WO2013099009A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2013099009A1
WO2013099009A1 PCT/JP2011/080465 JP2011080465W WO2013099009A1 WO 2013099009 A1 WO2013099009 A1 WO 2013099009A1 JP 2011080465 W JP2011080465 W JP 2011080465W WO 2013099009 A1 WO2013099009 A1 WO 2013099009A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
secondary battery
converter
power supply
cell system
Prior art date
Application number
PCT/JP2011/080465
Other languages
English (en)
French (fr)
Inventor
晃太 真鍋
裕 田野
智彦 金子
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US14/369,309 priority Critical patent/US20150017485A1/en
Priority to EP11878431.3A priority patent/EP2800183B1/en
Priority to JP2013551142A priority patent/JP5812523B2/ja
Priority to CN201180076080.3A priority patent/CN104025354B/zh
Priority to PCT/JP2011/080465 priority patent/WO2013099009A1/ja
Publication of WO2013099009A1 publication Critical patent/WO2013099009A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04895Current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system including a fuel cell and a secondary battery as a power supply source to a load.
  • the fuel cell system of Patent Document 1 includes two converters, a fuel cell converter and a secondary battery converter, connected in parallel to a load, and stably supplies power to the load. Therefore, these two converters are operated in cooperation.
  • Patent Document 1 discloses that the upper limit of the output power supplied from the inverter to the load when the fuel cell converter is determined to be malfunctioning is the output power of the fuel cell converter.
  • limiting to the following is disclosed.
  • the converter for the secondary battery that acts as a buffer against load fluctuations controls the input voltage to the inverter. Therefore, if an abnormality such as a failure occurs in the secondary battery and the power supply path between the secondary battery and the inverter is interrupted, the input voltage to the inverter can be controlled. It becomes difficult to operate the load stably only with the fuel cell.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a fuel cell system capable of stable operation of a load only by a fuel cell even when an abnormality occurs in a secondary battery.
  • the fuel cell system of the present invention comprises: A fuel cell system including a fuel cell and a secondary battery as a power supply source to a load, A fuel cell power supply path connecting the fuel cell and the first load; A first converter provided on the fuel cell power supply path and capable of boosting the output of the fuel cell; A first secondary battery power supply path that connects the secondary battery to a first connection point on the fuel cell power supply path located on the first load side of the first converter; A second converter provided on the first secondary battery power supply path and capable of boosting the output of the secondary battery; A second secondary battery power supply path for connecting a second load to a second connection point on the first secondary battery power supply path located between the second converter and the secondary battery
  • a first control unit for controlling the first converter A second control unit for controlling the second converter; With During normal operation, the first control unit causes the first converter to control the output voltage of the fuel cell, and the second control unit causes the second converter to supply the first load side. Control the output voltage, When an abnormality occurs in the secondary battery,
  • the output voltage of the first converter is controlled so as to match the required output of the fuel cell system, and the output of the second converter to the second load side
  • the voltage may be controlled to a constant voltage
  • the output voltage of the first converter is controlled to a constant voltage, and the output voltage to the second load side of the second converter is the voltage of the second load. It may be controlled to meet the required output.
  • a circuit breaker provided between the secondary battery on the first secondary battery power supply path and the second connection point;
  • the circuit interrupting unit may be configured to be interrupted when an abnormality occurs in the secondary battery.
  • the voltage to be controlled of the second converter is also changed, and the second converter that normally controls the output voltage to the first load side (in other words, the output voltage of the second converter) is the second converter.
  • the output voltage to the load side will be controlled.
  • An abnormality detection unit for detecting the occurrence of abnormality of the secondary battery; And a third control unit for forcibly blocking the circuit blocking unit when the abnormality detection unit detects an abnormality in the secondary battery.
  • the secondary battery when an abnormality of the secondary battery is detected, the secondary battery is immediately disconnected from the fuel cell system, and stable operation using only the fuel cell can be performed.
  • 1 is a configuration diagram of a fuel cell system according to an embodiment of the present invention.
  • 3 is a flowchart showing an example of control of a control unit 30 when an abnormality occurrence of the secondary battery 20 is detected.
  • the fuel cell system 11 of this embodiment includes a fuel cell 12 and a secondary battery 20 as a power supply source to a load.
  • the fuel cell 12 is a polymer electrolyte fuel cell, for example, and has a stack structure in which a large number of single cells are stacked.
  • the single cell has an air electrode on one surface of an electrolyte composed of an ion exchange membrane, a fuel electrode on the other surface, and a structure having a pair of separators so as to sandwich the air electrode and the fuel electrode from both sides. It has become. Then, hydrogen gas as a fuel gas is supplied to the hydrogen gas channel of one separator, and air as an oxidizing gas is supplied to the oxidizing gas channel of the other separator. Will occur.
  • the fuel cell 12 and a drive motor (first load) 13 for running the vehicle are connected via a power supply path (fuel cell power supply path) A.
  • a power supply path (fuel cell power supply path) A In this power supply path A, an FC boost converter (first converter) 15 and a drive inverter 16 are provided in this order from the fuel cell 12 side.
  • the FC boost converter 15 is a DC voltage converter, which adjusts the DC voltage input from the fuel cell 12 and outputs it to the drive inverter 16 side.
  • the drive motor 13 is, for example, a three-phase AC motor, and the drive inverter 16 converts a DC current into a three-phase AC and supplies it to the drive motor 13.
  • a power supply path (first secondary battery power supply path) B is connected to the power supply path A.
  • a connection point X between the power supply path A and the power supply path B is located between the FC boost converter 15 and the drive inverter 16.
  • a secondary battery 20 is connected to one end of the power supply path B.
  • a relay (circuit breaker) 21 and a battery boost converter are sequentially provided from the secondary battery 20 side.
  • a (second converter) 22 is provided.
  • the secondary battery 20 charges the surplus output power of the fuel cell 12 and the regenerative power of the drive motor 13 based on a control signal from the control unit 30, or power necessary for driving the drive motors 13 and 14. On the other hand, when the output power of the fuel cell 12 is insufficient, it is possible to replenish the shortage of power or supply power to the auxiliary motors 25 and 26 described later.
  • the battery boost converter 22 is a DC voltage converter, and functions to adjust the DC voltage input from the secondary battery 20 and output it to the drive motors 13 and 14, and input from the fuel cell 12 or the drive motor 13. And a function of adjusting the DC voltage and outputting it to the secondary battery 20 and / or the auxiliary motors 25 and 26.
  • the charge / discharge of the secondary battery 20 is realized by such a function of the battery boost converter 22.
  • the function of the battery boost converter 22 controls the input voltage to the drive inverter 16 and the auxiliary inverter 17 during the normal operation of the fuel cell system 11, while the relay 21 to be described later causes for some reason.
  • the secondary battery 20 is disconnected from the fuel cell system 11 (when the secondary battery is abnormal), power can be supplied from the fuel cell 12 to the auxiliary motors 25 and 26. .
  • a power supply path (fuel cell power supply path) C is connected to the high voltage side of the power supply path B.
  • a connection point Y between the power supply path B and the power supply path C is located between the connection point X and the battery boost converter 22.
  • a drive motor (first load) 14 is connected to one end of the power supply path C.
  • the drive motor 14 is, for example, a three-phase AC motor, and is an air compressor drive motor that pumps air (oxidizing gas) to the fuel cell 12.
  • An auxiliary inverter 17 is provided between the drive motor 14 and the connection point Y. The auxiliary inverter 17 converts a direct current into a three-phase alternating current and supplies it to the drive motor 14.
  • a power supply path D (second secondary battery power supply path) is connected to the low voltage side (secondary battery 20 side) of the power supply path B.
  • a connection point Z between the power supply path B and the power supply path D is located between the battery boost converter 22 and the relay 21.
  • the power supply path D is bifurcated, and auxiliary inverters 23 and 24 and auxiliary motors 25 and 26 are provided at the branch destinations, respectively.
  • the auxiliary motor 25 is a motor that drives a hydrogen pump for recirculating the hydrogen off-gas discharged from the hydrogen gas flow path of the fuel cell 12 to the fuel cell 12.
  • the auxiliary motor 26 is a motor that drives a cooling water pump for circulating cooling water used for temperature control of the fuel cell 12.
  • Auxiliary machine inverters 23 and 24 convert a direct current into a three-phase alternating current and supply it to auxiliary machine motors 25 and 26, respectively.
  • the control unit 30 is a computer system for integrated control of the fuel cell system 11 and includes, for example, a CPU, a RAM, a ROM, and the like.
  • the control unit 30 is a signal supplied from various sensors (for example, a signal indicating an accelerator opening, a signal indicating a vehicle speed, a signal indicating an output current or an output voltage of the fuel cell 12, etc., and only a part is shown in FIG.
  • the power demand of the entire load including the drive motors 13 and 14 and the auxiliary motors 25 and 26 is calculated.
  • control unit 30 of the present embodiment can also detect the occurrence of an abnormality such as a failure of the secondary battery 20 based on a signal supplied from the secondary battery 20 or sensors provided in the vicinity thereof. It is. That is, the control unit 30 also has a function as an abnormality detection unit of the present invention.
  • control unit 30 when detecting the occurrence of abnormality of the secondary battery 20, the control unit 30 opens the relay 21 to cut off the power supply from the secondary battery 20 to the drive motors 13 and 14 and the auxiliary motors 25 and 26. That is, the control unit 30 also has a function as the third control unit of the present invention.
  • the control unit 30 determines the distribution of each output power of the fuel cell 12 and the secondary battery 20 and calculates a power generation command value. More specifically, when the required power for the fuel cell 12 and the secondary battery 20 is calculated, the control unit 30 controls the operations of the FC boost converter 15 and the battery boost converter 22 so as to obtain these required powers.
  • the control unit 30 controls the FC boost converter 15 to control the output voltage of the fuel cell 12 during normal operation including when no abnormality occurs in the secondary battery 20, and causes the battery boost converter 22 to drive the drive motor 13,
  • the output voltage to the side 14, in other words, the input voltage to the drive inverter 16 and the auxiliary inverter 17 is controlled.
  • the battery boost converter 22 sends to the auxiliary motors 25 and 26.
  • the output voltage of the FC boost converter 15, in other words, the input voltage to the drive inverter 16 and the auxiliary inverter 17 includes the drive output of the drive motors 13 and 14 and the auxiliary motors 25 and 26. Control is performed so as to meet the required output of the fuel cell system 11 as a whole.
  • control part 30 of this embodiment is comprised as one control apparatus which has the function of the 1st control part of this invention, and the function of the 2nd control part, it is the 1st control part.
  • the second control unit and the second control unit may be composed of separate control devices.
  • the fuel cell system 11 of the present embodiment is characterized in that when a failure (abnormality) of the secondary battery 20 is detected, the system control can be switched to the battery-less evacuation travel mode and the vehicle operation can be continued.
  • a failure abnormality
  • the control unit 30 in this regard will be described in detail with reference to the flowchart of FIG.
  • control unit 30 When the control unit 30 detects a failure (abnormality) of the secondary battery 20 (step S1), the control unit 30 disconnects the relay 21 of the secondary battery 20 (step S3). Thereby, the secondary battery 20 is disconnected from the fuel cell system 11.
  • control unit 30 switches the control target of the battery boost converter 22 to the voltage on the secondary battery 20 side, in other words, the input voltage to the auxiliary inverters 23 and 24, and performs constant voltage control (step S5).
  • the control unit 30 is a voltage at which the auxiliary inverters 23 and 24 connected to the power supply path D can supply the maximum output as the secondary battery side voltage controlled by the battery boost converter 22, for example, the secondary battery Command the OCV voltage of battery 20.
  • control target of the FC boost converter 15 is switched to the input voltage of the drive inverter 16 and the auxiliary machine inverter 17, and the entire fuel cell system 11 including outputs necessary for driving the drive motors 13, 14 and the auxiliary machine motors 25, 26 is included. Voltage control according to the required output is performed (step S7). At this time, a control error due to a difference in power consumption caused by load maps and load fluctuations stored in the control unit 30 and used for various controls and demagnetization of the drive motors 13 and 14 inevitably occurs. There may be.
  • the flow rate of air supplied to the fuel cell 12 is increased by increasing the rotational speed of the drive motor 14 so that the fuel cell 12 can output an output corresponding to the control error (step S9).
  • This increase correction of the air flow rate is set to an amount that can absorb a control error that can be generated by the system, so that the system efficiency can be optimized.
  • the voltage of the terminal to which the secondary battery 20 was connected during normal operation that is, the input voltage of the auxiliary inverters 23 and 24, the input voltage of the drive inverter 16 and the auxiliary inverter 17, and are controlled by two converters (FC boost converter 15 and battery boost converter 22), respectively.
  • the terminal voltage (output voltage) of the fuel cell 12 is also determined in accordance with the required power for the fuel cell system 11. Therefore, the fuel cell system 11 can be stably operated, and so-called retreat travel is also possible.
  • the battery boost converter 22 outputs the voltage on the secondary battery 20 side, that is, the input voltage to the auxiliary inverters 23 and 24.
  • the capacitance at the connection point Z is significantly reduced, and as a result, the control stability of the battery boost converter 22 is significantly worse than in normal operation.
  • the control unit 30 performs the control of the FC boost converter 15 as described in the above embodiment.
  • the output voltage of the FC boost converter 15 may be controlled so that the input voltages to the drive inverter 16 and the auxiliary inverter 17 are fixed to a constant voltage.
  • the required output of the entire fuel cell system 11 required for the vehicle evacuation travel is obtained, and then the input voltage to the drive inverter 16 and the auxiliary inverter 17 capable of outputting the required output is obtained,
  • the control stability of the battery boost converter 22 can be achieved by setting the input voltage to the target output voltage of the FC boost converter 15.
  • the torque control of the drive motor 13 and the torque control of the drive motor 14 are performed in accordance with the accelerator request (accelerator pedal opening).
  • the increase rate of the output of the drive motor 13 is faster than the increase rate of the output of the drive motor 14 and exceeds the output that the fuel cell 12 can output.
  • the control for increasing the air supply amount as described above is effective, but instead of increasing the air supply amount, for example, an airflow sensor provided in the air supply path of the fuel cell 12 Based on the air flow rate detected from a flow meter, etc., an output upper limit value that can be generated by the fuel cell 12 is obtained, and torque control of the drive motors 13 and 14 according to the accelerator request is performed within a range not exceeding the output upper limit value. You may make it implement.
  • the motor regeneration since the secondary battery 20 is disconnected from the fuel cell system 11 when the occurrence of an abnormality in the secondary battery 20 is detected, the motor regeneration is completely prohibited in such a case. If it can be determined that the regenerative power can be stably consumed by the drive motor 14, the auxiliary motors 25 and 26, and other auxiliary machines (for example, a heater for heating), the Motor regeneration may be allowed within a consumable range. In such a case, even when the secondary battery 20 cannot be used, deterioration in driving comfort can be minimized.
  • the fuel cell system according to the present invention is mounted on a fuel cell vehicle. Such a fuel cell system can be applied. Moreover, the fuel cell system according to the present invention can also be applied to a stationary power generation system used as a power generation facility for buildings (houses, buildings, etc.).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 負荷への電力供給源として燃料電池及び二次電池を備えた燃料電池システムであって、通常運転時は、第1の制御部が第1のコンバータ(燃料電池側昇圧コンバータ)に燃料電池の出力電圧を制御させると共に、第2の制御部が第2のコンバータ(二次電池側昇圧コンバータ)に第1の負荷側への出力電圧を制御させる一方で、二次電池の異常発生時は、第1の制御部が第1のコンバータにその出力電圧を制御させると共に、第2の制御部が前記第2のコンバータに第2の負荷側への出力電圧を制御させるものである。

Description

燃料電池システム
 本発明は、負荷への電力供給源として燃料電池及び二次電池を備えた燃料電池システムに関する。
 従来から、燃料電池と二次電池の2つを電力供給源とする燃料電池システムや、そのような燃料電池システムを搭載した燃料電池車両が知られている。例えば、特許文献1の燃料電池システムは、負荷に対して並列に接続された燃料電池用のコンバータと二次電池用のコンバータの2つのコンバータを備えており、負荷に安定して電力を供給するために、これら2つのコンバータを協調動作させている。
 この種の燃料電池システムにおいては、燃料電池用のコンバータに動作不良が発生して燃料電池からの出力が減少すると、その減少分を補うために二次電池からの出力が増大することになり、かかる場合において、二次電池の放電量が許容量を超えてしまうと、過放電に伴う不具合を招く虞がある。
 このような不具合に対して、特許文献1には、燃料電池用のコンバータが動作不良であると判定した場合に、インバータから負荷に供給される出力電力の上限を燃料電池用のコンバータの出力電力以下に制限することで、二次電池からの過放電を抑制する技術が開示されている。
特開2010-135258号公報
 しかしながら、燃料電池用のコンバータと二次電池用のコンバータを備えた燃料電池システムにおいては、負荷の変動に対してバッファ的な役割を果たす二次電池用のコンバータがインバータへの入力電圧を制御するように構成されているため、二次電池に故障等の異常が発生して、二次電池とインバータとの間の電源経路が遮断されてしまうと、インバータへの入力電圧を制御することができなくなり、燃料電池のみで負荷を安定的に運転させることが困難になる。
 その一例として、燃料電池システムを搭載した燃料電池車両においては、燃料電池のみで駆動モータを安定的に運転させることによって自力で退避場所へ移動することが困難となる。
 本発明は、上記事情に鑑みてなされたもので、二次電池の異常発生時においても燃料電池のみによる負荷の安定運転が可能な燃料電池システムを提供することを目的としている。
 上記目的を達成するために、本発明の燃料電池システムは、
 負荷への電力供給源として燃料電池及び二次電池を備えた燃料電池システムであって、
 前記燃料電池と第1の負荷とを接続する燃料電池電力供給経路と、
 前記燃料電池電力供給経路上に設けられ、前記燃料電池の出力を昇圧可能な第1のコンバータと、
 前記二次電池を前記第1のコンバータよりも前記第1の負荷側に位置する前記燃料電池電力供給経路上の第1の接続点に接続する第1の二次電池電力供給経路と、
 前記第1の二次電池電力供給経路上に設けられ、前記二次電池の出力を昇圧可能な第2のコンバータと、
 第2の負荷を前記第2のコンバータと前記二次電池との間に位置する前記第1の二次電池電力供給経路上の第2の接続点に接続する第2の二次電池電力供給経路と、
 前記第1のコンバータを制御する第1の制御部と、
 前記第2のコンバータを制御する第2の制御部と、
を備え、
 通常運転時は、前記第1の制御部が前記第1のコンバータに前記燃料電池の出力電圧を制御させると共に、前記第2の制御部が前記第2のコンバータに前記第1の負荷側への出力電圧を制御させ、
 前記二次電池の異常発生時は、前記第1の制御部が前記第1のコンバータにその出力電圧を制御させると共に、前記第2の制御部が前記第2のコンバータに前記第2の負荷側への出力電圧を制御させるものである。
 このような構成の燃料電池システムによれば、二次電池の異常発生時には、燃料電池のみからでも2つのコンバータを制御して第1の負荷及び第2の負荷への安定的な電力供給が可能となる。
 上記の構成において、
 前記二次電池の異常発生時は、前記第1のコンバータの出力電圧が当該燃料電池システムの要求出力に合うように制御されると共に、前記第2のコンバータの前記第2の負荷側への出力電圧が一定電圧に制御されてもよい。
 上記の構成において、
 前記二次電池の異常発生時は、前記第1のコンバータの出力電圧が一定電圧に制御されると共に、前記第2のコンバータの前記第2の負荷側への出力電圧が前記第2の負荷の要求出力に合うように制御されてもよい。
 上記の構成において、
 前記第1の二次電池電力供給経路上の前記二次電池と前記第2の接続点との間に回路遮断部を備え、
 前記回路遮断部が前記二次電池の異常発生時に遮断されるように構成されていてもよい。
 かかる構成の燃料電池システムにおいて、二次電池の異常発生に伴い回路遮断部が作動して回路が遮断されると、二次電池から第1の負荷及び第2の負荷へ電力が供給されなくなる。
 しかしながら、このような場合であっても、第1のコンバータの制御対象電圧が変更され、通常は燃料電池の出力電圧(言い換えれば、第1のコンバータの入力電圧)を制御している第1のコンバータがその出力電圧を制御することになる。
 同時に、第2のコンバータの制御対象電圧も変更され、通常は第1の負荷側への出力電圧(言い換えれば、第2のコンバータの出力電圧)を制御している第2のコンバータが第2の負荷側への出力電圧を制御することになる。
 上記構成において、
 前記二次電池の異常発生を検知する異常検知部と、
 前記異常検知部によって前記二次電池の異常発生が検知された場合に、前記回路遮断部を強制的に遮断させる第3の制御部と、を備えてもよい。
 かかる構成の燃料電池システムにおいては、二次電池の異常発生が検知された場合に、即座に二次電池を燃料電池システムから切り離し、燃料電池のみでの安定的な運転が実施可能となる。
 本発明の燃料電池システムによれば、二次電池の異常発生時においても燃料電池のみによる負荷の安定運転が可能となる。
本発明の実施形態に係る燃料電池システムの構成図である。 二次電池20の異常発生検知時における制御部30の一制御例を示すフローチャートである。
 11 燃料電池システム
 12 燃料電池
 13、14 駆動モータ(第1の負荷)
 15 FC昇圧コンバータ(第1のコンバータ)
 20 二次電池
 21 リレー(回路遮断部)
 22 バッテリ昇圧コンバータ(第2のコンバータ)
 25、26 補機モータ(第2の負荷)
 30 制御部(第1の制御部、第2の制御部、第3の制御部、異常検知部)
 A、C 電力供給経路(燃料電池電力供給経路)
 B 電力供給経路(第1の二次電池電力供給経路)
 D 電力供給経路(第2の二次電池電力供給経路)
 以下、添付図面を参照して、本発明に係る燃料電池システムの一実施形態について説明する。本実施形態では、本発明に係る燃料電池システムを燃料電池車両(FCHV;Fuel Cell Hybrid Vehicle)の車載発電システムとして用いた場合について説明する。
 図1に示すように、本実施形態の燃料電池システム11は、負荷への電力供給源として、燃料電池12及び二次電池20を備えている。
 燃料電池12は、例えば、高分子電解質形燃料電池であり、多数の単セルを積層したスタック構造となっている。単セルは、イオン交換膜からなる電解質の一方の面に空気極を有し、他方の面に燃料極を有し、さらに空気極および燃料極を両側から挟み込むように一対のセパレータを有する構造となっている。そして、一方のセパレータの水素ガス流路に燃料ガスとしての水素ガスが供給され、他方のセパレータの酸化ガス流路に酸化ガスとしての空気が供給され、これらのガスが電気化学反応することで電力が発生する。
 燃料電池12と車両を走行させるための駆動モータ(第1の負荷)13とは、電力供給経路(燃料電池電力供給経路)Aを介して接続されている。この電力供給経路Aには、燃料電池12側から順に、FC昇圧コンバータ(第1のコンバータ)15及び駆動インバータ16が設けられている。
 FC昇圧コンバータ15は直流の電圧変換器であり、燃料電池12から入力された直流電圧を調整して駆動インバータ16側へ出力する。駆動モータ13は例えば三相交流モータであり、駆動インバータ16は直流電流を三相交流に変換して駆動モータ13に供給する。
 電力供給経路Aには、電力供給経路(第1の二次電池電力供給経路)Bが接続されている。電力供給経路Aと電力供給経路Bとの接続点Xは、FC昇圧コンバータ15と駆動インバータ16との間に位置する。電力供給経路Bの一端には二次電池20が接続されており、二次電池20と接続点Xとの間には、二次電池20側から順にリレー(回路遮断部)21及びバッテリ昇圧コンバータ(第2のコンバータ)22が設けられている。
 二次電池20は、制御部30からの制御信号に基づいて、燃料電池12の出力電力の余剰分や駆動モータ13の回生電力を充電したり、駆動モータ13,14の駆動に必要な電力に対して燃料電池12の出力電力では不足する場合にその不足分の電力を補給したり、後述する補機モータ25,26に電力を供給することが可能になっている。
 バッテリ昇圧コンバータ22は直流の電圧変換器であり、二次電池20から入力された直流電圧を調整して駆動モータ13,14側へ出力する機能と、燃料電池12または駆動モータ13から入力された直流電圧を調整して二次電池20及び/又は補機モータ25,26に出力する機能と、を有する。このようなバッテリ昇圧コンバータ22の機能により、二次電池20の充放電が実現される。
 また、このようなバッテリ昇圧コンバータ22の機能により、燃料電池システム11の通常運転時は、駆動インバータ16及び補機インバータ17への入力電圧が制御される一方で、後述するリレー21が何らかの原因で切断され、二次電池20が燃料電池システム11から切り離された状態になった場合(二次電池の異常発生時)には、燃料電池12から補機モータ25,26への給電が可能となる。
 電力供給経路Bの高電圧側には、電力供給経路(燃料電池電力供給経路)Cが接続されている。電力供給経路Bと電力供給経路Cとの接続点Yは、接続点Xとバッテリ昇圧コンバータ22との間に位置する。電力供給経路Cの一端には、駆動モータ(第1の負荷)14が接続されている。駆動モータ14は、例えば三相交流モータであり、燃料電池12に空気(酸化ガス)を圧送するエアコンプレッサの駆動モータである。駆動モータ14と接続点Yとの間には、補機インバータ17が設けられている。補機インバータ17は、直流電流を三相交流に変換して駆動モータ14に供給する。
 電力供給経路Bの低電圧側(二次電池20側)には、電力供給経路D(第2の二次電池電力供給経路)が接続されている。電力供給経路Bと電力供給経路Dとの接続点Zは、バッテリ昇圧コンバータ22とリレー21との間に位置する。電力供給経路Dは、二又に分岐しており、その分岐先にはそれぞれ補機インバータ23,24及び補機モータ25,26が設けられている。
 補機モータ25は、燃料電池12の水素ガス流路から排出された水素オフガスを燃料電池12に還流させるための水素ポンプを駆動するモータである。補機モータ26は、燃料電池12の温調に使用される冷却水を循環させるための冷却水ポンプを駆動するモータである。補機インバータ23,24は、それぞれ直流電流を三相交流に変換して補機モータ25,26に供給する。
 制御部30は、燃料電池システム11を統合制御するためのコンピュータシステムであり、例えばCPU、RAM、ROM等を有している。制御部30は、各種センサから供給される信号(例えば、アクセル開度を表す信号、車速を表す信号、燃料電池12の出力電流や出力電圧を表す信号等で、図1には一部のみを図示している。)の入力を受けて、駆動モータ13,14及び補機モータ25,26を含む負荷全体の要求電力を算出する。
 なお、本実施形態の制御部30は、二次電池20あるいはその周辺に設けられたセンサ類から供給される信号に基づいて、二次電池20の故障等の異常の発生を検知することも可能である。つまり、制御部30は、本発明の異常検知部としての機能を兼ね備えている。
 さらに、制御部30は、二次電池20の異常発生を検知した場合に、リレー21を開いて二次電池20から駆動モータ13,14及び補機モータ25,26への電力供給を遮断する。つまり、制御部30は、本発明の第3の制御部としての機能も兼ね備えている。
 駆動モータ13,14及び補機モータ25,26以外の負荷としては、車両走行に必要な装置(変速機、車輪制御装置、操舵装置、懸架装置等)で消費される電力や、乗員空間内に配置される装置(空調装置、照明器具、オーディオ等)で消費される電力等がある。
 制御部30は、燃料電池12と二次電池20の各出力電力の配分を決定し、発電指令値を算出する。より具体的には、制御部30は、燃料電池12及び二次電池20に対する要求電力を算出すると、これらの要求電力が得られるようにFC昇圧コンバータ15及びバッテリ昇圧コンバータ22の動作を制御する。
 制御部30は、二次電池20に異常が発生していない時を含む通常運転時においては、FC昇圧コンバータ15に燃料電池12の出力電圧を制御させると共に、バッテリ昇圧コンバータ22に駆動モータ13,14側への出力電圧、言い換えれば、駆動インバータ16及び補機インバータ17への入力電圧を制御させるが、二次電池20の異常発生時においては、バッテリ昇圧コンバータ22に補機モータ25,26への出力電圧を制御させると共に、FC昇圧コンバータ15にその出力電圧、言い換えれば、駆動インバータ16及び補機インバータ17への入力電圧が駆動モータ13,14及び補機モータ25,26の駆動出力を含む燃料電池システム11全体の要求出力に合うように制御させる。
 このように、本実施形態の制御部30は、本発明の第1の制御部の機能と第2の制御部の機能を兼ね備えた一つの制御装置として構成されているが、第1の制御部と第2の制御部がそれぞれ別々の制御装置から構成されていても良いことは勿論である。
 本実施形態の燃料電池システム11は、二次電池20の故障(異常)を検知した時に、バッテリレス退避走行モードにシステム制御を切り替え、車両運転を継続することができる点に特徴がある。以下、この点に関して制御部30が行なう動作について、図2のフローチャートを参照しながら詳細に説明する。
 制御部30は、二次電池20の故障(異常)を検知すると(ステップS1)、二次電池20のリレー21を切断する(ステップS3)。これにより、二次電池20が燃料電池システム11から切り離される。
 次いで、制御部30は、バッテリ昇圧コンバータ22の制御対象を二次電池20側の電圧、言い換えれば、補機インバータ23,24への入力電圧に切り換え、定電圧制御を行う(ステップS5)。このとき、制御部30は、バッテリ昇圧コンバータ22によって制御される二次電池側電圧として、電力供給経路Dに接続されている補機インバータ23,24が最大出力を供給できる電圧、例えば、二次電池20のOCV電圧を指令する。
 また、FC昇圧コンバータ15の制御対象を駆動インバータ16及び補機インバータ17の入力電圧に切り換え、駆動モータ13,14及び補機モータ25,26の駆動に必要な出力を含む燃料電池システム11全体の要求出力に合わせた電圧制御を行う(ステップS7)。
 このとき、制御部30に記憶されて各種の制御に用いられる負荷マップと負荷変動や、駆動モータ13,14の減磁等に起因する消費電力の相違に起因する制御誤差が不可避的に発生している場合がある。
 そして、かかる場合にその状態を放置しておくと、燃料電池12に供給しているエア流量から計算される許容出力を超える出力が燃料電池12から引き出され、不安定な発電状態を引き起こす虞がある。
 そこで、上記制御誤差に相当する出力を燃料電池12が出力できるよう、駆動モータ14の回転数を通常運転時よりも上げることにより、燃料電池12に供給するエア流量を増加させる(ステップS9)。このエア流量の増量補正は、システムが発生し得る制御誤差を吸収できる量に設定することで、システム効率を最適化することが可能となる。
 以上のように制御することで、通常運転時に二次電池20が接続されていた端子の電圧、すなわち、補機インバータ23,24の入力電圧と、駆動インバータ16及び補機インバータ17の入力電圧とが、それぞれ2つのコンバータ(FC昇圧コンバータ15、バッテリ昇圧コンバータ22)により制御され、その結果、燃料電池12の端子電圧(出力電圧)も燃料電池システム11に対する要求電力に応じて決定されることになるため、燃料電池システム11の安定的な運転が可能となり、いわゆる退避走行も可能となる。
 なお、上述したとおり、二次電池20が燃料電池システム11から切り離された状況下においては、バッテリ昇圧コンバータ22は二次電池20側の電圧、すなわち、補機インバータ23,24への入力電圧を制御する必要があり、このような状況は、接続点Zにおけるキャパシタンスが著しく低下する結果、バッテリ昇圧コンバータ22の制御安定性は通常運転時よりも著しく悪化してしまう。
 そこで、このような状況においても、バッテリ昇圧コンバータ22による補機インバータ23,24への入力電圧の制御を安定化させるべく、制御部30は、上記実施形態で説明したようなFC昇圧コンバータ15の出力制御を実施する代わりに、駆動インバータ16及び補機インバータ17への入力電圧が一定電圧に固定されるように、FC昇圧コンバータ15の出力電圧を制御するようにしてもよい。
 具体的には、まず、車両の退避走行に必要な燃料電池システム11全体の要求出力を求め、次に、その要求出力を出力可能な駆動インバータ16及び補機インバータ17への入力電圧を求め、そして、その入力電圧をFC昇圧コンバータ15の目標出力電圧に設定することで、バッテリ昇圧コンバータ22の制御安定性を図ることができる。
 また、駆動モータ14の応答特性は駆動モータ13の応答特性と比較して遅いため、アクセル要求(アクセルペダルの開度)に合わせて駆動モータ13のトルク制御と駆動モータ14のトルク制御を行う場合には、駆動モータ13の出力の増加速度が駆動モータ14の出力の増加速度よりも速く、燃料電池12が出力可能な出力を超過してしまう可能性がある。
 このような場合の対策としては、上述したようなエア供給量を増加させる制御も有効であるが、エア供給量を増加させる代わりに、例えば燃料電池12の空気供給路に設けられているエアフロセンサ等の流量計から検知されるエア流量に基づき、燃料電池12が発電可能な出力上限値を求め、その出力上限値を超えない範囲で、アクセル要求に応じた駆動モータ13,14のトルク制御を実施するようにしてもよい。
 なお、本実施形態では、二次電池20の異常発生が検知された場合に、二次電池20が燃料電池システム11から切り離されてしまうため、かかる場合には、モータ回生を一切禁止するようにしてもよいし、駆動モータ14、補機モータ25,26、その他の補機(例えば、暖房用のヒータ)等によって、回生電力の安定的な消費が可能であると判断できる場合には、その消費可能な範囲内でモータ回生を許容してもよい。かかる場合には、二次電池20が使用できない状況下においても運転の快適性悪化を最小限に抑えることができる。
 なお、上述した実施形態においては、本発明に係る燃料電池システムを燃料電池車両に搭載した場合について説明したが、燃料電池車両以外の各種移動体(ロボット、船舶、航空機等)にも本発明に係る燃料電池システムを適用することができる。また、本発明に係る燃料電池システムを、建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムに適用することもできる。

Claims (5)

  1.  負荷への電力供給源として燃料電池及び二次電池を備えた燃料電池システムであって、
     前記燃料電池と第1の負荷とを接続する燃料電池電力供給経路と、
     前記燃料電池電力供給経路上に設けられ、前記燃料電池の出力を昇圧可能な第1のコンバータと、
     前記二次電池を前記第1のコンバータよりも前記第1の負荷側に位置する前記燃料電池電力供給経路上の第1の接続点に接続する第1の二次電池電力供給経路と、
     前記第1の二次電池電力供給経路上に設けられ、前記二次電池の出力を昇圧可能な第2のコンバータと、
     第2の負荷を前記第2のコンバータと前記二次電池との間に位置する前記第1の二次電池電力供給経路上の第2の接続点に接続する第2の二次電池電力供給経路と、
     前記第1のコンバータを制御する第1の制御部と、
     前記第2のコンバータを制御する第2の制御部と、
    を備え、
     通常運転時は、前記第1の制御部が前記第1のコンバータに前記燃料電池の出力電圧を制御させると共に、前記第2の制御部が前記第2のコンバータに前記第1の負荷側への出力電圧を制御させ、
     前記二次電池の異常発生時は、前記第1の制御部が前記第1のコンバータにその出力電圧を制御させると共に、前記第2の制御部が前記第2のコンバータに前記第2の負荷側への出力電圧を制御させる燃料電池システム。
  2.  請求項1に記載の燃料電池システムであって、
     前記二次電池の異常発生時は、前記第1のコンバータの出力電圧が当該燃料電池システムの要求出力に合うように制御されると共に、前記第2のコンバータの前記第2の負荷側への出力電圧が一定電圧に制御される燃料電池システム。
  3.  請求項1に記載の燃料電池システムであって、
     前記二次電池の異常発生時は、前記第1のコンバータの出力電圧が一定電圧に制御されると共に、前記第2のコンバータの前記第2の負荷側への出力電圧が前記第2の負荷の要求出力に合うように制御される燃料電池システム。
  4.  請求項1から3のいずれか1項に記載の燃料電池システムであって、
     前記第1の二次電池電力供給経路上の前記二次電池と前記第2の接続点との間に回路遮断部を備え、
     前記回路遮断部が前記二次電池の異常発生時に遮断される燃料電池システム。
  5.  請求項1から4のいずれか1項に記載の燃料電池システムであって、
     前記二次電池の異常発生を検知する異常検知部と、
     前記異常検知部によって前記二次電池の異常発生が検知された場合に、前記回路遮断部を強制的に遮断させる第3の制御部と、を備える燃料電池システム。
PCT/JP2011/080465 2011-12-28 2011-12-28 燃料電池システム WO2013099009A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/369,309 US20150017485A1 (en) 2011-12-28 2011-12-28 Fuel cell system
EP11878431.3A EP2800183B1 (en) 2011-12-28 2011-12-28 Fuel cell system
JP2013551142A JP5812523B2 (ja) 2011-12-28 2011-12-28 燃料電池システム
CN201180076080.3A CN104025354B (zh) 2011-12-28 2011-12-28 燃料电池系统
PCT/JP2011/080465 WO2013099009A1 (ja) 2011-12-28 2011-12-28 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/080465 WO2013099009A1 (ja) 2011-12-28 2011-12-28 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2013099009A1 true WO2013099009A1 (ja) 2013-07-04

Family

ID=48696568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080465 WO2013099009A1 (ja) 2011-12-28 2011-12-28 燃料電池システム

Country Status (5)

Country Link
US (1) US20150017485A1 (ja)
EP (1) EP2800183B1 (ja)
JP (1) JP5812523B2 (ja)
CN (1) CN104025354B (ja)
WO (1) WO2013099009A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015223024A (ja) * 2014-05-22 2015-12-10 株式会社ジェイテクト 回転電機制御装置
JP2017085694A (ja) * 2015-10-23 2017-05-18 トヨタ自動車株式会社 燃料電池システム
WO2017104256A1 (ja) * 2015-12-15 2017-06-22 日産自動車株式会社 燃料電池システム
JP2017112809A (ja) * 2015-12-18 2017-06-22 本田技研工業株式会社 駆動装置、輸送機器及び制御方法
JP2017147782A (ja) * 2016-02-15 2017-08-24 トヨタ自動車株式会社 二次電池切り離し方法
JP2018041701A (ja) * 2016-09-09 2018-03-15 トヨタ自動車株式会社 燃料電池システム
JP2018074901A (ja) * 2016-10-25 2018-05-10 トヨタ自動車株式会社 燃料電池車の電圧制御装置
US10122177B2 (en) 2016-02-22 2018-11-06 Toyota Jidosha Kabushiki Kaisha Power supply method and power supply system
US10882406B2 (en) 2017-04-07 2021-01-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026058A1 (ja) 2015-08-11 2017-02-16 日産自動車株式会社 電力調整システム及びその制御方法
KR101929536B1 (ko) 2016-11-24 2018-12-14 조선대학교산학협력단 전기차용 보조기기 모터구동을 위한 일체형 독립구동 시스템
CN108263219B (zh) * 2016-12-30 2021-03-19 长城汽车股份有限公司 车辆的控制方法、系统及车辆
JP6493992B2 (ja) * 2017-01-23 2019-04-03 株式会社Subaru 電動車両の制御装置及び電動車両
WO2021137042A1 (en) * 2019-12-31 2021-07-08 Ceres Intellectual Property Company Limited Dual-source blower system for fuel cell electric vehicle
JP7306320B2 (ja) * 2020-05-11 2023-07-11 トヨタ自動車株式会社 燃料電池システムおよび燃料電池システムの制御プログラム
DE102021209309A1 (de) 2021-08-25 2023-03-02 Robert Bosch Gesellschaft mit beschränkter Haftung Elektrische Vorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008265462A (ja) * 2007-04-18 2008-11-06 Toyota Industries Corp 産業車両
JP2009142098A (ja) * 2007-12-07 2009-06-25 Honda Motor Co Ltd 車両用電源装置
JP2010057284A (ja) * 2008-08-28 2010-03-11 Nissan Motor Co Ltd 車両用電源装置
JP2010135258A (ja) 2008-12-08 2010-06-17 Toyota Motor Corp 燃料電池システム
JP2010154652A (ja) * 2008-12-25 2010-07-08 Honda Motor Co Ltd 電源システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793027B1 (en) * 1999-08-27 2004-09-21 Yamaha Hatsudoki Kabushiki Kaisha Hybrid drive system
JP4348891B2 (ja) * 2001-06-15 2009-10-21 トヨタ自動車株式会社 燃料電池を有する動力出力装置およびその方法
JP4397739B2 (ja) * 2004-06-03 2010-01-13 本田技研工業株式会社 燃料電池車両の電圧状態設定方法
JP4222337B2 (ja) * 2005-04-04 2009-02-12 トヨタ自動車株式会社 複数の電源を備えた電源システム及びそれを備えた車両
US20100332060A1 (en) * 2007-05-21 2010-12-30 Ct & T Co., Ltd. Power conversion controlling method of fuel cell-battery hybrid-electric vehicle and control device
JP4947552B2 (ja) * 2007-08-06 2012-06-06 本田技研工業株式会社 車両用電源装置
US8773049B2 (en) * 2011-07-13 2014-07-08 General Electric Company System for use in controlling motor torque and method of assembling same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008265462A (ja) * 2007-04-18 2008-11-06 Toyota Industries Corp 産業車両
JP2009142098A (ja) * 2007-12-07 2009-06-25 Honda Motor Co Ltd 車両用電源装置
JP2010057284A (ja) * 2008-08-28 2010-03-11 Nissan Motor Co Ltd 車両用電源装置
JP2010135258A (ja) 2008-12-08 2010-06-17 Toyota Motor Corp 燃料電池システム
JP2010154652A (ja) * 2008-12-25 2010-07-08 Honda Motor Co Ltd 電源システム

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015223024A (ja) * 2014-05-22 2015-12-10 株式会社ジェイテクト 回転電機制御装置
JP2017085694A (ja) * 2015-10-23 2017-05-18 トヨタ自動車株式会社 燃料電池システム
JPWO2017104256A1 (ja) * 2015-12-15 2018-11-08 日産自動車株式会社 燃料電池システム
WO2017104256A1 (ja) * 2015-12-15 2017-06-22 日産自動車株式会社 燃料電池システム
US11465505B2 (en) 2015-12-15 2022-10-11 Nissan Motor Co., Ltd. Fuel cell system
JP2017112809A (ja) * 2015-12-18 2017-06-22 本田技研工業株式会社 駆動装置、輸送機器及び制御方法
US9987931B2 (en) 2016-02-15 2018-06-05 Toyota Jidosha Kabushiki Kaisha Method of disconnecting secondary battery and electric power supply system
JP2017147782A (ja) * 2016-02-15 2017-08-24 トヨタ自動車株式会社 二次電池切り離し方法
DE102017101852B4 (de) 2016-02-15 2023-02-02 Toyota Jidosha Kabushiki Kaisha Verfahren zum Trennen einer Sekundärbatterie und eines Stromversorgungssystems
US10122177B2 (en) 2016-02-22 2018-11-06 Toyota Jidosha Kabushiki Kaisha Power supply method and power supply system
JP2018041701A (ja) * 2016-09-09 2018-03-15 トヨタ自動車株式会社 燃料電池システム
JP2018074901A (ja) * 2016-10-25 2018-05-10 トヨタ自動車株式会社 燃料電池車の電圧制御装置
JP7027802B2 (ja) 2016-10-25 2022-03-02 トヨタ自動車株式会社 燃料電池車の電圧制御装置
US10882406B2 (en) 2017-04-07 2021-01-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system

Also Published As

Publication number Publication date
JPWO2013099009A1 (ja) 2015-04-30
EP2800183A1 (en) 2014-11-05
JP5812523B2 (ja) 2015-11-17
CN104025354B (zh) 2017-03-08
EP2800183B1 (en) 2018-08-29
CN104025354A (zh) 2014-09-03
EP2800183A4 (en) 2015-09-16
US20150017485A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
JP5812523B2 (ja) 燃料電池システム
CA2362061C (en) Fuel cell power supply unit
JP5783324B2 (ja) 燃料電池システム
JP5041010B2 (ja) 燃料電池システム
US8868275B2 (en) Outward power supply control apparatus for fuel cell vehicle
WO2006107109A1 (ja) 複数の電源を備えた電源システム及びそれを備えた車両
US20090039834A1 (en) Voltage Control System and Vehicle Comprising Voltage Control System
JP5786952B2 (ja) 燃料電池の出力制御装置
JP6394998B2 (ja) 二次電池切り離し方法
WO2019035169A1 (ja) 電源システム及びその制御方法
JP2008072795A (ja) 移動体
JP5375036B2 (ja) 発電システム
JP6597665B2 (ja) 燃料電池システム
EP1953857B1 (en) Fuel cell system
JP6819855B2 (ja) 燃料電池システム
JP4180998B2 (ja) 燃料電池発電システム
JP5780126B2 (ja) 燃料電池システム
JP2018032580A (ja) 燃料電池システム
JP2005094914A (ja) 燃料電池車両の電力供給システム
WO2012063300A1 (ja) 燃料電池の出力制御装置
JP2010288326A (ja) 燃料電池システム
JP6575873B2 (ja) 燃料電池システム
JP2009129679A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551142

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011878431

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14369309

Country of ref document: US