WO2013099626A1 - α-オレフィンの製造方法 - Google Patents

α-オレフィンの製造方法 Download PDF

Info

Publication number
WO2013099626A1
WO2013099626A1 PCT/JP2012/082359 JP2012082359W WO2013099626A1 WO 2013099626 A1 WO2013099626 A1 WO 2013099626A1 JP 2012082359 W JP2012082359 W JP 2012082359W WO 2013099626 A1 WO2013099626 A1 WO 2013099626A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
olefin
producing
Prior art date
Application number
PCT/JP2012/082359
Other languages
English (en)
French (fr)
Inventor
白木 安司
正彦 蔵本
岡本 卓治
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201280064843.7A priority Critical patent/CN104011089B/zh
Priority to US14/369,509 priority patent/US9394213B2/en
Priority to BR112014015969A priority patent/BR112014015969A8/pt
Priority to KR20147019291A priority patent/KR20150000868A/ko
Publication of WO2013099626A1 publication Critical patent/WO2013099626A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • C07C2/34Metal-hydrocarbon complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/143Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/146Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/1875Phosphinites (R2P(OR), their isomeric phosphine oxides (R3P=O) and RO-substitution derivatives thereof)
    • B01J31/188Amide derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/001General concepts, e.g. reviews, relating to catalyst systems and methods of making them, the concept being defined by a common material or method/theory
    • B01J2531/002Materials
    • B01J2531/007Promoter-type Additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/62Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of chromium, molybdenum or tungsten

Definitions

  • the present invention relates to a method for producing an ⁇ -olefin, which is widely used industrially as a raw material for polyethylene comonomer, synthetic lubricating oil, surfactant and the like.
  • ⁇ -olefins especially 1-hexene, 1-octene and the like are synthesized as comonomers of linear low density polyethylene (L-LDPE), and ⁇ -olefins containing up to 14 carbon atoms containing 1-tetradecene are synthesized.
  • L-LDPE linear low density polyethylene
  • ⁇ -olefins containing up to 14 carbon atoms containing 1-tetradecene are synthesized.
  • these ⁇ -olefins are obtained by polymerizing from ethylene.
  • the polymerization degree distribution of the obtained ⁇ -olefins follows the Schulz-Flory distribution, and in the normal distribution, the dimer is the most, and the tetramer Satisfy the relationship that there are more trimers than n + 1 and more n-mers than n + 1-mers.
  • ⁇ -olefins conforming to such a Schulz-Flory distribution are obtained in many industrially produced processes.
  • a method using a triethylaluminum catalyst is also known, but ⁇ -olefins are known to have a Schultz-Flory distribution and to be used under high temperature and high pressure conditions.
  • the amount and price of ⁇ -olefin varies depending on the number of carbon atoms, and the needs fluctuate. Therefore, in the conventional method in which ⁇ -olefin is produced according to the Schulz-Flory distribution, ⁇ -olefin more than 1-octene is produced. -There was a problem that the yield of olefins was low.
  • the ⁇ -olefin As a countermeasure against this, by performing two-stage polymerization using a triethylaluminum catalyst, the ⁇ -olefin has the advantage of obtaining many products of 1-octene or more in accordance with the Poisson distribution. It is necessary to use a large amount (stoichiometrically), and there are disadvantages such as the catalyst recovery being indispensable and the apparatus becoming complicated and the ⁇ -olefin purity being low.
  • Patent Documents 1 to 4 disclose methods for producing 1-hexene and 1-octene using a chromium compound. However, the ⁇ -olefin obtained thereby is one in which 1-hexene is the main component and 1-octene is low.
  • Patent Document 5 discloses a transition metal compound having aminophosphine as a ligand, which is intended for production of a polymer.
  • a catalyst system that improves the yield of ⁇ -olefins from 1-hexene to 1-tetradecene having 6 to 14 carbon atoms, particularly 1-octene.
  • the present invention has been made in view of the above circumstances, and does not follow the Schulz-Flory distribution, and yields of ⁇ -olefins having 1 to 6 carbon atoms from 1 to hexene to 1 to tetradecene, particularly 1 to octene yields. It is an object of the present invention to provide a method for producing an ⁇ -olefin excellent in the above.
  • the present invention relates to the following ⁇ -olefin production method.
  • A a chromium compound
  • B a ligand compound represented by the following general formula (1)
  • C an ethylene-polymerizing method using a promoter
  • L 1 to L 3 are each independently a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 30 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbon having 6 to 30 ring carbon atoms.
  • chromium compound (A) is represented by the following general formula (2): CrX n D m (2)
  • X represents a ⁇ -binding ligand, and when there are a plurality of X, a plurality of X may be the same or different
  • D represents a Lewis base, and when there are a plurality of D, a plurality of D May be the same or different
  • n is an integer of 2 to 3 and represents the valence of Cr
  • m represents an integer of 0 to 6.
  • L 1 to L 3 in the general formula (1) are each independently a substituted or unsubstituted phenyl group or a substituted or unsubstituted cyclohexyl group, and the substituent is an alkyl having 1 to 4 carbon atoms.
  • the yield of ⁇ -olefins from 1 to hexene to 1-tetradecene having 6 to 14 carbon atoms, particularly the yield of 1-octene, which does not follow the Schulz-Flory distribution, is excellent.
  • a manufacturing method is provided.
  • the method for producing an ⁇ -olefin according to the present invention comprises polymerizing ethylene using (A) a chromium compound, (B) a ligand compound represented by the following general formula (1), and (C) a promoter. It is characterized by.
  • L 1 to L 3 are each independently a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 30 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbon having 6 to 30 ring carbon atoms. Group, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 ring atoms.
  • carbon number ab in the expression “substituted or unsubstituted X group having carbon number ab” represents the number of carbons when X group is unsubstituted. The carbon number of the substituent when the X group is substituted is not included.
  • the (A) chromium compound used in the present invention is not particularly limited as long as the chromium atom can form a complex with the ligand compound (B) described later, but is represented by the following general formula (2). Those are preferably used. CrX n D m (2) (In the formula, X represents a ⁇ -binding ligand, and when there are a plurality of X, a plurality of X may be the same or different, D represents a Lewis base, and when there are a plurality of D, a plurality of D May be the same or different, n is an integer of 2 to 3 and represents the valence of Cr, and m is an integer of 0 to 6, preferably 0 to 3.)
  • X represents a ⁇ -bonding ligand, and when there are a plurality of X, the plurality of X may be the same or different, and may be cross-linked with other X or D.
  • this ⁇ -bonding ligand include halogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, alkoxy groups having 1 to 20 carbon atoms, aryloxy groups having 6 to 20 carbon atoms, and 1 to 20 amide groups, silicon-containing groups having 1 to 20 carbon atoms, phosphide groups having 1 to 20 carbon atoms, sulfide groups having 1 to 20 carbon atoms, acyl groups having 1 to 20 carbon atoms, substituted or unsubstituted acetylacetonate Substituted or unsubstituted carboxylate, and the like.
  • halogen atom examples include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.
  • hydrocarbon group having 1 to 20 carbon atoms include alkyl groups such as methyl group, ethyl group, propyl group, butyl group, hexyl group, cyclohexyl group, octyl group; vinyl group, propenyl group, cyclohexenyl group, etc.
  • An arylalkyl group such as benzyl group, phenylethyl group, phenylpropyl group; phenyl group, tolyl group, dimethylphenyl group, trimethylphenyl group, ethylphenyl group, propylphenyl group, biphenyl group, naphthyl group, methylnaphthyl group Group, anthracenyl group, aryl group such as phenanthrenyl group, and the like.
  • alkyl groups such as methyl group, ethyl group, and propyl group
  • aryl groups such as phenyl group are preferable.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
  • Examples of the aryloxy group having 6 to 20 carbon atoms include phenoxy group, methylphenoxy group, and dimethylphenoxy group.
  • Examples of the amide group having 1 to 20 carbon atoms include dimethylamide group, diethylamide group, dipropylamide group, dibutylamide group, dicyclohexylamide group, methylethylamide group, and other alkylamide groups, divinylamide group, and dipropenylamide group.
  • Alkenylamide groups such as dicyclohexenylamide group; arylalkylamide groups such as dibenzylamide group, phenylethylamide group and phenylpropylamide group; arylamide groups such as diphenylamide group and dinaphthylamide group.
  • Examples of the silicon-containing group having 1 to 20 carbon atoms include monohydrocarbon-substituted silyl groups such as methylsilyl group and phenylsilyl group; dihydrocarbon-substituted silyl groups such as dimethylsilyl group and diphenylsilyl group; trimethylsilyl group, triethylsilyl group, Trihydrocarbon-substituted silyl groups such as tripropylsilyl group, tricyclohexylsilyl group, triphenylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, tolylsilylsilyl group and trinaphthylsilyl group; hydrocarbons such as trimethylsilyl ether group Examples thereof include substituted silyl ether groups; silicon-substituted alkyl groups such as trimethylsilylmethyl group; silicon-substituted aryl groups such as trimethylsilylpheny
  • Examples of the phosphide group having 1 to 20 carbon atoms include dimethyl phosphide group, diethyl phosphide group, dipropyl phosphide group, dibutyl phosphide group, dicyclohexyl phosphide group, and dioctyl phosphide group; An alkenyl phosphide group such as a fido group, a dipropenyl phosphide group and a dicyclohexenyl phosphide group; an arylalkyl phosphide group such as a dibenzyl phosphide group and a bis (phenylethylphenyl) phosphide group; a diphenyl phosphide group and a di Examples thereof include aryl phosphide groups such as a tolyl phosphide group and a dinaphthyl phosphide group.
  • Examples of the sulfide group having 1 to 20 carbon atoms include alkyl sulfide groups such as methyl sulfide group, ethyl sulfide group, propyl sulfide group, butyl sulfide group, hexyl sulfide group, cyclohexyl sulfide group, octyl sulfide group; vinyl sulfide group, propenyl sulfide Group, alkenyl sulfide group such as cyclohexenyl sulfide group; arylalkyl sulfide group such as benzyl sulfide group, phenylethyl sulfide group, phenylpropyl sulfide group; phenyl sulfide group, tolyl sulfide group, dimethylphenyl sulfide group, trimethylphenyl sulfide group, E
  • acyl group having 1 to 20 carbon atoms examples include formyl group, acetyl group, propionyl group, butyryl group, valeryl group, palmitoyl group, stearoyl group, oleoyl group and other alkyl acyl groups, benzoyl group, toluoyl group, salicyloyl group, Examples thereof include arylacyl groups such as cinnamoyl group, naphthoyl group and phthaloyl group, and oxalyl group, malonyl group and succinyl group respectively derived from dicarboxylic acid such as oxalic acid, malonic acid and succinic acid.
  • D represents a Lewis base, and when there are a plurality of D, the plurality of D may be the same or different, and may be cross-linked with other D or X.
  • Specific examples of the Lewis base of D include amines, ethers, phosphines, thioethers and the like.
  • amines having 1 to 20 carbon atoms examples include methylamine, ethylamine, propylamine, butylamine, cyclohexylamine, methylethylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, and dicyclohexylamine.
  • Alkylamines such as methylethylamine; alkenylamines such as vinylamine, propenylamine, cyclohexenylamine, divinylamine, dipropenylamine, and dicyclohexenylamine; arylalkylamines such as phenylamine, phenylethylamine, and phenylpropylamine; And arylamines such as naphthylamine.
  • ethers include aliphatic single ether compounds such as methyl ether, ethyl ether, propyl ether, isopropyl ether, butyl ether, isobutyl ether, n-amyl ether, and isoamyl ether; methyl ethyl ether, methyl propyl ether, methyl isopropyl ether, Aliphatic hybrid ether compounds such as methyl-n-amyl ether, methyl isoamyl ether, ethyl propyl ether, ethyl isopropyl ether, ethyl butyl ether, ethyl isobutyl ether, ethyl n-amyl ether, ethyl isoamyl ether; vinyl ether, allyl ether, methyl Aliphatic unsaturated ether compounds such as vinyl ether, methyl allyl ether, ethyl vinyl ether, ethy
  • phosphines include phosphines having 1 to 20 carbon atoms. Specifically, monohydrocarbon substituted phosphines such as methylphosphine, ethylphosphine, propylphosphine, butylphosphine, hexylphosphine, cyclohexylphosphine, octylphosphine; dimethylphosphine, diethylphosphine, dipropylphosphine, dibutylphosphine, dihexylphosphine, dicyclohexyl Dihydrocarbon-substituted phosphines such as phosphine and dioctylphosphine; alkylphosphines such as trihydrocarbon-substituted phosphines such as trimethylphosphine, triethylphosphine, tripropylphosphine, tributylphosphin
  • the chromium compound (A) include tris (acetylacetonato) chromium (III), tris (ethylhexanato) chromium (III), tri-t-butoxychromium (III), chromium trichloride, tribromide. Chromium, chromium dichloride, trichlorotris (THF) chromium, etc., tris (acetylacetonate) chromium (III), chromium trichloride, chromium dichloride, trichlorotris (THF) chromium, dichlorobis (THF) chromium, etc. Preferably used.
  • the (B) ligand compound used in the present invention is represented by the following general formula (1).
  • L 1 to L 3 are each independently a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 30 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbon having 6 to 30 ring carbon atoms. Group, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 ring atoms.
  • L 1 to L 3 are preferably a substituted or unsubstituted alicyclic hydrocarbon group having 5 to 14 carbon atoms, or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 14 ring carbon atoms.
  • alicyclic hydrocarbon group represented by L 1 to L 3 examples include a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and the like, and a cyclopentyl group or a cyclohexyl group is preferable.
  • the aromatic hydrocarbon group represented by L 1 to L 3 include a phenyl group, a naphthyl group, a phenanthryl group, a biphenylyl group, a terphenylyl group, a quarterphenylyl group, a fluoranthenyl group, a triphenylenyl group, and a fluorenyl group.
  • Benzo [c] phenanthrenyl group benzo [a] triphenylenyl group, naphtho [1,2-c] phenanthrenyl group, naphtho [1,2-a] triphenylenyl group, dibenzo [a, c] triphenylenyl group, benzo [b] Fluoranthenyl group and the like, preferably phenyl group, 4-biphenylyl group, 3-biphenylyl group, 5′-m-terphenylyl group, 1-naphthyl group, fluoren-2-yl group, 2-naphthyl group, 9-phenanthrenyl group.
  • Examples of substituted aromatic hydrocarbon groups represented by L 1 to L 3 include 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 4-ethylphenyl group, 2,3-dimethylphenyl group, 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 2,6-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5- Dimethylphenyl group, 2-methyl-4-methoxyphenyl group, 2-methyl-6-methoxyphenyl group, 2,4,5-trimethylphenyl group, 2,4,6-trimethylphenyl group, 4-n-butylphenyl Group, 4-t-butylphenyl group and the like.
  • aromatic heterocyclic group represented by L 1 to L 3 those containing at least one heteroatom selected from a nitrogen atom, an oxygen atom and a sulfur atom are preferable.
  • Specific examples thereof include a pyrrolyl group. , Furyl, thienyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, oxazolyl, thiazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, thiadiazolyl, triazolyl, indolyl Group, isoindolyl group, benzofuranyl group, isobenzofuranyl group, benzothiophenyl group, indolizinyl group, quinolidinyl group, quinolyl group, isoquinolyl group, cinnolyl group, phthalazinyl group, quina
  • L 1 to L 3 are each independently a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted aromatic heterocyclic group having 5 to 30 ring atoms. It is preferably a substituted or unsubstituted aromatic hydrocarbon group having 6 to 30 ring carbon atoms, and particularly preferably a substituted or unsubstituted phenyl group.
  • the substituted phenyl group used as L 1 to L 3 is particularly preferably one having an alkyl group having 1 to 20 carbon atoms or an alkoxy group having 1 to 20 carbon atoms as a substituent.
  • the optional substituent in the case of “substituted or unsubstituted” described above and below is a halogen atom, a cyano group, an alkyl group having 1 to 20 carbon atoms (preferably 1 to 5), and 3 to 20 carbon atoms (preferably 5 carbon atoms).
  • a cycloalkyl group an alkoxy group having 1 to 20 carbon atoms (preferably 1 to 5), a haloalkyl group having 1 to 20 carbon atoms (preferably 1 to 5), a 1 to 20 carbon atoms (preferably 1 to 5) a haloalkoxy group, an alkylsilyl group having 1 to 10 carbon atoms (preferably 1 to 5), an aryl group having 6 to 30 ring carbon atoms (preferably 6 to 18 carbon atoms), a ring carbon atom number 6 to 30 ( Preferably 6-18) aryloxy group, 6-30 carbon atoms (preferably 6-18) arylsilyl group, 7-30 carbon atoms (preferably 7-20) aralkyl group, and 5 ring atoms.
  • ⁇ 30 (good) Properly it may include 5 to 18) heteroaryl group.
  • the use ratio of the component (A) to the component (B) is preferably in the range of 0.1 to 10 and in the range of 0.2 to 5 in terms of the molar ratio of the component (B) / the component (A). More preferably, it is particularly preferably in the range of 0.5 to 3.0. Moreover, 1 type, or 2 or more types can be used as (B) component.
  • (C) Cocatalyst Specific examples of the (C) promoter used in the present invention include (C-1) aluminoxane and (C-2) a boron compound.
  • R 1 represents a hydrocarbon group such as an alkyl group, alkenyl group, aryl group or arylalkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms or a halogen atom, and w represents an average degree of polymerization.
  • R 1 represents a hydrocarbon group such as an alkyl group, alkenyl group, aryl group or arylalkyl group having 1 to 20 carbon atoms, preferably 1 to 12 carbon atoms or a halogen atom
  • w represents an average degree of polymerization.
  • aluminoxane examples include methylaluminoxane (MAO), methylisobutylaluminoxane (MMAO), ethylaluminoxane (EMAO), isobutylaluminoxane (IBAO) and the like, and methylaluminoxane (MAO) or methylisobutylaluminoxane (MMAO) is preferably used.
  • Examples of the method for producing the aluminoxane include a method in which an alkylaluminum is brought into contact with a condensing agent such as water, but the means is not particularly limited and may be reacted according to a known method.
  • a method in which an organoaluminum compound is dissolved in an organic solvent and brought into contact with water (2) a method in which an organoaluminum compound is initially added during polymerization, and water is added later, (3) Crystal water contained in metal salts, etc., a method of reacting water adsorbed on inorganic or organic materials with an organoaluminum compound, (4) a method of reacting a tetraalkyldialuminoxane with a trialkylaluminum and further reacting with water is there.
  • the aluminoxane may be insoluble in toluene. These aluminoxanes may be used alone or in combination of two or more.
  • the use ratio of the component (A) and the component (C) is preferably in the range of 1 to 10,000 as the molar ratio of the component (C) / the component (A), and in the range of 10 to 1,000. More preferably.
  • the component (C) one or more selected from the components (C-1) and (C-2) can be used.
  • (C-2) Boron compound Specific examples of the (C-2) boron compound include tris (pentafluorophenyl) boron, dimethylanilinium tetrakis (pentafluorophenyl) borate, and trityl tetrakis (pentafluorophenyl) borate.
  • an organoaluminum compound in the method for producing an ⁇ -olefin of the present invention, can be used as the component (D) in addition to the components (A) to (C).
  • the organoaluminum compound of the component (D) the general formula (III) R 2 v AlJ 3-v (III) [Wherein R 2 represents an alkyl group having 1 to 10 carbon atoms, J represents a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a halogen atom, and v represents 1 to 3 carbon atoms. Which is an integer].
  • Specific examples of the compound represented by the general formula (III) include trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride. , Diisobutylaluminum hydride, diethylaluminum hydride, ethylaluminum sesquichloride and the like.
  • an organoaluminum compound to which a hydrocarbon group having 4 or more carbon atoms is bonded is preferable from the viewpoint of excellent high-temperature stability, and a compound having a hydrocarbon group having 4 to 8 carbon atoms is more preferable from this viewpoint. More preferably, when the reaction temperature is 100 ° C. or higher, a hydrocarbon group having 6 to 8 carbon atoms is more preferable.
  • the (D) organoaluminum compound may be used singly or in combination of two or more.
  • the use ratio of the component (A) to the component (D) is preferably 1: 1 to 1: 10,000, more preferably 1: 5 to 1: 2,000, and still more preferably 1:10 in molar ratio. A range of ⁇ 1: 1,000 is desirable.
  • the component (D) the polymerization activity per chromium can be improved. However, when the amount is too large, the organoaluminum compound is wasted and a large load is applied to the post-treatment step. Absent.
  • ethylene is polymerized in the presence of the above components (A) to (C).
  • the components (A) to (C) may be added to the polymerization solvent after contacting any two or more of them in advance, or the components (A) to (C) may be mixed simultaneously.
  • the polymerization temperature is preferably 0 to 150 ° C, more preferably 20 to 80 ° C.
  • the polymerization pressure is preferably from normal pressure to 10 MPa, more preferably from 0.2 to 8.0 MPa, and particularly preferably from 0.5 to 5.0 MPa.
  • polymerization solvent examples include benzene, toluene, xylene, pentane, heptane, cyclohexane, and methylcyclohexane. Toluene and cyclohexane are preferably used.
  • the ratio of 1-octene in the ⁇ -olefin to be obtained is preferably not less than the ratio of 1-hexene. Further, the ratio of 1-octene is preferably 10% by mass or more, more preferably 15% by mass or more, further preferably 20% by mass or more, and particularly preferably 25% by mass or more. .
  • Example 1 [Preparation of chromium complex solution] Add 20 ml (40 ⁇ mol) of tris (acetylacetonato) chromium toluene solution and 6 ml (120 ⁇ mol) of ligand compound A solution represented by the following formula to a 50 ml Schlenk tube substituted with nitrogen with a stirrer at room temperature. And stirred for about 2 hours. The solution was a light purple uniform solution.
  • Example 2 A chromium complex solution was prepared and ethylene polymerization was carried out in the same manner as in Example 1 except that the amount of the ligand compound A solution used was changed from 6 ml (120 ⁇ mol) to 2 ml (40 ⁇ mol). The results are shown in Table 1.
  • Example 3 To a THF (15 mL) solution of the ligand compound A (0.54 g, 1.96 mmol), an n-BuLi hexane solution (2.05 mmol, 0.82 mL) was added at ⁇ 10 ° C. The reaction mixture was stirred at room temperature overnight and this solution was added to a suspension of CrCl 2 (THF) 2 (0.27 g, 1.01 mmol) in THF (5 mL). After stirring for 18 hours, the solvent was distilled off under reduced pressure, and the solid residue was redissolved in toluene.
  • THF CrCl 2
  • Example 4 Ethylene polymerization was carried out in the same manner as in Example 2 except that the solvent was changed from toluene to cyclohexane. The results are shown in Table 1.
  • Example 5 Ethylene polymerization was carried out in the same manner as in Example 1 except that the following ligand compound B solution was used instead of the ligand compound A solution. The results are shown in Table 1.
  • Example 6 Ethylene polymerization was carried out in the same manner as in Example 1 except that the following ligand compound C solution was used instead of the ligand compound A solution. The results are shown in Table 1.
  • Example 7 Ethylene polymerization was carried out in the same manner as in Example 1 except that the following ligand compound D solution was used instead of the ligand compound A solution. The results are shown in Table 1.
  • Example 8 A chromium complex solution was prepared and ethylene polymerization was carried out in the same manner as in Example 7, except that the amount of the ligand compound D solution was changed from 6 ml (120 ⁇ mol) to 2 ml (40 ⁇ mol). The results are shown in Table 1.
  • the yield of 1-octene (C8) is lower than the yield of 1-hexene (C6).
  • the composition distribution of ⁇ -olefin obtained by the production method of the present invention does not follow the Schulz-Flory distribution.
  • the 1-hexene (C6) yield is 1-octene. It has a feature that the yield of (C8) is higher, and it can be confirmed that the yield of 1-octene is excellent.
  • the yield of 1-butene (C4) is low in any of Examples 1 to 8 and Comparative Examples 1 and 2, but this is volatilized because 1-butene is light. It is understood that it comes from.
  • the ⁇ -olefin obtained by the production method of the present invention is useful for LLDPE comonomer, synthetic lubricating oil use and surfactant use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

(A)特定のクロム化合物、(B)特定のアミノホスフィン配位子化合物及び(C)助触媒を用いてエチレンを重合することを特徴とするα-オレフィンの製造方法により、シュルツ・フローリー分布に従わず、炭素数6から14までの1-ヘキセンから1-テトラデセンまでのα-オレフィンの得率、特に1-オクテンの得率に優れたα-オレフィンの製造方法を提供すること。

Description

α-オレフィンの製造方法
 本発明は、ポリエチレンのコモノマー、合成潤滑油、界面活性剤などの原料として広く工業的に利用されているα-オレフィンの製造方法に関する。
 近年、α-オレフィン、特に1-ヘキセン、1-オクテンなどは、線状低密度ポリエチレン(L-LDPE)のコモノマーとして、また、これらを含む炭素数14の1-テトラデセンまでのα-オレフィンは合成潤滑油用途や界面活性剤の原料などに広く使用されている。通常、これらのα-オレフィンはエチレンから重合することにより得られるが、得られるα-オレフィンの重合度分布は、シュルツ・フローリー分布に則り、通常の分布では二量体が最も多く、四量体よりも三量体が多く、n+1量体よりもn量体が多いといった関係を満たす。
 現在、工業的に製造されている多くの方法ではこのようなシュルツ・フローリー分布に則ったα-オレフィンが得られている。例えばトリエチルアルミニウム触媒を用いる方法も知られているが、α-オレフィンはシュルツ・フローリー分布に則っている上に、高温高圧条件下で使用する必要があるといった問題も知られている。しかしながら、α-オレフィンは炭素数に応じて使用量や価格が異なり、またニーズ変動が激しいため、シュルツ・フローリー分布に則ったα-オレフィンが製造される従来法では、特に1-オクテン以上のα-オレフィンの得率が低いという問題があった。この対策としてトリエチルアルミニウム触媒を用いて、2段重合を行うことによりα-オレフィンはポアソン分布に則り、1-オクテン以上の製品が多く得られる利点はあるが、高温高圧下の反応でしかも触媒を多量に(量論的に)使用する必要があり、触媒の回収が必須で装置が煩雑になることやα―オレフィン純度が低いなどの欠点があった。例えば、特許文献1~4にはクロム化合物を用いて1-ヘキセンや1-オクテンを製造する方法が開示されている。しかしながら、これによって得られるα-オレフィンは、1-ヘキセンが主成分で1-オクテンが低いというものである。一方、特許文献5には、アミノホスフィンを配位子とする遷移金属化合物が開示されているが、これはポリマーの製造を目的としたものである。
 以上のような背景により、炭素数6から14までの1-ヘキセンから1-テトラデセンまでのα-オレフィンの得率、特に1-オクテンの得率を向上させる触媒系の開発が望まれている。
特開平6-329562号公報 特開平7-215896号公報 特開平8-183746号公報 特表2002―532249号公報 特開2003-261588号公報
 本発明は上記事情に鑑みなされたもので、シュルツ・フローリー分布に従わず、炭素数6から14までの1-ヘキセンから1-テトラデセンまでのα-オレフィンの得率、特に1-オクテンの得率に優れたα-オレフィンの製造方法を提供することを目的とするものである。
 本発明者らは鋭意研究を重ねた結果、上記課題を解決できる製造条件を見出し本発明の完成に至った。
 すなわち本発明は、以下のα-オレフィンの製造方法に関するものである。
1.(A)クロム化合物、(B)下記一般式(1)で表される配位子化合物、及び(C)助触媒を用いてエチレンを重合することを特徴とするα-オレフィンの製造方法、
Figure JPOXMLDOC01-appb-C000002
(式中、L1~L3は、それぞれ独立に、置換もしくは無置換の炭素数5~30の脂環式炭化水素基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の芳香族複素環基。)
2.前記(A)クロム化合物と、(B)配位子化合物とを接触させる工程と、その反応生成物と前記(C)助触媒とを反応させる工程とを有する上記1に記載のα-オレフィンの製造方法、
3.前記(A)クロム化合物が、下記一般式(2)で表される上記1又は2に記載のα-オレフィンの製造方法、
 CrXnm  ・・・(2)
(式中、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、Dはルイス塩基を示し、Dが複数ある場合、複数のDは同じでも異なっていてもよく、nは2~3の整数であってCrの原子価を示し、mは0~6の整数を示す。)
4.前記一般式(1)におけるL1~L3が、それぞれ独立に、置換もしくは無置換のフェニル基、又は置換もしくは無置換のシクロヘキシル基であり、かつ、該置換基が炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、又は環形成炭素数5~6のシクロアルキル基である上記1~3のいずれかに記載のα-オレフィンの製造方法、及び
5.前記(C)助触媒がアルミノキサンである上記1~4のいずれかに記載のα-オレフィンの製造方法、
 本発明によれば、シュルツ・フローリー分布に従わず、炭素数6から14までの1-ヘキセンから1-テトラデセンまでのα-オレフィンの得率、特に1-オクテンの得率に優れたα-オレフィンの製造方法が提供される。
 本発明に係るα-オレフィンの製造方法は、(A)クロム化合物、(B)下記一般式(1)で表される配位子化合物、及び(C)助触媒を用いてエチレンを重合することを特徴とする。
Figure JPOXMLDOC01-appb-C000003
(式中、L1~L3は、それぞれ独立に、置換もしくは無置換の炭素数5~30の脂環式炭化水素基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の芳香族複素環基。)
 尚、本明細書において、「置換もしくは無置換の炭素数a~bのX基」という表現における「炭素数a~b」は、X基が無置換である場合の炭素数を表すものであり、X基が置換されている場合の置換基の炭素数は含めない。
〔(A)クロム化合物〕
 本発明において用いられる(A)クロム化合物は、そのクロム原子が後述の(B)配位子化合物と錯体を形成し得るものであれば特に限定されないが、下記一般式(2)で表されるものが好ましく用いられる。
 CrXnm  ・・・(2)
(式中、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、Dはルイス塩基を示し、Dが複数ある場合、複数のDは同じでも異なっていてもよく、nは2~3の整数であってCrの原子価を示し、mは0~6、好ましくは0~3の整数を示す。)
 Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX又はDと架橋していてもよい。このσ結合性の配位子の具体例としては、ハロゲン原子,炭素数1~20の炭化水素基,炭素数1~20のアルコキシ基,炭素数6~20のアリールオキシ基,炭素数1~20のアミド基,炭素数1~20の珪素含有基,炭素数1~20のホスフィド基、炭素数1~20のスルフィド基、炭素数1~20のアシル基、置換もしくは無置換のアセチルアセトナート、置換もしくは無置換のカルボキシレートなどが挙げられる。
 ハロゲン原子としては、塩素原子、フッ素原子、臭素原子、ヨウ素原子が挙げられる。
 炭素数1~20の炭化水素基として具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、オクチル基などのアルキル基;ビニル基、プロペニル基、シクロヘキセニル基などのアルケニル基;ベンジル基、フェニルエチル基、フェニルプロピル基などのアリールアルキル基;フェニル基、トリル基、ジメチルフェニル基、トリメチルフェニル基、エチルフェニル基、プロピルフェニル基、ビフェニル基、ナフチル基、メチルナフチル基、アントラセニル基、フェナントレニル基などのアリール基などが挙げられる。なかでもメチル基、エチル基、プロピル基などのアルキル基やフェニル基などのアリール基が好ましい。
 炭素数1~20のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などが挙げられる。炭素数6~20のアリールオキシ基としては、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基などが挙げられる。
 炭素数1~20のアミド基としては、ジメチルアミド基、ジエチルアミド基、ジプロピルアミド基、ジブチルアミド基、ジシクロヘキシルアミド基、メチルエチルアミド基等のアルキルアミド基や、ジビニルアミド基、ジプロペニルアミド基、ジシクロヘキセニルアミド基などのアルケニルアミド基;ジベンジルアミド基、フェニルエチルアミド基、フェニルプロピルアミド基などのアリールアルキルアミド基;ジフェニルアミド基、ジナフチルアミド基などのアリールアミド基が挙げられる。
 炭素数1~20の珪素含有基としては、メチルシリル基、フェニルシリル基などのモノ炭化水素置換シリル基;ジメチルシリル基、ジフェニルシリル基などのジ炭化水素置換シリル基;トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリシクロヘキシルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリトリルシリル基、トリナフチルシリル基などのトリ炭化水素置換シリル基;トリメチルシリルエーテル基などの炭化水素置換シリルエーテル基;トリメチルシリルメチル基などの珪素置換アルキル基;トリメチルシリルフェニル基などの珪素置換アリール基などが挙げられる。なかでもトリメチルシリルメチル基、フェニルジメチルシリルエチル基などが好ましい。
 炭素数1~20のホスフィド基としては、ジメチルホスフィド基、ジエチルホスフィド基、ジプロピルホスフィド基、ジブチルホスフィド基、ジシクロヘキシルホスフィド基、ジオクチルホスフィド基などのアルキルホスフィド基;ジビニルホスフィド基、ジプロペニルホスフィド基、ジシクロヘキセニルホスフィド基などのアルケニルホスフィド基;ジベンジルホスフィド基、ビス(フェニルエチルフェニル)ホスフィド基などのアリールアルキルホスフィド基;ジフェニルホスフィド基、ジトリルホスフィド基、ジナフチルホスフィド基などのアリールホスフィド基が挙げられる。
 炭素数1~20のスルフィド基としては、メチルスルフィド基、エチルスルフィド基、プロピルスルフィド基、ブチルスルフィド基、ヘキシルスルフィド基、シクロヘキシルスルフィド基、オクチルスルフィド基などのアルキルスルフィド基;ビニルスルフィド基、プロペニルスルフィド基、シクロヘキセニルスルフィド基などのアルケニルスルフィド基;ベンジルスルフィド基、フェニルエチルスルフィド基、フェニルプロピルスルフィド基などのアリールアルキルスルフィド基;フェニルスルフィド基、トリルスルフィド基、ジメチルフェニルスルフィド基、トリメチルフェニルスルフィド基、エチルフェニルスルフィド基、プロピルフェニルスルフィド基、ビフェニルスルフィド基、ナフチルスルフィド基、メチルナフチルスルフィド基、アントラセニルスルフィド基、フェナントレニルスルフィド基などのアリールスルフィド基が挙げられる。
 炭素数1~20のアシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、バレリル基、パルミトイル基、ステアロイル基、オレオイル基等のアルキルアシル基、ベンゾイル基、トルオイル基、サリチロイル基、シンナモイル基、ナフトイル基、フタロイル基等のアリールアシル基、シュウ酸、マロン酸、コハク酸などのジカルボン酸からそれぞれ誘導されるオキサリル基、マロニル基、スクシニル基などが挙げられる。
 一方、Dはルイス塩基を示し、Dが複数ある場合、複数のDは同じでも異なっていてもよく、他のDやXと架橋していてもよい。このDのルイス塩基の具体例としては、アミン類、エーテル類、ホスフィン類、チオエーテル類などを挙げることができる。
 アミンとしては、炭素数1~20のアミンが挙げられ、具体的には、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、シクロヘキシルアミン、メチルエチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジシクロヘキシルアミン、メチルエチルアミン等のアルキルアミン;ビニルアミン、プロペニルアミン、シクロヘキセニルアミン、ジビニルアミン、ジプロペニルアミン、ジシクロヘキセニルアミンなどのアルケニルアミン;フェニルアミン、フェニルエチルアミン、フェニルプロピルアミンなどのアリールアルキルアミン;ジフェニルアミン、ジナフチルアミンなどのアリールアミンが挙げられる。
 エーテル類としては、メチルエーテル、エチルエーテル、プロピルエーテル、イソプロピルエーテル、ブチルエーテル、イソブチルエーテル、n-アミルエーテル、イソアミルエーテル等の脂肪族単一エーテル化合物;メチルエチルエーテル、メチルプロピルエーテル、メチルイソプロピルエーテル、メチル-n-アミルエーテル、メチルイソアミルエーテル、エチルプロピルエーテル、エチルイソプロピルエーテル、エチルブチルエーテル、エチルイソブチルエーテル、エチル-n-アミルエーテル、エチルイソアミルエーテル等の脂肪族混成エーテル化合物;ビニルエーテル、アリルエーテル、メチルビニルエーテル、メチルアリルエーテル、エチルビニルエーテル、エチルアリルエーテル等の脂肪族不飽和エーテル化合物;アニソール、フェネトール、フェニルエーテル、ベンジルエーテル、フェニルベンジルエーテル、α-ナフチルエーテル、β-ナフチルエーテルなどの芳香族エーテル化合物、酸化エチレン、酸化プロピレン、酸化トリメチレン、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等の環式エーテル化合物が挙げられる。
 ホスフィン類としては、炭素数1~20のホスフィンが挙げられる。具体的には、メチルホスフィン、エチルホスフィン、プロピルホスフィン、ブチルホスフィン、ヘキシルホスフィン、シクロヘキシルホスフィン、オクチルホスフィンなどのモノ炭化水素置換ホスフィン;ジメチルホスフィン、ジエチルホスフィン、ジプロピルホスフィン、ジブチルホスフィン、ジヘキシルホスフィン、ジシクロヘキシルホスフィン、ジオクチルホスフィンなどのジ炭化水素置換ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリシクロヘキシルホスフィン、トリオクチルホスフィンなどのトリ炭化水素置換ホスフィンなどのアルキルホスフィンや、ビニルホスフィン、プロペニルホスフィン、シクロヘキセニルホスフィンなどのモノアルケニルホスフィンやホスフィンの水素原子をアルケニルが2個置換したジアルケニルホスフィン;ホスフィンの水素原子をアルケニルが3個置換したトリアルケニルホスフィン;ベンジルホスフィン、フェニルエチルホスフィン、フェニルプロピルホスフィンなどのアリールアルキルホスフィン;ホスフィンの水素原子をアリール又はアルケニルが3個置換したジアリールアルキルホスフィン又はアリールジアルキルホスフィン;フェニルホスフィン、トリルホスフィン、ジメチルフェニルホスフィン、トリメチルフェニルホスフィン、エチルフェニルホスフィン、プロピルフェニルホスフィン、ビフェニルホスフィン、ナフチルホスフィン、メチルナフチルホスフィン、アントラセニルホスフィン、フェナントレニルホスフィン;ホスフィンの水素原子をアルキルアリールが2個置換したジ(アルキルアリール)ホスフィン;ホスフィンの水素原子をアルキルアリールが3個置換したトリ(アルキルアリール)ホスフィンなどのアリールホスフィンが挙げられる。チオエーテル類としては、前記のスルフィドが挙げられる。
 上記(A)クロム化合物の具体例としては、トリス(アセチルアセトナート)クロム(III)、トリス(エチルヘキサナート)クロム(III)、トリt-ブトキシクロム(III)、三塩化クロム、三臭化クロム、二塩化クロム、トリクロロトリス(THF)クロムなどが挙げられ、トリス(アセチルアセトナート)クロム(III)、三塩化クロム、二塩化クロム、トリクロロトリス(THF)クロム、ジクロロビス(THF)クロムなどが好ましく用いられる。
〔(B)配位子化合物〕
 本発明において用いられる(B)配位子化合物は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000004
(式中、L1~L3は、それぞれ独立に、置換もしくは無置換の炭素数5~30の脂環式炭化水素基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の芳香族複素環基。)
 上記L1~L3は、好ましくは、置換もしくは無置換の炭素数5~14の脂環式炭化水素基、又は置換もしくは無置換の環形成炭素数6~14の芳香族炭化水素基である。
 前記L1~L3で表される脂環式炭化水素基の具体例としては、シクロペンチル基、シクロヘキシル基、シクロオクチル基などが挙げられ、好ましくは、シクロペンチル基、又はシクロヘキシル基である。
 前記L1~L3で表される芳香族炭化水素基の例としては、フェニル基、ナフチル基、フェナントリル基、ビフェニリル基、ターフェニリル基、クォーターフェニリル基、フルオランテニル基、トリフェニレニル基、フルオレニル基、ベンゾ[c]フェナントレニル基、ベンゾ[a]トリフェニレニル基、ナフト[1,2-c]フェナントレニル基、ナフト[1,2-a]トリフェニレニル基、ジベンゾ[a,c]トリフェニレニル基、ベンゾ[b]フルオランテニル基などが挙げられ、好ましくは、フェニル基、4-ビフェニリル基、3-ビフェニリル基、5’-m-ターフェニリル基、1-ナフチル基、フルオレン-2-イル基、2-ナフチル基、9-フェナントレニル基である。
 L1~L3で表される置換芳香族炭化水素基の例としては、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2,3-ジメチルフェニル基、2,4-ジメチルフェニル基、2,5-ジメチルフェニル基、2,6-ジメチルフェニル基、3,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2-メチル-4-メトキシフェニル基、2-メチル-6-メトキシフェニル基、2,4,5-トリメチルフェニル基、2,4,6-トリメチルフェニル基、4-n-ブチルフェニル基、4-t-ブチルフェニル基などが挙げられる。
 前記L1~L3で表される芳香族複素環基としては、窒素原子、酸素原子、及び硫黄原子から選ばれる少なくとも1個のヘテロ原子を含むものが好ましく、その具体例としては、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、及びキサンテニル基が挙げられ、好ましくはフリル基、チエニル基、ベンゾフラニル基、ベンゾチオフェニル基、ジベンゾフラニル基、ジベンゾチオフェニル基である。
 前記L1~L3は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の芳香族複素環基であることが好ましく、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基であることがより好ましく、置換もしくは無置換のフェニル基であることが特に好ましい。
 前記L1~L3として用いられる置換フェニル基としては、置換基として炭素数1~20のアルキル基又は炭素数1~20のアルコキシ基を有するものが特に好ましい。
 上記及び後述する「置換もしくは無置換」という場合の任意の置換基としてはハロゲン原子、シアノ基、炭素数1~20(好ましくは1~5)のアルキル基、炭素数3~20(好ましくは5~12)のシクロアルキル基、炭素数1~20(好ましくは1~5)のアルコキシ基、炭素数1~20(好ましくは1~5)のハロアルキル基、炭素数1~20(好ましくは1~5)のハロアルコキシ基、炭素数1~10(好ましくは1~5)のアルキルシリル基、環形成炭素数6~30(好ましくは6~18)のアリール基、環形成炭素数6~30(好ましくは6~18)のアリールオキシ基、炭素数6~30(好ましくは6~18)のアリールシリル基、炭素数7~30(好ましくは7~20)のアラルキル基、及び環形成原子数5~30の(好ましくは5~18)ヘテロアリール基が挙げられる。
 (A)成分と(B)成分との使用割合は、(B)成分/(A)成分のモル比で0.1~10の範囲内であると好ましく、0.2~5の範囲内であるとより好ましく、0.5~3.0の範囲内であると特に好ましい。
 また、(B)成分としては一種又は二種以上を用いることができる。
〔(C)助触媒〕
 本発明において用いられる(C)助触媒の具体例としては、(C-1)アルミノキサンと、(C-2)硼素化合物とが挙げられる。
〔(C-1)アルミノキサン〕
 (C-1)成分のアルミノキサンとしては、一般式(I)
Figure JPOXMLDOC01-appb-C000005
(式中、R1は炭素数1~20、好ましくは1~12のアルキル基,アルケニル基,アリール基,アリールアルキル基などの炭化水素基あるいはハロゲン原子を示し、wは平均重合度を示し、通常2~50、好ましくは2~40の整数である。尚、各R1は同じでも異なっていてもよい。)で示される鎖状アルミノキサン、及び一般式(II)
Figure JPOXMLDOC01-appb-C000006
(式中、R1及びwは前記一般式(I)におけるものと同じである。)で示される環状アルミノキサンを挙げることができる。
 (C-1)アルミノキサンの具体例としては、メチルアルミノキサン(MAO)、メチルイソブチルアルミノキサン(MMAO)、エチルアルミノキサン(EMAO)、イソブチルアルミノキサン(IBAO)等が挙げられ、メチルアルミノキサン(MAO)又はメチルイソブチルアルミノキサン(MMAO)が好ましく用いられる。
 前記アルミノキサンの製造法としては、アルキルアルミニウムと水などの縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。
 例えば、(1)有機アルミニウム化合物を有機溶剤に溶解しておき、これを水と接触させる方法、(2)重合時に当初有機アルミニウム化合物を加えておき、後で水を添加する方法、(3)金属塩などに含有されている結晶水、無機物や有機物への吸着水を有機アルミニウム化合物と反応させる方法、(4)テトラアルキルジアルミノキサンにトリアルキルアルミニウムを反応させ、更に水を反応させる方法などがある。尚、アルミノキサンとしては、トルエン不溶性のものであってもよい。これらのアルミノキサンは一種用いてもよく、二種以上を組み合わせて用いてもよい。
 (A)成分と(C)成分との使用割合は、(C)成分/(A)成分のモル比で1~10,000の範囲内であると好ましく、10~1,000の範囲内であるとより好ましい。
 また、(C)成分としては(C-1)成分及び(C-2)成分から選択される一種又は二種以上を用いることができる。
〔(C-2)硼素化合物〕
 (C-2)硼素化合物の具体例としては、トリス(ペンタフルオロフェニル)硼素、テトラキス(ペンタフルオロフェニル)硼酸ジメチルアニリニウム,テトラキス(ペンタフルオロフェニル)硼酸トリチルなどを挙げることができる。
〔(D)有機アルミニウム化合物〕
 また、本発明のα-オレフィンの製造方法においては、上記(A)~(C)成分に加えて、(D)成分として有機アルミニウム化合物を用いることができる。ここで、(D)成分の有機アルミニウム化合物としては、一般式(III)
2 vAlJ3-v・・・(III)
〔式中、R2は炭素数1~10のアルキル基、Jは水素原子、炭素数1~20のアルコキシ基、炭素数6~20のアリール基又はハロゲン原子を示し、vは1~3の整数である〕で示される化合物が用いられる。
 前記一般式(III)で示される化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、ジメチルアルミニウムフルオリド、ジイソブチルアルミニウムヒドリド、ジエチルアルミニウムヒドリド、エチルアルミニウムセスキクロリドなどが挙げられる。これらの中で、炭素数4以上の炭化水素基が結合した有機アルミニウム化合物は、高温安定性に優れる点で好ましく、当該観点から炭素数4~8の炭化水素基が結合したものがより好ましい。さらに好ましくは100℃以上の反応温度の場合は、炭素数6~8の炭化水素基が結合したものがより好ましい。上記(D)有機アルミニウム化合物は一種用いてもよく、二種以上を組合せて用いてもよい。
 前記(A)成分と(D)成分との使用割合は、モル比で好ましくは1:1~1:10,000、より好ましくは1:5~1:2,000、更に好ましくは1:10~1:1,000の範囲が望ましい。該(D)成分を用いることにより、クロム当たりの重合活性を向上させることができるが、あまり多いと(D)有機アルミニウム化合物が無駄になるとともに、後処理工程に多くの負荷がかかるので、好ましくない。
 本発明に係るα-オレフィンの製造方法においては、上記(A)~(C)成分の存在下でエチレンの重合を行う。(A)~(C)成分は、事前にいずれか二種以上を接触させた上で重合溶媒に添加してもよいし、(A)~(C)成分を同時に混合することもできる。なお、混合順序に制限はないが、(A)成分と(B)成分とを事前に接触させることが好ましい。
 重合温度は、0~150℃が好ましく、20~80℃がより好ましい。
 重合圧力は、常圧~10MPaが好ましく、0.2~8.0MPaがより好ましく、0.5~5.0MPaが特に好ましい。
 重合溶媒としては、ベンゼン、トルエン、キシレン、ペンタン、ヘプタン、シクロヘキサン、メチルシクロヘキサンなどが挙げられ、トルエンやシクロヘキサンが好ましく用いられる。
 本発明に係るα-オレフィンの製造方法は、得られるα-オレフィン中における1-オクテンの比率が1-ヘキセンの比率以上であることが好ましい。また、1-オクテンの比率は10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることがさらに好ましく、25質量%以上であることが特に好ましい。
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。物性の測定方法および測定装置を以下に示す。
〔各α-オレフィン成分の質量比〕
 反応液に内部標準液として、ウンデカン(C11)を一定量加え、以下の条件でガスクロマトグラフィー(GC)測定を行い、各α-オレフィン成分(C4~C18)の質量比を、内部標準液C11を基準に求めた。
GC測定条件
カラム:Ultra2(25m×0.2mm×0.33μm)
注入口温度:270℃
検出器温度:270℃
カラム温度:40~200℃(1.5℃/min)、200~270℃(8℃/min)
実施例1
〔クロム錯体溶液の調製〕
 攪拌子入りの窒素置換した50mlシュレンク管にトリス(アセチルアセトナート)クロムトルエン溶液を20ml(40μmol)と、下記式で表される配位子化合物A溶液6ml(120μmol)とを添加し、室温下で約2時間攪拌して調製した。溶液は淡紫色の均一な液であった。
Figure JPOXMLDOC01-appb-C000007
〔重合〕
 十分に脱水・窒素置換した1Lの攪拌機付きオートクレーブに、乾燥溶媒トルエン300mlを張り込み、次いで上記クロム錯体溶液17.88ml(27.5μmol)と、メチルアルミノキサンのトルエン溶液2.75ml(8250μmol)とを張り込み、攪拌を開始した。反応温度を40℃まで昇温し、40℃になった時点で、エチレンを4MPa張り込み、反応を開始した。1時間反応後、加圧下でエタノール30mlを添加し、触媒を失活させた。室温まで冷却後脱圧し、オートクレーブを開放し、反応液中にGC分析用の内部標準液であるウンデカンを3.5g添加し、よく攪拌した。反応液はGC分析を行い、各α-オレフィン成分の分布・純度を求めた。ポリマーが副生する場合は、生成液を吸引ろ過し、ろ過物を1日風乾後、重量を測定した。結果を第1表に示す。
実施例2
 配位子化合物A溶液の使用量を、6ml(120μmol)から2ml(40μmol)に変更した以外は、実施例1と同様にしてクロム錯体溶液の調製及びエチレン重合を行った。結果を第1表に示す。
実施例3
 配位子化合物A(0.54g,1.96mmol)のTHF(15mL)溶液にn-BuLiヘキサン溶液(2.05mmol,0.82mL)を-10℃で添加した。反応混合物を室温で終夜攪拌し、この溶液をCrCl2(THF)2(0.27g,1.01mmol)のTHF(5mL)懸濁液に添加した。18時間攪拌後、減圧下溶媒を留去し、固体残渣をトルエンに再溶解した。少量の無色不溶物をろ別し得られた褐色溶液の溶媒を減圧下留去し、得られた緑褐色固体を触媒として使用し、実施例1と同様にしてエチレン重合を行った。結果を第1表に示す。
実施例4
 溶媒をトルエンからシクロヘキサンに変更した以外は、実施例2と同様にしてエチレン重合を行った。結果を第1表に示す。
実施例5
 配位子化合物A溶液の代わりに、下記配位子化合物B溶液を用いたこと以外は、実施例1と同様にしてエチレン重合を行った。結果を第1表に示す。
Figure JPOXMLDOC01-appb-C000008
実施例6
 配位子化合物A溶液の代わりに、下記配位子化合物C溶液を用いたこと以外は、実施例1と同様にしてエチレン重合を行った。結果を第1表に示す。
Figure JPOXMLDOC01-appb-C000009
実施例7
 配位子化合物A溶液の代わりに、下記配位子化合物D溶液を用いたこと以外は、実施例1と同様にしてエチレン重合を行った。結果を第1表に示す。
Figure JPOXMLDOC01-appb-C000010
実施例8
 配位子化合物D溶液の使用量を、6ml(120μmol)から2ml(40μmol)に変更した以外は、実施例7と同様にしてクロム錯体溶液の調製及びエチレン重合を行った。結果を第1表に示す。
比較例1
 配位子化合物A溶液の代わりに、下記配位子化合物X溶液を用いたこと以外は、実施例1と同様にしてエチレン重合を行った。結果を第1表に示す。
Figure JPOXMLDOC01-appb-C000011
比較例2
 配位子化合物A溶液を添加しなかったこと以外は、実施例1と同様にしてエチレン重合を行った。結果を第1表に示す。
Figure JPOXMLDOC01-appb-T000012
 比較例1、2の製造方法においては、1-ヘキセン(C6)の得率に対して、1-オクテン(C8)の得率の方が低い。これに対して、本発明の製造方法によって得られるα-オレフィンの組成分布は、シュルツ・フローリー分布に従わず、具体的には、1-ヘキセン(C6)の得率に対して、1-オクテン(C8)の得率の方が高いという特徴を有しており、1-オクテンの収率に優れていることが確認できる。
 尚、第1表中、実施例1~8及び比較例1~2のいずれにおいても1-ブテン(C4)の得率が低いが、これは1-ブテンが軽質であるため、揮発していることに由来するものと解される。
 本発明の製造方法により得られるα-オレフィンは、LLDPEのコモノマー、合成潤滑油用途や界面活性剤用途に有用である。

Claims (5)

  1.  (A)クロム化合物、(B)下記一般式(1)で表される配位子化合物、及び(C)助触媒を用いてエチレンを重合することを特徴とするα-オレフィンの製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式中、L1~L3は、それぞれ独立に、置換もしくは無置換の炭素数5~30の脂環式炭化水素基、置換もしくは無置換の環形成炭素数6~30の芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~30の芳香族複素環基。)
  2.  前記(A)クロム化合物と、(B)配位子化合物とを接触させる工程と、その反応生成物と前記(C)助触媒とを反応させる工程とを有する請求項1に記載のα-オレフィンの製造方法。
  3.  前記(A)クロム化合物が、下記一般式(2)で表される請求項1又は2に記載のα-オレフィンの製造方法。
     CrXnm  ・・・(2)
    (式中、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、Dはルイス塩基を示し、Dが複数ある場合、複数のDは同じでも異なっていてもよく、nは2~3の整数であってCrの原子価を示し、mは0~6の整数を示す。)
  4.  前記一般式(1)におけるL1~L3が、それぞれ独立に、置換もしくは無置換のフェニル基、又は置換もしくは無置換のシクロヘキシル基であり、かつ、該置換基が炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、又は環形成炭素数5~6のシクロアルキル基である請求項1~3のいずれかに記載のα-オレフィンの製造方法。
  5.  前記(C)助触媒がアルミノキサンである請求項1~4のいずれかに記載のα-オレフィンの製造方法。
PCT/JP2012/082359 2011-12-27 2012-12-13 α-オレフィンの製造方法 WO2013099626A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280064843.7A CN104011089B (zh) 2011-12-27 2012-12-13 α-烯烃的制造方法
US14/369,509 US9394213B2 (en) 2011-12-27 2012-12-13 Method for producing α-olefin
BR112014015969A BR112014015969A8 (pt) 2011-12-27 2012-12-13 processo de produção para alfa-olefina
KR20147019291A KR20150000868A (ko) 2011-12-27 2012-12-13 α-올레핀의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011286983A JP5844636B2 (ja) 2011-12-27 2011-12-27 α−オレフィンの製造方法
JP2011-286983 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013099626A1 true WO2013099626A1 (ja) 2013-07-04

Family

ID=48697118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082359 WO2013099626A1 (ja) 2011-12-27 2012-12-13 α-オレフィンの製造方法

Country Status (7)

Country Link
US (1) US9394213B2 (ja)
JP (1) JP5844636B2 (ja)
KR (1) KR20150000868A (ja)
CN (1) CN104011089B (ja)
BR (1) BR112014015969A8 (ja)
TW (1) TW201339178A (ja)
WO (1) WO2013099626A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2826795A1 (en) * 2013-07-18 2015-01-21 ETH Zurich Chromium(III) silicate catalysts suitable for PE synthesis
KR20170032766A (ko) 2015-09-15 2017-03-23 주식회사 엘지화학 올레핀의 올리고머화 방법
KR102538101B1 (ko) * 2016-05-20 2023-05-30 에스케이이노베이션 주식회사 화학 반응기 및 이를 이용한 올레핀 제조 방법
CN115400800B (zh) * 2022-09-22 2023-12-22 中化泉州石化有限公司 一种乙烯选择性三聚催化剂组合物及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261588A (ja) * 2002-03-08 2003-09-19 Japan Science & Technology Corp オレフィン重合などに用いられる遷移金属錯体
JP2004067511A (ja) * 2002-06-10 2004-03-04 Japan Science & Technology Corp ヘテロ原子配位子と2つの金属を含む金属錯体
JP2005513115A (ja) * 2001-12-20 2005-05-12 サソル テクノロジー (ピーティーワイ)リミテッド クロムを主成分とした触媒を使用したオレフィンの三量化およびオリゴマー化
JP2006511694A (ja) * 2002-12-20 2006-04-06 サソル テクノロジー (ピーティーワイ) リミテッド オレフィンのタンデム四量体化−重合
JP2010532711A (ja) * 2007-07-11 2010-10-14 リンデ アーゲー エチレンの二、三および/または四量体化のための触媒組成物およびプロセス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06329562A (ja) 1993-05-21 1994-11-29 Idemitsu Kosan Co Ltd オレフィンオリゴマーの製造方法
JPH07215896A (ja) 1994-02-04 1995-08-15 Idemitsu Kosan Co Ltd α−オレフィンオリゴマーの製造方法
JPH08183746A (ja) 1994-12-28 1996-07-16 Idemitsu Kosan Co Ltd α−オレフィンオリゴマーの製造方法
US20010053742A1 (en) 1998-12-18 2001-12-20 Ronald D. Knudsen Catalyst and processes for olefin trimerization
US7300904B2 (en) 2001-12-20 2007-11-27 Sasol Technology (Pty) Ltd. Trimerisation and oligomerisation of olefins using a chromium based catalyst
US7525009B2 (en) 2002-12-20 2009-04-28 Sasol Technology (Pty) Limited Trimerisation of olefins
BR0317510A (pt) 2002-12-20 2005-11-16 Sasol Tech Pty Ltd Tetramerização de olefinas
US7297832B2 (en) 2002-12-20 2007-11-20 Sasol Technology (Pty) Limited Tetramerization of olefins
CN100443178C (zh) 2006-03-10 2008-12-17 中国石油天然气股份有限公司 一种乙烯低聚的催化剂组合物及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513115A (ja) * 2001-12-20 2005-05-12 サソル テクノロジー (ピーティーワイ)リミテッド クロムを主成分とした触媒を使用したオレフィンの三量化およびオリゴマー化
JP2003261588A (ja) * 2002-03-08 2003-09-19 Japan Science & Technology Corp オレフィン重合などに用いられる遷移金属錯体
JP2004067511A (ja) * 2002-06-10 2004-03-04 Japan Science & Technology Corp ヘテロ原子配位子と2つの金属を含む金属錯体
JP2006511694A (ja) * 2002-12-20 2006-04-06 サソル テクノロジー (ピーティーワイ) リミテッド オレフィンのタンデム四量体化−重合
JP2010532711A (ja) * 2007-07-11 2010-10-14 リンデ アーゲー エチレンの二、三および/または四量体化のための触媒組成物およびプロセス

Also Published As

Publication number Publication date
KR20150000868A (ko) 2015-01-05
US9394213B2 (en) 2016-07-19
JP2013133467A (ja) 2013-07-08
TW201339178A (zh) 2013-10-01
JP5844636B2 (ja) 2016-01-20
CN104011089B (zh) 2016-08-24
US20140364669A1 (en) 2014-12-11
CN104011089A (zh) 2014-08-27
BR112014015969A8 (pt) 2017-07-04
BR112014015969A2 (pt) 2017-06-13

Similar Documents

Publication Publication Date Title
US9637509B2 (en) Ligand compound, catalyst system for olefin oligomerization, and method for olefin oligomerization using the same
KR102219407B1 (ko) 올레핀 중합 촉매용 전이금속 화합물 및 이를 포함하는 올레핀 중합 촉매
CN107207545B (zh) 配体化合物,低聚催化剂体系及使用其的烯烃低聚方法
JP5844636B2 (ja) α−オレフィンの製造方法
US20190111414A1 (en) Bridged bi-aromatic ligands and olefin polymerization catalysts prepared therefrom
JP2017537172A (ja) メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
JP5838010B2 (ja) エチレンオリゴマー化方法
JP4435420B2 (ja) 3配位アルミニウム触媒活性剤組成物
WO2015046438A1 (ja) イミン化合物及び新規オレフィン重合用触媒並びにオレフィン重合体の製造方法
EP3036244B1 (en) Process for the preparation of 2,2'-bis-indenyl biphenyl ligands and their metallocene complexes
KR102287636B1 (ko) 에틸렌 올리고머화용 전이금속 화합물을 포함하는 촉매 시스템 및 이를 이용한 선형 알파 올레핀의 제조방법
KR20220097897A (ko) 티타늄 바이페닐페놀 중합 촉매
KR20220118487A (ko) 기체상 비페닐페놀 중합 촉매
CN107995909B (zh) 双(氨基苯基苯酚)配位体以及由其制备的过渡金属化合物
KR102412551B1 (ko) 비대칭 메탈로센 촉매 및 이의 용도
AU2002352741B2 (en) Bidentate ligand based catalyst for the polymerization of olefins
KR101828645B1 (ko) 신규한 리간드 화합물 및 전이금속 화합물
TW202330558A (zh) 金屬—配位基錯合物、含有該金屬—配位基錯合物之用於生產乙烯系聚合物之觸媒組成物、以及使用該觸媒組成物來生產乙烯系聚合物之方法
US7022785B2 (en) Diimine complexes for olefin polymerization
KR101889979B1 (ko) 새로운 전이금속 화합물과 이를 포함한 올레핀 중합용 전이금속 촉매 조성물, 및 이를 이용한 에틸렌 단독중합체 또는 에틸렌과 α-올레핀의 공중합체의 제조방법
KR20160009263A (ko) 신규한 리간드 화합물 및 전이금속 화합물의 제조방법
JP2014198802A (ja) α−オレフィンの製造方法
KR20030055636A (ko) 카르보디이미드계열 리간드의 킬레이트 화합물 촉매를이용한 에틸렌 중합 및 공중합 방법
KR20160144208A (ko) 담지 메탈로센 촉매 및 이를 이용한 올레핀계 중합체의 제조방법
KR20030055635A (ko) 시클로펜타디엔계열 및 카르보디이미드계열 리간드의킬레이트 화합물 촉매를 이용한 에틸렌 중합 및 공중합방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14369509

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147019291

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014015969

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12863901

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12863901

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112014015969

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140627