WO2013097168A1 - 一种高频滤波器 - Google Patents

一种高频滤波器 Download PDF

Info

Publication number
WO2013097168A1
WO2013097168A1 PCT/CN2011/085003 CN2011085003W WO2013097168A1 WO 2013097168 A1 WO2013097168 A1 WO 2013097168A1 CN 2011085003 W CN2011085003 W CN 2011085003W WO 2013097168 A1 WO2013097168 A1 WO 2013097168A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
conductor layer
load
source
inner conductor
Prior art date
Application number
PCT/CN2011/085003
Other languages
English (en)
French (fr)
Inventor
蔡丹涛
曹培勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/085003 priority Critical patent/WO2013097168A1/zh
Priority to CN201180003585.7A priority patent/CN102742072B/zh
Priority to EP11879066.6A priority patent/EP2800201B1/en
Publication of WO2013097168A1 publication Critical patent/WO2013097168A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/205Comb or interdigital filters; Cascaded coaxial cavities
    • H01P1/2053Comb or interdigital filters; Cascaded coaxial cavities the coaxial cavity resonators being disposed parall to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/04Coaxial resonators

Definitions

  • a high frequency filter A high frequency filter
  • Embodiments of the present invention relate to the field of communications, and in particular, to a high frequency filter.
  • High-frequency filters are widely used in modern communications.
  • the basic function is to allow useful signals to pass through the signal link to the maximum extent, and to minimize harmful signals.
  • the existing high-frequency filters include a microstrip filter, a stripline filter, and a coaxial cavity filter.
  • the so-called microstrip filter has a basic structural feature of a substrate made of a dielectric material, a metal conductor is laid on one side of the substrate, and a metal ground is provided at the opposite position on the other side.
  • the basic structural feature of the stripline filter is that the metal conductor is suspended or laid on a support made of a dielectric material, and a metal conductor is formed at an upper and lower position of the conductor to form an outer conductor.
  • a metal conductor is placed in the closed metal cavity, and the two ends of the conductor are coupled with the metal cavity, and the strength of the coupling and/or the electrical length of the metal conductor determine the resonant frequency.
  • a main feature of a coaxial cavity filter provided by the prior art is that the coaxial cavity filter has more tuning structures.
  • each coaxial cavity has a screw that adjusts the frequency, and there is a screw that adjusts the coupling between the coaxial resonator and the coaxial cavity. Since these screws are related to each other, the coaxial cavity filter provided by the prior art is difficult to ensure the consistency of the standing wave, phase and group delay of the filter.
  • Embodiments of the present invention provide a high frequency filter to ensure consistency of various indicators of the filter.
  • An embodiment of the present invention provides a high frequency filter, the high frequency filter including: at least one coaxial resonant cavity, at least one printed circuit board disposed on the coaxial resonant cavity, and the printed circuit board At least one cavity inner conductor on one side, one side of the printed circuit board is provided with a metal conductor layer for signal connection between the source and the load, and the other side opposite to the side on which the metal conductor layer is disposed is provided with a grounded metal a conductor layer, one end of the inner cavity conductor and the coaxial resonant cavity are grounded; the inner cavity conductor is coupled to the metal conductor layer that is signal-connected to the source and the load.
  • each of the coaxial resonant cavities of the high frequency filter is provided with at least one printed circuit board and at least one cavity inner conductor on one side of the printed circuit board. Due to the high processing precision of the printed circuit board, the batch consistency of the standing wave, phase and group delay of the high-frequency filter can be ensured, and because of its high dielectric constant, it can be reduced compared with the air strip line. Small filter volume.
  • Figure la is a schematic structural diagram of a high frequency filter according to Embodiment 1 of the present invention.
  • Figure lb is a schematic diagram showing the structure and relative position of various components in the coaxial cavity of the high-frequency filter of the example la;
  • FIG. 2a is a schematic diagram showing the structure and relative positions of various components in a coaxial resonant cavity of a high frequency filter according to Embodiment 2 of the present invention
  • FIG. 2b is a schematic diagram showing another structure and relative positions of various components in a coaxial resonant cavity of a high frequency filter according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram showing the structure and relative positions of various components in a coaxial resonant cavity of a high frequency filter according to Embodiment 3 of the present invention
  • FIG. 4 is a schematic diagram showing the structure and relative positions of various components in a coaxial resonant cavity of a high frequency filter according to Embodiment 4 of the present invention
  • FIG. 5 is a schematic diagram showing the structure and relative positions of various components in a coaxial resonant cavity of a high frequency filter according to Embodiment 5 of the present invention.
  • the high frequency filter provided by the embodiment of the present invention includes at least one coaxial resonant cavity, at least one printed circuit board (PCB) disposed on the coaxial resonant cavity, and a side of the printed circuit board At least one of the intracavity conductors, one end of the inner conductor and the coaxial resonant cavity are grounded.
  • One side of the printed circuit board is provided with a metal conductor layer for signal connection between the source and the load, and the other side opposite to one side of the metal conductor layer for signal connection of the pair of source and load is provided with a grounded metal conductor layer
  • the intracavity conductor is coupled to the metal conductor layer that is signally connected to the source and the load.
  • FIG. 1 is a schematic structural diagram of a high frequency filter according to Embodiment 1 of the present invention.
  • the high frequency filter of the example of FIG. 1a includes one less grounded coaxial resonant cavity 101, at least one U-shaped coupling piece 103, at least one cylindrical inner cavity conductor 104, and at least one piece covering the cavity of the coaxial resonant cavity 101.
  • Printed circuit board 102 Printed circuit board 102.
  • Figure lb shows the structure and relative position of the various components of the high frequency filter coaxial resonator of the example la.
  • a metal conductor layer 105 for signal-connecting the source and the load is laid on one surface of the printed circuit board 102, and a grounded metal conductor layer is laid on the other side of the metal conductor layer 105 to which the source and the load are signal-connected.
  • the other surface opposite to one side of the metal conductor layer 105 to which the source and the load are signal-connected may be grounded with a metal conductor layer or at least in contact with the coaxial cavity 101.
  • a grounded metal conductor layer is partially laid, and thus, the coaxial cavity 101 is also grounded.
  • the metal conductor layer 105 that signals the source and the load can couple the signal of the metal conductor layer 105 to the inner cavity conductor 104.
  • a screw 106 disposed on the inner conductor 104 of the cylindrical cavity is used to adjust the frequency.
  • the cylindrical inner conductor 104 can be fixed on the cavity wall of the coaxial resonant cavity 101, and one end thereof and the coaxial resonant cavity The side walls of 101 are in contact to achieve grounding.
  • the axial direction or the center line direction of the inner cylindrical conductor 104 is parallel to one side of the printed circuit board 102 on which the metal conductor layer 105 to which the source and the load are signal-connected or one side on which the grounded metal conductor layer is applied.
  • the cylindrical inner conductor 104 is a cylindrical inner conductor
  • the axial direction of the inner conductor 104 of the cylindrical cavity is coated with one side of the printed circuit board 102 on which the metal conductor layer 105 for signal connection of the source and the load is applied.
  • One side of the grounded metal conductor layer is parallel. If the columnar cavity inner conductor 104 is a prismatic cavity inner conductor, the center line direction of the columnar cavity inner conductor 104 and the printed circuit board 102 are provided with a metal signal connection to the source and the load. One side of the conductor layer 105 or one side of the grounded metal conductor layer is parallel.
  • the U-shaped coupling piece 103 is connected to the metal conductor layer 105, and the other end is connected to the grounded metal conductor layer.
  • the U-shaped coupling piece 103 functions similarly to the inductance, and the magnetic field generated by the U-shaped coupling piece 103 excites the magnetic field of the coaxial resonant cavity 101.
  • the cylindrical inner conductor 104 is coupled by a magnetic field in the coaxial cavity 101 excited by the U-shaped coupling piece 103, and the metal conductor layer 105 to which the source and the load are signal-connected. This coupling is also called Inductive coupling.
  • the high frequency filter provided by the second embodiment of the present invention includes at least one grounded coaxial resonant cavity, at least one printed circuit board covering the coaxial resonant cavity, and at least one U-shaped cavity inner conductor.
  • FIG. 2a is a schematic view showing the structure and relative positions of the components of the high frequency filter coaxial resonant cavity 201 provided in the second embodiment.
  • a metal conductor layer 204 for signal-connecting the source and the load is laid on one surface of the printed circuit board 202, and a grounded metal conductor layer is laid on the other surface facing the metal conductor layer 204 to which the source and the load are signal-connected.
  • the other surface opposite to one side of the metal conductor layer 204 to which the source and the load are signal-connected may be grounded with a metal conductor layer or at least in contact with the coaxial cavity 201.
  • a grounded metal conductor layer is partially laid, and thus, the coaxial cavity 201 is also grounded.
  • the action of the metal conductor layer 204 which provides a signal connection to the source and the load, in addition to ensuring the flow of the signal, can also couple the signal of the metal conductor layer 204 to the U-shaped cavity inner conductor 203.
  • the U-shaped cavity inner conductor 203 may be a curved prism shape or a curved circle.
  • the columnar shape has one end in contact with the grounded metal conductor layer to achieve grounding, and the other end is inlaid on the printed circuit board 202 and is not in contact with the metal conductor layer 204 that signals the source and the load.
  • a screw 205 disposed on the inner conductor 203 of the U-shaped cavity is used to adjust the frequency.
  • the printed circuit board may also be disposed inside the coaxial resonant cavity 201, and the cavity of the coaxial resonant cavity 201 may be shielded by a shielding plate, U shape
  • the intracavity conductor 203 may be curved cylindrical as shown in Figure 2b.
  • the U-shaped cavity inner conductor 203 is in contact with the grounded metal conductor layer laid on the printed circuit board 202, and the other end is embedded in the printed circuit board 202, but is not connected to the metal conductor layer for signal connection to the source and the load. 204 contact.
  • the horizontal portion of the U-shaped cavity inner conductor 203 is parallel to one side of the metal conductor layer 204 on which the source and the load are signal-bonded on the printed circuit board 202 or one side of the grounded metal conductor layer.
  • the U-shaped cavity inner conductor 203 may be a dielectric that is coupled to the metal conductor layer 204 that is signally coupled to the source and load. This coupling is capacitive coupling.
  • each component of the coaxial resonant cavity may also be: one end of the inner conductor of the U-shaped cavity is connected to the grounded metal conductor layer, and the other end is connected. Mounted on the printed circuit board and in contact with the metal conductor layer that signals the source and load. The horizontal portion of the inner conductor of the U-shaped cavity is parallel to the side of the printed circuit board on which the metal conductor layer to which the source and the load are signaled or the side on which the grounded metal conductor layer is applied.
  • the coupling of the inner conductor of the U-shaped cavity and the metal conductor layer for signal connection of the source and the load is Current coupling.
  • the high frequency filter provided in the third embodiment of the present invention includes one less grounded coaxial resonant cavity, at least one L-shaped cavity inner conductor, and at least one printed circuit board covering the coaxial resonant cavity port.
  • FIG. 3 shows the structure of each component of the high frequency filter coaxial resonant cavity 301 provided in the third embodiment. And a relative position diagram.
  • One side of the printed circuit board 302 is provided with a metal guiding layer 304 for signally connecting the source and the load, and the other side of the printed circuit board 302 opposite to one side of the metal conductor layer 304 for signal-connecting the source and the load is Ground a metal conductor layer.
  • the metal conductor layer 304 functions to couple the signal of the metal conductor layer 304 to the L-shaped cavity inner conductor 303 in addition to ensuring the flow of the signal.
  • the L-shaped cavity inner conductor 303 may be curved prismatic or cylindrical shape with a screw 305 thereon for adjusting the frequency.
  • the ends of the vertical portions of the L-shaped cavity inner conductor 303 are embedded in the printed circuit board 302 but are not in contact with the metal conductor layer 304 to which the source and load are signaled.
  • the other surface opposite to one side of the metal conductor layer 304 to which the source and the load are signal-connected may be grounded with a metal conductor layer or at least in contact with the coaxial cavity 301.
  • the grounded metal conductor layer is partially laid, and thus, the coaxial cavity 301 is also grounded.
  • the end of the horizontal portion of the L-shaped cavity inner conductor 303 is in contact with one side wall of the coaxial cavity 301; since the coaxial cavity 301 is grounded, the end portion of the horizontal portion of the L-shaped cavity inner conductor 303 is equivalent Ground.
  • the horizontal portion of the L-shaped cavity inner conductor 303 is parallel to one side of the printed circuit board 302 on which the metal conductor layer 304 to which the source and the load are signaled, or one side on which the grounded metal conductor layer is applied.
  • the L-shaped cavity inner conductor 303 can be printed circuit.
  • the board 302 is a dielectric that is coupled to the metal conductor layer 304 that is signally coupled to the source and load. This coupling is capacitive coupling.
  • the structure and the relative position of the components in the coaxial resonant cavity may also be: an end of the vertical portion of the inner conductor of the L-shaped cavity, being embedded in the printed circuit board and A metal conductor layer that is signal-connected to the source and the load is in contact.
  • the other surface opposite to one side of the metal conductor layer to which the source and the load are signal-connected may be grounded with a metal conductor layer or the portion in contact with the coaxial cavity may be grounded.
  • Metal conductor layer, such as Thus, the coaxial cavity is also grounded.
  • the end of the horizontal portion of the inner conductor of the L-shaped cavity is in contact with one side wall of the coaxial resonant cavity; since the coaxial resonant cavity is grounded, the end of the horizontal portion of the inner conductor of the L-shaped cavity is equivalent to ground.
  • the horizontal portion of the inner conductor of the L-shaped cavity is parallel to one side of the printed circuit board on which the metal conductor layer for signal connection of the source and the load is applied or one side of the grounded metal conductor layer. Since the end of the vertical portion of the inner conductor of the L-shaped cavity is in direct contact with the metal conductor layer to which the source and the load are signal-connected, the L-shaped cavity inner conductor and the pair of source and load are signal-connected to the metal.
  • the coupling of the conductor layers is galvanic coupling.
  • the high frequency filter provided in Embodiment 4 of the present invention includes one less grounded coaxial resonant cavity, at least one cylindrical cavity inner conductor, at least one metal wire, and at least one printed circuit board covering the coaxial resonant cavity port. .
  • Fig. 4 is a view showing the structure and relative position of the respective components of the high frequency filter coaxial resonator 401 provided in the fourth embodiment.
  • the cylindrical inner conductor 402 may be a cylindrical inner conductor or a prismatic inner conductor.
  • a metal conductor layer 404 for signal-connecting the source and the load is laid on one surface of the printed circuit board 403, and a grounded metal conductor layer is laid on the other surface opposite to one surface of the metal conductor layer 404 on which the source and the load are signal-connected.
  • at least a portion of the grounded metal conductor layer is laid in contact with the coaxial cavity 401, and thus the coaxial cavity 401 is also grounded.
  • the action of the metal conductor layer 404 which provides a signal connection to the source and the load, in addition to ensuring the flow of the signal, can also couple the signal of the metal conductor layer 404 to the inner cavity of the cylindrical cavity 402.
  • the inner cavity of the cylindrical cavity 402 can be fixed to the coaxial resonant cavity 401, and the end is in contact with the side wall of the coaxial resonant cavity 401 to achieve grounding.
  • a screw 407 disposed on the inner conductor 402 of the cylindrical cavity is used to adjust the frequency.
  • the metal line 406 is connected to the cylindrical inner conductor 402 and the other end is connected to the metal conductor layer 404 which is signally connected to the source and the load.
  • the relative relationship between the printed circuit board 403 and the inner conductor 402 of the columnar cavity may be: the printed circuit board 403 is coated with one side of the metal conductor layer 404 for signal connection of the source and the load or a grounded metal conductor layer. One side and the axis of the inner cavity 402 of the cylindrical cavity The direction or centerline direction is parallel. For example, if the inner cavity conductor 402 is a cylindrical inner cavity conductor, the printed circuit board 403 is coated with one side of the metal conductor layer 404 for signal connection of the source and the load or one side of the grounded metal conductor layer.
  • the printed circuit board 403 is coated with one side of the metal conductor layer 404 for signal connection of the source and the load or One side of the metal conductor layer to which the ground is applied is parallel to the center line direction of the inner conductor 402 of the columnar cavity.
  • the intra-column cavity inner conductor 402 is connected by the metal wire 406 and the metal conductor layer 404 which is signal-connected to the source and the load, the columnar cavity inner conductor 402 and the metal conductor layer 404 for signal-connecting the source and the load are connected.
  • the coupling is current coupling.
  • the high frequency filter provided in the fifth embodiment of the present invention includes one less grounded coaxial resonant cavity, at least one cylindrical inner cavity conductor, and at least one printed circuit board disposed in the coaxial resonant cavity.
  • Fig. 5 is a view showing the structure and relative position of respective components in the high frequency filter coaxial resonator 401 provided in the fifth embodiment.
  • a metal conductor layer 504 for signal-connecting the source and the load is laid on one side of the printed circuit board 503, and a grounded metal conductor layer is laid on the opposite side of the metal conductor layer 504 on which the source and the load are signal-connected.
  • the grounded metal conductor layer is in contact with one sidewall of the coaxial resonant cavity 401.
  • the cylindrical cavity inner conductor 502 may be a cylindrical cavity inner conductor or a prismatic cavity inner conductor, one end of which is in contact with the coaxial cavity 401.
  • the end of the columnar cavity inner conductor 502 in contact with the coaxial cavity 401 is equivalent to ground.
  • the action of the metal conductor layer 504, which couples the source and the load, in addition to ensuring the flow of the signal, can also couple the signal of the metal conductor layer 504 to the cylindrical cavity inner conductor 502.
  • a screw 505 disposed on the inner conductor 502 of the cylindrical cavity is used to adjust the frequency.
  • the relative relationship between the printed circuit board 503 and the inner cylindrical conductor 502 may be: one side of the printed circuit board 503 on which the metal conductor layer 504 is connected to the source and the load or a grounded metal conductor.
  • One side of the layer 505 and the axial direction or center line of the inner cavity 502 of the cylindrical cavity if The inner cylindrical conductor 502 is a prismatic inner conductor) and the direction is vertical.
  • the printed circuit board 503 is coated with one side of the metal conductor layer 504 for signal connection of the source and the load or a grounded metal conductor layer.
  • One side of the 505 is perpendicular to the axial direction of the inner cavity of the cylindrical cavity 502.
  • the printed circuit board 503 is provided with a signal connection between the source and the load.
  • One surface of the metal conductor layer 504 or one surface on which the grounded metal conductor layer 505 is applied is perpendicular to the center line direction of the columnar cavity inner conductor 502.
  • the cylindrical inner conductor 502 is in direct contact with the metal conductor layer 504 that is signally connected to the source and the load. Therefore, the coupling of the cylindrical inner conductor 502 and the metal conductor layer 504 that couples the source and the load is galvanic coupling. .
  • each of the coaxial resonators of the high frequency filter is provided with at least one printed circuit board and at least one cavity inner conductor on one side of the printed circuit board.
  • the dimensional accuracy of the metal conductor layer for signal connection between the source and the load is guaranteed to be plus or minus 1 mil (mil) due to the stenciling process, and the dimensional tolerances and dielectric constant fluctuation range of the printed circuit board can be effectively controlled and not assembled. tolerance.
  • This high consistency of the printed circuit board ensures that the conformance of the components of the printed circuit board structure is higher than that of the purely mechanically assembled device.
  • the high consistency of the printed circuit board ensures batch consistency of the standing wave, phase and group delay of the filter, and the high consistency thereof
  • the dielectric constant can be reduced by d and the filter volume compared to the air strip line.
  • the high-frequency filter provided by the embodiment of the present invention is described in detail.
  • the principle and the embodiment of the present invention are described in the following.
  • the description of the above embodiment is only for helping to understand the method of the present invention.
  • the content of the present specification should not be construed as the present invention. limits.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种高频滤波器,包括至少一个同轴谐振腔,在同轴谐振腔外设置至少一块印制电路板,所述印制电路板的一面设有对源和负载进行信号连接的金属导体层,与设有所述金属导体层的一面相对的另一面设有接地的金属导体层,印制电路板的一致性保证了滤波器驻波、相位和群时延等指标的批量一致性。

Description

一种高频滤波器 技术领域
本发明实施例涉及通信领域, 尤其涉及一种高频滤波器。
背景技术
高频滤波器在现代通信领域被广泛使用,基本功能为, 让有用信号最大限 度在信号链路上通过, 将有害信号最大限度地抑制掉。 按照结构分类, 现有的 高频滤波器包括微带滤波器、 带状线滤波器和同轴谐振腔滤波器等。所谓微带 滤波器, 其基本构造特征是由介电材料构成的基底, 基底一面敷设金属导体, 另一面相对位置有金属接地。带状线滤波器的基本构造特征是金属导体悬空或 敷设在介电材料构成的支撑物上, 导体上下方对应位置有金属导体构成外导 体。 而同轴谐振腔滤波器, 其封闭金属腔中放置一段金属导体, 导体两端和金 属腔存在耦合, 耦合的强弱和 /或金属导体的电长度决定谐振频率。
现有技术提供的一种同轴谐振腔滤波器的主要特点是,该同轴谐振腔滤波 器具有较多的调谐结构。 例如, 每个同轴谐振腔都有调节频率的螺杆, 同轴谐 振腔和同轴谐振腔之间还有调节耦合的螺杆。由于这些螺杆相互间关联,因此, 现有技术提供的同轴谐振腔滤波器难以保证滤波器驻波、相位和群时延等指标 的一致性。
发明内容
本发明实施例提供一种高频滤波器, 以确保滤波器各项指标的一致性。 本发明实施例提供一种高频滤波器, 所述高频滤波器包括: 至少一个同轴 谐振腔、设置于所述同轴谐振腔的至少一块印制电路板和位于所述印制电路板 一侧的至少一条腔内导体,所述印制电路板的一面设有对源和负载进行信号连 接的金属导体层,与设有所述金属导体层的一面相对的另一面设有接地的金属 导体层, 所述腔内导体的一端和所述同轴谐振腔均接地; 所述腔内导体与所述 对源和负载进行信号连接的金属导体层耦合。 从上述本发明实施例提供的高频滤波器可知,高频滤波器的各个同轴谐振 腔设置有至少一块印制电路板和位于所述印制电路板一侧的至少一条腔内导 体。 由于印制电路板加工精度较高, 能够保证高频滤波器驻波、 相位和群时延 等指标的批量一致性, 而因其具有较高的介电常数, 和空气带线相比能够减小 滤波器体积。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对现有技术或实施例 描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述中的附图仅仅 是本发明的一些实施例,对于本领域技术人员来讲,还可以如这些附图获得其 他的附图。
图 la是本发明实施例一提供的高频滤波器结构示意图;
图 lb是图 la示例的高频滤波器同轴谐振腔内各个部件的结构以及相对位 置示意图;
图 2a是本发明实施例二提供的高频滤波器同轴谐振腔内各个部件的结构 以及相对位置示意图;
图 2b是本发明实施例二提供的高频滤波器同轴谐振腔内各个部件另一结 构以及相对位置示意图;
图 3 是本发明实施例三提供的高频滤波器同轴谐振腔内各个部件的结构 以及相对位置示意图;
图 4 是本发明实施例四提供的高频滤波器同轴谐振腔内各个部件的结构 以及相对位置示意图;
图 5 是本发明实施例五提供的高频滤波器同轴谐振腔内各个部件的结构 以及相对位置示意图。
具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域技术人员所获得的所有其他实 施例, 都属于本发明保护的范围。
本发明实施例提供的高频滤波器包括至少一个同轴谐振腔、设置于所述同 轴谐振腔的至少一块印制电路板 ( Printed Circuit Board, PCB )和位于所述印 制电路板一侧的至少一条腔内导体,腔内导体的一端和同轴谐振腔均接地。 该 印制电路板的一面设有对源和负载进行信号连接的金属导体层,与设有所述对 源和负载进行信号连接的金属导体层的一面相对的另一面设有接地的金属导 体层,并且,所述腔内导体与所述对源和负载进行信号连接的金属导体层耦合。
请参阅附图 la, 是本发明实施例实施例一提供的高频滤波器结构示意图。 附图 la示例的高频滤波器包括少一个接地的同轴谐振腔 101、 至少一条 U形耦 合片 103、 至少一条柱状腔内导体 104和覆盖于所述同轴谐振腔 101腔口上的至 少一块印制电路板 102。
附图 lb给出了附图 la示例的高频滤波器同轴谐振腔各个部件的结构以及 相对位置示意图。 印制电路板 102的一面敷设对源和负载进行信号连接的金属 导体层 105 ,与敷设对源和负载进行信号连接的金属导体层 105的一面相对的另 一面, 则敷设接地的金属导体层。 在本实施例中, 与敷设对源和负载进行信号 连接的金属导体层 105的一面相对的另一面, 其整个表面都可以敷设接地的金 属导体层, 或者, 至少与同轴谐振腔 101接触的部分敷设接地的金属导体层, 如此, 同轴谐振腔 101也是接地的。对源和负载进行信号连接的金属导体层 105 的作用除了保证信号的流通外, 还可以将金属导体层 105连接的信号耦合到柱 状腔内导体 104。 设置于柱状腔内导体 104上的螺杆 106用于调节频率。
柱状腔内导体 104可固定于同轴谐振腔 101的腔壁上,其一端与同轴谐振腔 101的侧壁接触, 实现接地。柱状腔内导体 104的轴线方向或中心线方向与印制 电路板 102上敷设有对源和负载进行信号连接的金属导体层 105的一面或敷设 有接地的金属导体层的一面平行。 例如, 若柱状腔内导体 104是圓柱状腔内导 体,则柱状腔内导体 104的轴线方向与印制电路板 102上敷设有对源和负载进行 信号连接的金属导体层 105的一面或敷设有接地的金属导体层的一面平行, 若 柱状腔内导体 104是棱柱状腔内导体,则柱状腔内导体 104的中心线方向与印制 电路板 102上敷设有对源和负载进行信号连接的金属导体层 105的一面或敷设 有接地的金属导体层的一面平行。
U形耦合片 103—端与金属导体层 105连接, 另一端与接地的金属导体层连 接。 U形耦合片 103的作用与电感类似, U形耦合片 103产生的磁场激励起同轴 谐振腔 101的磁场。 柱状腔内导体 104通过所述 U形耦合片 103所激励起来的同 轴谐振腔内 101的磁场, 和所述对源和负载进行信号连接的金属导体层 105耦 合, 这种耦合也被称作电感耦合。
本发明实施例二提供的高频滤波器包括至少一个接地的同轴谐振腔、覆盖 于所述同轴谐振腔腔口上的至少一块印制电路板和至少一条 U形腔内导体。
附图 2a示出了实施例二提供的高频滤波器同轴谐振腔 201各个部件的结构 以及相对位置示意图。 印制电路板 202的一面敷设对源和负载进行信号连接的 金属导体层 204,与敷设对源和负载进行信号连接的金属导体层 204的一面相对 的另一面, 则敷设接地的金属导体层。 在本实施例中, 与敷设对源和负载进行 信号连接的金属导体层 204的一面相对的另一面, 其整个表面都可以敷设接地 的金属导体层, 或者, 至少与同轴谐振腔 201接触的部分敷设接地的金属导体 层, 如此, 同轴谐振腔 201也是接地的。 对源和负载进行信号连接的金属导体 层 204的作用除了保证信号的流通,还可以将金属导体层 204连接的信号耦合到 U形腔内导体 203。 U形腔内导体 203可以是弯曲的棱柱状, 也可以为弯曲的圓 柱状, 其一端与接地的金属导体层接触, 实现接地, 另一端镶嵌于印制电路板 202且不与对源和负载进行信号连接的金属导体层 204接触。 设置于 U形腔内导 体 203上的螺杆 205用于调节频率。
作为本发明的另一个实施例, 附图 2a示例的高频滤波器, 印制电路板还可 以设置于同轴谐振腔 201的内部, 同轴谐振腔 201的腔口可用屏蔽板屏蔽, U形 腔内导体 203可以为弯曲的圓柱状, 如附图 2b所示。 U形腔内导体 203—端与印 制电路板 202上敷设的接地的金属导体层接触, 另一端镶嵌于印制电路板 202, 但不和所述对源和负载进行信号连接的金属导体层 204接触。 U形腔内导体 203 的水平部分与印制电路板 202上敷设所述对源和负载进行信号连接的金属导体 层 204的一面或敷设接地的金属导体层的一面平行。 附图 2a或附图 2b示例的高 频滤波器中, 由于 U形腔内导体 203没有和所述对源和负载进行信号连接的金 属导体层 204接触, 因此, U形腔内导体 203可以以印制电路板 202为介质, 和 所述对源和负载进行信号连接的金属导体层 204进行耦合, 这种耦合是电容耦 合。
在附图 2a或附图 2b示例的高频滤波器中中,同轴谐振腔各个部件的结构和 相对位置还可以是: 所述 U形腔内导体一端与接地的金属导体层连接, 另一端 镶嵌于印制电路板并且和所述对源和负载进行信号连接的金属导体层接触。 U 形腔内导体的水平部分与印制电路板上敷设有对源和负载进行信号连接的金 属导体层的一面或敷设有接地的金属导体层的一面平行。 由于 U形腔内导体的 一端和所述对源和负载进行信号连接的金属导体层是直接接触, 因此, U形腔 内导体和所述对源和负载进行信号连接的金属导体层的耦合是电流耦合。
本发明实施例三提供的高频滤波器包括少一个接地的同轴谐振腔、至少一 条 L形腔内导体和覆盖于所述同轴谐振腔腔口上的至少一块印制电路板。
附图 3示出了实施例三提供的高频滤波器同轴谐振腔 301各个部件的结构 以及相对位置示意图。 印制电路板 302的一面敷设对源和负载进行信号连接的 金属导层 304,印制电路板 302上与所述对源和负载进行信号连接的金属导体层 304的一面相对的另一面, 则敷设接地的金属导体层。所述金属导体层 304的作 用除了保证信号的流通 ,还可以将金属导体层 304连接的信号耦合到 L形腔内导 体 303。
L形腔内导体 303可以为弯曲的棱柱状或圓柱状, 其上的螺杆 305用于调节 频率。 L形腔内导体 303的垂直部分的端部镶嵌于印制电路板 302但不和所述对 源和负载进行信号连接的金属导体层 304接触。 在本实施例中, 与敷设对源和 负载进行信号连接的金属导体层 304的一面相对的另一面, 其整个表面都可以 敷设接地的金属导体层, 或者, 至少与同轴谐振腔 301接触的部分敷设接地的 金属导体层, 如此, 同轴谐振腔 301也是接地的。 L形腔内导体 303的水平部分 的端部与同轴谐振腔 301的一个侧壁接触;由于同轴谐振腔 301是接地的,因此, L形腔内导体 303的水平部分的端部相当于接地。 L形腔内导体 303的水平部分 与印制电路板 302上敷设有对源和负载进行信号连接的金属导体层 304的一面 或敷设有接地的金属导体层的一面平行。
附图 3示例的高频滤波器中, 由于 L形腔内导体 303没有和所述对源和负载 进行信号连接的金属导体层 304直接接触, 因此, L形腔内导体 303可以以印制 电路板 302为介质, 和所述对源和负载进行信号连接的金属导体层 304进行耦 合, 这种耦合是电容耦合。
在本发明实施例三中, 同轴谐振腔内各个部件的结构和相对位置还可以 是: 所述 L形腔内导体的垂直部分的端部, 镶嵌于所述印制电路板并且和所述 对源和负载进行信号连接的金属导体层接触。在本实施例中, 与敷设对源和负 载进行信号连接的金属导体层的一面相对的另一面,其整个表面都可以敷设接 地的金属导体层, 或者, 与同轴谐振腔接触的部分敷设接地的金属导体层, 如 此, 同轴谐振腔也是接地的。 L形腔内导体的水平部分的端部与所述同轴谐振 腔的一个侧壁接触; 由于同轴谐振腔是接地的, 因此, L形腔内导体的水平部 分的端部相当于接地。 L形腔内导体的水平部分与印制电路板上敷设有对源和 负载进行信号连接的金属导体层的一面或敷设有接地的金属导体层的一面平 行。 由于 L形腔内导体的的垂直部分的端部和所述对源和负载进行信号连接的 金属导体层是直接接触, 因此, L形腔内导体和所述对源和负载的进行信号连 接金属导体层的耦合是电流耦合。
本发明实施例四提供的高频滤波器包括少一个接地的同轴谐振腔、至少一 条柱状腔内导体、至少一条金属线和覆盖于所述同轴谐振腔腔口上的至少一块 印制电路板。
附图 4示出了实施例四提供的高频滤波器同轴谐振腔 401各个部件的结构 以及相对位置示意图。 柱状腔内导体 402可以是圓柱状腔内导体, 也可以是棱 柱状腔内导体。 印制电路板 403的一面敷设对源和负载进行信号连接的金属导 体层 404,与敷设对源和负载进行信号连接的金属导体层 404的一面相对的另一 面, 则敷设接地的金属导体层, 或者, 至少与同轴谐振腔 401接触的部分敷设 接地的金属导体层, 如此, 同轴谐振腔 401也是接地的。 所述对源和负载进行 信号连接的金属导体层 404的作用除了保证信号的流通, 还可以将金属导体层 404连接的信号耦合到柱状腔内导体 402。 柱状腔内导体 402可固定于同轴谐振 腔 401 ,—端与同轴谐振腔 401的侧壁接触,实现接地。设置于柱状腔内导体 402 上的螺杆 407用于调节频率。
金属线 406—端与柱状腔内导体 402连接,另一端和所述与源和负载进行信 号连接的金属导体层 404连接。 印制电路板 403和柱状腔内导体 402的相对关系 可以是: 所述印制电路板 403上敷设有对源和负载进行信号连接的金属导体层 404的一面或敷设有接地的金属导体层的一面与所述柱状腔内导体 402的轴线 方向或中心线方向平行。 例如, 若柱状腔内导体 402为圓柱状腔内导体, 则所 述印制电路板 403上敷设有对源和负载进行信号连接的金属导体层 404的一面 或敷设有接地的金属导体层的一面与所述柱状腔内导体 402的轴线方向平行; 若柱状腔内导体 402为棱柱状腔内导体,则印制电路板 403上敷设有对源和负载 进行信号连接的金属导体层 404的一面或敷设有接地的金属导体层的一面与所 述柱状腔内导体 402的中心线方向平行。
由于柱状腔内导体 402是通过金属线 406和所述对源和负载进行信号连接 的金属导体层 404连接, 因此,柱状腔内导体 402和所述对源和负载进行信号连 接的金属导体层 404的耦合是电流耦合。
本发明实施例五提供的高频滤波器包括少一个接地的同轴谐振腔、至少一 条柱状腔内导体和设置于所述同轴谐振腔内的至少一块印制电路板。
附图 5示出了实施例五提供的高频滤波器同轴谐振腔 401内各个部件的结 构以及相对位置示意图。 印制电路板 503的一面敷设对源和负载进行信号连接 的金属导体层 504,与敷设所述对源和负载进行信号连接的金属导体层 504的一 面相对的一面, 则敷设接地的金属导体层, 所述接地的金属导体层与同轴谐振 腔 401的一个侧壁接触。柱状腔内导体 502可以是圓柱状腔内导体,也可以是棱 柱状腔内导体, 其一端与同轴谐振腔 401接触。 由于接地的金属导体层与同轴 谐振腔 401的一个侧壁接触, 因此, 柱状腔内导体 502与同轴谐振腔 401接触的 一端相当于接地。 所述对源和负载进行信号连接的金属导体层 504的作用除了 保证信号的流通, 还可以将金属导体层 504连接的信号耦合到柱状腔内导体 502。 设置于柱状腔内导体 502上的螺杆 505用于调节频率。
印制电路板 503和柱状腔内导体 502的相对关系可以是: 所述印制电路板 503上敷设有所述对源和负载进行信号连接的金属导体层 504的一面或敷设有 接地的金属导体层 505的一面与所述柱状腔内导体 502的轴线方向或中心线(若 柱状腔内导体 502为棱柱状腔内导体) 方向垂直。 例如, 若柱状腔内导体 502 为圓柱状腔内导体, 则所述印制电路板 503上敷设有所述对源和负载进行信号 连接的金属导体层 504的一面或敷设有接地的金属导体层 505的一面与所述柱 状腔内导体 502的轴线方向垂直, 若柱状腔内导体 502为棱柱状腔内导体, 则所 述印制电路板 503上敷设有所述对源和负载进行信号连接的金属导体层 504的 一面或敷设有接地的金属导体层 505的一面与所述柱状腔内导体 502的中心线 方向垂直。
柱状腔内导体 502和所述对源和负载进行信号连接的金属导体层 504直接 接触, 因此, 柱状腔内导体 502和所述对源和负载进行信号连接的金属导体层 504的耦合是电流耦合。
从上述本发明实施例提供的高频滤波器可知,高频滤波器的各个同轴谐振 腔设置有至少一块印制电路板和位于所述印制电路板一侧的至少一条腔内导 体。由于刻板工艺能够保证对源和负载进行信号连接的金属导体层的尺寸精度 在正负 lmil (密耳), 而印制电路板的尺寸公差和介电常数的波动范围可以有 效控制, 并且没有装配公差。 印制电路板的这种高一致性保证了印制电路板结 构的器件的各项指标一致性比纯机械加工再装配出来的器件高。具体体现在本 发明实施例提供的高频滤波器中即, 印制电路板的高一致性保证了滤波器驻 波、 相位和群时延等指标的批量一致性, 而因其具有较高的介电常数, 和空气 带线相比能够减 d、滤波器体积。
以上对本发明实施例提供的一种高频滤波器进行了详细介绍,本文中应用 了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用 于帮助理解本发明的方法及其核心思想; 同时, 对于本领域的一般技术人员, 依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述, 本说明书内容不应理解为对本发明的限制。

Claims

权 利 要 求
1、 一种高频滤波器, 其特征在于, 所述高频滤波器包括至少一个同轴谐 振腔、设置于所述同轴谐振腔的至少一块印制电路板和位于所述印制电路板一 侧的至少一条腔内导体,所述印制电路板的一面设有对源和负载进行信号连接 的金属导体层,与设有所述金属导体层的一面相对的另一面设有接地的金属导 体层, 所述腔内导体的一端和所述同轴谐振腔均接地;
所述腔内导体与所述对源和负载进行信号连接的金属导体层耦合。
2、 如权利要求 1所述的高频滤波器, 其特征在于, 所述印制电路板覆盖于 所述同轴谐振腔腔口上,所述高频滤波器还包括设置于所述同轴谐振腔内的至 少一条 U形耦合片, 所述 U形耦合片一端与所述对源和负载进行信号连接的金 属导体层连接, 另一端与所述接地的金属导体层连接;
所述腔内导体为柱状腔内导体,所述柱状腔内导体一端与所述同轴谐振腔 的一个侧壁接触,所述印制电路板设有所述对源和负载进行信号连接的金属导 体层的一面或所述接地的金属导体层的一面与所述柱状腔内导体的轴线方向 或中心线方向平行。
3、 如权利要求 2所述的高频滤波器, 其特征在于, 所述腔内导体与所述对 源和负载进行信号连接的金属导体层耦合具体为:所述柱状腔内导体通过所述 U形耦合片所激励的所述同轴谐振腔内的磁场与所述对源和负载进行信号连 接的金属导体层耦合。
4、 如权利要求 1所述的高频滤波器, 其特征在于, 所述印制电路板设置于 同轴谐振腔的内部, 所述腔内导体为 U形腔内导体, 所述 U形腔内导体的一端 与所述接地的金属导体层连接,另一端镶嵌于所述印制电路板且不与所述对源 和负载进行信号连接的金属导体层接触, 所述 U形腔内导体的水平部分与所述 印制电路板设有所述对源和负载进行信号连接的金属导体层的一面或所述接 地的金属导体层的一面平行。
5、 如权利要求 4所述的高频滤波器, 其特征在于, 所述腔内导体与所述对 源和负载进行信号连接的金属导体层耦合具体为: 所述 U形腔内导体与所述对 源和负载进行信号连接的金属导体层进行电容耦合。
6、 如权利要求 1所述的高频滤波器, 其特征在于, 所述腔内导体为 U形腔 内导体, 所述 U形腔内导体的一端与所述接地的金属导体层连接, 另一端镶嵌 于所述印制电路板且与所述对源和负载进行信号连接的金属导体层接触,所述
U形腔内导体的水平部分与所述印制电路板设有所述对源和负载进行信号连 接的金属导体层的一面或所述接地的金属导体层的一面平行。
7、 如权利要求 6所述的高频滤波器, 其特征在于, 所述腔内导体与所述对 源和负载进行信号连接的金属导体层耦合具体为: 所述 U形腔内导体与所述对 源和负载进行信号连接的金属导体层进行电流耦合。
8、 如权利要求 1所述的高频滤波器, 其特征在于, 所述印制电路板覆盖于 所述同轴谐振腔腔口上, 所述腔内导体为 L形腔内导体, 所述 L形腔内导体的 垂直部分的端部镶嵌于所述印制电路板且不与所述对源和负载进行信号连接 的金属导体层接触, 所述 L形腔内导体的水平部分的端部与所述同轴谐振腔的 一个侧壁接触, 所述 L形腔内导体的水平部分与所述印制电路板设有所述对源 和负载进行信号连接的金属导体层的一面或所述接地的金属导体层的一面平 行。
9、 如权利要求 8所述的高频滤波器, 其特征在于, 所述腔内导体与所述对 源和负载进行信号连接的金属导体层耦合具体为: 所述 L形腔内导体与所述对 源和负载进行信号连接的金属导体层进行电容耦合。
10、 如权利要求 1所述的高频滤波器, 其特征在于, 所述印制电路板覆盖 于所述同轴谐振腔腔口上, 所述腔内导体为 L形腔内导体, 所述 L形腔内导体 的垂直部分的端部镶嵌于所述印制电路板且与所述对源和负载进行信号连接 的金属导体层接触, 所述 L形腔内导体的水平部分的端部与所述同轴谐振腔的 一个侧壁接触, 所述 L形腔内导体的水平部分与所述印制电路板设有所述对源 和负载进行信号连接的金属导体层的一面或所述接地的金属导体层的一面平 行。
11、 如权利要求 10所述的高频滤波器, 其特征在于, 所述腔内导体与所述 对源和负载进行信号连接的金属导体层耦合具体为: 所述 L形腔内导体与所述 对源和负载进行信号连接的金属导体层进行电流耦合。
12、 如权利要求 1所述的高频滤波器, 其特征在于, 所述印制电路板覆盖 于所述同轴谐振腔腔口上,所述高频滤波器还包括设置于所述同轴谐振腔内的 至少一条金属线, 所述金属线一端与所述腔内导体连接, 另一端与所述对源和 负载进行信号连接的金属导体层连接;
所述腔内导体为柱状腔内导体,所述柱状腔内导体一端与所述同轴谐振腔 的一个侧壁接触,所述印制电路板设有所述对源和负载进行信号连接的金属导 体层的一面或所述接地的金属导体层的一面与所述柱状腔内导体的轴线方向 或中心线方向平行。
13、 如权利要求 12所述的高频滤波器, 其特征在于, 所述腔内导体与所述 对源和负载进行信号连接的金属导体层耦合具体为:所述柱状腔内导体通过所 述金属线与所述对源和负载进行信号连接的金属导体层进行电流耦合。
14、 如权利要求 1所述的高频滤波器, 其特征在于, 所述印制电路板设置 于所述同轴谐振腔内, 所述腔内导体为柱状腔内导体, 所述柱状腔内导体一端 与所述同轴谐振腔的一壁接触,所述印制电路板设有所述对源和负载进行信号 连接的金属导体层的一面或所述接地的金属导体层的一面与所述柱状腔内导 体的轴线方向或中心线方向垂直, 所述柱状腔内导体的一端接地。
15、 如权利要求 14所述的高频滤波器, 其特征在于, 所述腔内导体与所述 对源和负载进行信号连接的金属导体层耦合具体为:所述柱状腔内导体通过与 所述对源和负载进行信号连接的金属导体层进行电流耦合。
PCT/CN2011/085003 2011-12-30 2011-12-30 一种高频滤波器 WO2013097168A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2011/085003 WO2013097168A1 (zh) 2011-12-30 2011-12-30 一种高频滤波器
CN201180003585.7A CN102742072B (zh) 2011-12-30 2011-12-30 一种高频滤波器
EP11879066.6A EP2800201B1 (en) 2011-12-30 2011-12-30 High frequency filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/085003 WO2013097168A1 (zh) 2011-12-30 2011-12-30 一种高频滤波器

Publications (1)

Publication Number Publication Date
WO2013097168A1 true WO2013097168A1 (zh) 2013-07-04

Family

ID=46995178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/085003 WO2013097168A1 (zh) 2011-12-30 2011-12-30 一种高频滤波器

Country Status (3)

Country Link
EP (1) EP2800201B1 (zh)
CN (1) CN102742072B (zh)
WO (1) WO2013097168A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016104608A1 (de) * 2016-03-14 2017-09-14 Kathrein-Werke Kg Koaxialfilter in Rahmenbauweise
EP3240100A1 (en) * 2016-04-28 2017-11-01 Alcatel Lucent A radio frequency filter comprising a chamber, and a method of filtering
CN110867634B (zh) * 2018-08-28 2022-06-24 罗森伯格技术有限公司 一种电磁混合耦合滤波器
CN109728388B (zh) * 2019-02-12 2023-12-05 华南理工大学 一种具有恒定绝对带宽的高选择性电调同轴滤波器
CN111584983B (zh) * 2020-06-09 2021-07-13 中国电子科技集团公司第十四研究所 一种多层结构的滤波耦合组件
CN117154409A (zh) * 2020-10-27 2023-12-01 华为技术有限公司 一种传输线组件、天线组件和移动终端
EP4068501A1 (en) 2021-03-30 2022-10-05 Nokia Solutions and Networks Oy A cavity filter element for a cavity filter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004993A (en) * 1989-09-19 1991-04-02 The United States Of America As Represented By The Secretary Of The Navy Constricted split block waveguide low pass filter with printed circuit filter substrate
CN1168006A (zh) * 1996-02-20 1997-12-17 三菱电机株式会社 高频滤波器
JP2001044704A (ja) * 1999-07-29 2001-02-16 Sony Corp 分布定数回路素子とその製造方法およびプリント配線板
US20050140471A1 (en) * 2003-12-24 2005-06-30 Cheng-Yen Shih High frequency filter
CN1745498A (zh) * 2002-12-11 2006-03-08 瑞士塔莱斯公司 可调高频滤波器装置及其制造方法
CN101252669A (zh) * 2007-02-22 2008-08-27 约翰·梅扎林瓜联合有限公司 具有增强的高通频带响应的双带阻滤波器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI106584B (fi) * 1997-02-07 2001-02-28 Filtronic Lk Oy Korkeataajuussuodatin
US6919782B2 (en) * 2001-04-04 2005-07-19 Adc Telecommunications, Inc. Filter structure including circuit board
FI119402B (fi) * 2004-03-22 2008-10-31 Filtronic Comtek Oy Järjestely suodattimen lähtösignaalin jakamiseksi
EP2056394B1 (en) * 2007-10-31 2013-09-04 Alcatel Lucent Cavity resonator
CN101471477A (zh) * 2007-12-27 2009-07-01 奥雷通光通讯设备(上海)有限公司 一种用于无源腔体滤波器的耦合器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004993A (en) * 1989-09-19 1991-04-02 The United States Of America As Represented By The Secretary Of The Navy Constricted split block waveguide low pass filter with printed circuit filter substrate
CN1168006A (zh) * 1996-02-20 1997-12-17 三菱电机株式会社 高频滤波器
JP2001044704A (ja) * 1999-07-29 2001-02-16 Sony Corp 分布定数回路素子とその製造方法およびプリント配線板
CN1745498A (zh) * 2002-12-11 2006-03-08 瑞士塔莱斯公司 可调高频滤波器装置及其制造方法
US20050140471A1 (en) * 2003-12-24 2005-06-30 Cheng-Yen Shih High frequency filter
CN101252669A (zh) * 2007-02-22 2008-08-27 约翰·梅扎林瓜联合有限公司 具有增强的高通频带响应的双带阻滤波器

Also Published As

Publication number Publication date
EP2800201B1 (en) 2018-11-14
CN102742072B (zh) 2014-07-30
EP2800201A4 (en) 2015-04-22
EP2800201A1 (en) 2014-11-05
CN102742072A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
WO2013097168A1 (zh) 一种高频滤波器
US9000864B2 (en) Directional coupler
CN1276541C (zh) 电介质波导管滤波器及安装有电介质波导管滤波器的装置
JP4516883B2 (ja) 導波管とマイクロストリップ給電線との間の非接触移行部素子
EP2979321B1 (en) A transition between a siw and a waveguide interface
US20080272860A1 (en) Tunable Dielectric Resonator Circuit
JP2004153367A (ja) 高周波モジュール、ならびにモード変換構造および方法
WO2008089672A1 (fr) Coupleur directionnel et dispositif d'emission ou de reception
JP2010192987A (ja) 同軸コネクタ、同軸コネクタ・平面線路接続構造
JP2005260570A (ja) マイクロストリップ線路導波管変換器
CN110474156B (zh) 一种具有cq耦合结构的滤波贴片天线
JP5457931B2 (ja) 非導波管線路−導波管変換器及び非導波管線路−導波管変換器を用いた通信用装置
JP2006211373A (ja) 2ポート型非可逆回路素子及び通信装置
JP2005051330A (ja) 誘電体導波管線路と高周波伝送線路との接続構造およびそれを用いた高周波回路基板ならびに高周波素子搭載用パッケージ
WO2019017085A1 (ja) チューナブル帯域通過フィルタ及びその構成方法
WO2017085936A1 (ja) 誘電体フィルタユニット及び通信機器
KR100852487B1 (ko) 유전체 듀플렉서
CN111033884B (zh) 一种滤波器、双工器及通信设备
JP6972303B2 (ja) 導波管アンテナ磁気電気的適合変換器
JP2006157198A (ja) 非導波管線路−導波管変換器
US20160013538A1 (en) Multi-Mode Filter with Resonators and Connecting Path
JP2010213199A (ja) 高周波モジュール
US9634367B2 (en) Filter
JP2006284540A (ja) 誘電特性測定方法および導電率測定方法
JP2010087981A (ja) 導波管接続素子及び導波管

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003585.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11879066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011879066

Country of ref document: EP