WO2013094873A1 - 박막 전지 모듈, 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법 - Google Patents

박막 전지 모듈, 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법 Download PDF

Info

Publication number
WO2013094873A1
WO2013094873A1 PCT/KR2012/009206 KR2012009206W WO2013094873A1 WO 2013094873 A1 WO2013094873 A1 WO 2013094873A1 KR 2012009206 W KR2012009206 W KR 2012009206W WO 2013094873 A1 WO2013094873 A1 WO 2013094873A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
filling
thin film
battery module
region
Prior art date
Application number
PCT/KR2012/009206
Other languages
English (en)
French (fr)
Inventor
김용연
권산무
최수태
조은행
황은종
방성규
Original Assignee
지에스나노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스나노텍 주식회사 filed Critical 지에스나노텍 주식회사
Priority to CN201280063125.8A priority Critical patent/CN104040753B/zh
Priority to JP2014548648A priority patent/JP6127064B2/ja
Priority to EP12859847.1A priority patent/EP2797136A4/en
Priority to US14/366,911 priority patent/US9728754B2/en
Publication of WO2013094873A1 publication Critical patent/WO2013094873A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/579Devices or arrangements for the interruption of current in response to shock
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53135Storage cell or battery

Definitions

  • the present invention relates to a thin film battery package manufacturing apparatus, and more particularly, to a thin film battery module, a thin film battery package, a thin film battery package manufacturing apparatus and a thin film battery package manufacturing method having impact resistance.
  • a thin film battery is a battery in which the entire thickness of a battery is made to be several tens of micrometers by depositing all the components of the battery such as a cathode, an anode, and an electrolyte in a thin film form.
  • the thin film battery has a package housing.
  • a stacking space is formed inside the package housing.
  • Unit cells are stacked in multiple stages in the stacking space.
  • the stacked unit cells form a battery module.
  • the battery module has a predetermined spaced space at both sides in the stacking space.
  • the cover is installed on the upper surface of the battery module and the top of the package housing and a predetermined spaced apart space is formed.
  • the battery module constituting the separation space has a problem that the arrangement position is shifted or the alignment positions of the unit cells are shifted due to an impact on the outside.
  • the battery module forming the separation space is also a problem that is damaged by the external impact.
  • An object of the present invention is to provide a thin film battery module, a thin film battery package, a thin film battery package manufacturing apparatus and a thin film battery package manufacturing method having an impact resistance to protect the unit cells accumulated in the package housing from external impact.
  • Still another object of the present invention is to provide a thin film battery module, a thin film battery package, a thin film battery package manufacturing apparatus, and a thin film battery package manufacturing method capable of allowing multiple shock absorbing shock absorbing insects surrounding unit cells.
  • a thin film battery module according to an embodiment of the present invention for achieving the above object is a battery module formed by stacking unit cells with each other; And an impact absorbing part surrounding the space between the unit cells and the battery module.
  • a thin film battery package for achieving the above object is a package housing having a battery module in which unit cells are stacked; And a shock absorbing part filled in the package housing and surrounding the battery module.
  • the thin film battery package manufacturing apparatus for achieving the above object is a seating portion is the top is opened, the package housing is disposed therein the battery module is disposed; And a filling unit filling the inside of the package housing to receive an electrical signal from the outside to surround the battery.
  • a thin film battery package manufacturing method for achieving the above object is a first step of preparing a package housing having an upper opening, the battery module therein; And a second step of filling a filler in the package housing to surround the battery module.
  • the present invention has the effect of protecting the unit cells accumulated in the package housing from external impact.
  • the present invention has the effect of providing impact resistance by forming a shock absorbing layer around the unit cells using a filler.
  • the present invention has the effect that it is possible to enable the multiple shock absorption of the shock absorber surrounding the unit cells.
  • the present invention has an effect that can penetrate the filler forming the liquid or solid phase in the space between the unit cells to mold the battery module, thereby realizing the impact between the unit cells and the impact of the battery module itself.
  • FIG. 1 is a cross-sectional view showing an example of a thin film battery package of the present invention.
  • FIG. 2 is a cross-sectional view showing another example of the thin film battery package of the present invention.
  • FIG. 3 is a view showing a thin film battery package manufacturing apparatus of the present invention.
  • FIG. 4 is a plan view illustrating an example in which a filling region is set.
  • FIG. 5 is a cross-sectional view showing the package housing before the filler is filled.
  • FIG. 6 is a cross-sectional view showing the package housing after the filler is filled.
  • FIG. 7 is a cross-sectional view showing a package housing coupled with a cover.
  • FIG. 8 is a view showing that another example of the filler ejector according to the present invention is adopted.
  • FIG. 9 is a plan view showing another example in which the filling region is set.
  • FIG. 10 is a cross-sectional view showing the package housing before the filler is filled.
  • 11 is a cross-sectional view showing the package housing after the filler is filled.
  • FIG. 12 is a cross-sectional view showing a package housing coupled with a cover.
  • FIG. 13 is a flowchart illustrating a method of manufacturing a thin film battery package of the present invention.
  • FIG. 14 is a flowchart showing a viscosity value forming process according to the present invention.
  • 15 is a cross-sectional view showing a thin film battery module of the present invention.
  • 16 is a cross-sectional view showing another example of the thin film battery module of the present invention.
  • FIG. 1 is a cross-sectional view showing an example of a thin film battery package of the present invention.
  • the thin film battery package includes a package housing 100 and a shock absorber 200.
  • the package housing 100 has an opening at an upper portion thereof and forms a lamination space 101 therein.
  • the battery module 10 is disposed in the stacking space 101.
  • the battery module 10 is composed of unit cells stacked in multiple stages.
  • the unit cells are electrically connected to each other, and the lower unit cells are electrically connected to the electrode 110 formed on the bottom surface of the stack space.
  • the lateral edge of the battery module 10 forms a predetermined interval with the inner wall of the stacking space 101.
  • the upper surface portion of the battery module 10 and the upper end portion of the package housing 100 make a predetermined height difference with each other.
  • the upper end of the package housing 100 is an area where the cover 130 is disposed.
  • the cover is welded to an upper end of the package housing 100.
  • the portion welded to the cover 130 is an upper end of the partition wall 120 that is substantially formed of a cobar metal.
  • the welded part will be described integrating the package housing 100.
  • the package housing 100 may be formed of a ceramic material.
  • the cover 130 serves to seal the stacking space 101 from the outside.
  • the shock absorbing part 200 is formed by filling the filler 201 in the lamination space 101.
  • the filler 201 uses any one of an Si-based elastic epoxy or an epoxy having a predetermined viscosity.
  • the viscosity value is 400 cps or less.
  • the viscosity value of the filler 201 is 400 cps or less, the filler 201 has a fluidity that can flow along the direction of gravity.
  • a first region a is formed in an upper surface of the battery module 10.
  • the second region b is formed between the edge of the battery module 10 and the inner wall of the stacking space 101.
  • the filler 201 is filled in the first region (a) and the second region (b). 'c' is the upper end of the package housing.
  • the filler 201 is formed to surround the circumference of the battery module 10.
  • the shock absorbing unit 200 serves to mitigate the shock applied to the battery module 10 from the outside.
  • the present invention can effectively prevent damage between the unit cells stacked on each other by mitigating the impact.
  • FIG. 2 is a cross-sectional view showing another example of the thin film battery package of the present invention.
  • the shock absorbing part 300 may be composed of first and second shock absorbing areas 310 and 320.
  • the first shock absorbing region 310 is formed to surround the battery module 10 to a predetermined thickness.
  • the first shock absorbing region 310 is formed by filling the solid filler 311.
  • the first shock absorbing region 310 may be formed into a solid phase by filling a filler forming a liquid phase having a predetermined viscosity, and curing the liquid filler by transferring heat of a predetermined temperature from the outside.
  • the hardness of the solid is in the range of any one of 500 to 1500 gf or 1500 to 4000 gf.
  • the hardness range of 500 to 1500 gf is soft and is a range capable of absorbing a predetermined shock, and the hardness range of 1500 to 4000 gf is a range of a state of not moving in a hard state.
  • the first shock absorbing region 310 formed of the solid filler 311 may serve to prevent distortion between unit cells in the battery module 10.
  • the second shock absorbing region 320 is formed by filling the liquid filler 321.
  • the second shock absorbing region 320 is formed to have a predetermined thickness to surround the circumference of the first shock absorbing region 310.
  • the liquid filler 321 may be an epoxy forming a predetermined viscosity value. It is preferable that the viscosity is 400 cps or less.
  • the filler 321 When the viscosity of the filler 321 is 400 cps or less, the filler 321 has fluidity that can flow along the direction of gravity.
  • the second shock absorbing region 320 is formed between the circumference of the first shock absorbing region 310 and the inner wall of the stacking space 101.
  • the shock absorbing part 300 is provided in a multi-layered area from the periphery of the battery module 10 to provide a region capable of absorbing the impact in multiple.
  • the impact when an impact is applied to the package housing, the impact can be absorbed or mitigated multiplely by the first and second shock absorbing regions.
  • the battery module 10 may prevent a phenomenon such as a misalignment of an arrangement position by the first shock absorbing region 310 formed in a solid phase.
  • FIG. 3 shows a thin film battery package manufacturing apparatus of the present invention.
  • the thin film battery package manufacturing apparatus includes a seating unit 700 and a filling unit 500.
  • the seating part 700 includes a seating stage 710 and a vacuum providing part 720.
  • the seating stage 710 provides an area where the package housing 100 is seated.
  • a plurality of vacuum holes 711 are formed in the seating stage 710.
  • the plurality of vacuum holes 711 are connected to the vacuum providing unit 720 by means such as a tube.
  • the vacuum providing unit 720 receives electric signals from the outside to provide a predetermined vacuum suction force of the plurality of vacuum holes 711.
  • the plurality of vacuum holes 711 are exposed to the bottom surface of the package housing 100 seated on the mounting stage 710.
  • the package housing 100 When a vacuum suction force is provided to the plurality of vacuum holes 711, the package housing 100 is vacuum suction fixed on the upper surface of the seating stage 710.
  • the package housing 100 may be stably mounted on the mounting stage 710.
  • the filling unit 500 includes a filler discharging unit 510, a filling area setting unit (not shown), and a controller 560.
  • the filler ejector 510 is a device capable of discharging a liquid filler 201 (see FIG. 6).
  • the filler ejector 510 includes a filler supply unit 550 for supplying a liquid filler 201.
  • the filler ejector 510 is disposed above the seating stage 710.
  • the XY gantry 530 is disposed above the seating stage 710.
  • the filler ejector 510 is connected to the XY gantry 530.
  • the XY gantry 530 is connected to the driving unit 540.
  • the driver 540 may receive the electrical signal from the controller 560 to move the filler ejector 510 to a predetermined XY coordinate position.
  • a Z-axis lifting part 520 is further provided between the XY gantry 530 and the filler ejector 510.
  • the Z-axis lifting unit 520 may be a device such as a cylinder for lifting the filler ejector 510 by receiving an electrical signal from the controller 560.
  • the controller 560 may move to a predetermined XYZ coordinate position of the filler ejector 510 using the driver 540 and the Z-axis lifter 520.
  • the filling area setting unit (not shown) serves to set the area where the filling material 201 is discharged.
  • the filling region is a first region a formed in an upper surface of the battery module 10, and a second region formed between the circumference of the battery module 10 and the inner wall of the stacking space 101. Region (b).
  • the filling thicknesses of the first region a and the second region b may be set equal to each other.
  • the filling area setting unit may use a coordinate system.
  • the coordinate system measures coordinate values constituting the circumference of the battery module 10 at the top of the battery module 10 and linearly connects the coordinate values.
  • the first boundary B1 is formed due to the connection.
  • the coordinate system sets the inner region of the first boundary B1 to be connected to the first region a.
  • the coordinate system measures coordinate values constituting the inner wall of the stacking space 101 and linearly connects the coordinate values.
  • the second boundary B2 is formed by the connection.
  • the coordinate system sets a region between the first boundary B1 and the second boundary B2 as the second region b.
  • the first region (a) and the second region (b) are regions in which the filler is filled to a certain thickness.
  • 'c' is the region of the upper end of the package housing.
  • the controller 560 controls the driving of the filler ejector 510 to fill a predetermined amount of the liquid phase in the first and second regions (a, b) to be set.
  • the filler 201 may be an epoxy forming a predetermined viscosity value. It is preferable that the viscosity is 400 cps or less.
  • the filler 201 When the viscosity of the filler 201 is 400 cps or less, the filler 201 has a fluidity that can flow along the direction of gravity.
  • the filling unit 500 further includes a viscosity forming unit 570 electrically connected to the controller 560.
  • the viscosity forming unit 570 is composed of a viscosity measuring device 571, a temperature sensor 572, and a heating means 573.
  • the viscosity measuring device 571 measures the viscosity value of the filler 201.
  • the viscosity meter 571 transmits the measured viscosity value to the controller 560.
  • the controller 560 determines whether the measured viscosity value is within a predetermined viscosity value range.
  • the range of the predetermined viscosity value is preferably a range of 400 cps or less.
  • the controller 560 is pre-set a temperature value that can achieve the predetermined viscosity value.
  • the temperature sensor 572 measures the temperature value of the filler 201 in the liquid phase.
  • the temperature sensor 572 transmits the measured temperature value to the controller 560.
  • the heating means 573 receives the electrical signal from the controller 560 to heat the filler 201.
  • the heating means 573 may be a heating coil.
  • the controller 560 heats the filler 201 using the heating means 573 to a temperature value at which the viscosity value of the filler 201 can reach 400 cps or less.
  • the filling unit 500 includes a filling depth setting unit (not shown).
  • the filling depth setting unit includes a distance sensor 600 and a setting device (not shown).
  • the distance sensor 600 is preferably installed in the filler discharger (510).
  • the distance sensor 600 measures the depth value Dp of the stacking space and the distance value Dcell up to an upper surface of the battery module 10, and transmits them to the setter.
  • the setter determines the distance between the depth value Dcell from the bottom surface of the stacking space 101 to the top surface of the battery module 10 and the depth value Dp of the stacking space 101 as the upper limit of the filling depth. .
  • the filling depth Dfill is a depth value from the bottom surface of the stack space 101 to the upper limit.
  • the upper limit of the filling depth (Dfill) is preferably not at the same level or over the upper surface of the package housing 100.
  • the setter transmits the set filling depth (Dfill) to the controller 560.
  • the controller 560 controls the driving of the filler ejector 510 to achieve the set filling depth (Dfill).
  • the package housing 100 is seated on an upper surface of the seating stage 710.
  • the vacuum providing unit 720 receives an electrical signal from the controller 560 and provides a vacuum suction force to the vacuum hole 711 formed in the seating stage 710.
  • the package housing 100 is vacuum adsorbed on an upper surface of the mounting stage 710.
  • the package housing 100 is stably seated on the upper surface of the seating stage 710 by vacuum suction as described above.
  • the filling area setting unit sets an area in which the filling material 201 is filled.
  • the filling region setting unit includes a first region a formed on an upper surface of the battery module 10 using a coordinate system, a circumference of the battery module 10, and a stacking space 101.
  • the second region (b) formed between the inner walls of is set as the filling region.
  • the filling area setting unit transmits information about the set filling area to the controller 560.
  • the filling depth setting unit sets the filling depth (Dfill) in which the filling material 201 is filled.
  • the filling depth setting unit has a depth value Dcell from a bottom surface of the stack space 101 to a top surface of the battery module 10, and a depth value Dp of the stack space 101. Set the distance between to the fill depth (Dfill).
  • the filling depth setting unit transmits information on the set filling depth to the controller 560.
  • the filling depth setting unit determines an upper limit of the filler 201.
  • the upper limit of the filler 201 is preferably made to the same level or not exceed the top of the package housing 100.
  • the upper end of the package housing 100 is an area welded in contact with the cover 130 (see FIG. 7).
  • the welding area may not include other foreign material such as the filler 201 at the top of the package housing 100.
  • the viscosity forming unit 570 achieves the set viscosity value of the viscosity value of the filler 201.
  • the viscosity meter 571 measures the viscosity value of the filler 201 and transmits it to the controller 560.
  • the controller 560 determines whether the transmitted viscosity value is within a preset viscosity value range.
  • the range of the set viscosity value is 400 cps or less.
  • the controller 560 heats the filler 201 using a heating means 573 to reach a temperature value that can achieve 400 cps or less.
  • the filler 201 can always achieve 400 cps or less.
  • the filler discharger 510 moves to the filler discharge position.
  • the controller 560 moves the filler ejector 510 to the upper portion of the filling region A using the driving unit 540 and the Z-axis lifting unit 520.
  • FIG 6 shows the package housing after the filler is filled.
  • the controller 560 fills the liquid filler 201 to achieve the above-described filling depth (Dfill) in the filling region (A).
  • the battery module 10 inside the package housing 100 may be surrounded by the filler 201.
  • FIG. 7 shows a package housing associated with a cover.
  • a cover 130 is disposed at an upper end of the package housing 100.
  • the cover 130 is coupled to the top of the package housing 100 by a welding method.
  • Embodiments according to the present invention can protect the unit cells accumulated in the package housing from external impact.
  • the filler may penetrate the space between the unit cells to mold the battery module, thereby realizing the shock between the unit cells and the shock of the battery module itself.
  • FIG. 8 shows that another example of a filler ejector according to the present invention has been adopted.
  • the filler ejector 510 includes a liquid filler ejector 511 and a solid filler ejector 512.
  • the liquid filler ejector 511 discharges a liquid filler 321 (see FIG. 11).
  • the liquid filler 321 may be an epoxy having a viscosity of 400 cps.
  • the solid filler ejector 512 discharges the solid filler 311.
  • the solid filler 311 may be a material in which curing proceeds immediately after discharging.
  • the hardness of the solid filler 311 is included in any one of the range of 500 to 1500 gf or 1500 to 4000 gf.
  • the hardness range of 500 to 1500 gf is soft and is a range capable of absorbing a predetermined shock, and the hardness range of 1500 to 4000 gf is a range of a state of not moving in a hard state.
  • the filling region setting unit (not shown) according to the present invention sets the first filling region b1 and the second filling region b2.
  • the first filling region b1 is formed to surround the upper surface portion of the battery module 10 and the battery module 10.
  • the second filling region b2 is formed to surround the first filling region b1. That is, the second filling region b2 is formed between the circumference of the first filling region b1 and the inner wall of the stacking space 101.
  • the first filling region b1 and the second filling region b2 form a boundary.
  • FIG. 10 shows the package housing before the filler is filled
  • FIG. 11 shows the package housing after the filler is filled.
  • FIG. 8 the configuration of the manufacturing apparatus will be referred to FIG. 8.
  • the controller 560 uses the driving unit 540 and the Z-axis lifting unit 520 to position the solid filler ejector 512 above the first filling region b1. .
  • the solid filler ejector 512 receives an electrical signal from the controller 560 and discharges the solid filler 311 to the first filling region b1.
  • the solid filler 311 is filled in the first filling region b1.
  • the solid filler 311 hardens into a solid after a certain time.
  • the solid filler 311 is discharged through the solid filler discharger 512 in a liquid phase, and is cured when heat of a predetermined temperature is received from the outside.
  • the hardness of the solid filler 311 is included in any one of the range of 500 to 1500 gf or 1500 to 4000 gf.
  • the hardness range of 500 to 1500 gf is soft and is a range capable of absorbing a predetermined shock, and the hardness range of 1500 to 4000 gf is a range of a state of not moving in a hard state.
  • the first shock absorbing region 310 having a predetermined thickness is formed around the upper surface portion of the battery module 10 and the battery module 10.
  • the first shock absorbing region 310 forms a solid and may serve to surround and fix the battery module 10.
  • the liquid filler ejector 511 receives an electrical signal from the controller 560 to discharge the liquid filler 321 into the second filler region b2.
  • the liquid filler 321 is filled in the second filling region b2.
  • the second shock absorbing region 320 having a predetermined thickness is formed around the first filling region b1.
  • the second shock absorbing region 320 forms a liquid, thereby protecting the battery module 10 surrounded by the first shock absorbing region 310 from external shock.
  • first shock absorbing region 310 and the second shock absorbing region 320 are formed to have an impact depth (Dfill) set as described above.
  • FIG. 12 shows a package housing coupled with a cover.
  • a cover 130 is disposed at an upper end of the package housing 100.
  • the cover 130 is coupled to the top of the package housing 100 by a welding method.
  • Embodiments according to the present invention can enable a multi-shock absorbing shock absorber to surround the unit cells.
  • the present invention by filling the solid-state filler in the space between the unit cells to mold the battery module, it is possible to implement the shock between the unit cells and the impact of the battery module itself.
  • FIG. 13 shows a method of manufacturing a thin film battery package of the present invention.
  • the package housing 100 is seated on the seating stage 710.
  • the package housing 100 has an upper opening and a lamination space 101 formed therein.
  • a battery module 10 formed of unit cells stacked in multiple stages is disposed in the stacking space 101.
  • the vacuum providing unit 720 may be used to vacuum-fix the package housing 100 at the seating stage 710.
  • the filler is filled in the package housing to surround the battery module 10.
  • the second step will be described in more detail.
  • the filling region may be formed using the filling region setting unit described above.
  • the first region a is formed on the upper surface of the battery module 10, and the second region b is formed in the space between the periphery of the battery module 10 and the inner wall of the stacking space 101.
  • the filling depth Dfill may use the filling depth setting unit described above.
  • the distance between the depth value Dcell from the bottom surface of the stacking space 101 to the top surface of the battery module 10 and the depth value Dp of the stacking space 101 is defined as the upper limit of the filling depth Dfill.
  • the filling depth Dfill is a depth value from the bottom surface of the stack space 101 to the upper limit.
  • the upper limit of the filling depth (Dfill) is preferably not at the same level or over the upper surface of the package housing 100.
  • the viscosity value of the filler is formed.
  • the filler is preferably a liquid filler 201.
  • the filler 201 is used as an epoxy having a viscosity value of 400 cps or less.
  • the viscosity meter 571 measures the viscosity value of the filler 201.
  • the viscosity measuring device 571 transmits the measured viscosity value to the setter.
  • the setter determines whether the measured viscosity value falls within a preset reference viscosity value range.
  • the setter ends the viscosity value forming process.
  • the setter uses the heating means 573 to heat the filler 201.
  • the temperature sensor 572 measures the temperature value of the filler 201 to be heated, and transmits it to the setter.
  • the setter heats the filler 201 such that the transmitted temperature value reaches a preset reference temperature value.
  • the reference temperature value is a temperature value such that the filler 201 is included in the reference viscosity value range.
  • the setter then terminates the viscosity value forming process.
  • the controller 560 selects whether single filling or multiple filling is performed.
  • the controller uses the filler ejector 510 to fill the filler 201 in the filler region including the first and second regions (a and b).
  • the impact absorbing part 200 is formed by filling the first region (a) and the second region (b) with a filler 201 to a predetermined thickness.
  • the cover 130 is welded to the upper end of the package housing 100.
  • Embodiments according to the present invention can protect the unit cells accumulated in the package housing from external impact.
  • the filling area setting unit may reset the filling area.
  • the filling region setting unit sets the first and second filling regions b1 and b2 as shown in FIG. 10.
  • the first and second filling regions b1 and b2 have a predetermined thickness along the outside from the circumference of the battery module 10 to form a boundary with each other.
  • the filling region is formed in multiple layers.
  • the controller 560 fills the solid filler 511 into the first filler region b1 using the solid filler discharger 511.
  • the solid filler 311 is cured after a predetermined time.
  • the filler formed in the liquid phase having a certain viscosity is filled in the first filling region b1, and the filler is hardened by applying heat of a predetermined temperature from the outside to form a solid phase.
  • the hardness of the solid is in the range of any one of 500 to 1500 gf or 1500 to 4000 gf.
  • the hardness range of 500 to 1500 gf is soft and is a range capable of absorbing a predetermined shock, and the hardness range of 1500 to 4000 gf is a range of a state of not moving in a hard state.
  • the first shock absorbing region 310 having a predetermined thickness is formed on the upper surface portion and the circumference of the battery module 10.
  • the controller 560 fills the liquid filler 321 into the second filler region b2 using the liquid filler dispenser 512.
  • the liquid filler 321 is filled between the circumference of the first filling region b1 and the inner wall of the stacking space 101.
  • the second shock absorbing region 320 is formed in the second filling region b2.
  • the cover 130 is welded to the upper end of the package housing 100.
  • the impact when an impact is applied to the package housing, the impact may be absorbed or mitigated by the first and second shock absorbing regions in multiple times.
  • the embodiment according to the present invention can prevent the misalignment of the arrangement position of the battery module by using the first shock absorbing region formed in the solid phase.
  • 15 is a cross-sectional view showing a thin film battery module of the present invention.
  • the thin film battery module includes a battery module 10 and a shock absorber 200.
  • the battery module 10 is formed by stacking a plurality of unit cells 1 vertically.
  • the shock absorber 200 surrounds the space between the unit cells 1 and the battery module 10.
  • the shock absorber 200 may be any one of an Si-based elastic epoxy or an epoxy having a predetermined viscosity.
  • the viscosity is good to achieve less than 400 cps (centi poise).
  • the epoxy in the liquid phase filling material 201 is formed so as to permeate the space between the unit cells 1, and to surround the battery module 10.
  • the shock between the unit cells, as well as the shock of the battery module itself can be realized.
  • 16 is a cross-sectional view showing another example of the thin film battery module of the present invention.
  • the shock absorbing part 300 includes shock absorbing areas having a state of a different material from the periphery of the battery module 10 and bordering each other.
  • shock absorbing regions may include a first shock absorbing region 310 and a second shock absorbing region 320.
  • the first shock absorbing region 310 surrounds the circumference of the battery module 10 to a certain thickness and forms a solid phase.
  • the second shock absorbing region 320 surrounds the circumference of the first shock absorbing region 310 and is formed of epoxy having a predetermined viscosity.
  • the first shock absorbing region 310 may form a liquid phase having a predetermined viscosity and may be cured by receiving heat of a predetermined temperature from the outside to form a solid phase.
  • the hardness of the solid is in the range of any one of 500 to 1500 gf or 1500 to 4000 gf.
  • the hardness range of 500 to 1500 gf is soft and is a range capable of absorbing a predetermined shock, and the hardness range of 1500 to 4000 gf is a range of a state of not moving in a hard state.
  • the filler 312 in the liquid phase and the filler 311 in the solid phase penetrate into the space between the unit cells and are formed to surround the circumference of the battery module.
  • the shock between the unit cells, as well as the shock of the battery module itself can be realized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명은 박막 전지 모듈을 제공한다. 상기 박막 전지 모듈은 단위셀들이 서로 적층되어 형성되는 전지 모듈과, 상기 단위셀들의 사이 공간 및 상기 전지 모듈을 에워싸는 충격 흡수부를 포함한다. 본 발명은 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법도 제공한다.

Description

박막 전지 모듈, 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법
본 발명은 박막 전지 패키지 제조 장치에 관한 것으로서, 보다 상세하게는 내충격성을 갖는 박막 전지 모듈, 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법에 관한 것이다.
근래에 들어, 최근에 전자기기 및 소자의 소형화와 관련기술이 급격하게 발전함에 따라 이들 소자를 구동시키기 위한 초소형 전원으로 서 박막 전지에 대한 관심이 집중되고 있다.
박막 전지는 캐소드, 애노드 및 전해질 등 전지의 구성요소를 모두 박막 형태로 증착하여 전지의 전체 두께를 수십 ㎛ 정도로 만든 전지이다.
상기 박막 전지는 패키지 하우징을 갖는다.
상기 패키지 하우징의 내부에는 적층 공간이 형성된다. 상기 적층 공간에는 단위셀들이 다단으로 적층된다. 상기 적층되는 단위셀들은 전지 모듈을 형성한다.
상기 전지 모듈은 적층 공간에서 양측부로 일정의 이격 공간이 형성된다. 또한, 상기 전지 모듈의 상면부와 패키지 하우징의 상단에 설치되는 커버와 일정의 이격 공간이 형성된다.
상기 이격 공간을 이루는 전지 모듈은 외부에 충격에 의하여 배치 위치가 틀어지거나, 각 단위셀들의 정렬 위치가 틀어지는 문제점을 갖는다.
또한, 상기 이격 공간을 이루는 전지 모듈은 상기 외부의 충격에 의하여 파손되는 문제점도 있다.
본 발명과 관련된 선행 문헌으로는 대한민국 등록특허공보 제10-0535739호(2005.12.09. 공고)가 있으며, 상기 선행 문헌에는 보호 회로를 단일 패키지로 몰딩하는 기술이 개시되어 있다.
본 발명의 목적은 패키지 하우징 내부에 적충되는 단위셀들을 외부의 충격으로부터 보호될 수 있도록 내충격성을 갖는 박막 전지 모듈, 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법을 제공함에 있다.
본 발명의 다른 목적은 충진재를 사용하여 단위셀들 둘레에 충격 흡수층을 형성함으로써, 내충격성을 부여할 수 있는 박막 전지 모듈, 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법을 제공함에 있다.
본 발명의 또 다른 목적은 단위셀들을 에워싸는 충격흡수충을 다중 충격흡수가 가능하도록 할 수 있는 박막 전지 모듈, 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법을 제공함에 있다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 박막 전지 모듈은 단위셀들이 서로 적층되어 형성되는 전지 모듈; 및 상기 단위셀들의 사이 공간 및 상기 전지 모듈을 에워싸는 충격 흡수부를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 박막 전지 패키지는 내부에 단위셀들이 적층되는 전지 모듈을 갖는 패키지 하우징; 및 상기 패키지 하우징의 내부에 충진되며, 상기 전지 모듈을 에워싸는 충격 흡수부를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 박막 전지 패키지 제조 장치는 상단이 개구되며, 내부에 전지 모듈이 배치되는 패키지 하우징이 안착되는 안착부; 및 외부로부터 전기적 신호를 전송 받아 상기 전지 둘레를 에워싸도록 상기 패키지 하우징의 내부에 충진재를 충진하는 충진 유니트를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 박막 전지 패키지 제조 방법은 상부가 개구되고, 내부에 전지 모듈을 갖는 패키지 하우징을 준비하는 제 1단계; 및 상기 전지 모듈을 에워싸도록 상기 패키지 하우징의 내부에 충진재를 충진하는 제 2단계를 포함하는 것을 특징으로 한다.
본 발명은 패키지 하우징 내부에 적충되는 단위셀들을 외부의 충격으로부터 보호할 수 있는 효과를 갖는다.
또한, 본 발명은 충진재를 사용하여 단위셀들 둘레에 충격 흡수층을 형성함으로써, 내충격성을 부여할 수 있는 효과를 갖는다.
또한, 본 발명은 단위셀들을 에워싸는 충격흡수충을 다중 충격흡수가 가능하도록 할 수 있는 효과를 갖는다.
또한, 본 발명은 단위셀들의 사이 공간에 액상 또는 고체 상을 이루는 충진재를 침투시켜 전지 모듈을 몰딩하여, 단위셀들 간의 충격 및 전지 모듈 자체의 충격 완화를 구현할 수 있는 효과를 갖는다.
도 1은 본 발명의 박막 전지 패키지의 일 예를 보여주는 단면도이다.
도 2는 본 발명의 박막 전지 패키지의 다른 예를 보여주는 단면도이다.
도 3은 본 발명의 박막 전지 패키지 제조 장치를 보여 주는 도면이다.
도 4는 충진 영역이 설정되는 일 예를 보여주는 평면도이다.
도 5는 충진재가 충진되기 전 패키지 하우징을 보여 주는 단면도이다.
도 6은 충진재가 충진된 후의 패키지 하우징을 보여 주는 단면도이다.
도 7은 커버와 결합된 패키지 하우징을 보여 주는 단면도이다.
도 8은 본 발명에 따르는 충진재 토출기의 다른 예가 채택된 것을 보여주는 도면이다.
도 9는 충진 영역이 설정되는 다른 예를 보여주는 평면도이다.
도 10은 충진재가 충진되기 전 패키지 하우징을 보여 주는 단면도이다.
도 11은 충진재가 충진된 후의 패키지 하우징을 보여 주는 단면도이다.
도 12는 커버와 결합된 패키지 하우징을 보여 주는 단면도이다.
도 13은 본 발명의 박막 전지 패키지 제조 방법을 보여주는 흐름도이다.
도 14는 본 발명에 따르는 점도값 형성 과정을 보여주는 흐름도이다.
도 15는 본 발명의 박막 전지 모듈을 보여주는 단면도이다.
도 16은 본 발명의 박막 전지 모듈의 다른 예를 보여주는 단면도이다.
이하, 첨부되는 도면들을 참조로 하여, 본 발명에 따른 박막 전지 패키지, 박막 전지 제조 장치 및 박막 전지 제조 방법을 설명한다.
도 1은 본 발명의 박막 전지 패키지의 일 예를 보여주는 단면도이다.
도 1을 참조 하면, 상기 박막 전지 패키지는 패키지 하우징(100)과 충격 흡수부(200)로 구성된다.
상기 패키지 하우징(100)은 상부가 개구를 이루고, 내부에 적층 공간(101)을 이룬다.
상기 적층 공간(101)에는 전지 모듈(10)이 배치된다. 상기 전지 모듈(10)은 다단으로 적층되는 단위셀들로 구성된다.
상기 단위셀들은 서로 전기적으로 접속되고, 하단의 단위셀은 적층 공간의 바닥면에 형성된 전극(110)과 전기적으로 접속된다.
상기 전지 모듈(10)의 측방 테두리는 적층 공간(101)의 내벽과 일정 간격을 이룬다.
또한, 상기 전지 모듈(10)의 상면부와 패키지 하우징(100)의 상단부와는 서로 일정의 높이차를 이룬다.
여기서, 상기 패키지 하우징(100)의 상단부는 커버(130)가 배치되는 영역이다. 상기 커버는 상기 패키지 하우징(100)의 상단부에 용접되어 설치된다.
여기서, 상기 커버(130)와 용접되는 부분은 실질적으로 코바 금속으로 형성되는 격벽(120) 상단이다. 하기에서는 상기 용접되는 부분을 패키지 하우징(100)을 통합하여 설명한다.
또한, 패키지 하우징(100)은 세라믹 재질로 형성되는 것이 좋다.
따라서, 상기 커버(130)는 상기 적층 공간(101)을 외부로부터 밀폐하는 역할을 한다.
상기 충격 흡수부(200)는 상기 적층 공간(101)의 내부에 충진재(201)가 충진됨으로써 형성된다.
상기 충진재(201)는 Si 계열의 탄성 에폭시 또는 일정의 점도를 갖는 에폭시 중 어느 하나를 사용한다.
상기 점도값은 400cps 이하를 이루는 것이 좋다. 상기 충진재(201)의 점도값이 400cps이하를 이루는 경우, 상기 충진재(201)는 중력 방향을 따라 흐를 수 있는 유동성을 갖는다.
여기서, 도 4에 도시되는 바와 같이, 상기 전지 모듈(10)의 상면부에는 제 1영역(a)이 형성된다. 상기 전지 모듈(10)의 테두리와 적층 공간(101)의 내벽 사이에는 제 2영역(b)이 형성된다.
상기 충진재(201)는 상기 제 1영역(a)과 제 2영역(b)에 충진된다. 'c'는 패키지 하우징의 상단부이다.
상기 충진재(201)는 전지 모듈(10)의 둘레를 에워싸도록 형성된다.
즉, 상기 충격 흡수부(200)는 전지 모듈(10)을 외부로부터 가해지는 충격을 완화할 수 있는 역할을 한다.
본 발명은 상기 충격을 완화함으로써, 서로 적층된 단위셀들 간의 파손을 효율적으로 방지할 수 있다.
도 2는 본 발명의 박막 전지 패키지의 다른 예를 보여주는 단면도이다.
도 2를 참조 하면, 본 발명에 따르는 충격 흡수부(300)는 제 1,2충격 흡수 영역(310,320)으로 구성될 수 있다.
상기 제 1충격 흡수 영역(310)은 전지 모듈(10)의 둘레를 일정 두께로 에워싸도록 형성된다.
상기 제 1충격 흡수 영역(310)은 고체 상의 충진재(311)가 충진됨으로써 형성된다.
여기서, 상기 제 1충격 흡수 영역(310)은 일정 점도의 액상을 이루는 충진재를 충진하고, 상기 액상의 충진재를 외부로부터 일정 온도의 열을 전달하여 경화시킴으로써 고체 상으로 형성시킬 수 있다.
상기 고체의 경도는 500 내지 1500gf 또는 1500 내지 4000gf 범위 중 어느 하나의 범위에 포함된다.
상기 500 내지 1500gf 의 경도 범위는 소프트하여 일정의 충격을 흡수할 수 있는 범위이고, 상기 1500 내지 4000gf의 경도 범위는 하드(hard)한 상태로 움직이지 않는 상태의 범위이다.
상기 고체 상의 충진재(311)로 형성되는 제 1충격 흡수 영역(310)은 전지 모듈(10)에서의 단위 셀들 간의 틀어짐을 방지하는 역할을 할 수 있다.
상기 제 2충격 흡수 영역(320)은 액체 상의 충진재(321)가 충진됨으로써 형성된다.
상기 제 2충격 흡수 영역(320)은 일정 두께를 이루어 상기 제 1충격 흡수 영역(310)의 둘레를 에워싸도록 형성된다.
상기 액체 상의 충진재(321)는 일정의 점도값을 이루는 에폭시일 수 있다. 상기 점도는 400cps 이하를 이루는 것이 좋다.
상기 충진재(321)의 점도가 400cps이하를 이루는 경우, 상기 충진재(321)는 중력 방향을 따라 흐를 수 있는 유동성을 갖는다.
상기 제 2충격 흡수 영역(320)은 제 1충격 흡수 영역(310)의 둘레와 적층 공간(101)의 내벽 사이에 형성된다.
따라서, 상기 충격 흡수부(300)는 전지 모듈(10)의 둘레로부터 다층을 이루어 다중으로 충격을 흡수할 수 있는 영역을 제공한다.
본 발명에 따르는 실시예에서, 패키지 하우징으로 충격이 가해지는 경우, 상기 충격은 제 1,2충격 흡수 영역에 의하여 다중으로 흡수 또는 완화될 수 있다.
그리고, 전지 모듈(10)은 고체 상으로 형성되는 제 1충격 흡수 영역(310)에 의하여 배치 위치의 틀어짐과 같은 현상을 미연에 방지할 수 있다.
다음은, 본 발명의 박막 전지 패키지 제조 장치를 설명한다.
도 3은 본 발명의 박막 전지 패키지 제조 장치를 보여준다.
도 3을 참조 하면, 상기 박막 전지 패키지 제조 장치는 크게 안착부(700)와, 충진 유니트(500)로 구성된다.
상기 안착부(700)는 안착 스테이지(710)와, 진공 제공부(720)로 구성된다.
상기 안착 스테이지(710)는 패키지 하우징(100)이 안착되는 영역을 제공한다.
상기 안착 스테이지(710)에는 다수의 진공홀(711)이 형성된다.
상기 다수의 진공홀(711)은 상기 진공 제공부(720)와 튜브와 같은 수단으로 연결된다.
상기 진공 제공부(720)는 외부로부터 전기적 신호를 전송 받아 상기 다수의 진공홀(711)의 일정의 진공 흡입력을 제공한다.
상기 다수의 진공홀(711)은 안착 스테이지(710)에 안착되는 패키지 하우징(100)의 하면에 노출된다.
상기 다수의 진공홀(711)로 진공 흡입력이 제공되면, 상기 패키지 하우징(100)은 안착 스테이지(710)의 상면에서 진공 흡착 고정된다.
따라서, 상기 패키지 하우징(100)은 안착 스테이지(710)에 안정적으로 안착될 수 있다.
상기 충진 유니트(500)는 크게 충진재 토출기(510)와, 충진 영역 설정부(미도시)와, 제어기(560)로 구성된다.
상기 충진재 토출기(510)는 액체 상의 충진재(201, 도 6참조)를 토출할 수 있는 장치이다.
상기 충진재 토출기(510)는 액체 상의 충진재(201)를 공급하는 충진재 공급부(550)를 포함한다.
상기 충진재 토출기(510)는 상기 안착 스테이지(710)의 상부에 배치된다.
상기 안착 스테이지(710)의 상부에는 XY겐트리(530)가 배치된다. 상기 충진재 토출기(510)는 상기 XY겐트리(530)에 연결된다.
상기 XY겐트리(530)는 구동부(540)와 연결된다. 상기 구동부(540)는 제어기(560)로부터 전기적 신호를 전송 받아 상기 충진재 토출기(510)를 일정의 XY 좌표 위치로 이동시킬 수 있다.
이에 더하여, XY겐트리(530)와 충진재 토출기(510)의 사이에는 Z축 승강부(520)가 더 설치된다.
상기 Z축 승강부(520)는 제어기(560)로부터 전기적 신호를 전송 받아 상기 충진재 토출기(510)를 승강시키는 실린더와 같은 장치일 수 있다.
이에 따라, 제어기(560)는 구동부(540) 및 Z축 승강부(520)를 사용하여 충진재 토출기(510)의 일정의 XYZ 좌표 위치로 이동 위치시킬 수 있다.
상기 충진 영역 설정부(미도시)는 충진재(201)가 토출되는 영역을 설정하는 역할을 한다.
도 4는 충진 영역이 설정되는 일 예를 보여준다.
도 4를 참조 하면, 상기 충진 영역은 전지 모듈(10)의 상면부에 형성되는 제 1영역(a)과, 전지 모듈(10)의 둘레와 적층 공간(101)의 내벽 사이에 형성되는 제 2영역(b)을 포함한다.
상기 제 1영역(a)과 제 2영역(b)의 충진 두께는 서로 동일하게 설정되는 것이 좋다.
상기 충진 영역 설정부는 좌표계를 사용할 수 있다.
상기 좌표계는 상기 전지 모듈(10)의 상부에서, 상기 전지 모듈(10)의 둘레를 이루는 좌표값들을 측정하고, 이 좌표값들을 선형적으로 연결한다. 상기 연결됨으로 인하여 제 1경계(B1)가 형성된다.
상기 좌표계는 상기 연결되는 제 1경계(B1) 내측 영역을 제 1영역(a)으로 설정한다.
상기 좌표계는 적층 공간(101)의 내벽을 이루는 좌표값들을 측정하고, 이 좌표값들을 선형적으로 연결한다. 상기 연결됨으로 인하여 제 2경계(B2)가 형성된다.
상기 좌표계는 상기 제 1경계(B1)와 상기 제 2경계(B2) 사이의 영역을 제 2영역(b)으로 설정한다.
상기 제 1영역(a)과 상기 제 2영역(b)은 충진재가 일정 두께로 충진되는 영역이다.
'c'는 패키지 하우징의 상단부의 영역이다.
도 3 및 도 4를 참조 하면, 상기 제어기(560)는 설정되는 제 1,2영역(a,b)에 일정량의 액체 상의 충진되도록 충진재 토출기(510)의 구동을 제어한다.
여기서, 상기 충진재(201)는 일정의 점도값을 이루는 에폭시일 수 있다. 상기 점도는 400cps 이하를 이루는 것이 좋다.
상기 충진재(201)의 점도가 400cps이하를 이루는 경우, 상기 충진재(201)는 중력 방향을 따라 흐를 수 있는 유동성을 갖는다.
도 3을 참조 하면, 본 발명에 따라는 충진 유니트(500)는 제어기(560)와 전기적으로 연결되는 점도 형성부(570)를 더 구비한다.
상기 점도 형성부(570)는 점도 측정기(571)와, 온도 센서(572)와, 가열 수단(573)으로 구성된다.
상기 점도 측정기(571)는 상기 충진재(201)의 점도값을 측정한다. 상기 점도 측정기(571)는 상기 측정한 점도값을 제어기(560)로 전송한다.
상기 제어기(560)는 상기 측정한 점도값이 기설정된 점도값 범위에 포함되는 지의 여부를 판단한다. 상기 기설정된 점도값의 범위는 400cps이하를 이루는 범위인 것이 좋다.
상기 제어기(560)에는 상기 기설정된 점도값을 이룰 수 있는 온도값이 기설정된다.
상기 온도 센서(572)는 상기 액체 상의 충진재(201)의 온도값을 측정한다. 상기 온도 센서(572)는 상기 측정한 온도값을 제어기(560)로 전송한다.
상기 가열 수단(573)은 상기 제어기(560)로부터 전기적 신호를 전송 받아 충진재(201)를 가열한다. 상기 가열 수단(573)은 히팅 코일일 수 있다.
따라서, 상기 제어기(560)는 상기 충진재(201)의 점도값이 400cps 이하를 이룰 수 있는 온도값으로 상기 가열 수단(573)을 사용하여 충진재(201)를 가열 처리한다.
상기 충진 유니트(500)는 충진 깊이 설정부(미도시)를 구비한다.
도 3을 참조 하면, 상기 충진 깊이 설정부는 거리 센서(600)와 설정기(미도시)를 구비한다.
상기 거리 센서(600)는 충진재 토출기(510)에 설치되는 것이 좋다.
상기 거리 센서(600)는 상기 적층 공간의 깊이값(Dp)과, 상기 전지 모듈(10)의 상면부까지의 거리값(Dcell)을 측정하고, 이들을 상기 설정기로 전송한다.
상기 설정기는 적층 공간(101)의 바닥면으로부터 전지 모듈(10)의 상면까지의 깊이값(Dcell)과, 적층 공간(101)의 깊이값(Dp)의 사이 거리를 충진 깊이의 상한선으로 결정한다.
따라서, 상기 충진 깊이(Dfill)는 적층 공간(101)의 바닥면으로부터 상기 상한선까지의 깊이값이다.
특히, 상기 충진 깊이(Dfill)의 상한선은 상기 패키지 하우징(100)의 상단면과 동일하거나 오버되는 레벨을 이루지 않는 것이 좋다.
상기 설정기는 상기 설정한 충진 깊이(Dfill)를 제어기(560)로 전송한다.
상기 제어기(560)는 상기 설정한 충진 깊이(Dfill)를 이루도록 충진재 토출기(510)의 구동을 제어한다.
상기의 구성을 갖는 박막 전지 패키지 제조 장치의 작용을 설명한다.
도 3 및 도 4를 참조 하면, 안착 스테이지(710) 상면에 패키지 하우징(100)이 안착된다.
진공 제공부(720)는 제어기(560)로부터 전기적 신호를 전송 받아 안착 스테이지(710)에 형성되는 진공홀(711)로 진공 흡입력을 제공한다.
상기 패키지 하우징(100)은 안착 스테이지(710) 상면에서 진공 흡착된다.
따라서, 상기 패키지 하우징(100)은 상기와 같이 진공 흡착됨으로써, 안착 스테이지(710) 상면에서 안정적으로 안착된다.
충진 영역 설정부는 충진재(201)가 충진되는 영역을 설정한다.
도 4를 참조 하면, 상술한 바와 같이 충진 영역 설정부는 좌표계를 사용하여 전지 모듈(10)의 상면부에 형성되는 제 1영역(a)과, 전지 모듈(10)의 둘레와 적층 공간(101)의 내벽 사이에 형성되는 제 2영역(b)을 충진 영역으로 설정한다.
상기 충진 영역 설정부는 상기 설정한 충진 영역에 대한 정보를 제어기(560)로 전송한다.
충진 깊이 설정부는 충진재(201)가 충진되는 충진 깊이(Dfill)를 설정한다.
도 3을 참조 하면, 상술한 바와 같이 충진 깊이 설정부는 적층 공간(101)의 바닥면으로부터 전지 모듈(10)의 상면까지의 깊이값(Dcell)과, 적층 공간(101)의 깊이값(Dp)의 사이 거리를 충진 깊이(Dfill)로 설정한다.
상기 충진 깊이 설정부는 상기 설정한 충진 깊이(Dfill)에 대한 정보를 제어기(560)로 전송한다.
상기 충진 깊이 설정부는 충진재(201)의 상한선을 결정한다. 상기 충진재(201)의 상한선은 바람직하게 패키지 하우징(100)의 상단과 동일하거나 넘지 않는 레벨을 이루는 것이 좋다.
즉, 상기 패키지 하우징(100)의 상단은 커버(130, 도 7참조)와 접촉되어 용접되는 영역이다. 상기 용접 영역이 패키지 하우징(100)의 상단에 충진재(201)와 같은 다른 이물이 포함되지 않는 것이 좋다.
점도 형성부(570)는, 충진재(201)의 점도값을 설정된 점도값을 이루도록 한다.
점도 측정기(571)는 충진재(201)의 점도값을 측정하고, 이를 제어기(560)로 전송한다.
상기 제어기(560)는 상기 전송된 점도값이 기설정된 점도값 범위에 포함되는 지의 여부를 판단한다. 상기 설정된 점도값의 범위는 400cps 이하를 이룬다.
상기 측정된 점도값이 400cps 이상을 이루면, 상기 제어기(560)는 가열 수단(573)을 사용하여 400cps 이하를 이룰 수 있는 온도값에 이르도록 충진재(201)를 가열 처리한다.
따라서, 충진재(201)는 항상 400cps 이하를 이룰 수 있다.
그리고, 충진재 토출기(510)는 충진재 토출 위치로 이동한다.
도 5는 충진재가 충진되기 전 패키지 하우징을 보여 준다.
이하의 설명에서, 다른 구성들에 대한 참조는 도 3을 참조하기로 한다.
도 5를 참조 하면, 제어기(560)는 구동부(540) 및 Z축 승강부(520)를 사용하여 상기 충진재 토출기(510)를 충진 영역(A)의 상부에 이동 위치시킨다.
도 6은 충진재가 충진된 후의 패키지 하우징을 보여준다.
도 6을 참조 하면, 제어기(560)는 충진 영역(A)에서 상술한 충진 깊이(Dfill)를 이루도록 액체 상의 충진재(201)를 충진한다.
따라서, 상기 패키지 하우징(100)의 내부의 전지 모듈(10)은 충진재(201)에 의하여 에워싸일 수 있다.
도 7은 커버와 결합된 패키지 하우징을 보여준다.
도 7을 참조 하면, 패키지 하우징(100)의 상단에는 커버(130)가 배치된다. 상기 커버(130)는 상기 패키지 하우징(100)의 상단과 용접 방식을 통하여 결합된다.
본 발명에 따르는 실시예는 패키지 하우징 내부에 적충되는 단위셀들을 외부의 충격으로부터 보호할 수 있다.
본 발명에 따르는 실시예는 충진재를 사용하여 단위셀들 둘레에 충격 흡수층을 형성함으로써, 내충격성을 부여할 수 있다.
본 발명에 따르는 실시예는 단위셀들의 사이 공간에 충진재를 침투시켜 전지 모듈을 몰딩하여, 단위셀들 간의 충격 및 전지 모듈 자체의 충격 완화를 구현할 수 있다.
다음은, 본 발명에 따르는 충진재 토출기의 다른 예를 설명한다.
도 8은 본 발명에 따르는 충진재 토출기의 다른 예가 채택된 것을 보여준다.
도 8을 참조 하면, 본 발명에 따르는 충진재 토출기(510)는 액체 충진체 토출기(511)와 고체 충진재 토출기(512)로 구성된다.
상기 액체 충진재 토출기(511)는 액체 상의 충진재(321, 도 11참조)를 토출한다.
상기 액체 상의 충진재(321)는 400cps 점도를 갖는 에폭시인 것이 좋다.
상기 고체 충진재 토출기(512)는 고체 상의 충진재(311)를 토출한다.
상기 고체 상의 충진재(311)는 토출 후 경화가 즉시 진행되는 물질인 것이 좋다.
상기 고체 충진재(311)의 경도는 500 내지 1500gf 또는 1500 내지 4000gf 범위 중 어느 하나의 범위에 포함된다.
상기 500 내지 1500gf 의 경도 범위는 소프트하여 일정의 충격을 흡수할 수 있는 범위이고, 상기 1500 내지 4000gf의 경도 범위는 하드(hard)한 상태로 움직이지 않는 상태의 범위이다.
도 9는 충진 영역이 설정되는 다른 예를 보여 준다.
도 9를 참조 하면, 본 발명에 따르는 충진 영역 설정부(미도시)는 제 1충진 영역(b1)과, 제 2충진 영역(b2)으로 설정한다.
상기 제 1충진 영역(b1)은 전지 모듈(10) 둘레의 상면부 및 전지 모듈(10) 둘레를 에워싸도록 형성된다.
상기 제 2충진 영역(b2)은 제 1충진 영역(b1)을 에워싸도록 형성된다. 즉, 상기 제 2충진 영역(b2)은 제 1충진 영역(b1) 둘레와 적층 공간(101)의 내벽 사이에 형성된다.
따라서, 상기 제 1충진 영역(b1)과 제 2충진 영역(b2)은 경계를 이룬다.
다음은, 상기와 같은 구성되는 충진재 토출기의 다른 예를 따르는 제조 장치의 작용을 설명한다.
도 10은 충진재가 충진되기 전 패키지 하우징을 보여 주고, 도 11은 충진재가 충진된 후의 패키지 하우징을 보여 준다.
이하의 설명에서, 제조 장치의 구성은 도 8을 참조하기로 한다.
도 10 및 도 11을 참조 하면, 제어기(560)는 구동부(540) 및 Z축 승강부(520)를 사용하여, 상기 고체 충진재 토출기(512)를 제 1충진 영역(b1) 상부로 위치시킨다.
상기 고체 충진재 토출기(512)는 제어기(560)로부터 전기적 신호를 전송 받아, 고체 상의 충진재(311)를 제 1충진 영역(b1)으로 토출한다.
따라서, 상기 제 1충진 영역(b1)에는 고체 상의 충진재(311)가 충진된다. 상기 고체 상의 충진재(311)는 일정 시간 경과 후, 고체로 굳어진다.
상세하게는, 상기 고체 상의 충진재(311)는, 액상을 이루어 상기 고체 충진재 토출기(512)를 통하여 토출되며, 외부로부터 일정 온도의 열을 전달 받으면 경화된다.
상기 고체 충진재(311)의 경도는 500 내지 1500gf 또는 1500 내지 4000gf 범위 중 어느 하나의 범위에 포함된다.
상기 500 내지 1500gf 의 경도 범위는 소프트하여 일정의 충격을 흡수할 수 있는 범위이고, 상기 1500 내지 4000gf의 경도 범위는 하드(hard)한 상태로 움직이지 않는 상태의 범위이다.
이에 따라, 상기 전지 모듈(10) 둘레의 상면부 및 전지 모듈(10) 둘레에는 일정 두께를 이루는 제 1충격 흡수 영역(310)이 형성된다.
상기 제 1충격 흡수 영역(310)은 고체를 이룸으로써, 전지 모듈(10) 둘레를 감싸 고정하는 역할을 할 수 있다.
이어, 상기 액체 충진재 토출기(511)는 제어기(560)로부터 전기적 신호를 전송 받아, 액체 상의 충진재(321)를 제 2충진 영역(b2)으로 토출한다.
따라서, 상기 제 2충진 영역(b2)에는 액체 상의 충진재(321)가 충진된다.
이에 따라, 상기 제 1충진 영역(b1)의 둘레에는 일정 두께를 이루는 제 2충격 흡수 영역(320)이 형성된다.
상기 제 2충격 흡수 영역(320)은 액체를 이룸으로써, 제 1충격 흡수 영역(310)으로 에워싸여진 전지 모듈(10)을 외부 충격으로부터 보호하는 역할을 한다.
여기서, 상기 제 1충격 흡수 영역(310) 및 제 2충격 흡수 영역(320)은 상술한 바와 같이 설정되는 충격 깊이(Dfill)를 이루도록 형성된다.
도 12는 커버와 결합된 패키지 하우징을 보여 준다.
도 12를 참조 하면, 패키지 하우징(100)의 상단에는 커버(130)가 배치된다. 상기 커버(130)는 상기 패키지 하우징(100)의 상단과 용접 방식을 통하여 결합된다.
본 발명에 따르는 실시예는 단위셀들을 에워싸는 충격 흡수충을 다중 충격흡수가 가능하도록 할 수 있다.
본 발명에 따르는 실시예는 단위셀들의 사이 공간에 고체 상의 충진재를 침투시켜 전지 모듈을 몰딩하여, 단위셀들 간의 충격 및 전지 모듈 자체의 충격 완화를 구현할 수 있다.
다음은, 본 발명의 박막 전지 패키지 제조 방법을 설명한다.
도 13은 본 발명의 박막 전지 패키지 제조 방법을 보여준다.
이하의 설명에서 상기 제조 장치에 관한 구성은 도 3 내지 도 7을 참조하여 설명한다.
제 1단계
도 13을 참조 하면, 패키지 하우징(100)을 안착 스테이지(710)에 안착시킨다. 상기 패키지 하우징(100)은 상부가 개구되고 내부에 적층 공간(101)이 형성된다.
상기 적층 공간(101)에는 다단으로 적층된 단위셀들로 형성되는 전지 모듈(10)이 배치된다.
진공 제공부(720)를 사용하여 상기 패키지 하우징(100)을 안착 스테이지(710)에서 진공 흡착 고정시키는 것이 좋다.
제 2단계
전지 모듈(10)을 에워싸도록 충진재를 패키지 하우징의 내부에 충진한다.
상기 제 2단계를 더 구체적으로 설명한다.
충진 영역을 형성한다.
상기 충진 영역의 형성은 상술한 충진 영역 설정부를 사용할 수 있다.
전지 모듈(10)의 상면부에 제 1영역(a)을 형성하고, 전지 모듈(10)의 둘레와 적층 공간(101)의 내벽 사이 공간에 제 2영역(b)을 형성한다.
충진 깊이(Dfill)를 형성한다.
상기 충진 깊이(Dfill)는 상술한 충진 깊이 설정부를 사용할 수 있다.
여기서, 적층 공간(101)의 바닥면으로부터 전지 모듈(10)의 상면까지의 깊이값(Dcell)과, 적층 공간(101)의 깊이값(Dp)의 사이 거리를 충진 깊이(Dfill)의 상한선으로 결정한다.
따라서, 상기 충진 깊이(Dfill)는 적층 공간(101)의 바닥면으로부터 상기 상한선까지의 깊이값이다.
특히, 상기 충진 깊이(Dfill)의 상한선은 상기 패키지 하우징(100)의 상단면과 동일하거나 오버되는 레벨을 이루지 않는 것이 좋다.
충진재의 점도값을 형성한다.
여기서, 상기 충진재는 액체 상의 충진재(201)인 것이 좋다.
상기 충진재(201)를 400cps 이하를 이루는 점도값을 갖는 에폭시로 사용한다.
도 14는 점도값을 형성하는 과정을 보여준다.
도 14를 참조 하면, 점도 측정기(571)는 충진재(201)의 점도값을 측정한다.
상기 점도 측정기(571)는 상기 측정한 점도값을 설정기로 전송한다.
상기 설정기는 상기 측정한 점도값이 기설정된 기준 점도값 범위에 포함되는 지의 여부를 판단한다.
상기 측정한 점도값이 기설정된 기준 점도값 범위에 포함되면, 상기 설정기는 점도값 형성 과정을 종료한다.
반면에, 상기 측정한 점도값이 기설정된 기준 점도값 범위에 포함되지 않으면, 상기 설정기는 가열 수단(573)을 사용하여 상기 충진재(201)를 가열한다.
이때, 온도 센서(572)는 가열되는 충진재(201)의 온도값을 측정하여, 이를 설정기로 전송한다.
상기 설정기는 전송되는 온도값이 기설정된 기준 온도값에 이르도록 충진재(201)를 가열하도록 한다.
여기서, 상기 기준 온도값은 충진재(201)가 기준 점도값 범위에 포함되도록 하는 온도값이다.
이어, 상기 설정기는 점도값 형성 과정을 종료한다.
도 13을 참조 하면, 상기와 같이 충진재(201)의 점도값 형성 과정이 종료되면, 제어기(560)는 단일 충진 또는 다중 충진의 여부를 선택한다.
먼저, 단일 충진이 선택되는 경우에 대하여 설명한다.
제어기는 충진재 토출기(510)를 사용하여 제 1,2영역(a,b)을 포함하는 충진 영역에 충진재(201)를 충진한다.
여기서, 상기 제 1영역(a) 및 제 2영역(b)에 충진재(201)가 일정 두께로 충진됨으로써 충격 흡수부(200)가 형성된다.
그리고, 커버(130)를 사용하여 패키지 하우징(100)의 상단에 용접 결합시킨다.
본 발명에 따르는 실시예는 패키지 하우징 내부에 적충되는 단위셀들을 외부의 충격으로부터 보호할 수 있다.
본 발명에 따르는 실시예는 충진재를 사용하여 단위셀들 둘레에 충격 흡수층을 형성함으로써, 내충격성을 부여할 수 있다.
다음, 다중 충진이 선택되는 경우에 대하여 설명한다.
이하의 설명에서 상기 제조 장치에 관한 구성은 도 8 내지 도 12를 참조하여 설명한다.
충진 영역 설정부는 충진 영역을 재설정할 수 있다.
즉, 상기 충진 영역 설정부는 도 10에 도시된 바와 같은 제 1,2충진 영역(b1,b2)을 설정한다.
제 1,2충진 영역(b1,b2)은 전지 모듈(10)의 둘레로부터 외측을 따라 일정 두께를 구비하여 서로 경계를 이룬다.
즉, 상기 충진 영역은 다층으로 형성된다.
제어기(560)는 고체 상의 충진재 토출기(511)를 사용하여 고체 상의 충진재(511)를 상기 제 1충진 영역(b1)에 충진한다.
상기 고체 상의 충진재(311)는 일정 시간 경과후 경화된다.
상세하게는, 일정 점도의 액상으로 형성되는 충진재를 제 1충진 영역(b1)에 충진하고, 상기 충진재에 외부로부터 일정 온도의 열을 가하여 경화시켜 고체 상으로 형성한다.
상기 고체의 경도는 500 내지 1500gf 또는 1500 내지 4000gf 범위 중 어느 하나의 범위에 포함된다.
상기 500 내지 1500gf 의 경도 범위는 소프트하여 일정의 충격을 흡수할 수 있는 범위이고, 상기 1500 내지 4000gf의 경도 범위는 하드(hard)한 상태로 움직이지 않는 상태의 범위이다.
따라서, 전지 모듈(10)의 상면부 및 둘레는 일정 두께의 제 1충격 흡수 영역(310)이 형성된다.
이어, 상기 제어기(560)는 액체 충진재 토출기(512)를 사용하여 액체 상의 충진재(321)를 상기 제 2충진 영역(b2)에 충진한다.
상기 액체 상의 충진재(321)는 제 1충진 영역(b1)의 둘레와 적층 공간(101)의 내벽 사이에 충진된다.
따라서, 상기 제 2충진 영역(b2)에는 제 2충격 흡수 영역(320)이 형성된다.
그리고, 커버(130)를 사용하여 패키지 하우징(100)의 상단에 용접 결합시킨다.
본 발명에 따르는 실시예는 패키지 하우징으로 충격이 가해지는 경우, 상기 충격을 제 1,2충격 흡수 영역에 의하여 다중으로 흡수 또는 완화시킬 수 있다.
본 발명에 따르는 실시예는, 고체 상으로 형성되는 제 1충격 흡수 영역을 사용하여 전지 모듈의 배치 위치의 틀어짐을 미연에 방지할 수 있다.
도 15는 본 발명의 박막 전지 모듈을 보여주는 단면도이다.
도 15를 참조 하면, 상기 박막 전지 모듈은 전지 모듈(10)과, 충격 흡수부(200)로 구성된다.
상기 전지 모듈(10)은 다수의 단위셀들(1)이 상하로 적층되어 형성된다.
여기서, 상기 단위셀들(1) 간의 사이에는 공간이 형성된다.
상기 충격 흡수부(200)는 상기 단위셀들(1)의 사이 공간 및 상기 전지 모듈(10)을 에워싼다.
상기 충격 흡수부(200)는 Si 계열의 탄성 에폭시 또는 일정의 점도를 갖는 에폭시 중 어느 하나일 수 있다.
상기 점도는 400cps(centi poise) 이하를 이루는 이 좋다.
본 발명에 따르는 실시예에서, 액체 상의 충진재(201)인 에폭시는 단위셀들(1)의 사이 공간에 침투됨과 아울러, 전지 모듈(10)의 둘레를 에워싸도록 형성된다.
이에 따라, 본 발명에 따르는 실시예는 외부에서 전지 모듈에 충격이 가해지는 경우, 단위셀들 간의 충격완화는 물론, 전지 모듈 자체의 충격 완화를 실현할 수 있다.
도 16은 본 발명의 박막 전지 모듈의 다른 예를 보여주는 단면도이다.
충격 흡수부(300)는 상기 전지 모듈(10)의 둘레로부터 서로 다른 물질의 상태를 갖고 서로 경계를 이루는 충격 흡수 영역들을 포함한다.
이에 더하여, 상기 충격 흡수 영역들은 제 1충격 흡수 영역(310)과 제 2충격 흡수 영역(320)으로 구성될 수 있다.
상기 제 1충격 흡수 영역(310)은 상기 전지 모듈(10)의 둘레를 일정 두께로 에워싸고, 고체 상을 이룬다.
상기 제 2충격 흡수 영역(320)은 상기 제 1충격 흡수 영역(310)의 둘레를 에워싸고, 일정 점도를 이루는 에폭시로 형성된다.
상기 제 1충격 흡수 영역(310)은 일정 점도의 액상을 이루고, 외부로부터 일정 온도의 열을 전달 받아 경화되어 고체 상으로 형성될 수 있다.
상기 고체의 경도는 500 내지 1500gf 또는 1500 내지 4000gf 범위 중 어느 하나의 범위에 포함된다.
상기 500 내지 1500gf 의 경도 범위는 소프트하여 일정의 충격을 흡수할 수 있는 범위이고, 상기 1500 내지 4000gf의 경도 범위는 하드(hard)한 상태로 움직이지 않는 상태의 범위이다.
여기서, 상기 액상을 이루어 충진될 때, 이는 단위셀들(1)의 사이 공간에 침투되고, 열을 전달 받아 고체 상으로 경화된다.
본 발명에 따르는 실시예는 액체 상의 충진재(312) 및 고체 상의 충진재(311)는 단위셀들의 사이 공간에 침투됨과 아울러, 전지 모듈의 둘레를 에워싸도록 형성된다.
이에 따라, 본 발명에 따르는 실시예는 외부에서 전지 모듈에 충격이 가해지는 경우, 단위셀들 간의 충격완화는 물론, 전지 모듈 자체의 충격 완화를 실현할 수 있다.

Claims (36)

  1. 내부에 단위셀들이 적층되는 전지 모듈을 갖는 패키지 하우징; 및
    상기 패키지 하우징의 내부에 충진되며, 상기 전지 모듈을 에워싸고, 충격을 완화하기 위한 충격 흡수부를 포함하는 것을 특징으로 하는 박막 전지 패키지.
  2. 제1항에 있어서,
    상기 충격 흡수부는,
    Si 계열의 탄성 에폭시 또는 일정의 점도를 갖는 에폭시 중 어느 하나인 것을 특징으로 하는 박막 전지 패키지.
  3. 제2항에 있어서,
    상기 점도는 400cps(centi poise) 이하를 이루는 것을 특징으로 하는 박막 전지 패키지.
  4. 제1항에 있어서,
    상기 충격 흡수부는,
    상기 전지 모듈의 둘레로부터 서로 다른 물질의 상태를 갖고 서로 경계를 이루는 충격 흡수 영역들을 포함하는 것을 특징으로 하는 박막 전지 패키지.
  5. 제4항에 있어서,
    상기 충격 흡수 영역들은,
    상기 전지 모듈의 둘레를 일정 두께로 에워싸고, 고체 상을 이루는 제 1충격 흡수 영역과,
    상기 제 1충격 흡수 영역의 둘레를 에워싸고, 일정 점도를 이루는 에폭시로 형성되는 제 2충격 흡수 영역을 포함하는 것을 특징으로 하는 박막 전지 패키지.
  6. 제5항에 있어서,
    상기 제 1충격 흡수 영역은,
    일정 점도의 액상을 이루고, 외부로부터 일정 온도의 열을 전달 받아 경화되어 고체 상으로 일정의 경도를 갖도록 형성되고,
    상기 경도는 500 내지 1500gf 또는 1500 내지 4000gf 범위 중 어느 하나의 범위에 포함되는 것을 특징으로 하는 박막 전지 패키지.
  7. 상단이 개구되며, 내부에 전지 모듈이 배치되는 패키지 하우징이 안착되는 안착부; 및
    외부로부터 전기적 신호를 전송 받아 상기 전지 둘레를 에워싸도록 상기 패키지 하우징의 내부에 충격을 완화하기 위한 충진재를 충진하는 충진 유니트를 포함하는 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  8. 제7항에 있어서,
    상기 충진 유니트는,
    상기 충진재를 토출하는 충진재 토출기와,
    상기 충진재의 충진 영역을 설정하는 충진 영역 설정부와,
    상기 충진재 토출기와 전기적으로 연결되며, 상기 설정한 충진 영역에 상기 충진재가 충진되도록 상기 충진재 토출기의 구동을 제어하는 제어기를 구비하는 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  9. 제8항에 있어서,
    상기 충진재는,
    Si 계열의 탄성 에폭시 또는 일정의 점도를 갖는 에폭시 중 어느 하나인 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  10. 제9항에 있어서,
    상기 점도는 400cps 이하를 이루는 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  11. 제8항에 있어서,
    상기 충진 영역은,
    상기 전지 모듈의 상면부에 형성되는 제 1영역과, 상기 전지 모듈과 상기 패키지 하우지의 내벽 사이 공간에 형성되는 제 2영역을 포함하는 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  12. 제8항에 있어서,
    상기 충진 영역 설정부는,
    상기 충진 영역을 상기 전지 모듈의 둘레로부터 일정 두께를 이루어 서로 경계를 이루는 다수의 충진 영역으로 설정하는 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  13. 제12항에 있어서,
    상기 다수의 충진 영역은,
    상기 전지 모듈의 둘레로부터 일정 두께를 형성하는 제 1충진 영역과,
    상기 제 1충진 영역과 상기 패키지 하우징의 내벽 사이에 형성되는 제 2충진 영역을 포함하는 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  14. 제13항에 있어서,
    상기 충진재 토출기는,
    일정의 점도를 이루는 액체 상의 충진재를 토출하는 액체 충진재 토출기와,
    고체 상의 충진재를 토출하는 고체 충진재 토출기를 구비하되,
    상기 제어부는,
    상기 고체 충진재 토출기를 사용하여 상기 제 1충진 영역에 고체 상의 충진재를 충진하고,
    상기 액체 충진재 토출기를 사용하여 상기 제 2충진 영역에 액체 상의 충진재를 충진하고,
    상기 고체 상의 충진재는, 액상을 이루어 상기 고체 충진재 토출기를 통하여 토출되며, 외부로부터 일정 온도의 열을 전달 받으면 일정의 경도로 경화되고,
    상기 경도는 500 내지 1500gf 또는 1500 내지 4000gf 범위 중 어느 하나의 범위에 포함되는 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  15. 제14항에 있어서,
    상기 액체 상의 충진재는,
    상기 점도는 400cps 이하를 이루는 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  16. 제10항 또는 제15항에 있어서,
    상기 충진 유니트는, 점도 형성부를 더 구비하되,
    상기 점도 형성부는, 상기 점도를 이루는 충진재의 온도값을 측정하는 온도 센서와,
    상기 점도를 이루는 충진재를 가열하는 가열 수단을 구비하고,
    상기 제어부는, 상기 가열 수단을 사용하여 상기 점도는 400cps 이하를 이루도록 상기 액체 상의 충진재를 가열하는 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  17. 제8항에 있어서,
    상기 충진 유니트는,
    상기 충진재의 충진 깊이를 설정하는 충진 깊이 설정부를 더 구비하되,
    상기 충진 깊이는 상기 적층 공간의 바닥면으로부터 상기 전지 모듈의 상면과 상기 적층 공간의 깊이 사이까지의 거리를 상한선으로 설정하고,
    상기 적층 공간의 바닥면으로부터 상기 상한선까지의 깊이로 설정되는 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  18. 제17항에 있어서,
    상기 충진 깊이 설정부는, 거리 센서와 설정기를 포함하고,
    상기 거리 센서는, 상기 충진재 토출기에 설치되며, 상기 적층 공간의 깊이값과, 상기 전지 모듈의 상면까지의 거리값을 측정하고,
    상기 설정기는, 상기 충진 깊이를 설정하되,
    상기 제어기는 상기 설정한 충진 깊이를 이루도록 상기 충진재 토출기의 구동을 제어하는 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  19. 제7항에 있어서,
    상기 안착부는,
    상기 패키지 하우징의 안착되는 안착 스테이지와,
    상기 안착 스테이지에 설치되며, 외부로부터 진공을 받아 상기 패키지 하우징을 진공 흡착하는 진공 제공부를 구비하는 것을 특징으로 하는 박막 전지 패키지 제조 장치.
  20. 상부가 개구되고, 내부에 전지 모듈을 갖는 패키지 하우징을 준비하는 제 1단계; 및
    상기 전지 모듈을 에워싸도록 상기 패키지 하우징의 내부에 충격을 완화하기 위한 충진재를 충진하는 제 2단계를 포함하는 것을 특징으로 하는 박막 전지 패키지 제조 방법.
  21. 제20항에 있어서,
    상기 패키지 하우징을 안착 스테이지 상에 안착시키고,
    진공 제공부를 사용하여 상기 패키지 하우징을 진공 흡착시키는 것을 특징으로 하는 박막 전지 패키지 제조 방법.
  22. 제20항에 있어서,
    상기 제 2단계는,
    상기 충진재가 충진되는 충진 영역을 설정하고,
    상기 충진 영역에 충진재를 충진하는 것을 특징으로 하는 박막 전지 패키지 제조 방법.
  23. 제22항에 있어서,
    상기 충진 영역을 상기 전지 모듈의 상면부에 형성되는 제 1영역과, 상기 전지 모듈의 둘레와 상기 패키지 하우징의 내벽 사이의 제 2영역으로 설정하는 것을 특징으로 하는 박막 전지 패키지 제조 방법.
  24. 제22항에 있어서,
    상기 충진재를 Si 계열의 탄성 에폭시 또는 일정의 점도를 갖는 에폭시 중 어느 하나를 사용하는 것을 특징으로 하는 박막 전지 패키지 제조 방법.
  25. 제22항에 있어서,
    상기 충진 영역을
    상기 전지 모듈의 둘레로부터 일정 두께를 형성하는 제 1충진 영역과,
    상기 제 1충진 영역과 상기 패키지 하우징의 내벽 사이에 형성되는 제 2충진 영역으로 설정하는 것을 특징으로 하는 박막 전지 패키지 제조 방법.
  26. 제25항에 있어서,
    상기 제 1충진 영역에 고체 상의 충진재를 충진하고,
    상기 제 2충진 영역에 액체 상의 충진재를 충진하는 것을 특징으로 하는 박막 전지 패키지 제조 방법.
  27. 제26항에 있어서,
    상기 고체 상의 충진재는,
    일정 점도의 액상을 이루고, 외부로부터 일정 온도의 열을 가하여 경화시켜 일정의 경도를 갖도록 고체 상으로 형성하고,
    상기 경도는 500 내지 1500gf 또는 1500 내지 4000gf 범위 중 어느 하나의 범위에 포함되는 것을 특징으로 하는 박막 전지 패키지 제조 방법.
  28. 제24항 또는 제25항에 있어서,
    상기 점도를 400cps(centi poise) 이하를 이루도록 하는 것을 특징으로 하는 박막 전지 패키지 제조 방법.
  29. 제28항에 있어서,
    가열 수단을 사용하여 상기 점도를 400cps(centi poise) 이하를 이루도록 상기 점도를 이루는 충진재를 일정 시간 가열하는 것을 특징으로 하는 박막 전지 패키지 제조 방법.
  30. 제22항에 있어서,
    상기 제 2단계에서,
    상기 적층 공간의 바닥면으로부터 상기 전지 모듈의 상면과 상기 적층 공간의 깊이 사이까지의 거리를 충진 깊이의 상한선으로 설정하고,
    상기 충진 깊이를 상기 적층 공간의 바닥면으로부터 상기 상한선까지의 깊이로 설정하는 것을 특징으로 하는 특징으로 하는 박막 전지 패키지 제조 방법.
  31. 단위셀들이 서로 적층되어 형성되는 전지 모듈; 및
    상기 단위셀들의 사이 공간 및 상기 전지 모듈을 에워싸며, 충격을 완화하는 충격 흡수부를 포함하는 것을 특징으로 하는 박막 전지 모듈.
  32. 제31항에 있어서,
    상기 충격 흡수부는,
    Si 계열의 탄성 에폭시 또는 일정의 점도를 갖는 에폭시 중 어느 하나인 것을 특징으로 하는 박막 전지 모듈.
  33. 제32항에 있어서,
    상기 점도는 400cps(centi poise) 이하를 이루는 것을 특징으로 하는 박막 전지 모듈.
  34. 제31항에 있어서,
    상기 충격 흡수부는,
    상기 전지 모듈의 둘레로부터 서로 다른 물질의 상태를 갖고 서로 경계를 이루는 충격 흡수 영역들을 포함하는 것을 특징으로 하는 박막 전지 모듈.
  35. 제34항에 있어서,
    상기 충격 흡수 영역들은,
    상기 전지 모듈의 둘레를 일정 두께로 에워싸고, 고체 상을 이루는 제 1충격 흡수 영역과,
    상기 제 1충격 흡수 영역의 둘레를 에워싸고, 일정 점도를 이루는 에폭시로 형성되는 제 2충격 흡수 영역을 포함하는 것을 특징으로 하는 박막 전지 모듈.
  36. 제35항에 있어서,
    상기 제 1충격 흡수 영역은,
    일정 점도의 액상을 이루고, 외부로부터 일정 온도의 열을 전달 받아 경화되어 일정의 경도를 갖도록 고체 상으로 형성되고,
    상기 경도는 500 내지 1500gf 또는 1500 내지 4000gf 범위 중 어느 하나의 범위에 포함되는 것을 특징으로 하는 박막 전지 모듈.
PCT/KR2012/009206 2011-12-19 2012-11-02 박막 전지 모듈, 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법 WO2013094873A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280063125.8A CN104040753B (zh) 2011-12-19 2012-11-02 薄膜电池模块、薄膜电池组件及其制造装置以及制造方法
JP2014548648A JP6127064B2 (ja) 2011-12-19 2012-11-02 薄膜電池パッケージ
EP12859847.1A EP2797136A4 (en) 2011-12-19 2012-11-02 THIN-FILM BATTERY MODULE, THIN-FILTER BATTERY BOX, THIN-FILM BATTERY BOX MANUFACTURING DEVICE, AND THIN-FILTER BATTERY BOX MANUFACTURING METHOD
US14/366,911 US9728754B2 (en) 2011-12-19 2012-11-02 Thin film battery module, thin film battery package, thin film battery package manufacturing device, and thin film battery package manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110137067A KR101319523B1 (ko) 2011-12-19 2011-12-19 박막 전지 모듈, 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법
KR10-2011-0137067 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013094873A1 true WO2013094873A1 (ko) 2013-06-27

Family

ID=48668721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009206 WO2013094873A1 (ko) 2011-12-19 2012-11-02 박막 전지 모듈, 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법

Country Status (6)

Country Link
US (1) US9728754B2 (ko)
EP (1) EP2797136A4 (ko)
JP (1) JP6127064B2 (ko)
KR (1) KR101319523B1 (ko)
CN (1) CN104040753B (ko)
WO (1) WO2013094873A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3297058A4 (en) * 2015-05-12 2019-01-16 Olympus Corporation BATTERY ASSEMBLY FOR MEDICAL APPARATUS, AND MEDICAL APPARATUS UNIT
CN105957953B (zh) * 2016-06-08 2018-11-02 上海加冷松芝汽车空调股份有限公司 一种温差电池组
KR20190123262A (ko) * 2017-03-22 2019-10-31 세키수이 폴리머텍 가부시키가이샤 배터리 모듈 및 배터리 팩
KR102146540B1 (ko) * 2017-09-15 2020-08-20 주식회사 엘지화학 배터리 모듈
DE102019135381A1 (de) * 2019-12-20 2021-06-24 Audi Ag Verfahren zum Herstellen einer Traktionsbatterie eines Kraftfahrzeugs sowie entsprechende Herstellungseinrichtung
CN111162225A (zh) * 2020-03-02 2020-05-15 荣盛盟固利新能源科技有限公司 电池模组
CN112886044B (zh) * 2021-01-11 2022-12-23 上海凯矜新材料科技有限公司 一种铝箔软包电池自动封装设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100535739B1 (ko) 1999-02-26 2005-12-09 산요덴키가부시키가이샤 팩 전지
JP4067338B2 (ja) * 2002-05-31 2008-03-26 三洋電機株式会社 非水電解質二次電池の電池パック
KR20080058968A (ko) * 2006-12-23 2008-06-26 주식회사 엘지화학 외부 충격에 대한 안전성이 향상된 센터 핀을 포함하고있는 원통형 이차전지
KR20080112653A (ko) * 2007-06-22 2008-12-26 주식회사 엘지화학 안전성이 향상된 이차전지용 케이스 및 이를 포함하고 있는리튬 이차전지
JP4489374B2 (ja) * 2002-05-26 2010-06-23 モトローラ・インコーポレイテッド 耐衝撃性充電式の電池セルとその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5163800A (en) * 1999-05-25 2000-12-12 Leading Edge Technologies, Inc. Apparatus and method for battery cell electrode preparation, assembly and lamination
JP2001307704A (ja) 2000-04-24 2001-11-02 Yuasa Corp フィルムパッケージ電池の固定構造
JP2001357882A (ja) * 2000-06-13 2001-12-26 Mitsubishi Chemicals Corp 平板積層型電池
JP2002100332A (ja) * 2000-09-22 2002-04-05 Matsushita Electric Ind Co Ltd 電池収納装置
JP4826686B2 (ja) 2001-01-29 2011-11-30 株式会社Gsユアサ 組電池
EP1294032B1 (en) * 2001-09-17 2005-10-19 Nissan Motor Co., Ltd. Assembled battery
JP2003109667A (ja) * 2001-09-28 2003-04-11 Mitsubishi Electric Corp 非水電解質電池及びその製造方法
JP2006049289A (ja) * 2004-06-29 2006-02-16 Kyocera Corp 電池用ケースおよび電池ならびに電気二重層キャパシタ用ケースおよび電気二重層キャパシタ
DE102004043828B4 (de) * 2004-09-10 2018-09-13 Robert Bosch Gmbh Batteriepack
JP5028812B2 (ja) * 2006-02-09 2012-09-19 日産自動車株式会社 電池モジュール
JP5205713B2 (ja) * 2006-05-01 2013-06-05 日産自動車株式会社 双極型二次電池
US20070259258A1 (en) 2006-05-04 2007-11-08 Derrick Scott Buck Battery assembly with temperature control device
JP4954775B2 (ja) * 2007-04-12 2012-06-20 ソニー株式会社 電池パック
US20090004557A1 (en) * 2007-06-26 2009-01-01 Nokia Corporation Protecting a functional component and a protected functional component
JP2009266740A (ja) * 2008-04-28 2009-11-12 Idemitsu Kosan Co Ltd 電池モジュール、電池モジュールの製造方法及び電池モジュールを備えた装置
JP2010118159A (ja) 2008-11-11 2010-05-27 Sumitomo Electric Ind Ltd 固体電池及び固体電池の製造方法
JP5509684B2 (ja) * 2009-06-03 2014-06-04 ソニー株式会社 電池パック
CN201931454U (zh) 2010-12-09 2011-08-17 北大方正集团有限公司 真空吸附台面及具有该真空吸附台面的真空吸附台

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100535739B1 (ko) 1999-02-26 2005-12-09 산요덴키가부시키가이샤 팩 전지
JP4489374B2 (ja) * 2002-05-26 2010-06-23 モトローラ・インコーポレイテッド 耐衝撃性充電式の電池セルとその製造方法
JP4067338B2 (ja) * 2002-05-31 2008-03-26 三洋電機株式会社 非水電解質二次電池の電池パック
KR20080058968A (ko) * 2006-12-23 2008-06-26 주식회사 엘지화학 외부 충격에 대한 안전성이 향상된 센터 핀을 포함하고있는 원통형 이차전지
KR20080112653A (ko) * 2007-06-22 2008-12-26 주식회사 엘지화학 안전성이 향상된 이차전지용 케이스 및 이를 포함하고 있는리튬 이차전지

Also Published As

Publication number Publication date
EP2797136A1 (en) 2014-10-29
CN104040753A (zh) 2014-09-10
US9728754B2 (en) 2017-08-08
JP6127064B2 (ja) 2017-05-10
EP2797136A4 (en) 2015-06-03
US20140370364A1 (en) 2014-12-18
KR101319523B1 (ko) 2013-11-06
JP2015505144A (ja) 2015-02-16
KR20130069985A (ko) 2013-06-27
CN104040753B (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
WO2013094873A1 (ko) 박막 전지 모듈, 박막 전지 패키지, 박막 전지 패키지 제조 장치 및 박막 전지 패키지 제조 방법
WO2010036051A2 (en) Structure and manufacture method for multi-row lead frame and semiconductor package
WO2012134199A2 (ko) 플라즈마 발생 장치 및 기판 처리 장치
WO2017171388A1 (ko) 카메라 모듈 및 이를 포함하는 광학 기기
WO2016047950A1 (en) Light emitting device and method of fabricating the same
WO2019164106A1 (ko) 손 착용형 장치 및 이의 제조 방법
WO2014126410A1 (ko) 식품용기포장장치 및 이의 사용방법
WO2018155861A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학기기
WO2018004183A1 (en) Solar cell module, method for manufacturing solar cell module, method for manufacturing electronic device having solar cell module
WO2019182308A1 (ko) 카메라 모듈 및 이를 포함하는 광학 기기
WO2019027278A1 (ko) 칩 패키지 및 그 제조방법
WO2022005070A1 (ko) 탄성 부재 및 이를 포함하는 디스플레이 장치
WO2019194327A1 (ko) 웨이퍼 수납용기
WO2020180149A1 (ko) 패키징 기판 및 이를 포함하는 반도체 장치
WO2014115929A1 (ko) 반도체칩의 밀폐형 패키지 및 공정 방법
WO2016122245A1 (ko) 감전보호기능이 내장된 휴대용 전자기기
WO2020138617A1 (ko) 3차원 프린팅 구조체 세척장치 및 이를 이용한 3차원 프린팅 구조체 세척방법
WO2020076096A1 (ko) 전열 포트
WO2020149473A1 (ko) 표시 장치
WO2011013966A2 (ko) Led 방열기판의 제조방법 및 그의 구조
WO2021177676A2 (ko) 아크 소호 조립체 및 이를 구비하는 차단기
WO2020185023A1 (ko) 패키징 기판 및 이의 제조방법
WO2021054723A1 (ko) 배터리 관리 장치 및 방법, 및 이를 포함하는 배터리 시스템
WO2020050549A1 (ko) 전기장을 이용한 전류 경로 범위 제어 방법 및 전자 회로
WO2017099293A1 (ko) 전기 자동차용 배터리 스택용 쿨링 플레이트 제조 방법 및 이에 의해 제조된 쿨링 플레이트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859847

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548648

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14366911

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012859847

Country of ref document: EP