts by mass the effect of reducing outgas cannot be obtained, and the light absorption on the surface of the solder resist becomes intense, and the deep curability tends to decrease.
- Irgacure 389 manufactured by BASF Japan can be suitably used as a photopolymerization initiator.
- a preferred blending amount of Irgacure 389 is 0.1 to 20 parts by mass, and more preferably 1 to 15 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
- titanocene series such as Irgacure 784 (bis ( ⁇ 5 -2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium)
- a photopolymerization initiator can also be suitably used.
- a suitable amount of the titanocene photopolymerization initiator is 0.01 to 5 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin, and a more preferable amount is 0.01 to 3 parts by mass. .
- these photopolymerization initiators are excellent in photocurability and resolution, improved in adhesion and PCT resistance, and also in chemical resistance such as electroless gold plating resistance.
- Solder resist can be used.
- the photocurability on copper is insufficient, the solder resist is peeled off, and the coating properties such as chemical resistance are lowered.
- it exceeds a suitable blending amount the effect of reducing the outgas cannot be obtained, and the light absorption on the solder resist surface becomes intense, and the deep curability tends to be lowered.
- a photoinitiator assistant and a sensitizer can be used in addition to the photopolymerization initiator.
- Photoinitiators, photoinitiators, and sensitizers that can be suitably used for photosensitive resin compositions include benzoin compounds, acetophenone compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, and tertiary amine compounds. And xanthone compounds.
- benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether.
- acetophenone compound examples include acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, and the like.
- anthraquinone compound examples include 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone and the like.
- thioxanthone compound examples include 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-diisopropylthioxanthone, and the like.
- ketal compound examples include acetophenone dimethyl ketal and benzyl dimethyl ketal.
- benzophenone compound examples include benzophenone, 4-benzoyldiphenyl sulfide, 4-benzoyl-4′-methyldiphenyl sulfide, 4-benzoyl-4′-ethyldiphenyl sulfide, and 4-benzoyl-4′-propyldiphenyl. And sulfides.
- the tertiary amine compound include an ethanolamine compound and a compound having a dialkylaminobenzene structure, such as 4,4′-dimethylaminobenzophenone (Nisso Cure MABP manufactured by Nippon Soda Co., Ltd.), Dialkylaminobenzophenone such as 4,4′-diethylaminobenzophenone (EAB manufactured by Hodogaya Chemical Co., Ltd.), 7- (diethylamino) -4-methyl-2H-1-benzopyran-2-one (7- (diethylamino) -4- Dialkylamino group-containing coumarin compounds such as methylcoumarin), ethyl 4-dimethylaminobenzoate (Kayacure EPA manufactured by Nippon Kayaku Co., Ltd.), ethyl 2-dimethylaminobenzoate (Quantacure DMB manufactured by International Bio-Synthetics) , -Dimethylaminobenz
- Kayacure DMBI 4-dimethylaminobenzoic acid
- 2-ethylhexyl acid (Esolol 507 manufactured by Van Dyk), 4,4'-diethylaminobenzophenone (EAB manufactured by Hodogaya Chemical Co., Ltd.), and the like.
- thioxanthone compounds and tertiary amine compounds are preferred.
- the inclusion of a thioxanthone compound is preferable from the viewpoint of deep curability.
- thioxanthone compounds such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, and 2,4-diisopropylthioxanthone are preferably included.
- the compounding amount of such a thioxanthone compound is preferably 20 parts by mass or less with respect to 100 parts by mass of the carboxyl group-containing resin.
- the blending amount of the thioxanthone compound exceeds 20 parts by mass, the thick film curability is lowered and the cost of the product is increased. More preferably, it is 10 parts by mass or less.
- a compound having a dialkylaminobenzene structure is preferable, and among them, a dialkylaminobenzophenone compound, a dialkylamino group-containing coumarin compound having a maximum absorption wavelength in the range of 350 to 450 nm, and ketocoumarins are particularly preferable. .
- dialkylaminobenzophenone compound 4,4′-diethylaminobenzophenone is preferable because of its low toxicity.
- the dialkylamino group-containing coumarin compound has a maximum absorption wavelength of 350 to 410 nm in the ultraviolet region, so it is less colored and uses a colored pigment as well as a colorless and transparent photosensitive composition, and reflects the color of the colored pigment itself. It becomes possible to provide a solder resist.
- 7- (diethylamino) -4-methyl-2H-1-benzopyran-2-one is preferred because it exhibits an excellent sensitizing effect on laser light having a wavelength of 400 to 410 nm.
- the blending amount of such a tertiary amine compound is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
- the amount of the tertiary amine compound is less than 0.1 parts by mass, a sufficient sensitizing effect tends not to be obtained.
- the amount exceeds 20 parts by mass light absorption on the surface of the dried solder resist by the tertiary amine compound becomes intense, and the deep curability tends to decrease. More preferably, it is 0.1 to 10 parts by mass.
- photopolymerization initiators can be used alone or as a mixture of two or more.
- the total amount of such photopolymerization initiator, photoinitiator assistant, and sensitizer is preferably 35 parts by mass or less with respect to 100 parts by mass of the carboxyl group-containing resin. When it exceeds 35 parts by mass, the deep curability tends to decrease due to light absorption.
- photopolymerization initiators since these photopolymerization initiators, photoinitiator assistants, and sensitizers absorb a specific wavelength, the sensitivity may be lowered in some cases, and may function as an ultraviolet absorber.
- a colorant can be blended in the photosensitive resin composition used in the present invention.
- conventionally known colorants such as red, blue, green and yellow can be used, and any of pigments, dyes and dyes may be used. Specific examples include those with the following color index numbers (CI; issued by The Society of Dyers and Colorists).
- CI color index numbers
- Red colorant examples include monoazo, diazo, azo lake, benzimidazolone, perylene, diketopyrrolopyrrole, condensed azo, anthraquinone, and quinacridone. It is done.
- Monoazo PigmentRed 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15,16, 17, 21, 22, 23,31, 32, 112, 114,146, 147, 151, 170, 184, 187, 188, 193, 210, 245, 253, 258,266, 267, 268, 269.
- Disazo PigmentRed 37, 38, 41.
- Monoazo lakes Pigment Red 48: 1, 48: 2, 48: 3, 48: 4, 49: 1,49: 2, 50: 1, 52: 1, 52: 2,53: 1, 53: 2, 57 : 1, 58: 4, 63: 1, 63: 2, 64: 1,68.
- Benzimidazolone series Pigment Red 171, Pigment Red 175, Pigment Red 176, Pigment Red 185, Pigment Red 208.
- Perylene series SolventRed 135, SolventRed 179, PigmentRed 123, PigmentRed 149, PigmentRed 166, PigmentRed 178, PigmentRed 179, PigmentRed 190, PigmentRed 194, PigmentRed 224.
- Diketopyrrolopyrrole series Pigment Red254, Pigment Red 255, Pigment Red264, Pigment Red 270, Pigment Red272.
- Condensed azo systems PigmentRed 220, PigmentRed 144, PigmentRed 166, PigmentRed 214, PigmentRed 220, PigmentRed 221, and PigmentRed 242.
- Anthraquinone series Pigment Red 168, Pigment Red 177, Pigment Red 216, Solvent Red 149, Solvent Red 150, Solvent Red 52, Solvent Red 207.
- Kinacridone series PigmentRed 122, PigmentRed 202, PigmentRed 206, PigmentRed 207, PigmentRed 209.
- Blue colorant include phthalocyanine-based and anthraquinone-based pigments, and pigment-based compounds such as PigmentBlue 15 and Pigment Blue 15: 1 can be listed as specific pigments.
- PigmentBlue 15: 2 PigmentBlue 15: 3, PigmentBlue 15: 4, PigmentBlue 15: 6, PigmentBlue 16, and PigmentBlue 60.
- SolventBlue 35, SolventBlue 63, SolventBlue 68, SolventBlue 70, SolventBlue 83, SolventBlue 87, SolventBlue 94, SolventBlue 97, SolventBlue 122, SolventBlue 136, SolventBlue 67, SolventBlue 70, etc. can be used.
- a metal-substituted or unsubstituted phthalocyanine compound can also be used.
- the green colorant includes phthalocyanine, anthraquinone, and perylene, and specifically, PigmentGreen 7, Pigment Green 36, SolventGreen 3, Solvent Green 5, SolventGreen 20, Solvent Green28, and the like can be used.
- PigmentGreen 7, Pigment Green 36, SolventGreen 3, Solvent Green 5, SolventGreen 20, Solvent Green28, and the like can be used.
- a metal-substituted or unsubstituted phthalocyanine compound can also be used.
- Yellow colorant examples include monoazo, disazo, condensed azo, benzimidazolone, isoindolinone, anthraquinone, and the like.
- Anthraquinone series Solvent Yellow 163, PigmentYellow 24, Pigment Yellow 108, PigmentYellow 193, Pigment Yellow 147, PigmentYellow 199, Pigment Yellow 202.
- Isoindolinone series Pigment Yellow 110, Pigment Yellow 109, Pigment Yellow 139, Pigment Yellow 179, Pigment Yellow 185.
- Condensed azo series PigmentYellow 93, PigmentYellow 94, PigmentYellow 95, PigmentYellow 128, PigmentYellow 155, PigmentYellow 166, PigmentYellow 180.
- Benzimidazolone series Pigment Yellow 120, PigmentYellow 151, Pigment Yellow 154, PigmentYellow 156, Pigment Yellow 175, PigmentYellow 181.
- a colorant such as purple, orange, brown, or black may be added for the purpose of adjusting the color tone.
- the colorant as described above can be appropriately blended, it is preferably 10 parts by mass or less with respect to 100 parts by mass of the carboxyl group-containing resin or thermosetting component. More preferably, it is 0.1 to 5 parts by mass.
- thermosetting component can be added to the photosensitive resin composition used in the present invention. It was confirmed that heat resistance was improved by adding a thermosetting component.
- thermosetting components used in the present invention include amino resins such as melamine resins, benzoguanamine resins, melamine derivatives, benzoguanamine derivatives, blocked isocyanate compounds, cyclocarbonate compounds, polyfunctional epoxy compounds, polyfunctional oxetane compounds, episulfide resins, bismaleimides.
- Well-known thermosetting resins such as carbodiimide resins can be used.
- a thermosetting component having a plurality of cyclic ether groups and / or cyclic thioether groups hereinafter abbreviated as cyclic (thio) ether groups
- the thermosetting component having a plurality of cyclic (thio) ether groups in the molecule is a compound having a plurality of either one of the three, four, or five-membered cyclic (thio) ether groups in the molecule or two kinds of groups.
- a compound having a plurality of epoxy groups in the molecule that is, a polyfunctional epoxy compound, a compound having a plurality of oxetanyl groups in the molecule, that is, a polyfunctional oxetane compound, a compound having a plurality of thioether groups in the molecule, That is, episulfide resin etc. are mentioned.
- polyfunctional epoxy compounds examples include epoxidized vegetable oils such as Adeka Sizer O-130P, Adeka Sizer O-180A, Adeka Sizer D-32, and Adeka Sizer D-55 manufactured by ADEKA; jER828, jER834, and jER1001 manufactured by Mitsubishi Chemical Corporation. , JER1004, EHPE3150 manufactured by Daicel Chemical Industries, Epicron 840, Epicron 850, Epicron 1050, Epicron 2055 manufactured by DIC, Epototo YD-011, YD-013, YD-127, YD-128 manufactured by Tohto Kasei D. made by Chemical Co. E. R. 317, D.E. E. R. 331, D.D. E. R.
- Type or biphenol type epoxy resin or a mixture thereof Nippon Kayaku EBPS-200, ADEKA EPX-30, DIC EXA-1514 (trade name), etc .; bisphenol S type epoxy resin; Bisphenol A novolac type epoxy resin such as jER157S (trade name); tetraphenylolethane type epoxy resin such as jERYL-931 manufactured by Mitsubishi Chemical Corporation, Araldide 163 manufactured by BASF Japan Co., Ltd.
- Naphthalene group-containing epoxy resins such as ESN-190, ESN-360 manufactured by DIC, HP-4032, EXA-4750, and EXA-4700 manufactured by DIC; Epoxy having a dicyclopentadiene skeleton such as HP-7200 and HP-7200H manufactured by DIC Resin; Epoxy resin with glycidyl methacrylate copolymer such as CP-50S and CP-50M manufactured by NOF Corporation; Copolymer epoxy resin with cyclohexylmaleimide and glycidyl methacrylate; Epoxy-modified polybutadiene rubber derivative (for example, PB manufactured by Daicel Chemical Industries, Ltd.) -3600) TBN modified epoxy resin (e.g., Tohto Kasei Co.
- TBN modified epoxy resin e.g., Tohto Kasei Co.
- epoxy resins can be used alone or in combination of two or more.
- novolak type epoxy resins bixylenol type epoxy resins, biphenol type epoxy resins, biphenol novolac type epoxy resins, naphthalene type epoxy resins or mixtures thereof are particularly preferable.
- polyfunctional oxetane compound examples include bis [(3-methyl-3-oxetanylmethoxy) methyl] ether, bis [(3-ethyl-3-oxetanylmethoxy) methyl] ether, 1,4-bis [(3- Methyl-3-oxetanylmethoxy) methyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, (3-methyl-3-oxetanyl) methyl acrylate, (3-ethyl-3- In addition to polyfunctional oxetanes such as oxetanyl) methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate and oligomers or copolymers thereof, oxetane alcohol and novolak resin , Poly (p-hydroxy
- Examples of the compound having a plurality of cyclic thioether groups in the molecule include bisphenol A type episulfide resin YL7000 manufactured by Mitsubishi Chemical Corporation. Moreover, episulfide resin etc. which replaced the oxygen atom of the epoxy group of the novolak-type epoxy resin with the sulfur atom using the same synthesis method can be used.
- the blending amount of the thermosetting component having a plurality of cyclic (thio) ether groups in the molecule is preferably 0.6 to 2.5 equivalents relative to 1 equivalent of the carboxyl group of the carboxyl group-containing resin.
- the blending amount is less than 0.6, a carboxyl group remains in the solder resist, and heat resistance, alkali resistance, electrical insulation and the like are lowered.
- the amount exceeds 2.5 equivalents, the low molecular weight cyclic (thio) ether group remains in the dry coating film, thereby reducing the strength of the coating film. More preferably, it is 0.8 to 2.0 equivalents.
- thermosetting components include amino resins such as melamine derivatives and benzoguanamine derivatives.
- amino resins such as melamine derivatives and benzoguanamine derivatives.
- examples include methylol melamine compounds, methylol benzoguanamine compounds, methylol glycoluril compounds, and methylol urea compounds.
- the alkoxymethylated melamine compound, alkoxymethylated benzoguanamine compound, alkoxymethylated glycoluril compound and alkoxymethylated urea compound are the methylol groups of the respective methylolmelamine compound, methylolbenzoguanamine compound, methylolglycoluril compound and methylolurea compound. Obtained by conversion to an alkoxymethyl group.
- the type of the alkoxymethyl group is not particularly limited and can be, for example, a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group, or the like.
- a melamine derivative having a formalin concentration which is friendly to the human body and the environment is preferably 0.2% or less.
- thermosetting components can be used alone or in combination of two or more.
- a compound having a plurality of isocyanate groups or blocked isocyanate groups in one molecule can be added to the photosensitive resin composition used in the present invention.
- Examples of such a compound having a plurality of isocyanate groups or blocked isocyanate groups in one molecule include polyisocyanate compounds or blocked isocyanate compounds.
- the blocked isocyanate group is a group in which the isocyanate group is protected by the reaction with the blocking agent and temporarily inactivated, and the blocking agent is dissociated when heated to a predetermined temperature. Produces. It was confirmed that the curability and the toughness of the resulting cured product were improved by adding the polyisocyanate compound or the blocked isocyanate compound.
- polyisocyanate compound for example, aromatic polyisocyanate, aliphatic polyisocyanate, or alicyclic polyisocyanate is used.
- aromatic polyisocyanate include, for example, 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, Examples thereof include m-xylylene diisocyanate and 2,4-tolylene dimer.
- aliphatic polyisocyanate examples include tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylenebis (cyclohexyl isocyanate), and isophorone diisocyanate.
- alicyclic polyisocyanate examples include bicycloheptane triisocyanate.
- adduct bodies, burette bodies and isocyanurate bodies of the isocyanate compounds mentioned above may be mentioned.
- the blocked isocyanate compound an addition reaction product of an isocyanate compound and an isocyanate blocking agent is used.
- an isocyanate compound which can react with a blocking agent the above-mentioned polyisocyanate compound etc. are mentioned, for example.
- isocyanate blocking agent examples include phenolic blocking agents such as phenol, cresol, xylenol, chlorophenol and ethylphenol; lactam blocking agents such as ⁇ -caprolactam, ⁇ -palerolactam, ⁇ -butyrolactam and ⁇ -propiolactam; Active methylene blocking agents such as ethyl acetoacetate and acetylacetone; methanol, ethanol, propanol, butanol, amyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, benzyl Ether, methyl glycolate, butyl glycolate, diacetone alcohol, lactic acid And alcohol blocking agents such as ethyl lactate; oxime blocking agents such as formaldehyde oxime, acetaldoxime, acetoxime, methyl e
- the blocked isocyanate compound may be commercially available, for example, Sumidur BL-3175, BL-4165, BL-1100, BL-1265, Death Module TPLS-2957, TPLS-2062, TPLS-2078, TPLS-2117.
- the compounding amount of the compound having a plurality of isocyanate groups or blocked isocyanate groups in one molecule is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
- the blending amount is less than 1 part by mass, sufficient coating film toughness cannot be obtained.
- it exceeds 100 mass parts storage stability falls. More preferably, it is 2 to 70 parts by mass.
- thermosetting component having a plurality of cyclic (thio) ether groups in the molecule
- thermosetting catalysts include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole.
- Imidazole derivatives such as 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N -Amine compounds such as dimethylbenzylamine and 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic acid dihydrazide and sebacic acid dihydrazide; and phosphorus compounds such as triphenylphosphine.
- Examples of commercially available products include 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, 2P4MHZ (both trade names of imidazole compounds) manufactured by Shikoku Kasei Kogyo Co., Ltd. and U-CAT (registered by San Apro). Trademarks) 3503N, U-CAT3502T (all are trade names of blocked isocyanate compounds of dimethylamine), DBU, DBN, U-CATSA102, U-CAT5002 (all are bicyclic amidine compounds and salts thereof), and the like.
- thermosetting catalyst for epoxy resins or oxetane compounds or a catalyst that promotes the reaction of epoxy groups and / or oxetanyl groups with carboxyl groups, either alone or in combination of two or more. Can be used.
- thermosetting catalysts is sufficient in the usual quantitative ratio, for example, preferably with respect to 100 parts by mass of the carboxyl group-containing resin or thermosetting component having a plurality of cyclic (thio) ether groups in the molecule. Is 0.1 to 20 parts by mass, more preferably 0.5 to 15.0 parts by mass.
- the photosensitive resin composition used in the present invention preferably contains an inorganic filler.
- the inorganic filler is used for suppressing the curing shrinkage of the cured product of the photosensitive resin composition and improving the properties such as adhesion and hardness.
- examples of inorganic fillers include barium sulfate, barium titanate, amorphous silica, crystalline silica, Neuburg silica, fused silica, spherical silica, talc, clay, magnesium carbonate, calcium carbonate, aluminum oxide, aluminum hydroxide, and nitriding Examples thereof include silicon and aluminum nitride.
- the average particle diameter of the inorganic filler is preferably 5 ⁇ m or less.
- the blending ratio is preferably 75% by mass or less, more preferably 0.1 to 60% by mass based on the total solid content of the photosensitive resin composition. When the blending ratio of the inorganic filler exceeds 75% by mass, the viscosity of the composition increases, and the applicability may decrease or the cured product of the photosensitive resin composition may become brittle.
- an elastomer having a functional group can be added to the photosensitive resin composition used in the present invention.
- an elastomer having a functional group By adding an elastomer having a functional group, it is expected that the coating property is improved and the strength of the coating film is also improved.
- the elastomer having a functional group include R-45HT, Poly bd HTP-9 (above, manufactured by Idemitsu Kosan Co., Ltd.), Epolide PB3600 (manufactured by Daicel Chemical Industries, Ltd.), Denarex R-45EPT.
- Polyester elastomers polyurethane elastomers, polyester urethane elastomers, polyamide elastomers, polyesteramide elastomers, acrylic elastomers, and olefin elastomers can be used.
- resins in which a part or all of epoxy groups of epoxy resins having various skeletons are modified with carboxylic acid-modified butadiene-acrylonitrile rubber at both ends can be used.
- epoxy-containing polybutadiene elastomers, acrylic-containing polybutadiene elastomers, hydroxyl group-containing polybutadiene elastomers, hydroxyl group-containing isoprene elastomers, and the like can also be used.
- the blending amount of these elastomers is preferably in the range of 3 to 124 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin. Moreover, these elastomers may be used individually by 1 type, and may use 2 or more types together.
- a mercapto compound may be added to the photosensitive resin composition used in the present invention as necessary.
- PCT resistance and HAST resistance are improved by adding a mercapto compound to the photosensitive resin composition for forming the photosensitive resin layer on the side in contact with the substrate. This is thought to be due to improved adhesion.
- mercapto compounds include mercaptoethanol, mercaptopropanol, mercaptobutanol, mercaptopropanediol, mercaptobutanediol, hydroxybenzenethiol and derivatives thereof such as 1-butanethiol, butyl-3-mercaptopropionate, methyl-3- Mercaptopropionate, 2,2- (ethylenedioxy) diethanethiol, ethanethiol, 4-methylbenzenethiol, dodecyl mercaptan, propanethiol, butanethiol, pentanethiol, 1-octanethiol, cyclopentanethiol, cyclohexanethiol Thioglycerol, 4,4-thiobisbenzenethiol and the like.
- mercapto-4-butyrolactone also known as 2-mercapto-4-butanolide
- 2-mercapto-4-methyl-4-butyrolactone 2-mercapto-4-ethyl-4 -Butyrolactone
- 2-mercapto-4-butyrothiolactone 2-mercapto-4-butyrolactam
- 2-mercapto-4-butyrolactam N-methoxy-2-mercapto-4-butyrolactam
- N-ethoxy-2-mercapto-4-butyrolactam N-methyl- 2-mercapto-4-butyrolactam
- N-ethyl-2-mercapto-4-butyrolactam N- (2-methoxy) ethyl-2-mercapto-4-butyrolactam
- 2-mercapto-5-valerolactone 2-mer Pto-5-valerolactam
- 2-mer Pto-5-valerolactam 2-mer Pto-5-valerolactam
- 2-mercaptobenzimidazole 2-mercaptobenzoxazole
- 2-mercaptobenzothiazole manufactured by Kawaguchi Chemical Industry Co., Ltd .: trade name Accel M
- 3-mercapto-4-methyl-4H-1,2, 4-Triazole 5-methyl-1,3,4-thiadiazole-2-thiol, 1-phenyl-5-mercapto-1H-tetrazole are preferred.
- the blending amount of such a mercapto compound is suitably 0.01 parts by weight or more and 10.0 parts by weight or less, more preferably 0.05 parts by weight or more, with respect to 100 parts by weight of the carboxyl group-containing resin. 5 parts by mass or less. If it is less than 0.01 parts by mass, improvement in adhesion as an effect of addition of a mercapto compound is not confirmed. On the other hand, if it exceeds 10.0 parts by mass, development failure of the photosensitive resin composition, reduction in dry management width, etc. This is not preferable because it may cause These mercapto compounds may be used alone or in combination of two or more.
- a compound having an ethylenically unsaturated group in the molecule can be blended as a photosensitive monomer.
- the compound having an ethylenically unsaturated group in the molecule is photocured by irradiation with active energy rays to insolubilize or assist insolubilization of the photosensitive resin composition of the present invention in an alkaline aqueous solution.
- polyester (meth) acrylate, polyether (meth) acrylate, urethane (meth) acrylate, carbonate (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate can be used, Specifically, hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate; diacrylates of glycols such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol; N, N-dimethylacrylamide Acrylamides such as N-methylolacrylamide and N, N-dimethylaminopropylacrylamide; N, N-dimethylaminoethyl acrylate, N Aminoalkyl acrylates such as N-dimethylaminopropyl acrylate; polyhydric alcohols such as hexanediol, trimethylolpropane, pentaery
- an epoxy acrylate resin obtained by reacting acrylic acid with a polyfunctional epoxy resin such as a cresol novolac type epoxy resin, and further a hydroxy acrylate such as pentaerythritol triacrylate and a diisocyanate such as isophorone diisocyanate on the hydroxyl group of the epoxy acrylate resin.
- the epoxy urethane acrylate compound etc. which made the half urethane compound react are mentioned.
- Such an epoxy acrylate resin can improve photocurability without deteriorating the touch drying property.
- a compound having an ethylenically unsaturated group in the molecule as described above may be used alone or in combination of two or more.
- a compound having 4 to 6 ethylenically unsaturated groups in one molecule is preferable from the viewpoint of photoreactivity and resolution, and a compound having two ethylenically unsaturated groups in one molecule is used.
- the linear thermal expansion coefficient of the cured product is reduced, and the occurrence of peeling during PCT is reduced.
- the amount of the compound having an ethylenically unsaturated group in the molecule as described above is preferably 5 to 100 parts by mass with respect to 100 parts by mass of the carboxyl group-containing resin.
- the blending amount is less than 5 parts by mass, photocurability is lowered, and pattern formation becomes difficult by alkali development after irradiation with active energy rays.
- it exceeds 100 mass parts the solubility with respect to dilute alkali aqueous solution falls, and a coating film becomes weak. More preferably, it is 1 to 70 parts by mass.
- the photosensitive resin composition used in the present invention uses an organic solvent for the synthesis of the carboxyl group-containing resin and the preparation of the composition, or for adjusting the viscosity for application to a substrate or a carrier film.
- organic solvents include ketones, aromatic hydrocarbons, glycol ethers, glycol ether acetates, esters, alcohols, aliphatic hydrocarbons, petroleum solvents, and the like.
- ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, propylene glycol monomethyl Glycol ethers such as ether, dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, triethylene glycol monoethyl ether; ethyl acetate, butyl acetate, dipropylene glycol methyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, Esters such as propylene glycol butyl ether acetate; ethanol, propano , Ethylene glycol, alcohols such as propylene glycol; octane
- An antioxidant such as a radical scavenger and a peroxide decomposer can be added to the photosensitive resin composition used in the present invention.
- a known ultraviolet absorber can be used in addition to the antioxidant.
- the photosensitive resin composition used in the present invention may further include a known thermal polymerization inhibitor, an adhesion promoter, a thickening agent such as fine silica, organic bentonite, and montmorillonite, a silicone type, a fluorine type, and a polymer type, if necessary.
- a known thermal polymerization inhibitor such as fine silica, organic bentonite, and montmorillonite
- a silicone type such as fine silica, organic bentonite, and montmorillonite
- silicone type such as fine silica, organic bentonite, and montmorillonite
- fluorine type such as a fluorine type
- polymer type a known additives
- antifoaming agents and / or leveling agents such as silane coupling agents such as imidazole series, thiazole series and triazole series, and rust preventives can be blended.
- a flame retardant can be blended in the photosensitive resin composition used in the present invention.
- conventionally known phosphorus compounds such as phosphinates, phosphate derivatives and phosphazene compounds can be used.
- a preferable phosphorus element concentration is in a range not exceeding 3% in the photosensitive resin composition.
- the laminated structure of the present invention comprises a base material and a photosensitive resin layer formed on the base material, the absorption coefficient ( ⁇ ) for a wavelength of 365 nm having an increasing gradient from the resin layer surface toward the base material surface. And a pattern layer formed by exposure and development, wherein the pattern layer has a concave portion having a forward taper structure. That is, in the laminated structure of the present invention, the photosensitive resin composition forms an increasing gradient in the Z-axis direction so that the absorption coefficient ( ⁇ ) of the photosensitive resin layer with respect to the wavelength of 365 nm is higher on the side in contact with the substrate. And a pattern layer formed by exposing and developing a photosensitive resin layer. As described above, the gradient may be continuous or stepwise. In the case of a graded gradient, the photosensitive resin layer is composed of two or more layers having different absorption coefficients. The continuous gradient and the stepwise gradient can be made differently by the photosensitive resin coating / drying method.
- the photosensitive resin layer of the laminated structure of the present invention is preferably formed by the photosensitive resin layer constituting the dry film of the present invention.
- the laminated structure of the present invention forms a photosensitive resin layer by directly applying and drying a photosensitive resin composition on a substrate by an appropriate method such as a blade coater, a lip coater, a comma coater, or a film coater. May be.
- a first photosensitive resin layer is formed by applying and drying a photosensitive resin composition, and a dry film is laminated on the first photosensitive resin layer to form a second photosensitive resin layer. It may be by the method to do.
- a first photosensitive resin layer is formed by laminating a dry film on a substrate, and a photosensitive resin composition is applied onto the first photosensitive resin layer and dried to thereby provide a second photosensitive resin.
- a layer may be formed.
- the photosensitive resin layer according to the laminated structure of the present invention is a layer having an absorption coefficient ( ⁇ ) of “step gradient” and “continuous gradient” depending on the coating method of the photosensitive resin composition when forming the layer structure. You can make different structures. Specifically, it is the same as the case where the photosensitive resin layer of the dry film described above is formed.
- the total film thickness of the photosensitive resin layer in the laminated structure of the present invention is preferably 100 ⁇ m or less, and more preferably in the range of 5 to 50 ⁇ m.
- the first photosensitive resin layer (also referred to as L1) having a higher absorption coefficient is 1 to 50 ⁇ m
- the second photosensitive resin layer having a lower absorption coefficient ( L2) is preferably 1 to 50 ⁇ m thick.
- the ratio of the first photosensitive resin layer (L1) to the second photosensitive resin layer (L2) is preferably in the range of 1: 9 to 9: 1.
- the base material examples include a printed circuit board and a flexible printed circuit board in which a circuit is formed in advance, paper-phenol resin, paper-epoxy resin, glass cloth-epoxy resin, glass-polyimide, glass cloth / non-woven cloth-epoxy resin. , Glass cloth / paper-epoxy resin, synthetic fiber-epoxy resin, copper-clad laminates of all grades (FR-4 etc.) using composite materials such as fluororesin / polyethylene / polyphenylene ether, polyphenylene oxide / cyanate ester, A polyimide film, a PET film, a glass substrate, a ceramic substrate, a wafer plate, or the like can be used.
- the printed wiring board of the present invention includes a base material, and a photosensitive resin layer formed on the base material, the absorption coefficient ( ⁇ ) for a wavelength of 365 nm having an increasing gradient from the resin layer surface toward the base material surface. And a pattern layer formed by exposing and developing the pattern layer, wherein the pattern layer is a solder resist having a concave portion with a forward taper structure.
- the photosensitive resin layer formed on the substrate (substrate) is selected by a contact type (or non-contact type) through a photomask on which a pattern is formed.
- a contact type or non-contact type
- the photosensitive resin layer the exposure part (part irradiated with the active energy ray) hardens
- a direct drawing device for example, a laser direct imaging device that draws an image directly with a laser using CAD data from a computer
- an exposure device equipped with a metal halide lamp for example, an exposure apparatus equipped with a mercury short arc lamp
- An exposure apparatus equipped with an LED, an exposure apparatus equipped with an LED, or an exposure apparatus equipped with a mercury short arc lamp can be used.
- the active energy ray it is preferable to use light having a maximum wavelength in the range of 350 to 410 nm. By setting the maximum wavelength within this range, radicals can be efficiently generated from the photopolymerization initiator.
- the amount of exposure varies depending on the film thickness and the like, but can generally be in the range of 5 to 500 mJ / cm 2 , preferably 10 to 300 mJ / cm 2 .
- the direct drawing apparatus for example, devices manufactured by Nippon Orbotech, Pentax, Oak, Dainippon Screen, etc. can be used, and an apparatus that irradiates active energy rays having a maximum wavelength of 350 to 410 nm. Any device may be used as long as it is.
- the exposed portion (the portion irradiated with the active energy ray) is cured, and then the unexposed portion is diluted with a dilute alkaline aqueous solution (for example, 0.3 to 3 wt%).
- Development with a sodium carbonate aqueous solution forms a cured coating layer (pattern).
- a developing method a dipping method, a shower method, a spray method, a brush method, or the like can be used.
- an alkaline aqueous solution such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines and the like can be used.
- the photosensitive resin layer contains a thermosetting component, for example, by heating to a temperature of about 140 to 180 ° C. and thermosetting, the carboxyl group of the carboxyl group-containing resin and, for example, a plurality of cyclic ethers in the molecule
- a thermosetting component having a group and / or a cyclic thioether group reacts to form a cured coating layer (pattern) excellent in various properties such as heat resistance, chemical resistance, moisture absorption resistance, adhesion, and electrical characteristics. it can.
- the photosensitive resin layer of the dry film described above is formed on the base material so that the absorption coefficient ( ⁇ ) with respect to the wavelength of 365 nm is from the photosensitive resin layer surface toward the base material surface.
- the dry film lamination in the first step can be performed by a known method.
- the exposure and development for forming the pattern layer in the second step are as described above.
- Synthesis example 1 A novolac-type cresol resin (trade name “Shonol CRG951”, manufactured by Showa Polymer Co., Ltd., OH equivalent: 119.4) is added to an autoclave equipped with a thermometer, a nitrogen introduction device / alkylene oxide introduction device, and a stirring device. 4 parts, 1.19 parts of potassium hydroxide and 119.4 parts of toluene were charged, the system was purged with nitrogen while stirring, and the temperature was raised. Next, 63.8 parts of propylene oxide was gradually added dropwise and reacted at 125 to 132 ° C. and 0 to 4.8 kg / cm 2 for 16 hours.
- reaction solution was cooled to room temperature, and 1.56 parts of 89% phosphoric acid was added to and mixed with the reaction solution to neutralize potassium hydroxide.
- the nonvolatile content was 62.1% and the hydroxyl value was 182.2 g / eq.
- a novolak-type cresol resin propylene oxide reaction solution was obtained. This was an average of 1.08 moles of propylene oxide added per equivalent of phenolic hydroxyl group. 293.0 parts of a propylene oxide reaction solution of the obtained novolac-type cresol resin, 43.2 parts of acrylic acid, 11.53 parts of methanesulfonic acid, 0.18 part of methylhydroquinone and 252.9 parts of toluene were mixed with a stirrer and a temperature.
- a reactor equipped with a meter and an air blowing tube was charged, air was blown at a rate of 10 ml / min, and the reaction was carried out at 110 ° C. for 12 hours while stirring.
- 12.6 parts of water was distilled from the water produced by the reaction as an azeotrope with toluene. Thereafter, the reaction solution was cooled to room temperature, neutralized with 35.35 parts of a 15% aqueous sodium hydroxide solution, and then washed with water. Thereafter, toluene was distilled off while substituting 118.1 parts of diethylene glycol monoethyl ether acetate with an evaporator to obtain a novolak acrylate resin solution.
- A-1 a solution (hereinafter abbreviated as A-1) of a carboxyl group-containing photosensitive resin having a non-volatile content of 65% and a solid acid value of 87.7 mgKOH / g was obtained.
- Synthesis example 2 Add 330 g of cresol novolac type epoxy resin (Epiclon N-695, manufactured by DIC Corporation, epoxy equivalent 220) to a flask equipped with a gas introduction tube, a stirrer, a cooling tube and a thermometer, add 340 g of carbitol acetate, The mixture was dissolved by heating, and 0.46 g of hydroquinone and 1.38 g of triphenylphosphine were added. This mixture was heated to 95 to 105 ° C., 108 g of acrylic acid was gradually added dropwise and reacted for 16 hours.
- cresol novolac type epoxy resin (Epiclon N-695, manufactured by DIC Corporation, epoxy equivalent 220)
- reaction product was cooled to 80 to 90 ° C., 68 g of tetrahydrophthalic anhydride was added, reacted for 8 hours, and cooled.
- A-2 a solution (hereinafter abbreviated as A-2) of a carboxyl group-containing photosensitive resin having a solid acid value of 50 mgKOH / g and a nonvolatile content of 65% was obtained.
- Photosensitive resin composition examples (1) to (15) Using the resin solution of the above synthesis example, blended in the proportions (parts by mass) shown in Table 1 together with various components shown in Table 1 below, premixed with a stirrer, kneaded with a three-roll mill, and used for solder resist A photosensitive resin composition was prepared.
- compositions (1) to (15) were applied to a glass plate having a thickness of 0.5 mm with an applicator at a film thickness of 4 levels, and this was applied with a UV / VIS / NIR spectrometer V-570 (JASCO). The absorbance at 365 nm was measured. The film thickness was plotted on the X axis and the absorbance was plotted on the Y axis, and the absorption coefficient ⁇ was calculated from the slope according to the Lambert-Beer rule.
- Examples 1 to 12 and Comparative Examples 1 to 5 (Production of dry film) Using the photosensitive resin composition examples (1) to (15), a dry film having a photosensitive resin layer having a multilayer structure capable of pattern formation was produced in the combinations shown in Table 2 below.
- the dry film is a 38 ⁇ m thick polyester film as a carrier film, and the photosensitive resin composition is applied on the carrier film using an applicator and dried at 80 ° C. for 10 minutes, and then the following photosensitive resin composition. It was produced by repeating the operation of coating and drying at 80 ° C. for 10 minutes.
- the photosensitive resin composition was applied and dried in order from the photosensitive resin composition that became the outermost layer when viewed from the substrate when laminated to the substrate.
- “um” means “ ⁇ m”.
- a single-sided printed wiring substrate on which a circuit having a copper thickness of 15 ⁇ m was formed was prepared and pretreated using CZ8100 manufactured by MEC Co., Ltd.
- the dry film according to each of the above-mentioned examples and comparative examples is bonded to this base material using a vacuum laminator so that the L1 layer is in contact with the base material.
- a resin layer was formed.
- This substrate was exposed through a step tablet (Kodak No. 2) using an exposure apparatus equipped with a high-pressure mercury short arc lamp, and developed (30 ° C., 0.2 MPa, 1 wt% Na 2 CO 3 aqueous solution) for 60 seconds.
- the amount of exposure of the step tablet remaining when the step was performed was set to the optimum exposure amount.
- a single-sided printed wiring substrate on which a circuit with a copper thickness of 15 ⁇ m was formed was prepared and pretreated using CZ8100 manufactured by MEC Co., Ltd.
- the dry film according to each of the above examples and comparative examples is bonded to the base material using a vacuum laminator so that the L1 layer is in contact with the base material, thereby forming a photosensitive resin layer having a layer structure on the base material. did.
- the carrier film After exposing the solder resist pattern at the above optimum exposure amount using an exposure apparatus equipped with a high-pressure mercury short arc lamp on this substrate, the carrier film is peeled off, and a spray pressure of 0.1 wt. Development was performed for 60 seconds under the condition of 2 MPa to obtain a solder resist pattern.
- This base material was irradiated with ultraviolet rays under a condition of an integrated exposure amount of 1000 mJ / cm 2 in a UV conveyor furnace, and then cured by heating at 160 ° C. for 60 minutes.
- the characteristics of the obtained printed wiring board (evaluation board) were evaluated as follows.
- ⁇ PCT resistance> The electroless gold-plated evaluation substrate was placed in a high-pressure, high-temperature, high-humidity tank having a temperature of 121 ° C., 2 atmospheres and 100% humidity for 300 hours, and the state change of the solder resist was evaluated according to the following evaluation criteria.
- ⁇ No significant swelling or discoloration.
- delta There is no remarkable peeling. Some peeling or discoloration.
- X Remarkable swelling and discoloration.
- ⁇ Resolution> A negative pattern having a via opening diameter of 60 ⁇ m was used as a negative mask for resolution evaluation, and the cross-sectional shape of the concave portion (opening portion) of the solder resist was confirmed. In the case of an undercut shape, the solder resist may be peeled off or a short circuit may occur, resulting in poor resolution. Judgment criteria are as follows. ⁇ : Forward taper structure ⁇ : Reverse taper structure ⁇ : Undercut structure
- ⁇ Adhesion> A solder resist having a line and space pattern of 50 ⁇ m / 100 ⁇ m was prepared, and a tape peeling test was performed on the solder resist to evaluate adhesion. Judgment criteria are as follows. ⁇ : No peeling ⁇ : Line chipping ⁇ : There is peeling
- a single-sided printed wiring board in which a circuit having a copper thickness of 30 ⁇ m was formed was prepared and pretreated using CZ8100 manufactured by MEC Co., Ltd.
- CZ8100 manufactured by MEC Co., Ltd.
- a vacuum laminator so that the L1 layer is in contact with the substrates
- a multilayer resin insulating layer is formed on the substrates. Formed.
- the carrier film is peeled off and sprayed with a 1 wt% sodium carbonate aqueous solution at 30 ° C. under a spray pressure of 0.2 MPa.
- This substrate was irradiated with ultraviolet rays under a condition of an integrated exposure amount of 1000 mJ / cm 2 in a UV conveyor furnace, and then cured by heating at 160 ° C. for 60 minutes. This substrate was cut and elemental analysis of the cross section was performed.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials For Photolithography (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
Abstract
Description
このような第1感光性樹脂層及び第2感光性樹脂層に対して露光、現像して、ビアホールなどの凹部を形成した場合、その凹部が逆テーパー構造となってしまう(図2(B)参照)。
このような逆テーパー構造では、はんだが付き難く、はんだが付いても剥がれやすくなるという問題がある。すなわち、特許文献2では、パターニングの際の解像性能に劣るソルダーレジストが得られてしまうという問題がある。
本発明のドライフィルムは、フィルムと、該フィルム上に形成された感光性樹脂層とを有するドライフィルムであって、感光性樹脂層の365nmの波長に対する吸収係数(α)が、感光性樹脂層表面からフィルム表面に向かって増加または減少勾配を有することを特徴とするものである。
即ち、本発明のドライフィルムにおいては、感光性樹脂層の365nmの波長に対する吸収係数(α)が、Z軸方向に増加または減少勾配を有する。Z軸方向とは、フィルムの平面をXY平面としたときのZ軸方向である。また、吸収係数が勾配を形成するとは、感光性樹脂層のある地点での吸収係数が、Z軸方向における位置の異なる別の地点での吸収係数よりも高い、ないし低いということである。
この状態では、感光性樹脂層の基材に接する側の部分が、感光性樹脂層の基材と反対側の表面部分よりも吸光係数が大きいため、光硬化がより進行する。従って、このような感光性樹脂層に対して露光、現像して、凹部を形成した場合、その凹部の開口形状が、基材に向かって次第に狭くなる順テーパー構造となる。順テーパー構造では、はんだ工程において、はんだ付きが良好となる。よって、本発明のドライフィルムを用いることにより、解像性に優れたソルダーレジスト(パターン層)を形成することができる。
吸収係数(α)は、膜厚が異なる感光性樹脂層の365nmの波長に対する吸光度を測定し、膜厚と吸光度をプロットしたグラフの傾きから求めることができる。
感光性樹脂層中の吸収係数(α)の勾配は、365nmに高い吸収を有する物質の濃度調整によっても作り出すことができ、例えば、光重合開始剤又は着色剤による吸収係数によって形成されるものであることが好ましい。
キャリアフィルムとしては、例えば2~150μmの厚みのポリエチレンテレフタレート等のポリエステルフィルムなどの熱可塑性フィルムが用いられる。
カバーフィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム等を使用することができるが、感光性樹脂層との接着力が、キャリアフィルムよりも小さいものが良い。
本発明のドライフィルムは、前記感光性樹脂層が、カルボキシル基含有感光性樹脂、光重合開始剤又は着色剤、熱硬化成分、及び無機フィラーを含む感光性樹脂組成物からなることが好ましい。
カルボキシル基含有樹脂の具体例としては、以下のような化合物(オリゴマー及びポリマーのいずれでもよい)を挙げることができる。
なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語で、他の類似の表現についても同様である。
また、前記カルボキシル基含有樹脂の酸価は、40~200mgKOH/gの範囲が適当であり、より好ましくは45~120mgKOH/gの範囲である。カルボキシル基含有樹脂の酸価が40mgKOH/g未満であるとアルカリ現像が困難となり、一方、200mgKOH/gを超えると現像液による露光部の溶解が進むために、必要以上にラインが痩せたり、場合によっては、露光部と未露光部の区別なく現像液で溶解剥離してしまい、正常なレジストパターンの描画が困難となるので好ましくない。
(式中、Xは、水素原子、炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、フェニル基、フェニル基(炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、アミノ基、炭素数1~8のアルキル基を持つアルキルアミノ基又はジアルキルアミノ基により置換されている)、ナフチル基(炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、アミノ基、炭素数1~8のアルキル基を持つアルキルアミノ基又はジアルキルアミノ基により置換されている)を表し、Y、Zはそれぞれ、水素原子、炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、ハロゲン基、フェニル基、フェニル基(炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、アミノ基、炭素数1~8のアルキル基を持つアルキルアミノ基又はジアルキルアミノ基により置換されている)、ナフチル基(炭素数1~17のアルキル基、炭素数1~8のアルコキシ基、アミノ基、炭素数1~8のアルキル基を持つアルキルアミノ基又はジアルキルアミノ基により置換されている)、アンスリル基、ピリジル基、ベンゾフリル基、ベンゾチエニル基を表し、Arは、結合か、炭素数1~10のアルキレン、ビニレン、フェニレン、ビフェニレン、ピリジレン、ナフチレン、チオフェン、アントリレン、チエニレン、フリレン、2,5-ピロール-ジイル、4,4’-スチルベン-ジイル、4,2’-スチレン-ジイルで表し、nは0か1の整数である。)
(式中、R1は、炭素原子数1~4のアルキル基、または、ニトロ基、ハロゲン原子もしくは炭素原子数1~4のアルキル基で置換されていてもよいフェニル基を表す。
R2は、炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、または、炭素原子数1~4のアルキル基もしくはアルコキシ基で置換されていてもよいフェニル基を表す。
R3は、酸素原子または硫黄原子で連結されていてもよく、フェニル基で置換されていてもよい炭素原子数1~20のアルキル基、炭素原子数1~4のアルコキシ基で置換されていてもよいベンジル基を表す。
R4は、ニトロ基、または、X-C(=O)-で表されるアシル基を表す。
Xは、炭素原子数1~4のアルキル基で置換されていてもよいアリール基、チエニル基、モルホリノ基、チオフェニル基、または、下記式で示される構造を表す。)
0.01~5質量部とすることにより、光硬化性及び解像性に優れ、密着性やPCT耐性も向上し、さらには無電解金めっき耐性などの耐薬品性にも優れるソルダーレジストを得ることができる。
これに対して、0.01質量部未満であると、銅上での光硬化性が不足し、ソルダーレジスト塗膜が剥離するとともに、耐薬品性などの塗膜特性が低下する。一方、5質量部を超えると、ソルダーレジスト塗膜表面での光吸収が激しくなり、深部硬化性が低下する傾向がある。
0.1~25質量部であることにより、光硬化性及び解像性に優れ、密着性やPCT耐性も向上し、さらには無電解金めっき耐性などの耐薬品性にも優れるソルダーレジストを得ることができる。
これに対して、0.1質量部未満であると、同様に銅上での光硬化性が不足し、ソルダーレジストが剥離するとともに、耐薬品性などの塗膜特性が低下する。一方、25質量部を超えると、アウトガスの低減効果が得られず、さらにソルダーレジスト表面での光吸収が激しくなり、深部硬化性が低下する傾向がある。
これらの光重合開始剤を好適な配合量とすることにより、光硬化性及び解像性に優れ、密着性やPCT耐性も向上し、さらには無電解金めっき耐性などの耐薬品性にも優れたソルダーレジストとすることができる。
このような光重合開始剤、光開始助剤、及び増感剤の総量は、前記カルボキシル基含有樹脂100質量部に対して35質量部以下であることが好ましい。35質量部を超えると、これらの光吸収により深部硬化性が低下する傾向にある。
赤色着色剤としてはモノアゾ系、ジズアゾ系、アゾレーキ系、ベンズイミダゾロン系、ペリレン系、ジケトピロロピロール系、縮合アゾ系、アントラキノン系、キナクリドン系などがあり、具体的には以下のものが挙げられる。
モノアゾ系:PigmentRed 1, 2, 3, 4, 5, 6, 8, 9, 12, 14, 15,16, 17, 21, 22, 23,31, 32, 112, 114,146, 147, 151, 170, 184, 187, 188, 193, 210, 245, 253, 258,266, 267, 268, 269。
ジスアゾ系:PigmentRed 37, 38, 41。
モノアゾレーキ系:Pigment Red 48:1, 48:2, 48:3, 48:4, 49:1,49:2, 50:1, 52:1, 52:2,53:1, 53:2, 57:1, 58:4, 63:1, 63:2, 64:1,68。
ベンズイミダゾロン系:Pigment Red 171、PigmentRed 175、Pigment Red 176、PigmentRed 185、Pigment Red 208。
ぺリレン系:SolventRed 135、SolventRed 179、PigmentRed 123、PigmentRed 149、PigmentRed 166、PigmentRed 178、PigmentRed 179、PigmentRed 190、PigmentRed 194、PigmentRed 224。
ジケトピロロピロール系:Pigment Red254、Pigment Red 255、Pigment Red264、Pigment Red 270、Pigment Red272。
縮合アゾ系:PigmentRed 220、PigmentRed 144、PigmentRed 166、PigmentRed 214、PigmentRed 220、PigmentRed 221、PigmentRed 242。
アンスラキノン系:Pigment Red 168、PigmentRed 177、Pigment Red 216、SolventRed 149、Solvent Red 150、SolventRed 52、Solvent Red 207。
キナクリドン系:PigmentRed 122、PigmentRed 202、PigmentRed 206、PigmentRed 207、PigmentRed 209。
青色着色剤としてはフタロシアニン系、アントラキノン系があり、顔料系はピグメント(Pigment)に分類されている化合物、具体的には、下記のようなものを挙げることができる:PigmentBlue 15、Pigment Blue15:1、PigmentBlue 15:2、PigmentBlue 15:3、PigmentBlue 15:4、PigmentBlue 15:6、PigmentBlue 16、PigmentBlue 60。
染料系としては、SolventBlue 35、SolventBlue 63、SolventBlue 68、SolventBlue 70、SolventBlue 83、SolventBlue 87、SolventBlue 94、SolventBlue 97、SolventBlue 122、SolventBlue 136、SolventBlue 67、SolventBlue 70等を使用することができる。上記以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。
緑色着色剤としては、同様にフタロシアニン系、アントラキノン系、ペリレン系があり、具体的にはPigmentGreen 7、Pigment Green 36、SolventGreen 3、Solvent Green 5、SolventGreen 20、Solvent Green28等を使用することができる。上記以外にも、金属置換もしくは無置換のフタロシアニン化合物も使用することができる。
黄色着色剤としてはモノアゾ系、ジスアゾ系、縮合アゾ系、ベンズイミダゾロン系、イソインドリノン系、アントラキノン系等があり、具体的には以下のものが挙げられる。
アントラキノン系:Solvent Yellow 163、PigmentYellow 24、Pigment Yellow 108、PigmentYellow 193、Pigment Yellow 147、PigmentYellow 199、Pigment Yellow 202。
イソインドリノン系:Pigment Yellow 110、PigmentYellow 109、Pigment Yellow 139、PigmentYellow 179、Pigment Yellow 185。
縮合アゾ系:PigmentYellow 93、PigmentYellow 94、PigmentYellow 95、PigmentYellow 128、PigmentYellow 155、PigmentYellow 166、PigmentYellow 180。
ベンズイミダゾロン系:Pigment Yellow 120、PigmentYellow 151、Pigment Yellow 154、PigmentYellow 156、Pigment Yellow 175、PigmentYellow 181。
モノアゾ系:PigmentYellow 1, 2, 3, 4, 5, 6, 9, 10, 12, 61,62, 62:1, 65, 73, 74, 75, 97, 100, 104,105, 111, 116, 167, 168, 169, 182, 183。
ジスアゾ系:PigmentYellow 12, 13, 14, 16, 17, 55, 63, 81,83, 87, 126, 127, 152, 170, 172, 174,176, 188, 198。
具体的に例示すれば、Pigment Violet 19、23、29、32、36、38、42、SolventViolet13、36、C.I.ピグメントオレンジ1、C.I.ピグメントオレンジ5、C.I.ピグメントオレンジ13、C.I.ピグメントオレンジ14、C.I.ピグメントオレンジ16、C.I.ピグメントオレンジ17、C.I.ピグメントオレンジ24、C.I.ピグメントオレンジ34、C.I.ピグメントオレンジ36、C.I.ピグメントオレンジ38、C.I.ピグメントオレンジ40、C.I.ピグメントオレンジ43、C.I.ピグメントオレンジ46、C.I.ピグメントオレンジ49、C.I.ピグメントオレンジ51、C.I.ピグメントオレンジ61、C.I.ピグメントオレンジ63、C.I.ピグメントオレンジ64、C.I.ピグメントオレンジ71、C.I.ピグメントオレンジ73、C.I.ピグメントブラウン23、C.I.ピグメントブラウン25、C.I.ピグメントブラック1、C.I.ピグメントブラック7等がある。
芳香族ポリイソシアネートの具体例としては、例えば、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネート及び2,4-トリレンダイマー等が挙げられる。
これらの中でも、2-メルカプトベンゾイミダゾール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール(川口化学工業(株)製:商品名アクセルM)、3-メルカプト-4-メチル-4H-1,2,4-トリアゾール、5-メチル-1,3,4-チアジアゾール-2-チオール、1-フェニル-5-メルカプト-1H-テトラゾールが好ましい。
このような有機溶剤としては、ケトン類、芳香族炭化水素類、グリコールエーテル類、グリコールエーテルアセテート類、エステル類、アルコール類、脂肪族炭化水素、石油系溶剤などが挙げることができる。より具体的には、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、ジプロピレングリコールメチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールブチルエーテルアセテートなどのエステル類;エタノール、プロパノール、エチレングリコール、プロピレングリコール等のアルコール類;オクタン、デカン等の脂肪族炭化水素;石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤などである。このような有機溶剤は、1種を単独で用いてもよく、2種以上を混合物として用いてもよい。
本発明の積層構造体は、基材と、該基材上に形成され、365nmの波長に対する吸収係数(α)が、樹脂層表面から基材表面に向かって増加勾配を有する感光性樹脂層を露光及び現像してなるパターン層と、を備える積層構造体であって、パターン層が、順テーパー構造の凹部を有することを特徴とするものである。
即ち、本発明の積層構造体においては、感光性樹脂層の365nmの波長に対する吸収係数(α)が、基材に接する側が高くなるようにZ軸方向に増加勾配を形成する感光性樹脂組成物からなる感光性樹脂層を露光および現像してなるパターン層を備える。
勾配は、上述したように、連続的なものであっても、段階的なものであってもよい。段階的な勾配の場合、感光性樹脂層が、2層以上の吸収係数の異なる層により構成されることになる。連続的な勾配および段階的な勾配は、感光性樹脂の塗布・乾燥方法により作り分ける事が可能である。
なお、本発明の積層構造体は、ブレードコーター、リップコーター、コンマコーター、フィルムコーター等の適宜の方法により、基材に感光性樹脂組成物を直接塗布・乾燥して感光性樹脂層を形成してもよい。また、感光性樹脂組成物を塗布、乾燥することにより第1感光性樹脂層を形成し、その第1の感光性樹脂層上に、ドライフィルムをラミネートして第2の感光性樹脂層を形成する方法によってもよい。
逆に、ドライフィルムを基材にラミネートすることにより第1感光性樹脂層を形成し、その第1感光性樹脂層上に、感光性樹脂組成物を塗布、乾燥することにより第2感光性樹脂層を形成してもよい。
このとき、現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができる。また、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液を用いることができる。
第1工程におけるドライフィルムのラミネートは公知の方法によることができる。また、第2工程におけるパターン層の形成のための、露光および現像は上記したとおりである。
温度計、窒素導入装置兼アルキレンオキシド導入装置及び撹拌装置を備えたオートクレーブに、ノボラック型クレゾール樹脂(商品名「ショーノールCRG951」、昭和高分子(株)製、OH当量:119.4)119.4部、水酸化カリウム1.19部及びトルエン119.4部を仕込み、撹拌しつつ系内を窒素置換し、加熱昇温した。次に、プロピレンオキシド63.8部を徐々に滴下し、125~132℃、0~4.8kg/cm2で16時間反応させた。その後、室温まで冷却し、この反応溶液に89%リン酸1.56部を添加混合して水酸化カリウムを中和し、不揮発分62.1%、水酸基価が182.2g/eq.であるノボラック型クレゾール樹脂のプロピレンオキシド反応溶液を得た。これは、フェノール性水酸基1当量当りプロピレンオキシドが平均1.08モル付加しているものであった。
得られたノボラック型クレゾール樹脂のプロピレンオキシド反応溶液293.0部、アクリル酸43.2部、メタンスルホン酸11.53部、メチルハイドロキノン0.18部及びトルエン252.9部を、撹拌機、温度計及び空気吹き込み管を備えた反応器に仕込み、空気を10ml/分の速度で吹き込み、撹拌しながら、110℃で12時間反応させた。反応により生成した水は、トルエンとの共沸混合物として、12.6部の水が留出した。その後、室温まで冷却し、得られた反応溶液を15%水酸化ナトリウム水溶液35.35部で中和し、次いで水洗した。その後、エバポレーターにてトルエンをジエチレングリコールモノエチルエーテルアセテート118.1部で置換しつつ留去し、ノボラック型アクリレート樹脂溶液を得た。次に、得られたノボラック型アクリレート樹脂溶液332.5部及びトリフェニルホスフィン1.22部を、撹拌器、温度計及び空気吹き込み管を備えた反応器に仕込み、空気を10ml/分の速度で吹き込み、撹拌しながら、テトラヒドロフタル酸無水物60.8部を徐々に加え、95~101℃で6時間反応させ、冷却後、取り出した。このようにして、不揮発分65%、固形物の酸価87.7mgKOH/gのカルボキシル基含有感光性樹脂の溶液(以下、A-1と略称する)を得た。
クレゾールノボラック型エポキシ樹脂(エピクロンN-695、DIC(株)製、エポキシ当量220)330gを、ガス導入管、撹拌装置、冷却管及び温度計を備えたフラスコに入れ、カルビトールアセテート340gを加え、加熱溶解し、ハイドロキノン0.46gと、トリフェニルホスフィン1.38gを加えた。この混合物を95~105℃に加熱し、アクリル酸108gを徐々に滴下し、16時間反応させた。この反応生成物を、80~90℃まで冷却し、テトラヒドロフタル酸無水物68gを加え、8時間反応させ、冷却させた。このようにして、固形物の酸価50mgKOH/g、不揮発分65%のカルボキシル基含有感光性樹脂の溶液(以下、A-2と略称する)を得た。
上記合成例の樹脂溶液を用い、下記表1に示す種々の成分と共に表1に示す割合(質量部)にて配合し、攪拌機にて予備混合した後、3本ロールミルで混練し、ソルダーレジスト用感光性樹脂組成物を調製した。
*1:ジペンタエリスリトールヘキサアクリレート(日本化薬(株)製)
*2:NC-3000(日本化薬(株)製)固形分60%、溶剤(プロピレングリコールモノメチルエーテルアセテート)40%
*3:ビキシレノール型エポキシ樹脂(三菱化学社製)
*4:エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]1,1-(O-アセチルオキシム)(BASFジャパン社製)
*5:ルシリンTPO(BASFジャパン社製)
*6:イルガキュア127(BASFジャパン社製)
*7:イルガキュア784(BASFジャパン社製)
*8:イルガキュア389(BASFジャパン社製)
*9:B-30(堺化学工業社製)
*10:(株)アドマテックス製SO-E2
*11:HOFFMANN MINERAL社製
(球状のシリカと板状のカオリナイトから構成される化合物であるシリチンのアミノシランカップリング材処理品)
*12:協和化学工業(株)製DHT-4A
*13:C.I.Pigment Blue 15:3
*14:C.I.Pigment Yellow 147
(1)~(15)の各組成物を、厚さ0.5mmのガラス板にアプリケーターで4水準の膜厚で塗布し、これをUV/VIS/NIR spectrometer V-570(JASCO)にて波長365nmの吸光度を測定した。X軸に膜厚、Y軸に吸光度をプロットしその傾きからLambert-Beer 則に従い吸収係数αを算出した。
(ドライフィルムの作製)
上記感光性樹脂組成物例(1)~(15)を用いて、下記表2に示す組合せで、パターン形成可能な多層構造の感光性樹脂層を有するドライフィルムを作製した。ドライフィルムは、キャリアフィルムとして38umの厚みのポリエステルフィルムを用いて、感光性樹脂組成物をアプリケーターを用いてキャリアフィルム上に塗布し、80℃で10分乾燥した後に、次の感光性樹脂組成物を塗布して、80℃で10分乾燥する、という作業を繰り返して作製した。なお、感光性樹脂組成物は、基材にラミネートする時に基材から見て最外層となる感光性樹脂組成物から順番に塗布・乾燥を行った。なお、本実施例及び比較例において、「um」は「μm」を意味する。
銅厚15umの回路が形成されている片面プリント配線基材を用意し、メック(株)製CZ8100を使用して前処理を行った。この基材に前記各実施例及び比較例にかかるドライフィルムを、L1層が基材に接するように、真空ラミネーターを用いて張り合わせることにより、基材上に2層ないし3層構造の感光性樹脂層を形成した。この基材を高圧水銀ショートアークランプ搭載の露光装置を用いてステップタブレット(Kodak No.2)を介して露光し、現像(30℃、0.2MPa、1wt%Na2CO3水溶液)を60秒で行った際に残存するステップタブレットのパターンが3段の時を最適露光量とした。
銅厚15umの回路が形成してある片面プリント配線基材を用意し、メック(株)製CZ8100を使用して前処理を行った。この基材に前記各実施例及び比較例にかかるドライフィルムを、L1層が基材に接するように、真空ラミネーターを用いて張り合わせることにより、基材上に層構造の感光性樹脂層を形成した。この基材に、高圧水銀ショートアークランプを搭載した露光装置を用いて上記最適露光量でソルダーレジストパターンを露光した後、キャリアフィルムを剥離し、30℃の1wt%炭酸ナトリウム水溶液によりスプレー圧0.2MPaの条件で60秒間現像を行い、ソルダーレジストパターンを得た。この基材を、UVコンベア炉にて積算露光量1000mJ/cm2の条件で紫外線照射した後、160℃で60分加熱して硬化した。得られたプリント配線板(評価基板)について以下のように特性を評価した。
市販品の無電解ニッケルめっき浴及び無電解金めっき浴を用いて、ニッケル0.5um、金0.03umの条件でめっきを行い、ソルダーレジストのめっきのしみ込みの有無を評価した後、テープピーリングによりソルダーレジストの剥がれの有無を評価した。判定基準は以下のとおりである。
○:染み込み、剥がれが見られない。
△:めっき後に少し染み込みが確認されるが、テープピール後の剥がれは見られない。
×:テープピール後の剥がれがある。
上記無電解金めっきした評価基板を121℃、2気圧、湿度100%の高圧高温高湿槽に300時間入れ、ソルダーレジストの状態変化を以下の評価基準で評価した。
○:顕著な膨れ、変色なし。
△:顕著な剥がれなし。一部剥がれ若しくは変色有り。
×:顕著な膨れ、変色あり。
解像性評価用ネガマスクとしてビア開口径60umを有するネガパターンを用い、ソルダーレジストの凹部(開口部)の断面形状の確認を行った。なお、アンダーカット形状の場合、ソルダーレジストが剥がれたり、短絡が起こるおそれがあるため、解像不良である。
判定基準は以下の通り。
○:順テーパー構造
△:逆テーパー構造
×:アンダーカット構造
ラインアンドスペース50um/100umのパターンを有するソルダーレジストを作製し、ソルダーレジストに対してテープピーリングテストを行い、密着性の評価を行った。
判定基準は以下の通り。
○:剥がれ無し
△:ラインの欠け発生
×:剥がれ有り
銅厚30μmの回路が形成している片面プリント配線基板を用意し、メック(株)製CZ8100を使用して前処理を行った。これらの基板に前記実施例2及び比較例2の感光性ドライフィルムを用いて、L1層が基板に接するように、真空ラミネーターを用いて張り合わせることにより、基板上に多層構造の樹脂絶縁層を形成した。この基板に、高圧水銀灯を搭載した露光装置を用いて上記最適露光量でソルダーレジストパターンを露光した後、キャリアフィルムを剥離し、30℃の1wt%炭酸ナトリウム水溶液によりスプレー圧0.2MPaの条件で60秒間現像を行い、レジストパターンを得た。この基板を、UVコンベア炉にて積算露光量1000mJ/cm2の条件で紫外線照射した後、160℃で60分加熱して硬化した。
この基板を裁断し、断面の元素分析を行った。
2 感光性樹脂層
3 感光性樹脂層
4 キャリアフィルム
5 パターン層
6 基材
Claims (8)
- フィルムと、
該フィルム上に形成された感光性樹脂層とを有するドライフィルムであって、
前記感光性樹脂層の365nmの波長に対する吸収係数(α)が、前記感光性樹脂層表面から前記フィルム表面に向かって増加または減少勾配を有することを特徴とするドライフィルム。 - 光重合開始剤又は着色剤によって、前記感光性樹脂層中の吸収係数(α)の勾配が形成される請求項1記載のドライフィルム。
- 前記感光性樹脂層中の吸収係数(α)の勾配が、連続的または段階的である請求項1または2記載のドライフィルム。
- 前記感光性樹脂層が2層以上からなる請求項1~3のいずれか1項記載のドライフィルム。
- 前記感光性樹脂層が、カルボキシル基含有感光性樹脂、光重合開始剤又は着色剤、熱硬化成分、及び無機フィラーを含む感光性樹脂組成物からなる請求項1~4のいずれか1項記載のドライフィルム。
- 基材と、
該基材上に形成され、365nmの波長に対する吸収係数(α)が、樹脂層表面から前記基材表面に向かって増加勾配を有する感光性樹脂層を露光及び現像してなるパターン層と、を備える積層構造体であって、
前記パターン層が、順テーパー構造の凹部を有することを特徴とする積層構造体。 - 基材と、
該基材上に形成され、365nmの波長に対する吸収係数(α)が、樹脂層表面から前記基材表面に向かって増加勾配を有する感光性樹脂層を露光及び現像してなるパターン層と、を備えるプリント配線板であって、
前記パターン層が、順テーパー構造の凹部を有するソルダーレジストであることを特徴とするプリント配線板。 - 基材上に、請求項1~5のいずれか1項記載のドライフィルムの感光性樹脂層を、365nmの波長に対する吸収係数(α)が、前記感光性樹脂層表面から前記基材表面に向かって増加勾配を形成するようにラミネートする第1工程と、
前記感光性樹脂層を露光及び現像して、順テーパー構造の凹部を有するパターン層を形成する第2工程と、を含むことを特徴とする積層構造体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/369,356 US20140374143A1 (en) | 2011-12-27 | 2012-12-25 | Dry film, layered structure, printed wiring board, and process for producing layered structure |
KR1020147020692A KR101740104B1 (ko) | 2011-12-27 | 2012-12-25 | 드라이 필름, 적층 구조체, 프린트 배선판, 및 적층 구조체의 제조 방법 |
CN201280062392.3A CN103998986B (zh) | 2011-12-27 | 2012-12-25 | 干膜、层叠结构体、印刷电路板以及层叠结构体的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-285640 | 2011-12-27 | ||
JP2011285640 | 2011-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013099885A1 true WO2013099885A1 (ja) | 2013-07-04 |
Family
ID=48697370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/083527 WO2013099885A1 (ja) | 2011-12-27 | 2012-12-25 | ドライフィルム、積層構造体、プリント配線板、及び積層構造体の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20140374143A1 (ja) |
JP (1) | JP5620017B2 (ja) |
KR (1) | KR101740104B1 (ja) |
CN (1) | CN103998986B (ja) |
TW (1) | TWI480702B (ja) |
WO (1) | WO2013099885A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104570593A (zh) * | 2013-10-29 | 2015-04-29 | 中芯国际集成电路制造(上海)有限公司 | 涂层材料的光刻方法 |
WO2016060237A1 (ja) * | 2014-10-16 | 2016-04-21 | 太陽インキ製造株式会社 | 積層構造体、ドライフィルムおよびフレキシブルプリント配線板 |
WO2016158362A1 (ja) * | 2015-03-27 | 2016-10-06 | 日立化成株式会社 | ドライフィルム、硬化物、積層体及びレジストパターンの形成方法 |
JP2016193591A (ja) * | 2015-03-31 | 2016-11-17 | 太陽インキ製造株式会社 | 積層フィルム |
JP2018072814A (ja) * | 2016-10-27 | 2018-05-10 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | 多層感光性フィルム |
JP2020112685A (ja) * | 2019-01-11 | 2020-07-27 | 太陽インキ製造株式会社 | 積層構造体、ドライフィルム、その硬化物および電子部品 |
TWI742150B (zh) * | 2016-09-23 | 2021-10-11 | 日商田村製作所股份有限公司 | 感光性樹脂組成物 |
JP2022009428A (ja) * | 2016-03-31 | 2022-01-14 | 太陽インキ製造株式会社 | 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板 |
WO2022211121A1 (ja) * | 2021-03-31 | 2022-10-06 | 太陽インキ製造株式会社 | 積層構造体、ドライフィルム、硬化物および電子部品 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5882510B2 (ja) * | 2014-06-30 | 2016-03-09 | 太陽インキ製造株式会社 | 感光性ドライフィルムおよびそれを用いたプリント配線板の製造方法 |
JP6337190B1 (ja) * | 2017-03-29 | 2018-06-06 | 東洋インキScホールディングス株式会社 | 固体撮像素子向けカラーフィルタ用感光性緑色着色組成物および固体撮像素子用カラーフィルタ |
US10031415B1 (en) | 2017-08-21 | 2018-07-24 | Funai Electric Co., Ltd. | Method to taylor mechanical properties on MEMS devices and nano-devices with multiple layer photoimageable dry film |
US10599034B2 (en) | 2017-08-21 | 2020-03-24 | Funai Electric Co., Ltd. | Method for manufacturing MEMS devices and nano devices with varying degrees of hydrophobicity and hydrophilicity in a composite photoimageable dry film |
CN115135496A (zh) * | 2020-03-31 | 2022-09-30 | 太阳油墨制造株式会社 | 结构体 |
CN112533365A (zh) * | 2020-12-14 | 2021-03-19 | 深圳市艾诺信射频电路有限公司 | 基板加工方法及基板 |
CN115572229B (zh) * | 2022-11-10 | 2024-09-13 | 江苏三木化工股份有限公司 | 一种基于α-羟基酮的可聚合光引发剂的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003195492A (ja) * | 2001-12-28 | 2003-07-09 | Hitachi Chem Co Ltd | 回路形成用感光性フィルムおよびこれを用いたプリント配線板の製造方法 |
JP2005215342A (ja) * | 2004-01-29 | 2005-08-11 | Fuji Photo Film Co Ltd | 感光性転写シート、感光性積層体、画像パターンを形成する方法、配線パターンを形成する方法 |
JP2012091430A (ja) * | 2010-10-28 | 2012-05-17 | Toray Ind Inc | フィルム積層体 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006285106A (ja) * | 2005-04-04 | 2006-10-19 | Fuji Photo Film Co Ltd | パターン形成材料、感光性積層体及びプリント配線板の製造方法 |
JP5427632B2 (ja) * | 2010-02-08 | 2014-02-26 | 太陽ホールディングス株式会社 | 積層構造体及びそれに用いる感光性ドライフィルム |
JP5422427B2 (ja) * | 2010-02-08 | 2014-02-19 | 太陽ホールディングス株式会社 | 積層構造体及びそれに用いる感光性ドライフィルム |
-
2012
- 2012-12-25 WO PCT/JP2012/083527 patent/WO2013099885A1/ja active Application Filing
- 2012-12-25 JP JP2013551712A patent/JP5620017B2/ja active Active
- 2012-12-25 CN CN201280062392.3A patent/CN103998986B/zh active Active
- 2012-12-25 KR KR1020147020692A patent/KR101740104B1/ko active IP Right Grant
- 2012-12-25 US US14/369,356 patent/US20140374143A1/en not_active Abandoned
- 2012-12-27 TW TW101150532A patent/TWI480702B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003195492A (ja) * | 2001-12-28 | 2003-07-09 | Hitachi Chem Co Ltd | 回路形成用感光性フィルムおよびこれを用いたプリント配線板の製造方法 |
JP2005215342A (ja) * | 2004-01-29 | 2005-08-11 | Fuji Photo Film Co Ltd | 感光性転写シート、感光性積層体、画像パターンを形成する方法、配線パターンを形成する方法 |
JP2012091430A (ja) * | 2010-10-28 | 2012-05-17 | Toray Ind Inc | フィルム積層体 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104570593A (zh) * | 2013-10-29 | 2015-04-29 | 中芯国际集成电路制造(上海)有限公司 | 涂层材料的光刻方法 |
WO2016060237A1 (ja) * | 2014-10-16 | 2016-04-21 | 太陽インキ製造株式会社 | 積層構造体、ドライフィルムおよびフレキシブルプリント配線板 |
JPWO2016060237A1 (ja) * | 2014-10-16 | 2017-04-27 | 太陽インキ製造株式会社 | 積層構造体、ドライフィルムおよびフレキシブルプリント配線板 |
WO2016158362A1 (ja) * | 2015-03-27 | 2016-10-06 | 日立化成株式会社 | ドライフィルム、硬化物、積層体及びレジストパターンの形成方法 |
JP2016193591A (ja) * | 2015-03-31 | 2016-11-17 | 太陽インキ製造株式会社 | 積層フィルム |
JP2022009428A (ja) * | 2016-03-31 | 2022-01-14 | 太陽インキ製造株式会社 | 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板 |
TWI742150B (zh) * | 2016-09-23 | 2021-10-11 | 日商田村製作所股份有限公司 | 感光性樹脂組成物 |
JP2018072814A (ja) * | 2016-10-27 | 2018-05-10 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | 多層感光性フィルム |
JP2020112685A (ja) * | 2019-01-11 | 2020-07-27 | 太陽インキ製造株式会社 | 積層構造体、ドライフィルム、その硬化物および電子部品 |
JP7300619B2 (ja) | 2019-01-11 | 2023-06-30 | 太陽ホールディングス株式会社 | 積層構造体、ドライフィルム、その硬化物および電子部品 |
WO2022211121A1 (ja) * | 2021-03-31 | 2022-10-06 | 太陽インキ製造株式会社 | 積層構造体、ドライフィルム、硬化物および電子部品 |
Also Published As
Publication number | Publication date |
---|---|
JP5620017B2 (ja) | 2014-11-05 |
US20140374143A1 (en) | 2014-12-25 |
KR20140110000A (ko) | 2014-09-16 |
CN103998986B (zh) | 2016-05-25 |
TWI480702B (zh) | 2015-04-11 |
CN103998986A (zh) | 2014-08-20 |
JPWO2013099885A1 (ja) | 2015-05-07 |
KR101740104B1 (ko) | 2017-05-25 |
TW201341964A (zh) | 2013-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5620017B2 (ja) | ドライフィルム、積層構造体、プリント配線板、及び積層構造体の製造方法 | |
JP5427632B2 (ja) | 積層構造体及びそれに用いる感光性ドライフィルム | |
JP5422427B2 (ja) | 積層構造体及びそれに用いる感光性ドライフィルム | |
JP5615415B2 (ja) | 硬化性樹脂組成物、ソルダーレジスト形成用組成物、ドライフィルムおよびプリント配線板、並びに積層構造体及びその製造方法 | |
JP5583941B2 (ja) | 光硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板 | |
JP5315441B1 (ja) | 光硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板 | |
JP5660692B2 (ja) | 感光性ドライフィルム及びそれを用いた積層構造体 | |
JP6130693B2 (ja) | 積層構造体、ドライフィルムおよび積層構造体の製造方法 | |
JP5567716B2 (ja) | 積層構造体及びそれに用いる感光性ドライフィルム | |
WO2012090532A1 (ja) | 光硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板 | |
JP5917602B2 (ja) | 光硬化性樹脂組成物、そのドライフィルム及び硬化物並びにそれらを用いたプリント配線板 | |
JP5681243B2 (ja) | 光硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板 | |
JP5660691B2 (ja) | 積層構造体の製造方法及び積層構造体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12863428 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013551712 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14369356 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147020692 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12863428 Country of ref document: EP Kind code of ref document: A1 |