WO2013099231A1 - 冷却ユニット、及びそれを備えるクーラ装置 - Google Patents

冷却ユニット、及びそれを備えるクーラ装置 Download PDF

Info

Publication number
WO2013099231A1
WO2013099231A1 PCT/JP2012/008292 JP2012008292W WO2013099231A1 WO 2013099231 A1 WO2013099231 A1 WO 2013099231A1 JP 2012008292 W JP2012008292 W JP 2012008292W WO 2013099231 A1 WO2013099231 A1 WO 2013099231A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling unit
cooling
air
granular
diffuser
Prior art date
Application number
PCT/JP2012/008292
Other languages
English (en)
French (fr)
Inventor
宏 板東
昇 市谷
林 功
恒俊 本田
昭宏 吉永
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to EP12862063.0A priority Critical patent/EP2803650A4/en
Priority to CN201280062901.2A priority patent/CN104010986B/zh
Publication of WO2013099231A1 publication Critical patent/WO2013099231A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D15/00Handling or treating discharged material; Supports or receiving chambers therefor
    • F27D15/02Cooling
    • F27D15/0206Cooling with means to convey the charge
    • F27D15/0213Cooling with means to convey the charge comprising a cooling grate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/38Arrangements of cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/38Arrangements of cooling devices
    • F27B7/383Cooling devices for the charge

Definitions

  • the present invention relates to a cooling unit of a cooler device that cools a high-temperature granular conveyance object, for example, a granular cement clinker while conveying it.
  • the cement plant is equipped with a cooler that transports the high-temperature cement clinker generated through preheating, calcination, and firing while cooling.
  • a cooler as disclosed in Patent Document 1.
  • the cooler has a plurality of cooling grids, and the cooling grids are assembled in the vertical direction.
  • the cooling grid has a plurality of V-shaped profiles, and the V-shaped profiles are arranged so as to be mirror-symmetrically spaced and offset from each other.
  • the leg parts of adjacent V-shaped profiles are arranged with a gap therebetween, and a labyrinth for flowing cooling air is formed by the gap.
  • a high-temperature cement clinker is placed on the cooling grid configured as described above, and the cement clinker can be conveyed while being cooled by sending cooling air through the labyrinth.
  • a labyrinth is formed in the cooling grid, and cooling air is sent through the labyrinth to prevent the cement clinker from falling.
  • the labyrinth is formed in the cooling grid, not all cement clinker can be prevented from falling, and fine particles may fall through the labyrinth.
  • reducing the labyrinth passage area increases the passage pressure loss of the cooling air.
  • the passage pressure loss of the cooling grid is preferably about 30% of the layer pressure loss, and if it exceeds this, the power consumption will increase unnecessarily.
  • an object of the present invention is to provide a cooling unit capable of uniformly cooling a granular material to be transported and preventing not only a large granular material but also a fine granular material from falling, and a cooler device including the same. .
  • the cooling unit of the present invention is provided in a cooler device that cools while conveying a high-temperature granular conveyance object, and has a bottom plate, and deposits a granular buried material at a temperature lower than the granular conveyance object on the bottom plate to form a dead layer.
  • a support member configured to support the granular conveyance object via the dead layer, and a diffuser pipe for discharging cooling air to the dead layer at a position embedded in the dead layer. is there.
  • the diffuser pipe for sending the cooling air is provided separately from the bottom plate, it is not necessary to configure a labyrinth for sending the cooling air to the bottom plate. Thereby, it can prevent that a granular material falls from a bottom plate.
  • the air diffuser can be embedded in the dead layer, the cooling air released from the air diffuser can be sent to the granular transported object through the dead layer. Thereby, a moderate passage pressure loss can be given to cooling air and appropriate heat exchange can be performed. Thereby, a granular conveyance thing can be cooled uniformly.
  • the diffuser pipe can be embedded in the dead layer of the low-temperature granular embedded object provided on the bottom plate, the diffuser pipe does not directly contact the high-temperature granular conveyed object. Therefore, it is possible to prevent the diffuser tube from being damaged by heat or being worn by the conveyance of the granular conveyance object.
  • the air diffuser is arranged in parallel with a transport direction for transporting the granular transport object, and has a plurality of air diffusers for discharging the cooling air, and the plurality of air diffusers are It is preferable that the air diffuser is disposed with an interval in the conveying direction.
  • the aeration tube extends in the conveyance direction and the aeration ports are arranged at intervals in the conveyance direction, so that the granular conveyance is performed in the cooler device that conveys the granular conveyance object while repeatedly moving and stopping.
  • the object can be cooled uniformly.
  • cooling air is supplied from a plurality of air diffusers, by appropriately performing the opening area, number and arrangement of the air diffusers, the cooling air and the high-temperature cement clinker Heat exchange can be performed between the two.
  • the air diffuser is opened downward.
  • a plurality of the diffuser tubes and a header that connects the plurality of diffuser tubes and supplies cooling air to each of the diffuser tubes are provided. It is preferable that they are arranged in a direction orthogonal to the transport direction.
  • the cooling air can be sent to a plurality of diffuser tubes all at once by the header.
  • the support member preferably has a box shape having a wall standing on an outer peripheral edge portion of the bottom plate.
  • the granular buried object can be prevented from falling from the front, back, left and right as well as the bottom.
  • the cooler device of the present invention includes a plurality of cooling unit rows configured such that any one of the above-described cooling units is arranged in a row in the transport direction, and the plurality of cooling unit rows are in a direction orthogonal to the transport direction. Are arranged side by side.
  • the present invention it is possible to uniformly cool the granular material to be conveyed, and to prevent not only large granular material but also fine granular material from falling.
  • FIG. 4 is a cross-sectional view showing the configuration of the cooling unit viewed along the cutting line AA shown in FIG. 3. It is an expanded sectional view which expands and shows the diffuser tube periphery shown in FIG.
  • cooling unit 1 according to the embodiment of the present invention and the cooler device 2 including the same will be described with reference to the drawings described above.
  • the concept of directions, such as up and down, right and left in the embodiment is used for convenience of explanation, and regarding the cooling unit 1 and the cooler device 2, the arrangement and direction of those components should be limited to that direction. It is not a suggestion.
  • the cooling unit 1 and the cooler device 2 described below are only one embodiment of the present invention, and the present invention is not limited to the embodiment, and additions, deletions, and modifications can be made without departing from the spirit of the invention. Is possible.
  • cement plant Cement is produced through a raw material grinding process for grinding cement raw materials containing limestone, clay, silica, iron, etc., a firing process for firing the ground cement raw material, and a finishing process as the final process. Three processes are performed in a cement plant. In the firing step which is one of these three steps, the ground cement raw material is fired and cooled to produce a granular cement clinker.
  • the configuration shown in FIG. 1 shows a firing facility 3 of a cement plant, which is a portion where a firing step in cement production is performed. The firing facility 3 preheats, calcines, and fires the cement raw material pulverized in the raw material pulverization step, and cools the granular cement clinker that has been baked to a high temperature.
  • the baking equipment 3 is provided with the preheater 4, and the preheater 4 is comprised by the several cyclone 5.
  • FIG. The cyclones 5 are arranged in a stepwise manner in the vertical direction. The exhaust in the cyclones 5 is blown up to the upper cyclone 5 (see the broken arrow in FIG. 1), and the input cement raw material is separated by a swirling flow. To the cyclone 5 (see the solid arrow in FIG. 1). The cyclone 5 located on the uppermost stage of the lowest stage is designed to feed cement raw material into the calcining furnace 6.
  • the calcining furnace 6 has a burner, and a reaction (that is, a calcining reaction) is performed to separate carbon dioxide gas in the cement raw material input by heat from the burner and heat of exhaust gas described later.
  • a reaction that is, a calcining reaction
  • the cement raw material whose calcining reaction is promoted in the calcining furnace 6 is guided to the lowermost cyclone 5 as will be described later, and the cement raw material in the cyclone 5 is further supplied to the rotary kiln 7. Yes.
  • This rotary kiln 7 is a so-called rotary kiln and is formed in a horizontally long cylindrical shape of several tens of meters or more.
  • the rotary kiln 7 is disposed so as to be inclined slightly downward from the inlet on the cyclone 5 side toward the outlet on the tip side. Therefore, by rotating the rotary kiln 7 around the axis, the cement raw material on the inlet side is conveyed to the outlet side.
  • a combustion device 8 is provided at the outlet of the rotary kiln 7. The combustion device 8 forms a high-temperature flame and fires the cement raw material.
  • the combustion device 8 injects high-temperature combustion gas toward the inlet side, and the combustion gas injected from the combustion device 8 flows in the rotary kiln 7 toward the inlet while firing the cement raw material.
  • Combustion gas is jetted from the lower end of the calcining furnace 6 as high-temperature exhaust gas and blows upward in the calcining furnace 6 (see the broken arrow in FIG. 1), and the cement raw material charged into the calcining furnace 6 Is blown upward.
  • the cement raw material is heated to about 900 ° C. by this exhaust and burner, that is, calcined.
  • the blown-up cement raw material flows into the lowermost cyclone 5 together with the exhaust gas, and the exhaust gas flowing in here and the cement raw material are separated.
  • the separated cement raw material is supplied to the rotary kiln 7, and the exhaust is blown up to the cyclone 5 on the upper stage.
  • the exhaust gas blown up is subjected to heat exchange with the cement raw material supplied thereto in each cyclone 5 to heat the cement raw material, and is separated from the cement raw material again.
  • the separated exhaust gas further rises to the cyclone 5 above it and repeats heat exchange. And it is discharged
  • cement raw material is charged from the vicinity of the uppermost cyclone 5, sufficiently preheated while exchanging heat with the exhaust, and lowered to the cyclone 5 higher than the lowermost stage, and the calciner 6 is input.
  • the cement raw material is calcined with a burner and a high-temperature gas, and then the cement raw material is guided to the lowermost cyclone 5 where it is separated from the exhaust gas and supplied to the rotary kiln 7.
  • the supplied cement raw material is conveyed to the exit side while being fired in the rotary kiln 7.
  • cement clinker is shape
  • the cooler device 2 is provided at the outlet of the rotary kiln 7, and the cement clinker formed in the cooler device 2 is discharged from the outlet of the rotary kiln 7.
  • the cooler device 2 is configured to cool the cement clinker (high-temperature granular conveyed product) discharged from the rotary kiln 7 while conveying it in a predetermined conveying direction.
  • the cooler device 2 has a fixed inclined grate 11 immediately below the outlet of the rotary kiln 7.
  • the fixed inclined grate 11 is inclined downward from the outlet side of the rotary kiln 7 toward the conveying direction.
  • the granular cement clinker discharged from the outlet of the rotary kiln 7 falls in the conveying direction so as to roll on the fixed inclined grade 11.
  • a plurality of cooling unit rows 13 are provided at the front end of the fixed inclined grate 11 in the conveyance direction, and cement clinker is deposited on the plurality of cooling unit rows 13 to form a clinker layer 14. Yes.
  • the cooling unit row 13 is a structure that extends in the transport direction, and is arranged in parallel in the horizontal direction (hereinafter also referred to as “orthogonal direction”) orthogonal to the transport direction so as to be adjacent without leaving a gap.
  • the cement clinker is sealed between the cooling unit rows 13 so as not to fall downward.
  • the clinker layer 14 (see the two-dot chain line in FIG. 2) is placed thereon so as to cover all of the plurality of cooling unit rows 13 that are sealed and arranged in parallel without leaving a gap.
  • the plurality of cooling unit rows 13 are transported in the transport direction while cooling the clinker layer 14.
  • granular cement clinker is conveyed while the movement and stop of the clinker layer 14 are repeated.
  • a specific conveying method for example, after all the cooling unit rows 13 are moved forward, the cooling unit rows 13 that are not adjacent to each other are retracted in multiple times, or a cross bar extending in the orthogonal direction is used as a cooling unit row.
  • the clinker layer 14 is sent in the transport direction by moving the cross bar in the transport direction.
  • the cooling unit row 13 configured as described above has a plurality of cooling units 1 and is configured by arranging the cooling units 1 in a row in the transport direction.
  • the cooling unit 1 has a casing 21 formed in a substantially rectangular parallelepiped box shape as shown in FIGS. 3 and 4.
  • the casing 21 has a flat bottom plate 21a on the lower side, and the upper side is open.
  • the casing 21 has four walls 21b to 21e that are erected on the bottom plate 21a.
  • the bottom plate 21a of the casing 21 configured as described above is provided with a header 22 extending in the orthogonal direction.
  • the header 22 has a U-shaped cross section having an opening on the lower side, and an opening groove 21f extending in the orthogonal direction is formed at a position corresponding to the opening of the header 22 of the bottom plate 21a.
  • the header 22 extends from one side wall 21d to the other side wall 21e, and the left and right ends thereof are closed by two side walls 21d and 21e.
  • a supply passage 22 a connected to the lower space 23 of the bottom plate 21 a is formed in the header 22.
  • a cooling air supply unit 24 (see FIG. 2) for supplying cooling air is connected to the lower space 23 of the bottom plate 21a so that the cooling air is supplied to the supply passage 22a through the lower space of the bottom plate 21a. It has become.
  • a plurality of (two in the present embodiment) headers 22 configured in this manner are arranged in the casing 21 at intervals in the transport direction, and a plurality of air diffusers 25 are provided on these headers 22. ing.
  • the diffuser tube 25 is a cylindrical member extending in the transport direction.
  • the air diffuser 25 is located at an interval in the orthogonal direction, and is installed between two adjacent headers 22 and between the header 22 and the front and rear walls 21b and 21c.
  • the air diffuser 25 has a cooling passage 25 a therein, and the cooling passage 25 a is connected to the supply passage 22 a in the header 22.
  • end portions of the air diffuser 25 provided on the front and rear walls 21b and 21c are closed by the front and rear walls 21b and 21c.
  • the air diffuser 25 provided in this way is supplied with cooling air from the header 22, and this cooling air flows through the cooling passage 25a.
  • the air diffuser 25 is provided with a plurality of air diffusers 26.
  • the air diffuser 26 is disposed on both sides in the orthogonal direction on the lower half surface of the air diffuser 25 in a plane orthogonal to the axis of the air diffuser 25, and opens radially and obliquely downward. is doing.
  • the air diffusion ports 26 thus opened are formed in the air diffusion tube 25 so as to be positioned at substantially equal intervals in the transport direction.
  • the air diffuser 25 is provided apart from the bottom plate 21a by a height h so as not to be covered with the bottom plate 21a, and is provided in parallel to the bottom plate 21a. As a result, the cooling air flowing through the air diffuser 25 is discharged outward from the air diffuser 26.
  • a cement clinker having a temperature lower than that of a normal cement clinker discharged from the kiln 7 (for example, room temperature of 20 ° C. to 60 ° C.) is placed. Is filled with cement clinker. As a result, the cement clinker is deposited on the bottom plate 21a to form a dead layer 27 (see the two-dot chain line in FIGS. 3 to 5). On the dead layer 27, a granular cement clinker to be transported (the clinker layer 14, see the two-dot chain line in FIGS. 3 and 4) is placed, and the bottom plate 21a passes through the dead layer 27 to form a granular cement clinker. (Clinker layer 14) is supported.
  • the air diffuser 25 is buried in the dead layer 27 by filling the casing 21 with a cement clinker. That is, the air diffuser 25 is embedded in the dead layer 27.
  • the cooling air discharged from the diffuser pipe 25 can be sent between the cement clinker of the dead layer 27 to the clinker layer 14 thereabove. Thereby, an appropriate passage pressure loss can be given to the cooling air by the dead layer 27.
  • the passing pressure loss of the dead layer 27 is a value corresponding to the layer height and the arrangement and size of the air diffuser 26, and the layer height of the dead layer 27 formed by filling the inside of the casing 21 is that of the casing 21. It depends on the side walls 21d and 21c. Therefore, the passage pressure loss of the dead layer 27 is determined to a value corresponding to the shape of the casing 21 and the arrangement of the air diffuser 26, the arrangement height h of the air diffuser 25, the diameter and the number of the air diffusers 26. By setting appropriately, the passage pressure loss of the whole cooling unit 1 can be made into a desired value.
  • the passage pressure loss it is possible to suppress the drift of the cooling air in the clinker layer 14 due to the difference in the height of the clinker layer 14 and the deviation in the particle size distribution of the cement clinker. That is, the cooling air having a flow rate with a substantially uniform distribution can be sent to the clinker layer 14, and the clinker layer 14 can be cooled uniformly.
  • the passage pressure loss of the entire cooling unit 1 to an appropriate value, the difference in the height of the clinker layer 14 with respect to the passage pressure loss of the cooling unit 1 and the clinker layer 14 and the deviation of the particle size distribution of the cement clinker are caused.
  • the ratio of the pressure loss difference can be reduced.
  • the cooling air flows almost directly in the clinker layer 14, and the drift of the cooling air can be suppressed. Therefore, the clinker layer 14 can be cooled uniformly.
  • the diffuser tube 25 since the diffuser tube 25 is embedded in the dead layer 27, the diffuser tube 25 does not directly contact the clinker layer 14 that is hot and moves. Therefore, it is possible to prevent the diffuser tube 25 from being damaged by heat or being worn by the movement of the clinker layer 14.
  • cement clinker and granular cement clinker may spill downward from the bottom plate 21a. Absent. Further, since the walls 21b to 21e are erected in the conveying direction and the orthogonal direction, it is possible to prevent the cement clinker from spilling out from the casing 21 in the conveying direction and the orthogonal direction (that is, front, rear, left and right). Furthermore, since the air diffuser 26 of the air diffuser 25 is opened obliquely downward, the cement clinker can be prevented from entering the air diffuser 25 through the air diffuser 26.
  • the air diffuser 26 is formed with an angle ⁇ such that the cement clinker or the cement clinker does not enter the diffuser 25 through the air diffuser 26. Thereby, it is possible to prevent the air diffuser 26 and the air diffuser 25 from being clogged with the cement clinker, and the cooling air having a desired flow rate can be sent to the clinker layer 14 through the dead layer 27.
  • the cooler device 2 configured in this way, the granular cement clinker discharged from the rotary kiln 7 is received on the fixed inclined grate 11 and rolled toward the cooling unit row 13. Then, cement clinker is deposited on the cooling unit row 13, a clinker layer 14 is formed on the cooling unit row 13, and this clinker layer 14 is carried in the carrying direction by the method described above.
  • the cooling air supply unit 24 (fan) is movable, and the cooling air is supplied from the cooling air supply unit 24 to the supply passage 22 a of the header 22 through the lower space 23.
  • the cooling air in the header 22 is sent all at once to the cooling passages 25 a of the plurality of air diffusion pipes 25, and is discharged to the outside through the air diffusion ports 26.
  • the cooling air discharged from the air diffuser 26 rises through the cement clinker of the dead layer 27 and reaches the clinker layer 14.
  • the cooling air exchanges heat with the granular cement clinker of the clinker layer 14 and cools it, and passes through the clinker layer 14 from above the clinker layer 14 upward.
  • the air that has escaped upward is heated to a high temperature by exchanging heat with the granular cement clinker, and part of the heated air is discharged from the cooler device 2 and directly through the kiln 7 or the discharge pipe 31.
  • the granular cement clinker of the clinker layer 14 is conveyed while being cooled by the cooling unit 1 in this way, and the granular cement clinker is continuously cooled to a temperature several tens of degrees higher than the atmospheric temperature.
  • a cement clinker is used as the granular material forming the dead layer 27.
  • a heat-resistant granular material other than the cement clinker for example, a granular material such as metal or ceramic may be used.
  • size of the particle size of the granular material and the granular material which form the dead layer 27 is not ask
  • the outer shape and arrangement position of the diffuser tube 25 are not limited to the shape and position as described above, and may be orthogonal to the conveying direction, or the diffuser tube 25 may be arranged in a bellows shape.
  • the bottom plate 21a is a flat plate, but it may be a V-shaped plate protruding downward or upward, or an inclined plate inclined in the orthogonal direction or the transport direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

 冷却ユニット(1)は、高温の粒状のセメントクリンカを搬送しながら冷却するクーラ装置に備わっている。冷却ユニット(1)は、底板(21a)を有するケーシング(21)を有している。ケーシング(21)には、セメントクリンカより低温のセメントクリンカが堆積されており、この堆積されたセメントクリンカによってデッド層27が形成されている。このデッド層(27)上には、セメントクリンカが載せられており、デッド層(27)の中には散気管(25)が埋設されている。散気管(25)は、デッド層内に冷却空気を放出するようになっている。

Description

冷却ユニット、及びそれを備えるクーラ装置
 本発明は、高温の粒状搬送物、例えば粒状のセメントクリンカを搬送しながら冷却するクーラ装置の冷却ユニットに関する。
 セメントプラントには、予熱、仮焼及び焼成を経て生成された高温のセメントクリンカを冷却しながら搬送するクーラが備わっており、例えば、特許文献1のようなクーラがある。このクーラは、複数の冷却格子を有しており、この冷却格子を縦方向に並べて組立てられている。冷却格子は、複数のV字プロフィルを有しており、このV字プロフィルを鏡面対称に離れて且つ互いにオフセットするように配置して構成されている。また、隣接するV字プロフィルの脚部同士は、その間に隙間をあけて配置されており、その隙間によって冷却空気を流すためのラビリンスが形成される。このように構成される冷却格子の上に高温のセメントクリンカが載せられ、ラビリンスを介して冷却空気を送ることでセメントクリンカを冷却しながら搬送することができる。
特開2007-515365号公報
 特許文献1に記載のクーラでは、冷却格子にラビリンスを構成し、このラビリンスを介して冷却空気を送ることでセメントクリンカの落下を防いでいる。しかし、冷却格子にラビリンスを構成しているために全てのセメントクリンカの落下を防ぐことができるわけではなく、細かな粒状のものは、このラビリンスを介して落下することがある。細かな粒状のセメントクリンカの落下も防ぐようにするためにはラビリンスの流路面積を狭くすることが考えられるが、ラビリンスの流路面積を狭くすると冷却空気の通過圧損が増加する。冷却格子の通過圧損は、層圧損の30%前後が好ましく、これ以上になると電力消費量が無駄に増加することになる。
 そこで本発明は、搬送する粒状物を均一に冷却し、且つ大きな粒状物だけでなく細かな粒状物の落下をも防ぐことができる冷却ユニット及びそれを備えるクーラ装置を提供することを目的としている。
 本発明の冷却ユニットは、高温の粒状搬送物を搬送しながら冷却するクーラ装置に備わり、底板を有し、前記底板の上に前記粒状搬送物より低温の粒状埋設物を堆積させてデッド層を形成させ、前記デッド層を介して前記粒状搬送物を支持する支持部材と、前記デッド層の中に埋設される位置に、前記デッド層に冷却空気を放出するための散気管とを備えるものである。
 本発明に従えば、冷却空気を送る散気管が底板とは別に設けられているので、底板に冷却空気を送るラビリンスを構成する必要がなくなる。これにより、底板から粒状物が落下することを防ぐことができる。
 また、本発明では、デッド層の中に散気管を埋設させることができるので、散気管から放出される冷却空気をデッド層を介して粒状搬送物に送ることができる。これにより、冷却空気に適度な通過圧損を与えることができ、適正な熱交換を行うことができる。これにより、粒状搬送物を均一に冷却することができる。
 更に、本発明では、底板上に設けられている低温の粒状埋設物によるデッド層内に散気管を埋設することができるので、散気管が高温の粒状搬送物に直接接触することがない。それ故、散気管が熱によって損傷したり、粒状搬送物の搬送によって磨耗したりすることを防ぐことができる。
 上記発明において、前記散気管は、前記粒状搬送物を搬送する搬送方向と平行に配置され、前記冷却空気を放出するための複数の散気口を有し、前記複数の散気口は、前記散気管において前記搬送方向に間隔をあけて配置されていることが好ましい。
 上記構成に従えば、散気管が搬送方向に延在し、散気口が搬送方向に間隔をあけて配置されているので、粒状搬送物の移動と停止を繰り返しながら搬送するクーラ装置において粒状搬送物を均一に冷却することができる。
 また、本発明では、複数の散気口から冷却空気を供給するようになっているので、散気口の開口面積、個数、及び配置を適切に行なうことで、冷却空気と高温のセメントクリンカとの間で最適な熱交換を行うことができる。
 上記発明において、前記散気口は、下方を向いて開口していることが好ましい。
 上記構成に従えば、散気口から散気管内へと粒状埋設物が入り込むことを防ぐことができる。
 上記発明において、前記デッド層に埋設される位置には、複数の前記散気管と、前記複数の散気管を連結させて前記各散気管に冷却空気を供給するヘッダとが設けられ、前記ヘッダは、前記搬送方向と直交する方向に配置されていることが好ましい。
 上記構成に従えば、ヘッダにより複数の散気管に一斉に冷却空気を送ることができる。
 上記発明において、前記支持部材は、前記底板の外周縁部に立設される壁を有して箱状に構成されていることが好ましい。
 上記構成に従えば、底側だけでなく前後左右からの粒状埋設物の落下を防ぐことができる。
 本発明のクーラ装置は、前述のいずれかの前記冷却ユニットを前記搬送方向に一列に並べて構成されている複数の冷却ユニット列を備え、前記複数の冷却ユニット列は、前記搬送方向に直交する方向に並設されているものである。
 上記構成に従えば、前述するような機能を有するクーラ装置を実現することができる。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。
 本発明によれば、搬送する粒状物を均一に冷却し、且つ大きな粒状物だけでなく細かな粒状物の落下をも防ぐことができる。
本発明に係るクーラ装置を備えるセメントプラントの構成を示す概略図である。 図1のクーラ装置の構成の概略を示す斜視図である。 図2のクーラ装置が備える冷却ユニットの構成を示す正面図である。 図3に示す切断線A-Aで切断して見た冷却ユニットの構成を示す断面図である。 図4に示す散気管周りを拡大して示す拡大断面図である。
 以下では、前述する図面を参照しながら、本発明の実施形態に係る冷却ユニット1及びそれを備えるクーラ装置2について説明する。なお、実施形態における上下左右前後等の方向の概念は、説明の便宜上使用するものであって、冷却ユニット1及びクーラ装置2に関して、それらの構成の配置及び向き等をその方向に限定することを示唆するものではない。また、以下に説明する冷却ユニット1及びクーラ装置2は、本発明の一実施形態に過ぎず、本発明は実施の形態に限定されず、発明の趣旨を逸脱しない範囲で追加、削除、変更が可能である。
 [セメントプラント]
 セメントは、石灰石、粘土、けい石、及び鉄等を含むセメント原料を粉砕する原料粉砕工程と、粉砕されたセメント原料を焼成する焼成工程と、最終工程である仕上げ工程を経て生成され、これらの3つの工程がセメントプラントにて行われる。これら3つの工程のうちの1つである焼成工程では、粉砕されたセメント原料を焼成して冷却し、粒状のセメントクリンカを生成している。図1に示す構成は、セメントプラントの焼成設備3を示すものであり、セメント製造における焼成工程を行っている部分である。焼成設備3は、原料粉砕工程にて粉砕されたセメント原料を予熱、仮焼、及び焼成し、焼成されて高温となった粒状のセメントクリンカを冷却するようになっている。
 焼成工程を行う部分について更に詳細に説明すると、焼成設備3は、予熱器4を備えており、予熱器4は、複数のサイクロン5によって構成されている。サイクロン5は、上下方向に並べて段状に設けられており、その中の排気を上段のサイクロン5に吹き上げ(図1の破線の矢印参照)、投入されたセメント原料を旋回流により分離し、下段のサイクロン5へと投入するようになっている(図1の実線の矢印参照)。最下段の一段上に位置するサイクロン5は、セメント原料を仮焼炉6に投入するようになっている。仮焼炉6は、バーナを有しており、このバーナによる熱と後述する排気の熱とによって投入されたセメント原料中の炭酸ガスを分離する反応(即ち、仮焼反応)が行われる。仮焼炉6で仮焼反応が促進されたセメント原料は、後述のように最下段のサイクロン5に導かれ、更にこのサイクロン5内のセメント原料がロータリキルン7へと供給されるようになっている。
 このロータリキルン7は、いわゆる回転窯であり、数十メートル以上の横長円筒状に形成されている。ロータリキルン7は、サイクロン5側である入口から先端側にある出口に向かって僅かに下向きに傾いて配置されている。それ故、軸線を中心にロータリキルン7を回転させることによって、入口側にあるセメント原料が出口側へと搬送されるようになっている。また、ロータリキルン7の出口には、燃焼装置8が設けられている。燃焼装置8は、高温の火炎を形成し、セメント原料を焼成するようになっている。
 また、燃焼装置8は、高温の燃焼ガスを入口側に向かって噴射し、燃焼装置8から噴射された燃焼ガスは、セメント原料を焼成しながらロータリキルン7内を入口の方へと流れる。燃焼ガスは、高温の排気として仮焼炉6の下端から噴流となって仮焼炉6内を上方に吹き上がり(図1の破線の矢印参照)、仮焼炉6内に投入されたセメント原料を上方に吹き上げるようになっている。セメント原料は、この排気及びバーナによって約900℃まで加熱される、即ち仮焼される。また、吹き上げられたセメント原料は、排気と共に最下段のサイクロン5に流入し、ここで流入する排気とセメント原料とが分離される。分離されたセメント原料は、ロータリキルン7に供給され、排気は、一段上のサイクロン5へと吹き上げられる。吹き上げられた排気は、各サイクロン5でそこに投入されたセメント原料と熱交換を行ってセメント原料を加熱し、再びセメント原料と分離される。分離された排気は、更にその上のサイクロン5へと上昇して熱交換を繰り返す。そして、最上段のサイクロン5から大気に排出される。
 このように構成される焼成設備3では、セメント原料が最上段のサイクロン5付近から投入され、排気と熱交換しながら十分に予熱されて最下段より一段上のサイクロン5まで降り、そして仮焼炉6に投入される。仮焼炉6では、セメント原料がバーナ及び高温のガスにより仮焼され、その後、セメント原料は、最下段のサイクロン5へと導かれそこで排気から分離されてロータリキルン7に供給される。供給されたセメント原料は、ロータリキルン7内で焼成されながら出口側へと搬送される。このように予熱、仮焼、及び焼成されることによって、セメントクリンカが成形される。ロータリキルン7の出口には、クーラ装置2が設けられており、ロータリキルン7の出口からクーラ装置2に成形されたセメントクリンカが排出される。
 <クーラ装置>
 クーラ装置2は、ロータリキルン7から排出されるセメントクリンカ(高温の粒状搬送物)を予め定められる搬送方向に搬送しながら冷却するようになっている。クーラ装置2は、図2に示すように、ロータリキルン7の出口直下に固定傾斜グレート11を有している。固定傾斜グレート11は、ロータリキルン7の出口側から搬送方向に向かって下方に傾斜している。ロータリキルン7の出口から排出された粒状のセメントクリンカは、固定傾斜グレード11上を転がるように搬送方向に落ちていくようになっている。また、固定傾斜グレート11の搬送方向先端部には、複数の冷却ユニット列13が設けられており、セメントクリンカが複数の冷却ユニット列13上に堆積してクリンカ層14を形成するようになっている。
 冷却ユニット列13は、搬送方向に延在する構造体であり、隙間を空けずに隣接するように搬送方向に直交する横方向(以下、「直交方向」ともいう)に並設されている。また、冷却ユニット列13の間は、セメントクリンカが下方に落ちないようにシールされている。このように隙間を空けず、且つシールされて並設された複数の冷却ユニット列13の全てを覆い隠すようにその上にクリンカ層14(図2の2点鎖線参照)が載っている。
 また、複数の冷却ユニット列13は、このクリンカ層14を冷却しながら搬送方向に搬送するようになっている。冷却ユニット列13では、クリンカ層14の移動と停止が繰り返されながら粒状のセメントクリンカが搬送される。その具体的な搬送方法としては、例えば全ての冷却ユニット列13を前進させた後に隣接しない冷却ユニット列13を複数回に分けて後退させる方法や、直交方向に延在するクロスバーを冷却ユニット列13の上部に設けて、そのクロスバーを搬送方向に動かすことでクリンカ層14を搬送方向に送る方法がある。なお、クリンカ層14を搬送方向に送る構成及び方法については、上述する構成及び方法に限定されず、クリンカ層14を搬送方向に送ることができる構成及び方法であればよい。このように構成される冷却ユニット列13は、複数の冷却ユニット1を有しており、この冷却ユニット1を搬送方向に一列に並べて構成されている。
 冷却ユニット1は、図3及び図4に示すように大略長方体の箱状に形成されたケーシング21を有している。ケーシング21は、下側に平坦な底板21aを有しており、上側が開口している。また、ケーシング21は、底板21aに立設されている4つの壁21b~21eを有している。このように構成されるケーシング21の底板21aには、直交方向に延在するヘッダ22が設けられている。
 ヘッダ22は、その下側に開口を有する断面U字状になっており、底板21aのヘッダ22の開口に対応する位置には、直交方向に延在する開口溝21fが形成されている。また、ヘッダ22は、一方の側壁21dから他方の側壁21eまで延在しており、その左右両端部が2つの側壁21d及び21eによって塞がれている。これにより、ヘッダ22内には、底板21aの下方空間23に繋がる供給通路22aが形成されている。底板21aの下方空間23には、冷却空気を供給するための冷却空気供給ユニット24(図2参照)が繋がっており、底板21aの下方空間を介して供給通路22aに冷却空気が供給されるようになっている。このように構成されるヘッダ22は、搬送方向に間隔をあけてケーシング21内に複数(本実施形態では2つ)配置されており、これらのヘッダ22には、複数の散気管25が設けられている。
 散気管25は、搬送方向に延在する円筒部材である。散気管25は、直交方向に間隔をあけて位置しており、隣り合う2つのヘッダ22間、及びヘッダ22と前後壁21b,21cとの間に夫々架設されている。散気管25は、その中に冷却通路25aを有しており、この冷却通路25aがヘッダ22内の供給通路22aに繋がっている。他方、前後壁21b,21cに夫々設けられている散気管25の端部は、前後壁21b,21cによって塞がれている。このようにして設けられる散気管25は、ヘッダ22から冷却空気が供給され、この冷却空気が冷却通路25aを流れるようになっている。そして、散気管25には、複数の散気口26が設けられている。
 散気口26は、図5に示すように、散気管25の軸線に直交する平面において散気管25の下半面において直交方向両側に離して配置され、半径方向に且つ斜め下方に向かってに開口している。このように開口する散気口26は、搬送方向に略等間隔で位置するように散気管25に形成されている。散気管25は、これら散気口26が底板21aによって覆われないように底板21aから高さhだけ上方に離して設けられ、且つ底板21aに平行に設けられている。これにより散気管25内を流れる冷却空気は、この散気口26から外方へと放出されるようになっている。
 このような散気管25が設けられるケーシング21内には、キルン7から排出される通常のセメントクリンカより低温(例えば、20℃~60℃の常温)のセメントクリンカが入れられており、ケーシング21内がセメントクリンカによって満たされている。これにより、セメントクリンカが底板21aの上に堆積してデッド層27(図3乃至5の二点鎖線参照)を形成している。このデッド層27上には、搬送すべき粒状のセメントクリンカ(クリンカ層14、図3及び4の二点鎖線参照)が載せられており、底板21aがこのデッド層27を介して粒状のセメントクリンカ(クリンカ層14)を支持している。
 また、ケーシング21内をセメントクリンカで満たすことで、デッド層27に散気管25が埋まっている。即ち、散気管25がデッド層27の中に埋設されている。このように、デッド層27に散気管25を埋めることで、散気管25から排出される冷却空気をこのデッド層27のセメントクリンカの間を通してその上のクリンカ層14に送ることができる。これにより、デッド層27により冷却空気に適正な通過圧損を与えることができる。
 デッド層27の通過圧損は、その層高と散気口26の配置とサイズに対応した値となっており、ケーシング21内を満たすことで形成されるデッド層27の層高は、ケーシング21の側壁21d,21cに応じて決まる。それ故、デッド層27の通過圧損は、ケーシング21の形状と散気口26の配置とに応じた値に定まっており、散気管25の配置高さh、並びに散気口26の口径及び個数を適切に設定することで、冷却ユニット1全体の通過圧損を所望の値にすることができる。
 このように通過圧損を所望の値にすることで、クリンカ層14の層高差やセメントクリンカの粒径分布の偏りによるクリンカ層14内における冷却空気の偏流を抑えることができる。即ち、略均一な分布の流量の冷却空気をクリンカ層14に送ることができ、クリンカ層14を均一に冷却することができる。具体的に説明すると、冷却ユニット1全体の通過圧損を適正な値にすることによって、冷却ユニット1及びクリンカ層14の通過圧損に対するクリンカ層14の層高差やセメントクリンカの粒径分布の偏りによる圧損差の割合を小さくすることができる。これにより、クリンカ層14内において冷却空気が略真上に流れるようになり、冷却空気の偏流を抑えることができる。それ故、クリンカ層14を均一に冷却することができる。
 また、散気管25をデッド層27内に埋設する構造であるので、散気管25が高熱且つ移動するクリンカ層14に直接接触することがない。それ故、散気管25が熱によって損傷したり、クリンカ層14の移動によって磨耗したりすることを防ぐことができる。
 更に、散気管25を用いることで従来技術のように底板21aに冷却空気を供給する溝または孔を形成する必要がないので、底板21aから下方にセメントクリンカ及び粒状のセメントクリンカがこぼれ落ちることがない。また、搬送方向及び直交方向に壁21b~21eが立設されているので、ケーシング21内からセメントクリンカが搬送方向及び直交方向(即ち、前後左右)にこぼれ落ちることも防ぐことができる。更に、散気管25の散気口26が斜め下方に向かって開口しているので、セメントクリンカが散気口26を介して散気管25内に入ることを防ぐことができる。つまり、散気口26は、セメントクリンカやセメントクリンカが散気口26を通じて散気管25内に進入しないような角度θをもって形成されている。これにより、散気口26及び散気管25がセメントクリンカによって詰まる事を防ぐことができ、所望の流量の冷却空気をデッド層27を介してクリンカ層14に送ることができる。
 このように構成されているクーラ装置2では、ロータリキルン7から排出された粒状のセメントクリンカを固定傾斜グレート11上で受けて冷却ユニット列13の方へと転がす。そして、セメントクリンカを冷却ユニット列13の上に堆積させ、冷却ユニット列13の上にクリンカ層14を形成し、このクリンカ層14を前述するような方法によって搬送方向に搬送する。搬送中、冷却空気供給ユニット24(ファン)が可動しており、この冷却空気供給ユニット24から下方空間23を介してヘッダ22の供給通路22aに冷却空気が供給される。ヘッダ22内の冷却空気は、複数の散気管25の冷却通路25aに一斉に送られ、各散気口26を介して外方に放出される。散気口26から放出された冷却空気は、デッド層27のセメントクリンカの間を通って上昇し、クリンカ層14へと達する。冷却空気は、クリンカ層14の粒状のセメントクリンカと熱交換してそれを冷却しながらその間を通り、クリンカ層14上部から上方へと抜けていく。上方に抜けた空気は、粒状のセメントクリンカと熱交換することによって高温になっており、高温になった空気の一部は、クーラ装置2から排出されて直接キルン7、もしくは排出管31を介して仮焼炉6に導入されるようになっている。
 クーラ装置2では、このように冷却ユニット1によってクリンカ層14の粒状のセメントクリンカを冷却しつつ搬送し、粒状のセメントクリンカが大気温度より数十度高い温度まで冷却し続ける。
 <そのほかの実施形態について>
 本実施形態では、デッド層27を形成する粒状物としてセメントクリンカを用いたが、セメントクリンカ以外の耐熱の粒状物、例えば、金属やセラミック等の粒状物を用いてもよい。また、搬送される粒状物及びデッド層27を形成する粒状物の粒径の大小は問わない。散気管25の外形及び配置位置も前述のような形状及び位置に限定されず、搬送方向に直交していてもよく、また散気管25を蛇腹状に形成して配置してもよい。また、本実施形態では、底板21aが平板であるが、下方又は上方に突出するV字状の板や直交方向又は搬送方向に傾斜する傾斜板であってもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。
 1 冷却ユニット
 2 クーラ装置
 13 冷却ユニット列
 14 クリンカ層
 21 ケーシング
 21a 底板
 22 ヘッダ
 25 散気管
 26 散気口
 27 デッド層

Claims (6)

  1.  高温の粒状搬送物を搬送しながら冷却するクーラ装置の冷却ユニットであって、
     底板を有し、前記底板の上に前記粒状搬送物より低温の粒状埋設物を堆積させてデッド層を形成させ、前記デッド層を介して前記粒状搬送物を支持する支持部材と、
     前記デッド層の中に埋設される位置に、前記デッド層に冷却空気を放出するための散気管とを備える、冷却ユニット。
  2.  前記散気管は、前記粒状搬送物を搬送する搬送方向と平行に配置され、前記冷却空気を放出するための複数の散気口を有し、
     前記複数の散気口は、前記散気管において前記搬送方向に間隔をあけて配置されている、請求項1に記載の冷却ユニット。
  3.  前記散気口は、下方を向いて開口している、請求項2に記載の冷却ユニット。
  4.  前記デッド層に埋設される位置には、複数の前記散気管と、前記複数の散気管を連結させて前記各散気管に冷却空気を供給するヘッダとが設けられ、
     前記ヘッダは、前記搬送方向と直交する方向に配置されている、請求項3に記載の冷却ユニット。
  5.  前記支持部材は、前記底板の外周縁部に立設される壁を有して箱状に構成されている、請求項1乃至4の何れか1つに記載の冷却ユニット。
  6.  請求項1乃至5の何れか1つに記載の前記冷却ユニットを前記搬送方向に一列に並べて構成されている複数の冷却ユニット列を備え、
     前記複数の冷却ユニット列は、前記搬送方向に直交する方向に並設されている、クーラ装置。
PCT/JP2012/008292 2011-12-26 2012-12-26 冷却ユニット、及びそれを備えるクーラ装置 WO2013099231A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12862063.0A EP2803650A4 (en) 2011-12-26 2012-12-26 COOLING DEVICE, AND COOLER EQUIPPED WITH SAME
CN201280062901.2A CN104010986B (zh) 2011-12-26 2012-12-26 冷却单元以及具备该冷却单元的冷却器装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011283408A JP5977515B2 (ja) 2011-12-26 2011-12-26 冷却ユニット、及びそれを備えるクーラ装置
JP2011-283408 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013099231A1 true WO2013099231A1 (ja) 2013-07-04

Family

ID=48696766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008292 WO2013099231A1 (ja) 2011-12-26 2012-12-26 冷却ユニット、及びそれを備えるクーラ装置

Country Status (6)

Country Link
EP (1) EP2803650A4 (ja)
JP (1) JP5977515B2 (ja)
CN (1) CN104010986B (ja)
MY (1) MY167914A (ja)
TW (1) TWI460145B (ja)
WO (1) WO2013099231A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106482526B (zh) * 2015-08-31 2019-07-26 川崎重工业株式会社 冷却装置的冷却格栅以及具备该冷却格栅的冷却装置
JP6838955B2 (ja) * 2016-12-13 2021-03-03 川崎重工業株式会社 クーラ装置
WO2021074055A1 (de) * 2019-10-14 2021-04-22 Thyssenkrupp Industrial Solutions Ag Kühler und verfahren zum kühlen von schüttgut

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166347A (en) * 1981-03-31 1982-10-13 Ishikawajima Harima Heavy Ind Cement clinker cooling equipment
JPS61101238A (ja) * 1984-10-25 1986-05-20 Mitsubishi Heavy Ind Ltd 粗粒子、微粒子熱交換装置
JPH11248370A (ja) * 1998-02-27 1999-09-14 Babcock Hitachi Kk 焼塊の冷却装置
JP2001048606A (ja) * 1999-08-11 2001-02-20 Ishikawajima Harima Heavy Ind Co Ltd セメントクリンカ冷却装置
JP2006526750A (ja) * 2003-05-08 2006-11-24 クラウディウス・ペーターズ・テクノロジーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 格子上のバルク材料の層を搬送するための方法及び装置
JP2007515365A (ja) 2003-11-28 2007-06-14 カーハーデー フンボルト ヴェダーク ゲゼルシャフト ミット ベシュレンクテル ハフツング 高温の被冷却材料を冷却するためのバルク材料のクーラー

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK154692D0 (da) * 1992-12-23 1992-12-23 Smidth & Co As F L Fremgangsmaade og koeler til afkoeling af partikelformet materiale
WO2006119768A1 (en) * 2005-05-10 2006-11-16 FØNS TECHNOLOGY ApS Method and apparatus for treating a bed of particulate material
MX2010014535A (es) * 2008-06-26 2011-02-22 Smidth As F L Metodo y enfriador para enfriar material particulado caliente.
CN101397195A (zh) * 2008-10-24 2009-04-01 南京西普机电工程有限公司 水泥熟料冷却机的熟料输送机构
CN102032796B (zh) * 2009-09-28 2013-12-25 高玉宗 捂带冷却机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57166347A (en) * 1981-03-31 1982-10-13 Ishikawajima Harima Heavy Ind Cement clinker cooling equipment
JPS61101238A (ja) * 1984-10-25 1986-05-20 Mitsubishi Heavy Ind Ltd 粗粒子、微粒子熱交換装置
JPH11248370A (ja) * 1998-02-27 1999-09-14 Babcock Hitachi Kk 焼塊の冷却装置
JP2001048606A (ja) * 1999-08-11 2001-02-20 Ishikawajima Harima Heavy Ind Co Ltd セメントクリンカ冷却装置
JP2006526750A (ja) * 2003-05-08 2006-11-24 クラウディウス・ペーターズ・テクノロジーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 格子上のバルク材料の層を搬送するための方法及び装置
JP2007515365A (ja) 2003-11-28 2007-06-14 カーハーデー フンボルト ヴェダーク ゲゼルシャフト ミット ベシュレンクテル ハフツング 高温の被冷却材料を冷却するためのバルク材料のクーラー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2803650A4 *

Also Published As

Publication number Publication date
TWI460145B (zh) 2014-11-11
CN104010986A (zh) 2014-08-27
EP2803650A4 (en) 2015-09-23
JP5977515B2 (ja) 2016-08-24
EP2803650A1 (en) 2014-11-19
TW201343604A (zh) 2013-11-01
MY167914A (en) 2018-09-27
JP2013133247A (ja) 2013-07-08
CN104010986B (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
JP6456485B2 (ja) 分散性原料の熱処理の方法およびシステム
EP2748547B1 (en) Apparatus and method for the thermal treatment of lump or agglomerated material
CN106986561B (zh) 环形石灰竖窑
CN104211309A (zh) 一种悬挂缸式并流蓄热双膛窑
JP5977515B2 (ja) 冷却ユニット、及びそれを備えるクーラ装置
JP5848601B2 (ja) クーラ装置のシール構造、及びそれを備えるクーラ装置
CN104457227B (zh) 一种分体式隧道窑
JP6847038B2 (ja) クーラ装置の冷却格子、及びそれを備えるクーラ装置
CN104496207B (zh) 蓄热式石灰回转窑
CN103803515A (zh) 黄磷矿石脱碳煅烧装置
JP2023531138A (ja) 分散性原料の熱処理のための設備及びそのような設備を動作させるための方法
CN203754424U (zh) 黄磷矿石脱碳煅烧装置
RU2564182C1 (ru) Усовершенствованная многокамерная печь с псевдоожиженным слоем
CN218665796U (zh) 一种大处理量双膛石灰窑
JPH08109051A (ja) セメントクリンカ又はそれに類似するものを燃焼するための乾式ロータリーキルンの前接続段としての浮遊ガス熱交換器
JP4670715B2 (ja) 連続式加熱炉群の被加熱物の振り分け方法
CN105300094A (zh) 外置燃烧蓄热式双梁竖窑
RU2516431C2 (ru) Способ кальцинации минералов
RU2483261C2 (ru) Печь для обжига мелкозернистого материала в псевдоожиженном слое
JPH11294970A (ja) 予熱装置
CN115626783A (zh) 一种大处理量双膛石灰窑
CN115917233A (zh) 用于冷却散装材料的冷却器
RU2488054C2 (ru) Печь для обжига мелкозернистого материала в псевдоожиженном слое
EA042875B1 (ru) Обжиговая машина
JPS5912745A (ja) 焼成方法および焼成炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012862063

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012862063

Country of ref document: EP