WO2013097116A1 - 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法 - Google Patents

一种稀土锂硫电池用纳米硫复合正极材料及其制备方法 Download PDF

Info

Publication number
WO2013097116A1
WO2013097116A1 PCT/CN2011/084822 CN2011084822W WO2013097116A1 WO 2013097116 A1 WO2013097116 A1 WO 2013097116A1 CN 2011084822 W CN2011084822 W CN 2011084822W WO 2013097116 A1 WO2013097116 A1 WO 2013097116A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
rare earth
carbon nanotube
sulphur
carbon nanotubes
Prior art date
Application number
PCT/CN2011/084822
Other languages
English (en)
French (fr)
Inventor
锺馨稼
Original Assignee
Chung Winston
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chung Winston filed Critical Chung Winston
Priority to EP11878921.3A priority Critical patent/EP2784859B8/en
Priority to PCT/CN2011/084822 priority patent/WO2013097116A1/zh
Publication of WO2013097116A1 publication Critical patent/WO2013097116A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a cathode material for a lithium ion battery, in particular to a nano-sulfur composite cathode material for a rare earth lithium-sulfur battery and a preparation method thereof, and belongs to the technical field of preparation of a rare earth lithium ion battery material.
  • Lithium-ion battery is a new generation of green high-energy battery with excellent performance, which has become one of the key points of high-tech development.
  • Lithium-ion batteries have the characteristics of high voltage, high capacity, low consumption, no memory effect, no pollution, small volume, small internal resistance, less self-discharge and more cycles.
  • the main constituent materials of the lithium ion battery include an electrolyte, a separator, a positive and a negative material, and the like.
  • the positive electrode material occupies a large proportion (the mass ratio of the positive and negative materials is 3: 1 ⁇ 4:1), because the performance of the cathode material directly affects the performance of the lithium ion battery, and its cost directly determines the cost of the battery.
  • the cathode material of existing lithium ion batteries is usually composed of Lithium iron phosphate, lithium manganate or ternary material, lithium nickel manganese oxide. These materials all have insufficient specific energy and cannot meet the requirements of power batteries such as automobiles.
  • the technical problem to be solved by the present invention is to make up for the defects of the above prior art, and to provide a nano-sulfur composite cathode material for a rare earth lithium-sulfur battery which has a series of advantages such as high energy density, good cycle performance, environmental protection, and low price.
  • Another technical problem to be solved by the present invention is to provide a method for preparing a nano-sulfur composite cathode material for a rare earth lithium-sulfur battery.
  • the first technical problem of the present invention is solved by the following technical solutions.
  • the nano-sulfur composite cathode material for the rare earth lithium-sulfur battery is composed of the following weight component materials:
  • the first technical problem of the present invention is solved by the following further technical solutions.
  • the carbon nanotubes are multi-walled carbon nanotubes.
  • the carbon nanotube composite material obtained in the step (4) is added to the alcohol medium having a concentration of ⁇ 65% by weight ratio of 2:1, and is ground by a high-speed grinder to make the particle size of the carbon nanotube composite material ⁇ 1 ⁇ m.
  • the carbon nanotube composite material obtained in the step (5) is dried at a temperature of 90 to 100 ° C under a flowing N 2 gas for 8 to 24 hours.
  • the carbon nanotube composite material is placed under flowing argon at 300 ° C to 400 ° C. Performing a second ⁇ 5 hour calcination treatment to obtain a carbon nanotube-sulfur composite material;
  • the carbon nanotube-sulfur composite material of step (7) is doped into rare earth cerium oxide by 9:1 (10%)
  • the gas stream is pulverized and classified to obtain a nano-sulfur composite cathode material for a rare earth lithium-sulfur battery having a particle size of ⁇ 1 ⁇ m.
  • the nano-sulfur composite cathode material for rare earth lithium-sulfur battery of the invention is subjected to high-temperature calcination of carbon nanotubes and sublimed sulfur, and the molten sulfur is sucked into the carbon nanotubes under the action of the capillary under high temperature and vacuum state, and further high temperature treatment is performed. The excess sulfur sublimation was eliminated, and a carbon nanotube-nanosulfur composite cathode material was prepared.
  • the prepared composite positive electrode material has high electron, ion conductivity and high specific capacity, and improves the cycle performance of elemental sulfur and lithium sulfide in a liquid dielectric.
  • the preparation method is simple in process, can be mass-produced, and is suitable for a cathode material for a lithium-sulfur battery. Since the elemental sulfur has poor conductivity, the generated lithium sulfide is unstable in the electrolyte, so that it does not function well in the liquid electrolyte battery.
  • Nano-sulfur composite cathode material for lithium-sulfur battery prepared by the formulation and preparation method of the invention particle size ⁇ 1 micron, high capacity >1000mAh/g, long cycle life (>1000 Times).
  • the preparation method has the advantages of simple process, low cost, excellent performance and is suitable for industrial production. It is a nano-sulfur composite cathode material for rare earth lithium-sulfur batteries with higher energy density, better cycle performance, environmental protection and cheaper prices.
  • a nano-sulfur composite cathode material for a rare earth lithium-sulfur battery is composed of a material composition of the following weight components:
  • step (2) of the ball-milled carbon nanotubes and the sublimed sulfur mixture is dried at 100 ° C for 24 hours under the protection of flowing N 2 gas.
  • the carbon nanotube composite material obtained in the step (4) is added to a concentration of 65% alcohol medium by a weight ratio of 2:1 , and is ground by a high-speed grinder to make the particle size of the carbon nanotube composite material ⁇ 1 micrometer.
  • step (5) The carbon nanotube composite obtained in step (5) is dried at 100 ° C for 24 hours under the protection of flowing N 2 gas.
  • step (6) After the step (6) is dried, the carbon nanotube composite material is placed under flowing argon gas, and the second calcination treatment is performed at 300 °C. Hours, obtaining a carbon nanotube-sulfur composite;
  • the carbon nanotube-sulfur composite of step (7) is doped into rare earth yttrium oxide at a ratio of 9:1 (10%)
  • the gas pulverization and classification are carried out to obtain a nano-sulfur composite cathode material for a rare earth lithium-sulfur battery having a particle size of ⁇ 1 ⁇ m.
  • a nano-sulfur composite cathode material for a rare earth lithium-sulfur battery is composed of a material composition of the following weight components:
  • a method for preparing a nano-sulfur composite cathode material for a rare earth lithium-sulfur battery comprises the following steps:
  • step (2) of the ball-milled carbon nanotubes and the sublimed sulfur mixture is dried at 95 ° C for 20 hours under the protection of flowing N 2 gas.
  • the carbon nanotube composite material obtained in the step (4) is added to a concentration of 65% alcohol medium by a weight ratio of 2:1 , and is ground by a high-speed grinder to make the particle size of the carbon nanotube composite material ⁇ 1 micrometer.
  • the step (5) is obtained by drying the carbon nanotube composite material at 95 ° C for 20 hours under the protection of flowing N 2 gas.
  • step (6) After the step (6) is dried, the carbon nanotube composite material is placed under flowing argon gas, and the second calcination treatment is performed at 300 °C. Hours, obtaining a carbon nanotube-sulfur composite;
  • the carbon nanotube-sulfur composite material of step (7) is doped into rare earth cerium oxide by 9:1 (10%)
  • the gas stream is pulverized and classified to obtain a nano-sulfur composite cathode material for a rare earth lithium-sulfur battery having a particle size of ⁇ 1 ⁇ m.
  • a nano-sulfur composite cathode material for a rare earth lithium-sulfur battery is composed of a material composition of the following weight components:
  • a method for preparing a nano-sulfur composite cathode material for a rare earth lithium-sulfur battery comprises the following steps:
  • step (2) the ball-milled carbon nanotubes and the sublimed sulfur mixture are dried at 90 ° C for 16 hours under the protection of flowing N 2 gas.
  • the carbon nanotube composite material obtained in the step (4) is added to a concentration of 65% alcohol medium by a weight ratio of 2:1 , and is ground by a high-speed grinder to make the particle size of the carbon nanotube composite material ⁇ 1 micrometer.
  • step (5) The carbon nanotube composite obtained in step (5) is dried at 90 ° C for 16 hours under the protection of flowing N 2 gas.
  • step (6) After the step (6) is dried, the carbon nanotube composite material is placed under flowing argon gas, and the second calcination treatment is performed at 400 °C. Hours, obtaining a carbon nanotube-sulfur composite;
  • the carbon nanotube-sulfur composite material of step (7) is doped into rare earth cerium oxide by 9:1 (10%)
  • the gas stream is pulverized and classified to obtain a nano-sulfur composite cathode material for a rare earth lithium-sulfur battery having a particle size of ⁇ 1 ⁇ m.

Abstract

提供一种稀土锂硫电池用纳米硫复合正极材料及其制备方法。正极材料由碳纳米管、升华硫和稀土氧化钇按照1〜2:5:0.67〜0.78的重量比配比组成。制备方法包括以下步骤:按重量比称取碳纳米管和升华硫;在酒精存在下进行球磨混料;烘干;将烘干后的碳纳米管与升华硫混合料置于-0.1〜-0.5atmos负压下,在200〜300°C进行第一次≥5小时的煅烧处理,得到熔融硫包覆的碳纳米管复合材料;将获得的复合材料在酒精存在下经高速研磨机研磨,使碳纳米管复合材料的粒度≤1微米;烘干;在流动氩气条件下,在300〜400°C进行第二次≥5小时的煅烧处理,获得碳纳米管一硫复合材料;将碳纳米管一硫复合材料按9:1掺入稀土氧化钇,进行气流粉碎、分级,获得尺寸≤1微米的稀土锂硫电池用纳米硫复合正极材料。

Description

一种稀土锂硫电池用纳米硫复合正极材料及其制备方法 技术领域
本发明涉及的是锂离子电池用正极材料,尤其是一种稀土锂硫电池用纳米硫复合正极材料及其制备方法,属于稀土类锂离子电池材料制备技术领域。
背景技术
锂离子电池是性能卓越的新一代绿色高能电池,已成为高新技术发展的重点之一。锂离子电池具有高电压、高容量、低消耗、无记忆效应、无公害、体积小、内阻小、自放电少和循环次数多等特点。目前,锂离子电池的应用领域已从移动电话、笔记本电脑、摄像机、数码相机等民用产品扩展到电动汽车及军事领域。 锂离子电池的主要构成材料包括电解液、隔离材料、正负极材料等。正极材料占有较大比例(正负极材料的质量比为3: 1~4:1),因为正极材料的性能直接影响着锂离子电池的性能,其成本也直接决定电池成本高低。
现有锂离子电池的正极材料通常由 磷酸铁锂、锰酸锂或三元材料、镍锰酸锂构成。这几种材料都存在比能量的不足,不能满足日益发展的汽车等动力电池的要求。
发明内容
本发明所要解决的技术问题是弥补上述现有技术的缺陷,提供一种比能量密度高、循环性能好、利于环保、价格便宜等一系列优点的稀土锂硫电池用纳米硫复合正极材料。
本发明所要解决的另一技术问题是提供一种稀土锂硫电池用纳米硫复合正极材料的制备方法。
本发明的第一个技术问题通过以下技术方案予以解 决。
这种稀土锂硫电池用纳米硫复合正极材料由以下重量组 分 材料 配比组成:
碳纳米管    1 ~ 2
升华硫      5
稀土氧化钇 0.67 ~0.78
本发明的第一个技术问题通过以下进一步的技术方案予以解 决。
所述碳纳米管是多壁碳纳米管。
本发明的第二个技术问题通过以下技术方案予以解 决。
这种稀土锂硫电池用纳米硫复合正极材料的制作方法包括以下步骤:( 1 ) 按重量比为称取碳纳米管 =1 ~ 2 、升华硫= 5 ;
( 2 )将步骤( 1 )的碳纳米管与升华硫混合料按重量比 2 : 1 加入浓度 ≥ 65% 酒精,进行至少 10 小时的球磨混料;
( 3 )将步骤( 2 )经球磨混料的碳纳米管与升华硫混合料在 90 ~ 100 ℃ ,流动 N2 气体保护下烘干 8 ~ 24 小时;
( 4 )将步骤( 3 )烘干后的碳纳米管与升华硫混合料置于 -0.1 ~ -0.5atmos 负压条件下,在 200 ℃~ 300 ℃下进行第一次 ≥ 5 小时的煅烧处理,获得熔融硫包覆的碳纳米管复合材料;
( 5 )将步骤( 4 )获得碳纳米管复合材料按重量比 2:1 加入浓度 ≥ 65% 酒精介质中,经过高速研磨机研磨,使碳纳米管复合材料的颗粒度 ≤ 1 微米。( 6 )将步骤( 5 )获得的碳纳米管复合材料在 90 ~ 100 ℃ ,流动 N2 气体保护下烘干 8 ~ 24 小时。
( 7 )将步骤( 6 )烘干后碳纳米管复合材料置于流动氩气条件下,在 300 ℃~ 400 ℃ 进行第二次 ≥ 5 小时的煅烧处理,获得碳纳米管-硫复合材料;
( 8 )将步骤( 7 )的碳纳米管-硫复合材料按 9 : 1 掺入稀土氧化钇( 10% )进行气流粉碎、分级,获得颗粒尺寸 ≤ 1 微米的稀土锂硫电池用纳米硫复合正极材料。
本发明与现有技术对比的有益效果是:
本发明的稀土锂硫电池用纳米硫复合正极材料,通过碳纳米管与升华硫的高温煅烧,在高温、真空状态下,熔融硫在毛细管的作用下吸入到碳纳米管内,进一步的高温处理,使得多余硫升华排除,制备出了碳纳米管-纳米硫复合正极材料。制备的复合正极材料具有高的电子、离子导电性和高的比容量,改善了单质硫、硫化锂在液体电介质中的循环性能。该制备方法工艺简单,能够大规模生产,适用于锂硫电池用正极材料。由于单质硫具有导电性差,生成的硫化锂在电解液中不稳定的因素,使其在液体电解液电池中不能很好的发挥作用。利用本发明的配方和制备方法制备的锂硫电池用纳米硫复合正极材料,颗粒度 <1 微米 ,容量高 >1000mAh/g ,循环寿命长( >1000 次)。本制备方法工艺简单、低成本,性能优良、适用于工业化生产。是一种比能量密度高、循环性能好、利于环保、价格便宜等一系列优点的稀土锂硫电池用纳米硫复合正极材料。
具体实施方式
下面结合具体实施方式对本发明进行说明。
实施例 1
一种稀土 锂硫电池用纳米硫复合正极材料由以下重量组 分 的材料 配比组成:
多壁碳纳米管   1
升华硫       5
稀土氧化钇    0.67
一种稀土 锂硫电池用纳米硫复合正极材料的制作方法,包括以下步骤:( 1 ) 按重量比称取 碳纳米管 =1 、升华硫= 5 ;
( 2 )将步骤( 1 )的碳纳米管与升华硫混合料按重量比 2 : 1 加入浓度 ≥ 65% 酒精,进行至少 10 小时的球磨混料;
( 3 )将步骤( 2 )经球磨混料的碳纳米管与升华硫混合料在 100 ℃ ,流动 N2 气体保护下烘干 24 小时。
( 4 )将步骤( 3 )烘干后的碳纳米管与升华硫混合料置于 -0.1atmos 负压条件下,在 200 ℃ 进行第一次煅烧处理 5 小时,获得熔融硫包覆的碳纳米管复合材料;
( 5 )将步骤( 4 )获得碳纳米管复合材料按重量比 2:1 加入浓度 65% 酒精介质中,经过高速研磨机研磨,使碳纳米管复合材料的颗粒度 ≤ 1 微米。
( 6 )将步骤( 5 )获得碳纳米管复合材料在 100 ℃ ,流动 N2 气体保护下烘干 24 小时。
( 7 )将步骤( 6 )烘干后碳纳米管复合材料置于流动氩气条件下,在 300 ℃ 进行第二次煅烧处理 5 小时,获得碳纳米管-硫复合材料;
( 8 )将步骤( 7 )的碳纳米管-硫复合材料按 9:1 掺入稀土氧化钇( 10% )进行气流粉碎、分级,获得颗粒尺寸 ≤ 1 微米的稀土锂硫电池用纳米硫复合正极材料 。
实施例 2
一种稀土 锂硫电池用纳米硫复合正极材料由以下重量组 分 的材料 配比组成:
多壁碳纳米管   1.5
升华硫      5
稀土氧化钇 0.72
一种稀土锂硫电池用纳米硫复合正极材料的制作方法包括以下步骤:
( 1 ) 按重量比称取 碳纳米管 =1 、升华硫= 5 ;
( 2 )将步骤( 1 )的碳纳米管与升华硫混合料按重量比 2 : 1 加入浓度 ≥ 65% 酒精,进行至少 10 小时的球磨混料;
( 3 )将步骤( 2 )经球磨混料的碳纳米管与升华硫混合料在 95 ℃ ,流动 N2 气体保护下烘干 20 小时。
( 4 )将步骤( 3 )烘干后的碳纳米管与升华硫混合料置于 -0.2atmos 负压条件下,在 250 ℃ 进行第一次煅烧处理 6 小时,获得熔融硫包覆的碳纳米管复合材料;
( 5 )将步骤( 4 )获得碳纳米管复合材料按重量比 2:1 加入浓度 65% 酒精介质中,经过高速研磨机研磨,使碳纳米管复合材料的颗粒度 ≤ 1 微米。
( 6 )将步骤( 5 )获得碳纳米管复合材料在 95 ℃ ,流动 N2 气体保护下烘干 20 小时。
( 7 )将步骤( 6 )烘干后碳纳米管复合材料置于流动氩气条件下,在 300 ℃ 进行第二次煅烧处理 6 小时,获得碳纳米管-硫复合材料;
( 8 )将步骤( 7 )的碳纳米管-硫复合材料按 9 : 1 掺入稀土氧化钇( 10% )进行气流粉碎、分级,获得颗粒尺寸 ≤ 1 微米的稀土锂硫电池用纳米硫复合正极材料。
实施例 3
一种稀土 锂硫电池用纳米硫复合正极材料由以下重量组 分 的材料 配比组成:
多壁碳纳米管  2
升华硫      5
稀土氧化钇 0.78
一种稀土锂硫电池用纳米硫复合正极材料的制作方法包括以下步骤:
( 1 ) 按重量比称取 碳纳米管 =2 、升华硫= 5 ;
( 2 )将步骤( 1 )的碳纳米管与升华硫混合料按重量比 2 : 1 加入浓度 ≥ 65% 酒精,进行至少 10 小时的球磨混料;
( 3 )将步骤( 2 )经球磨混料的碳纳米管与升华硫混合料在 90 ℃ ,流动 N2 气体保护下烘干 16 小时。
( 4 )将步骤( 3 )烘干后的碳纳米管与升华硫混合料置于 -0.5atmos 负压条件下,在 300 ℃ 进行第一次煅烧处理 7 小时,获得熔融硫包覆的碳纳米管复合材料;
( 5 )将步骤( 4 )获得碳纳米管复合材料按重量比 2:1 加入浓度 65% 酒精介质中,经过高速研磨机研磨,使碳纳米管复合材料的颗粒度 ≤ 1 微米。
( 6 )将步骤( 5 )获得碳纳米管复合材料在 90 ℃ ,流动 N2 气体保护下烘干 16 小时。
( 7 )将步骤( 6 )烘干后碳纳米管复合材料置于流动氩气条件下,在 400 ℃ 进行第二次煅烧处理 7 小时,获得碳纳米管-硫复合材料;
( 8 )将步骤( 7 )的碳纳米管-硫复合材料按 9 : 1 掺入稀土氧化钇( 10% )进行气流粉碎、分级,获得颗粒尺寸 ≤ 1 微米的稀土锂硫电池用纳米硫复合正极材料。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。

Claims (3)

  1. 一种稀土锂硫电池用纳米硫复合正极材料,其特征在于由以下重量组 分 的材料 配比组成 :
    碳纳米管 :     1 ~ 2
    升华硫     5
    稀土氧化钇: 0.67 ~0.78
  2. 根据权利要求 1 所述稀土锂硫电池用纳米硫复合正极材料,其特征在于:
    所述碳纳米管是多壁碳纳米管。
  3. 一种稀土锂硫电池用纳米硫复合正极材料的制作方法,包括以下步骤:
    ( 1 ) 按重量比为称取 碳纳米管 =1 ~ 2 、升华硫= 5 ;
    ( 2 )将步骤( 1 )的碳纳米管与升华硫混合料按重量比 2 : 1 加入浓度 ≥ 65% 酒精,进行至少 10 小时的球磨混料;
    ( 3 )将步骤( 2 )经球磨混料的碳纳米管与升华硫混合料在 90 ~ 100 ℃ ,流动 N2 气体保护下烘干 8 ~ 24 小时
    ( 4 )将步骤( 3 )烘干后的碳纳米管与升华硫混合料置于 -0.1 ~ -0.5atmos 负压条件下,在 200 ℃~ 300 ℃下进行第一次 ≥ 5 小时的煅烧处理,获得熔融硫包覆的碳纳米管复合材料;
    ( 5 )将步骤( 4 )获得碳纳米管复合材料按重量比 2:1 加入浓度 ≥ 65% 酒精介质中,经过高速研磨机研磨,使碳纳米管复合材料的颗粒度 ≤ 1 微米。
    ( 6 )将步骤( 5 )获得的碳纳米管复合材料在 90 ~ 100 ℃ ,流动 N2 气体保护下烘干 8 ~ 24 小时。
    ( 7 )将步骤( 6 )烘干后碳纳米管复合材料置于流动氩气条件下,在 300 ℃~ 400 ℃ 进行第二次 ≥ 5 小时的煅烧处理,获得碳纳米管-硫复合材料;
    ( 8 )将步骤( 7 )的碳纳米管-硫复合材料按 9 : 1 掺入稀土氧化钇( 10% )进行气流粉碎、分级,获得颗粒尺寸 ≤ 1 微米的稀土锂硫电池用纳米硫复合正极材料。
PCT/CN2011/084822 2011-12-28 2011-12-28 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法 WO2013097116A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11878921.3A EP2784859B8 (en) 2011-12-28 2011-12-28 Nano-sulphur composite anode material for rare earth lithium sulphur battery and method for preparing same.
PCT/CN2011/084822 WO2013097116A1 (zh) 2011-12-28 2011-12-28 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/084822 WO2013097116A1 (zh) 2011-12-28 2011-12-28 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2013097116A1 true WO2013097116A1 (zh) 2013-07-04

Family

ID=48696203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084822 WO2013097116A1 (zh) 2011-12-28 2011-12-28 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法

Country Status (2)

Country Link
EP (1) EP2784859B8 (zh)
WO (1) WO2013097116A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161557A1 (en) * 2011-12-27 2013-06-27 Winston CHUNG Nano-Sulfur Composite Anode Material for Rare Earth Lithium-Sulfur Battery and its Preparation Method Thereof
EP2784859B1 (en) * 2011-12-28 2017-06-07 Chung, Winston Nano-sulphur composite anode material for rare earth lithium sulphur battery and method for preparing same.
CN110444754A (zh) * 2019-09-06 2019-11-12 中南大学 一种碳纳米管限域硫硒复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100355123C (zh) * 2002-09-23 2007-12-12 三星Sdi株式会社 锂-硫电池的正极活性物质及其制备方法
CN101562244A (zh) * 2009-06-02 2009-10-21 北京理工大学 锂二次电池用单质硫复合材料的制备方法
CN101577323A (zh) * 2009-06-11 2009-11-11 上海交通大学 一种二次锂硫电池硫基正极及其制备方法
US20110206992A1 (en) * 2009-08-28 2011-08-25 Sion Power Corporation Porous structures for energy storage devices
CN102522530A (zh) * 2011-12-27 2012-06-27 钟馨稼 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100378014B1 (ko) * 2000-08-21 2003-03-29 삼성에스디아이 주식회사 리튬 이차 전지용 전극 및 리튬 이차 전지
CN101719545B (zh) * 2009-12-16 2014-07-02 北京理工大学 一种锂硫电池正极复合材料及其制备方法
WO2013097116A1 (zh) * 2011-12-28 2013-07-04 Chung Winston 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100355123C (zh) * 2002-09-23 2007-12-12 三星Sdi株式会社 锂-硫电池的正极活性物质及其制备方法
CN101562244A (zh) * 2009-06-02 2009-10-21 北京理工大学 锂二次电池用单质硫复合材料的制备方法
CN101577323A (zh) * 2009-06-11 2009-11-11 上海交通大学 一种二次锂硫电池硫基正极及其制备方法
US20110206992A1 (en) * 2009-08-28 2011-08-25 Sion Power Corporation Porous structures for energy storage devices
CN102522530A (zh) * 2011-12-27 2012-06-27 钟馨稼 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161557A1 (en) * 2011-12-27 2013-06-27 Winston CHUNG Nano-Sulfur Composite Anode Material for Rare Earth Lithium-Sulfur Battery and its Preparation Method Thereof
US8858840B2 (en) * 2011-12-27 2014-10-14 Winston CHUNG Nano-sulfur composite anode material for rare earth lithium-sulfur battery and its preparation method thereof
EP2784859B1 (en) * 2011-12-28 2017-06-07 Chung, Winston Nano-sulphur composite anode material for rare earth lithium sulphur battery and method for preparing same.
CN110444754A (zh) * 2019-09-06 2019-11-12 中南大学 一种碳纳米管限域硫硒复合材料及其制备方法
CN110444754B (zh) * 2019-09-06 2023-12-19 中南大学 一种碳纳米管限域硫硒复合材料及其制备方法

Also Published As

Publication number Publication date
EP2784859B1 (en) 2017-06-07
EP2784859A4 (en) 2014-11-12
EP2784859B8 (en) 2017-08-02
EP2784859A1 (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5738222B2 (ja) 希土類リチウム硫黄電池用のナノメートル硫黄複合正極材及びその製造方法
CN110048101B (zh) 一种硅氧碳微球复合负极材料及其制备方法与应用
WO2014104842A1 (ko) 이차전지용 음극활물질, 이차전지용 도전성 조성물, 이를 포함하는 음극재료, 이를 포함하는 음극구조체 및 이차전지, 및 이들의 제조방법
CN103123967B (zh) 一种锂离子电池SiO/C复合负极材料及其制备方法
CN105355877B (zh) 一种石墨烯‑金属氧化物复合负极材料及其制备方法
WO2016201979A1 (zh) 一种硅碳复合负极材料的制备方法
WO2016013855A1 (ko) 2 차 전지용 실리콘계 활물질 입자의 제조 방법 및 실리콘계 활물질 입자
WO2012115411A2 (ko) 출력 특성이 향상된 혼합된 양극활물질 및 이를 포함하는 리튬 이차전지
WO2013005887A1 (ko) 실리콘-탄소 코어쉘을 이용한 리튬이차전지용 음극활물질 및 이의 제조방법
CN110380133A (zh) 一种无机固态电解质与正极间的过渡层设计方法
WO2012108702A2 (ko) 출력특성이 향상된 혼합 양극활물질 및 이를 포함하는 리튬이차전지
CN112652758B (zh) 用于锂离子电池的硅氧化物/碳微球复合负极材料及其制备方法
WO2014094424A1 (zh) 锂离子电池的负极材料及其制备方法和锂离子电池
CN101908627A (zh) 锂离子二次电池负极材料及其制备方法
CN112952048A (zh) 硅碳复合负极材料及其制备方法、电极和二次电池
WO2013097116A1 (zh) 一种稀土锂硫电池用纳米硫复合正极材料及其制备方法
WO2021221276A1 (ko) 리튬 이차전지용 음극재, 이의 제조방법 및 리튬 이차전지
WO2019143135A1 (en) Composite material including selenium, method of fabricating the same, lithium ion and lithium selenium secondary batteries including the same, and lithium ion capacitor including the same
CN110970619A (zh) 一种物理剥离法制备石墨烯纳米片的方法、锂离子电池负极用水性导电浆料及其制备方法
CN108376781B (zh) 一种锂离子动力电池用硅碳负极材料及其制备方法
CN113809331A (zh) 一种用于锂离子电池正极的多功能添加剂及其制备方法、锂离子电池
CN108717973B (zh) 一种原位双层包覆硅碳负极材料及其制备方法
CN113782744B (zh) 锂离子修饰粘结剂用于提高高比能氧化亚硅负极性能的方法
CN112421002B (zh) 一种高容量的硅碳材料及其制备方法
Deng et al. Dual function high efficiency silicon electrode prelithiation strategy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878921

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011878921

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011878921

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE