WO2013094742A1 - 補強繊維ストランドの製造方法 - Google Patents

補強繊維ストランドの製造方法 Download PDF

Info

Publication number
WO2013094742A1
WO2013094742A1 PCT/JP2012/083292 JP2012083292W WO2013094742A1 WO 2013094742 A1 WO2013094742 A1 WO 2013094742A1 JP 2012083292 W JP2012083292 W JP 2012083292W WO 2013094742 A1 WO2013094742 A1 WO 2013094742A1
Authority
WO
WIPO (PCT)
Prior art keywords
jig
strand
widening
reinforcing fiber
resin
Prior art date
Application number
PCT/JP2012/083292
Other languages
English (en)
French (fr)
Inventor
敬乃 大澤
誠 大坪
武 大木
克之 萩原
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to EP12860793.4A priority Critical patent/EP2796599B1/en
Priority to KR1020147016590A priority patent/KR20140105477A/ko
Priority to CN201280063968.8A priority patent/CN104011273B/zh
Priority to JP2013550358A priority patent/JP5764222B2/ja
Priority to US14/367,248 priority patent/US9528200B2/en
Publication of WO2013094742A1 publication Critical patent/WO2013094742A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/18Separating or spreading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • D04H1/4342Aromatic polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • D04H3/004Glass yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers

Definitions

  • the present invention relates to a reinforcing fiber strand, and more particularly to a method for producing a widened reinforcing fiber strand optimal for a fiber-reinforced composite material.
  • a method for widening the strand a method in which a water flow or a high-pressure air flow is applied to the reinforcing fiber strand to disperse the constituent fibers in the width direction, or a method in which the strand is vibrated and spread by ultrasonic waves or the like in air or liquid.
  • a method of extending and spreading the strand by contact between the strand and the widening jig is known.
  • Patent Document 1 and Patent Document 2 are known as methods for applying a water flow or a high-pressure air flow.
  • a water flow or a high-pressure air flow if water or the like is used as the fluid, a large amount of energy is required for the drying process after widening, and if a high-pressure air flow is used, a large amount of incidental facilities are required for scaling up such as increasing the number of spindles and increasing the speed.
  • the method of applying a vibration to the strand as in Patent Documents 3 to 5 can be implemented with a relatively small apparatus.
  • the method using a jig that vibrates in this way has a problem that the frequency is insufficient when a certain line speed is exceeded, and a sufficient strand width cannot be obtained.
  • Patent Document 6 discloses a method for obtaining a uniform and sufficiently widened reinforcing fiber strand by using a curved bar having a convex curved surface and a curved bar having a concave curved surface.
  • the tension of the strand fluctuates, the central portion of the strand is deviated from the central portion of the convex curved surface, and the widening becomes uneven.
  • Japanese Unexamined Patent Publication No. 57-77342 Japanese Patent No. 3049225 Japanese Unexamined Patent Publication No. 56-43435 Japanese Unexamined Patent Publication No. 1-282362 Japanese Unexamined Patent Publication No. 2007-313697 Japanese Laid-Open Patent Publication No. 3-146636
  • the present invention is to provide a method for producing a reinforcing fiber strand, which is a simple mechanism but can stably widen the strand even under high-speed processing conditions.
  • the strand made of the reinforcing fiber passes through the uneven jig and the widening jig in order, the uneven jig has a plurality of uneven parts including the concave part and the convex part, and the strand is the convex part. It is characterized by being divided by. Further, it is preferable that the uneven jig is a jig having unevenness with a height of 0.01 to 10 times the strand thickness, or that the strand passes through the converging jig before the uneven jig.
  • the strand passing distance L which is the distance between the uneven jig and the widening jig, preferably satisfies the following inequality (1).
  • L Strand passing distance between the uneven jig and the widening jig (mm)
  • W Fiber strand width before widening (mm)
  • the widening jig is a jig that forms one convex portion, or that the second uneven jig is provided after the widening jig.
  • the reinforcing fiber is a carbon fiber
  • the width of the strand before widening is 1 to 300 mm
  • the jig is a roll or a pin
  • the converging jig forms one recess. It is preferable that it is a jig
  • a method for producing a reinforcing fiber strand which is a simple mechanism but can stably widen the strand even under high-speed processing conditions.
  • tool The schematic diagram of a widening jig
  • An example of L 0 in which the uneven jig and the widening jig are integrated.
  • the figure with a plurality of uneven jigs arranged in the horizontal direction A diagram in which a plurality of widening jigs (convex jigs) are arranged in the horizontal direction. A figure in which a plurality of converging jigs (concave jigs) are arranged in the horizontal direction.
  • the present invention relates to a reinforcing fiber strand in which a strand made of reinforcing fibers passes through a concavo-convex jig and a widening jig in order, the concavo-convex jig has a plurality of concavo-convex portions including concave portions and convex portions, and the strands are divided by the convex portions. It is a manufacturing method.
  • the plurality of convex portions of the concavo-convex jig have a function of dividing the strand into a plurality of directions perpendicular to the traveling direction (width direction), and as a result, the fiber bundle (strand) is once divided in the width direction.
  • the strand once divided into small fiber bundles can maintain a state in which weak and strong bonds between single fibers coexist.
  • the strands made of reinforcing fibers are finally divided into small fiber bundles by the convex portions of the uneven jig.
  • the widening jig is not particularly limited as long as the width of the fiber strand can be widened, but it is preferably a jig having one convex portion, and one gentle convex portion as shown in FIG. It is more preferable that the jig has. That is, the widening jig is preferably a so-called drum-shaped jig (more specifically, a Japanese drum-shaped or barrel-shaped) jig (hereinafter, convex jig). Such a jig can be easily adapted to increase the number of spindles by being connected in the longitudinal direction as shown in FIG. 10, and is particularly useful when industrialized and mass-produced by increasing the number of spindles.
  • the strand transfer distance L between the uneven jig and the widening jig is preferably small, and is preferably at least 20 times the distance W of the fiber strand before widening.
  • the reinforcing fiber used in the present invention is not particularly limited as to the type of fiber as long as it is a high-strength fiber that can be used for a fiber-reinforced composite material, but as an inorganic fiber, carbon fiber, glass fiber, basalt fiber, Alumina fibers, boron fibers, steel fibers and the like, and organic synthetic fibers preferably include aromatic polyamide fibers, PBO fibers, high-strength polyethylene fibers and the like.
  • carbon fiber is suitable for applying the production method of the present invention.
  • any carbon fiber such as polyacrylonitrile (PAN), petroleum / coal pitch-based, rayon-based, and lignin-based can be used, and in particular, PAN-based carbon fiber using PAN as a raw material. This is particularly optimal because of its excellent productivity and mechanical properties on an industrial scale.
  • PAN polyacrylonitrile
  • petroleum / coal pitch-based rayon-based
  • lignin-based lignin-based
  • the tensile strength of the reinforcing fiber is preferably 600 MPa to 12 GPa, particularly preferably 3000 to 10000 MPa.
  • the strand tensile elastic modulus of the reinforcing fiber is preferably 100 to 1000 GPa, particularly preferably 200 to 500 GPa.
  • As the diameter of the reinforcing fiber a wide range of 1 ⁇ m to 30 ⁇ m can be used depending on the application, and a range of 3 to 10 ⁇ m is particularly preferable since the reinforcing effect on the matrix resin is high.
  • the strand made of reinforcing fibers used in the present invention is a bundle of a plurality of single fibers.
  • the number of single fibers constituting the bundle is preferably a fiber bundle (strand) composed of 1000 to 100,000 fibers because the widening effect of the present invention is clear. Further, the range is preferably 6,000 to 50,000. When the number is too small, the widening effect of the present invention tends to be reduced.
  • the total fineness of the strand is preferably 30 tex to 500,000 tex, and particularly preferably 200 to 4000 tex.
  • the width of such a strand is preferably 0.1 to 10 mm, more preferably 0.5 to 5 mm per 100 tex of the reinforcing fiber, although it depends on the fiber diameter of the reinforcing fiber to be used. From the viewpoint of workability, the width per strand is preferably in the range of 1 mm to 300 mm, more preferably in the range of 3 to 90 mm, and particularly in the range of 5 to 40 mm.
  • these strands may constitute a bundle of fibers from the beginning of production, or a plurality of strands can be collected and processed at a time. And when using two or more strands, you may supply with multiple spindles. By extending each jig in the axial direction according to the number and width of strands to be introduced, the manufacturing method of the present invention can easily cope with it.
  • the shape of the strand made of the reinforcing fiber used in the present invention is preferably flat and is not particularly limited, but is preferably rectangular, circular or elliptical.
  • the thickness of the strand is preferably in the range of 0.01 to 20 mm, and particularly preferably 0.02 to 10 mm. This thickness can be measured using a caliper or a micrometer.
  • the strand before widening is usually converged by a sizing agent. For example, with such a carbon fiber, the thickness can be easily measured. Even when this is difficult, it is possible to polish the cut cross section of the test piece in which the strand is impregnated with the resin, observe it with a microscope or the like, and accurately measure the thickness.
  • the reinforcing fiber strand used in the present invention has been provided with a sizing agent in the previous step.
  • the adhesion amount of the sizing agent is preferably more than 0 to 10 parts by mass and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the fiber.
  • the sizing agent is not particularly limited, but is preferably the same resin-based sizing agent as the matrix resin to be reinforced later by the strand from the viewpoint of the physical properties of the resulting composite material.
  • the sizing agent which contains the thermosetting or thermoplastic resin which has a softening point as a main ingredient is preferable. In the production method of the present invention, fiber strands to which such a sizing agent adheres and which are difficult to open can be processed at high speed.
  • the step of passing the strand made of the reinforcing fiber as described above in the order of the uneven jig and the widening jig is essential. And it is important that this uneven
  • tool may satisfy the following inequality (1).
  • W Fiber strand width before widening (mm)
  • the strand transfer distance L between the uneven jig and the widening jig is preferably small, and is preferably at least 20 times the distance W of the fiber strand before widening. Further, it is preferably 5 times or less, particularly 2 times or less, the width W of the fiber strand.
  • the uneven jig and the widening jig are integrated, and a case where L is substantially zero as shown in FIG.
  • the reinforcing fiber strand is passed through a guide mechanism that stabilizes the yarn path of the strand after the uneven jig and the widening jig.
  • a component force in the width direction (X direction) is applied to the strand.
  • the component forces in the + X direction and the -X direction in FIG. Ideally, the balance between the two must be well balanced. If the + X direction is extremely large, the entire strand is biased in the + X direction, and the strands tend not to be uniformly and sufficiently widened.
  • the widening jig it is preferable to run the strand itself at the center of the widening jig in order to apply a balanced force to the strand in both the + X and -X directions. Therefore, it is preferable to control the yarn path in the strand width direction by controlling the strand incident position and angle to the widening jig.
  • the angle formed with the direction (strand incident angle) is 0 degree.
  • the widening treatment of the reinforcing fiber strand is carried out industrially at high speed and continuously, it is difficult to always satisfy the above (i) and (ii) continuously.
  • a force in the -X direction (orbit correcting force) is used to correct the yarn path even when the entire strand is biased in the + X direction. Will be added.
  • the reinforcing fiber strand is passed through the uneven jig and the widening jig and passed through a guide mechanism for stabilizing the yarn path of the strand, for example, as shown in FIG. 6 (incident position X ′ to the widening jig).
  • the guide mechanism acts as a fulcrum against the yarn path deviation in the strand width direction.
  • a direction reaction force is generated, and this reaction force can be easily used as a trajectory correcting force.
  • the reaction force in the -X direction is a component force in the X direction of the take-up tension of the strand acting in the fiber axis direction of the strand, the positional relationship between the uneven jig and the widening jig with respect to the width direction of the strand is By satisfying (1), a greater effect can be obtained.
  • the strand transfer distance L between the concavo-convex jig and the strand widening jig is small, and the distance L is 20 times or less the strand width W in order to increase the component force in the X direction of the strand take-up tension. It is more preferable. Furthermore, L is preferably 5 times or less of W, and particularly preferably 2 times or less.
  • the strand passes once through the converging jig before passing through the uneven jig.
  • the strand passes through a more stable yarn path, and it becomes possible to reduce the influence of process condition such as tension fluctuation.
  • the strand passes through the second uneven jig after passing through the widening jig.
  • the widened state can be more uniformly maintained in the subsequent process.
  • the uneven jig used in such a manufacturing method of the present invention is a jig that must have unevenness arranged so that coarse and dense strands are generated in the direction perpendicular to the traveling direction of the strand (width direction). It is. There is an effect as a guide mechanism in which strands made of reinforcing fibers are divided in advance by unevenness to stabilize the widening and make the yarn path of the strands constant.
  • the reinforcing fiber when the reinforcing fiber is widened, it is necessary to keep the thickness of the strands uniform in the width direction of the strands, and the use of the uneven jig as in the present invention has been avoided. This is because it has been considered that the reinforcing effect of the matrix resin is different between a portion where the fiber abundance in the composite material is high and a portion where the fiber is low.
  • the resin is immersed in a widened state, and after converging, the resin is solidified, cut and used as a pellet, or widened
  • utilization methods such as a method of cutting reinforcing fiber strands in a state and using them for a random mat.
  • it is regular it has been found by the efforts of the present inventors that it is preferable to have a thickness variation in the width direction.
  • the uneven jig functions as a fulcrum that sufficiently stabilizes the yarn path of the strand in the X direction even with a simple mechanism because the filament constituting the strand easily travels through a more stable trough (concave). Further, it is preferable to connect the uneven jig as shown in FIG. 1 in the longitudinal direction as shown in FIG.
  • the height difference due to the unevenness is preferably about 0.01 to 10 times the strand thickness.
  • the height difference of the unevenness is smaller than the thickness of the strand, it is possible to suppress local variation in the thickness in the width direction of the strand as well as to stabilize the yarn path.
  • the height difference of the unevenness is larger than the thickness of the strand, higher stabilization of the yarn path can be obtained.
  • each of the small fiber bundles (strands) is processed together in the subsequent impregnation treatment or cutting step.
  • the height difference due to the unevenness is preferably 0.01 to 20 mm, more preferably 0.05 to 5 mm.
  • Such a concavo-convex jig may have a shape such as a roll or a pin, or may have a concavo-convex formed on a surface through which a strand of a fixed jig passes.
  • a pin shape as shown in FIG.
  • the diameter is preferably 5 to 900 mm, more preferably 10 to 200 mm, and even more preferably 10 to 90 mm.
  • the cross-sectional shape of the jig is not particularly limited as long as it has a plurality of concave and convex portions formed on the yarn path, but the jig has a circular cross-sectional shape because it has a high degree of freedom in the holding angle and yarn path.
  • the holding angle is preferably in the range of 1 to 350 °, more preferably 30 to 180 °. This holding angle can be easily adjusted by changing the distance and height between the jigs.
  • the pitch of the convex and concave portions is preferably 0.1 to 10 mm, and more preferably 5 mm or less.
  • the pitch of a convex part is a space
  • the angle of the side surface of one convex part is not particularly limited, but is preferably 15 ° to 90 °, and more preferably 30 ° to 90 °.
  • the radius of curvature R2 of the apex of the concave portion which is the bottom of the concave and convex portions through which the strand passes depends on the width and interval of the concave and convex portions, but R2 ⁇ ⁇ is preferably in the range of 0.01 mm to 50 mm, particularly preferably 30 mm or less. .
  • a converging jig is formed by taking a drum shape (more specifically, a small drum shape) as a whole and forming a small uneven portion in one large concave portion. It can also be used as a jig that also serves as an uneven jig.
  • the material for forming the uneven jig used in the present invention is not particularly limited, metals such as stainless steel, iron and copper, and ceramics such as glass, alumina and zirconia are preferred.
  • the metal can be coated with a satin finish or a polishing process, a surface treatment such as chrome plating, and the ceramic can be coated with a synthetic resin such as a fluororesin.
  • stainless steel is subjected to hard chrome plating.
  • a highly rigid fiber such as carbon fiber
  • the surface may be subjected to a mirror finish or a satin finish depending on the purpose.
  • vibration such as ultrasonic vibration, heating and cooling.
  • the strands made of reinforcing fibers are divided by the unevenness, the widening is stabilized, and the yarn path of the strand is constant. Can be.
  • the strand passes through the widening jig after passing through the uneven jig.
  • the widening jig is not particularly limited as long as it is a jig that can widen the strand, but in general, as a widening jig, one loose piece as shown in FIG. It is preferable that it is a jig
  • This is a so-called drum-shaped jig (more specifically, a Japanese drum-shaped jig).
  • Such a widening jig may have a shape such as a roll or a pin, or may have a convex portion formed on a surface through which a fiber bundle (strand) of a fixed jig passes.
  • the maximum diameter is preferably 5 to 900 mm, more preferably 10 to 200 mm, and even more preferably 10 to 90 mm. .
  • the cross-sectional shape is not particularly limited as long as it has a convex portion on the yarn path, but the cross-sectional shape of the jig is preferably circular from the viewpoint that the holding angle and the degree of freedom of the yarn path are high.
  • the holding angle is preferably in the range of 1 to 350 °, more preferably in the range of 30 to 180 °. This holding angle can be easily adjusted by changing the distance and height between the jigs.
  • the convex portion has a larger diameter as it is closer to the center of the jig, and is processed into a so-called drum shape (more specifically, a Japanese drum shape).
  • the diameter of the convex jig which is a widening jig having a convex part, is different between the center part and the end part. Fibers tend to travel on routes that shorten the path length on the yarn path. Accordingly, since the fiber traveling in the central portion having a large diameter in the convex jig tends to have a long path length, the fiber travels along a route in which the path length is shortened by spreading in the width direction, and the strand is widened.
  • widening means that the fiber travels along a route having an angle with respect to the traveling direction of the strand. Therefore, if this angle is too large, the path length becomes longer. Therefore, the fiber travels on the route with the shortest path length in which both are balanced.
  • the effective width of the widening jig it is possible to adjust the width of the reinforcing fiber strand after the widening. Further, by using a jig such as a flat bar, a pin, or a roll that defines the effective width, it is possible to obtain a reinforced fiber strand with more stable quality.
  • a jig such as a flat bar, a pin, or a roll that defines the effective width
  • the yarn width regulating jig such as a pin guide or a grooved roller having a regulated width.
  • the material for forming the widening jig used in the present invention is not particularly limited, but metals such as stainless steel, iron and copper, and ceramics such as glass, alumina and zirconia are preferred.
  • the metal can be coated with a satin finish or a polishing process, a surface treatment such as chrome plating, and the ceramic can be coated with a synthetic resin such as a fluororesin.
  • stainless steel is subjected to hard chrome plating.
  • a highly rigid fiber such as carbon fiber is used, it is particularly preferable in order to improve the wear resistance of the jig caused by abrasion.
  • the widening jig may be more suitably used by applying vibration such as ultrasonic vibration or heating / cooling.
  • the fiber running in the center has a long path length, and thus the strand after widening tends to be thin at the center. Therefore, by reducing the strand transfer distance L between the strand width uneven jig and the strand widening jig, it is possible to prevent the fibers in the center from escaping excessively in the width direction, and to achieve a uniform and uniform thickness and width. Widened strands are obtained. Therefore, as shown in FIG. 8, it is particularly effective to substantially integrate the uneven jig and the widening jig in the strand width direction.
  • this guide mechanism serves as a downstream fulcrum for correcting the trajectory when the yarn path is displaced.
  • the guide mechanism is not particularly limited as long as it can function as a fulcrum on the downstream side, and examples thereof include a jig such as a flat bar, a pin, and a roll.
  • a jig such as a flat bar, a pin, and a roll.
  • the filament constituting the strand easily travels in a more stable recess, so even a simple mechanism can function as a fulcrum in the X direction and be connected in the long direction.
  • a simple mechanism can function as a fulcrum in the X direction and be connected in the long direction.
  • the uneven jig since there are uneven portions arranged so that the uneven density of the strands is generated in a direction perpendicular to the traveling direction of the strand (X direction), the strand made of the reinforcing fiber is preliminarily arranged in this way. Has the effect of separating the fibers.
  • Such a pre-divided reinforcing fiber bundle is obtained by immersing the resin in a widened state, consolidating the resin after converging, and pellets obtained by cutting and reinforcing fibers cut in the widened state. It is particularly preferably used for a random mat produced by dispersing. This is because in these cases, it is particularly important to obtain a stable width and thickness of the entire strand during the process.
  • the use of the uneven jig of the present invention is a particularly preferable method because it has a function of separating strands.
  • the strand passes through the converging jig in advance before passing through the uneven jig or widening jig as described above.
  • a converging jig is not particularly limited as long as it is a jig that can fix the yarn path of the strand.
  • a roll as shown in FIG. It is preferably a jig (concave jig) in which a concave portion is formed on the surface through which a strand such as a pin passes.
  • This is a so-called drum-shaped jig (more specifically, a small drum-shaped jig).
  • a yarn path that satisfies the above-mentioned condition (i) by “passing through the converging jig” in advance, that “the center of the strand runs at a position of X 0 on the widening jig” on a high standard, and the strand is more stable. Therefore, stable widening is possible, and the widening width of the finally obtained strand is also stable.
  • the maximum diameter is preferably 5 to 900 mm, more preferably 10 to 200 mm, Further, it is preferably 10 to 90 mm.
  • the cross-sectional shape is not particularly limited, but the cross-sectional shape of the jig is preferably circular from the viewpoint that the holding angle and the degree of freedom of the yarn path are high.
  • the holding angle is preferably in the range of 1 to 350 °, more preferably 30 to 180 °. This holding angle can be easily adjusted by changing the distance and height between the jigs.
  • the concavity of the converging jig has a smaller diameter at the center of the jig and is processed into a so-called drum shape (more specifically, a drum shape).
  • the material for forming the converging jig used in the present invention is not particularly limited, but metals such as stainless steel, iron and copper, and ceramics such as glass, alumina and zirconia are preferred.
  • the metal can be coated with a satin finish or a polishing process, a surface treatment such as chrome plating, and the ceramic can be coated with a synthetic resin such as a fluororesin.
  • stainless steel is subjected to hard chrome plating.
  • a highly rigid fiber such as carbon fiber is used, it is particularly preferable in order to improve the wear resistance of the jig caused by abrasion.
  • the focusing jig can be used more suitably by applying vibration such as ultrasonic vibration, heating and cooling.
  • the jig, uneven jig, widening jig, guide mechanism, and the like preferably used in the present invention are further restricted to these jigs by restricting the range through which the fiber passes with a "rib" at the end. It is possible to set the effective width and adjust the width after expansion of the reinforcing fiber strand.
  • the converging jig, the uneven jig, the widening jig, the guide mechanism, etc. used in the present invention are subjected to vibration such as ultrasonic vibration, heating and cooling, thereby improving the strand widening property and the yarn path.
  • vibration such as ultrasonic vibration, heating and cooling
  • the sizing agent when the sizing agent includes a solid resin component, it is possible to heat the converging jig, the uneven jig in the strand width direction, the widening jig, the guide mechanism, etc. to a temperature above the softening temperature of the sizing agent and below the decomposition temperature.
  • the convergence power of the sizing agent during the process can be temporarily reduced, and the productivity is improved.
  • a sizing agent contains a thermosetting resin component, it is more preferable that heating temperature is less than hardening temperature.
  • the heating temperature of the jig is generally 50 to 300 ° C., more preferably 70 to 250 ° C., although it varies depending on the thermal deterioration of the strand itself, the contact time of the strand-each mechanism, and the components of the sizing agent.
  • the strand made of the reinforcing fiber runs in order while contacting the uneven jig and the widening jig, but the contact length, the contact time, the yarn path, the jig and the strand
  • the tension and the widened state can be optimized as appropriate.
  • the line speed of the production method of the present invention is preferably in the range of 1 to 500 m / min, and particularly preferably in the range of 2 to 90 m / min.
  • the tension applied to the strand before treatment is preferably in the range of 0.098 to 98 N (0.01 to 10 kgf), and optimally 0.98 N (0.1 kgf) or more.
  • Such reinforcing fiber strands obtained by the production method of the present invention are combined with a matrix resin, for example, by known molding means / molding methods such as injection molding, press molding, filament winding molding, resin transfer molding, autoclave molding, etc.
  • a fiber reinforced composite material is obtained.
  • the reinforcing fiber strand obtained by the production method of the present invention includes, for example, a reinforcing fiber material obtained by aligning such reinforcing fiber strands in one direction, or forming into a woven or knitted fabric, a nonwoven fabric, a multiaxial woven fabric, a braid, or the like.
  • a chopped strand obtained by cutting the strand into an arbitrary fiber length it is particularly preferably used as a resin-impregnated strand, a reinforcing fiber pellet, or a random mat, and finally it can be particularly suitably used for a fiber-reinforced composite material.
  • a resin-impregnated strand a widened reinforcing fiber strand is impregnated into a thermoplastic resin or the like, cooled and cut to obtain a reinforcing fiber pellet.
  • thermosetting resin or a thermoplastic resin is used.
  • the thermoplastic resin include polyethylene resins and polypropylene resins, and polyolefin resins such as copolymers and blends thereof, aliphatic polyamide resins such as polyamide 66, polyamide 6, and polyamide 12, and aromatic components as acid components.
  • PET polyethylene terephthalate resin
  • PBT polybutylene terephthalate resin
  • polycarbonate resin polystyrene resin
  • AS resin polystyrene resin
  • ABS resin etc.
  • aliphatic polyester resins such as polylactic acid.
  • thermosetting resins include epoxy resins, unsaturated polyester resins, phenol resins, vinyl ester resins, cyanate ester resins, urethane acrylate resins, phenoxy resins, alkyd resins, urethane resins, maleimide resins and cyanate ester resins. And a prepolymerized resin, bismaleimide resin, polyimide resin and polyisoimide resin having acetylene terminal, and polyimide resin having nadic acid terminal. These can also be used as one type or a mixture of two or more types. Of these, epoxy resins and vinyl ester resins excellent in heat resistance, elastic modulus, and chemical resistance are particularly preferable.
  • thermosetting resins may contain commonly used colorants and various additives in addition to the curing agent and the curing accelerator.
  • the content of the resin composition in the composite material is 10 to 90% by mass, preferably 20 to 60% by mass, and more preferably 25 to 45% by mass.
  • the reinforcing fiber strand of the present invention is sufficiently widened and is easily impregnated with resin, a composite material using these can obtain high physical properties.
  • the reinforcing fiber strand of the present invention is particularly preferably used as a reinforcing fiber strand used in the production of a random mat which is a pseudo-isotropic nonwoven fabric base material in which reinforcing fibers having an arbitrary fiber length are randomly oriented.
  • a random mat which is a pseudo-isotropic nonwoven fabric base material in which reinforcing fibers having an arbitrary fiber length are randomly oriented.
  • (Fiber dispersion) A step of diffusing each of the divided reinforcing fiber strands (at the same time, sucking together with a fibrous or powdery matrix resin, which can also be a coating step of simultaneously dispersing the reinforcing fibers and the matrix resin), 4).
  • (Fixing) A step of fixing a coated reinforcing fiber and a matrix resin to obtain a random mat. 5.
  • Press A step of press-molding the obtained random mat.
  • the reinforcing fiber strand obtained by the production method of the present invention has regular coarse and dense spots in the width direction derived from the uneven jig processing, and is divided with particularly high quality in the step of dividing into pieces after the cutting step. It becomes possible to obtain a fiber strand.
  • the matrix resin used for such a random mat is not particularly limited, but a thermoplastic resin is preferably used.
  • the press can have a desired thickness by stacking a plurality of random mats obtained in step 4.
  • the method and conditions for press molding are not particularly limited. However, when the matrix resin is a thermoplastic resin, it is preferable to perform hot pressing under a condition that is not lower than the melting point of the thermoplastic resin and not higher than the melting point decomposition temperature. The press pressure and press time can also be appropriately selected. Further, the resin used for the random mat may be applied simultaneously with the above-mentioned three steps, or the following four fixing steps may be performed by overlaying a resin film or a molten resin on the fiber-spread mat. .
  • the amount of the matrix resin used in the random mat is preferably 50 to 1000 parts by mass with respect to 100 parts by mass of the reinforcing fibers. More preferably, it is 100 to 600 parts by mass of the matrix resin with respect to 100 parts by mass of the reinforcing fibers, and further preferably 150 to 300 parts by mass of the matrix resin with respect to 100 parts by mass of the reinforcing fibers.
  • thermoplastic resins suitable for random mats include vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, polystyrene resin, acrylonitrile-styrene resin (AS resin), and acrylonitrile-butadiene-styrene resin (ABS resin).
  • polypropylene resin, polyamide resin, polyethylene terephthalate resin, polyethylene naphthalate resin, polyether ether ketone resin, and the like are desirable.
  • the fiber reinforced composite material finally obtained using the reinforcing fiber strand of the present invention in addition to the fiber used for the reinforcing fiber strand of the present invention, other glass fibers are used within the range not impairing the object of the present invention.
  • Various fibrous or non-fibrous fillers such as inorganic fibers and organic fibers, flame retardants, UV-resistant agents, pigments, mold release agents, softeners, plasticizers, and surfactant additives may be included.
  • a method for obtaining a molded article which is a fiber-reinforced composite material using a random mat is not particularly limited, but press molding and thermoforming are preferable. Such a molding process may be performed directly in the shape of the final molded product in the press molding process of 5 in the random mat manufacturing process, or in a shape that is easy to handle, such as a plate shape, in the press molding process of 5.
  • the fiber reinforced composite material preliminarily molded into the shape may be molded into the shape of the final molded product by any molding method such as press molding or thermoforming.
  • a random mat or preformed fiber reinforced composite material is placed in the mold, and the temperature is raised to the melting point or above or the glass transition point (or above the curing temperature if the matrix resin is a thermosetting resin).
  • a molded product can be preferably obtained by so-called hot pressing, in which press molding is performed and then the mold is cooled to a temperature lower than the melting point or lower than the glass transition temperature.
  • a molded product can be obtained preferably by so-called cold pressing in which a plurality of sheets are stacked, put into a mold held below the melting point or below the glass transition point, pressurized, and then cooled.
  • the fiber-reinforced composite material using the reinforcing fiber strand obtained in the present invention is sufficiently impregnated with resin, becomes a highly economical composite material having high physical properties and high workability, and has high mechanical properties. Since it is excellent and its variation is small, it can be widely applied to various uses such as sports use, leisure use, general industrial use, aviation / space use, and automobile use.
  • the total width of the reinforcing fiber strand was measured using a caliper every 10 m in the length direction of the fiber, and the average was taken as the width of the reinforcing fiber strand.
  • the reinforcing fiber strand was cut into a fiber length of 20 mm using a rotary cutter.
  • the cut strand was introduced into a double pipe made of SUS304, and the strand was divided by blowing compressed air of 150 m / sec.
  • the polyamide resin PA6 powder, A1030FP manufactured by Unitika Co., Ltd.
  • PA6 powder, A1030FP manufactured by Unitika Co., Ltd. was supplied as a matrix resin at the same time as the strands were diffused, and after the fibers and the resin were sprayed at the same time, the polyamide resin was fixed to the fibers to create a random mat. .
  • Example 1 Carbon fiber Tenax (registered trademark) manufactured by Toho Tenax Co., Ltd. (average diameter: 7 ⁇ m, number of filaments: 24,000, fineness: 1600 tex, tensile strength: 4000 MPa) is used as the reinforcing fiber strand, and the main resin is a polyamide resin (softening point: 90 ° C.).
  • a strand (a sizing agent adhesion amount of 1.0 wt%) that was focused into a flat state having a width of 10 mm and a thickness of 0.15 mm was prepared.
  • This strand is the following convergence jig, uneven jig, widening jig in order, line speed 40m / min, pre-widening tension (immediately before the convergence jig) average 0.7kgf (6.9N) (load cell type digital tension meter).
  • the measurement was carried out under the conditions of continuous conveyance from the yarn feeder, and a reinforcing fiber strand widened to a width of 20 mm was obtained.
  • the converging jig, concave / convex jig, and widening jig are all pins (cylindrical), and their central portions are arranged in a straight line, the center distance of each pin is 40 mm, and the holding angle of the pin strand is about 70 °. there were. At this time, the value of L was 35 mm.
  • the material is stainless steel with a hard chrome plating treatment, the effective width of the yarn path is 40 mm, there is one recess, the radius R of the recess curvature is 100 mm, and the maximum diameter ⁇ of the converging jig is 20 mm. .
  • the material is stainless steel, the effective width of the yarn path is 40 mm, and many irregularities are formed.
  • the angle ⁇ of the convex side surface is 80 °, the radius R of the convex vertex is 0.05 mm, and the radius R of the concave bottom is
  • the diameter of the concave / convex jig was 20 mm, the apex distance between the convex portions was 1 mm, and the height of the convex portions (the height difference of the concave / convex portions) was 0.6 mm.
  • the material was stainless steel, the effective width of the yarn path was 20 mm, there was one convex part, the radius R of the convex part curvature was 100 mm, and the diameter ⁇ of the widening jig was 25 mm.
  • the tension immediately after the widening treatment was 1.5 kgf (14.7 N) on average, the fibers were uniformly dispersed, the strand width after widening was 20 mm, and the continuous operation was continued for 2 hours. There was no change in the strand width.
  • Example 2 In the same manner as in Example 1, the reinforcing fiber strands were passed in the order of the converging jig, the uneven jig, and the widening jig, and subsequently processed from a flat pin having a regulation width of 18 mm, which was a yarn width regulating jig ( All jigs were arranged in a straight line including flat pins). Although the tension immediately after passing through the flat pin slightly increased to an average of 1.6 kgf (15.7 N), the fibers were more uniformly dispersed than in Example 1, and a stable reinforcing fiber strand having a strand width of 18 mm after widening was obtained. It was. This is thought to be due to the effect of reducing the gaps due to the uneven jigs due to the flat pin treatment.
  • Example 3 In the same manner as in Example 1, the reinforcing fiber strands were passed in the order of the converging jig, the uneven jig, and the widening jig, and subsequently processed by the second uneven jig as a guide mechanism (note that all treatments were performed). The tools were arranged in a straight line). The second uneven jig is the same as the first uneven jig.
  • the tension immediately after passing through the second concavo-convex jig increased to an average of 1.8 kgf (17.6 N), and although 1 mm pitch split fiber traces were observed, the fibers were uniformly dispersed as a whole, and after widening A stable reinforcing fiber strand having a strand width of 20 mm was obtained.
  • Example 4 The processing was performed in the same manner as in Example 1 except that the radius R of the convex curvature of the widening jig was changed from 100 mm in Example 1 to 300 mm.
  • the average tension after widening was 1.6 kgf (15.7 N), and a reinforced fiber strand of sufficient quality was obtained although it was slightly inferior to that of Example 1 in terms of the strand width after widening.
  • the strand width after widening was 16 mm.
  • Example 5 The same procedure as in Example 1 was applied except that the sizing agent of the reinforcing fiber used was changed from polyamide resin to urethane, and the widening jig had a radius of curvature R of 300 mm as in Example 4. Went. The tension after widening was 1.6 kgf (15.7 N) on average, the fibers were uniformly dispersed, and the strand width after widening was increased from 16 mm to 20 mm, which was a stable reinforcing fiber strand.
  • Example 6 Example except that the number of filaments of the reinforcing fiber used was changed from 24000 (24K) to 12000 (12K), and the width R of the convex part curvature of the widening jig was 300 mm as in Example 4. The same treatment as in 1 was performed. The tension after widening was 1.5 kgf (14.7 N) on average, the fibers were uniformly dispersed, and the strand width after widening was a stable reinforcing fiber strand with a width of 20 mm.
  • Example 1 The treatment was performed in the same manner as in Example 1 except that the uneven jig was not used.
  • the tension after widening was only slightly increased to an average of 1.6 kgf (15.7 N), but the yarn path was unstable, and the original yarn after passing through the converging jig did not run through the center of the widening pin. A stable widening effect could not be obtained.
  • the target strand width could not be obtained because the yarn path was misaligned.
  • the obtained reinforcing fiber strand was cut and processed into a random mat composed of fibers and resin, but only physical properties equivalent to those of the reinforcing fiber strand not subjected to the widening treatment were obtained.
  • the standard deviation of the tensile strength of the fiber reinforced composite material molding plate obtained by molding such a random mat was as large as 40, and the variation in strength was large, resulting in a non-uniform molding plate.
  • Example 2 The treatment was performed in the same manner as in Example 1 except that a cylindrical flat bar made of stainless steel subjected to hard chrome plating and having a diameter ⁇ of 20 mm was used instead of the uneven jig.
  • the tension after widening increases to an average of 1.7 kgf (16.7 N), the yarn path is unstable, and the yarn after passing through the converging jig does not run through the center of the widening pin, providing a stable widening effect. It was not obtained.
  • the strand width of the obtained strand was 13 mm, which is narrower than when using an uneven jig, and a sufficient widening effect could not be obtained.
  • the obtained reinforcing fiber strand was cut and processed into a random mat composed of fibers and resin, but only physical properties equivalent to those of the reinforcing fiber strand not subjected to the widening treatment were obtained.
  • the standard deviation of the tensile strength of the fiber-reinforced composite material molding plate obtained by molding such a random mat was as large as 37, and the strength variation was large and the molding plate was uneven.
  • Example 7 Processing was performed in the same manner as in Example 1 except that the vertex interval of the convex portions of the uneven jig was changed from 1 mm in Example 1 to 6 mm.
  • the average tension after widening was 1.3 kgf (12.7 N), and a reinforcing fiber strand of sufficient quality was obtained although it was slightly inferior to that of Example 1 in terms of the strand width after widening.
  • the strand width after widening was 16 mm.
  • Example 8 Processing was performed in the same manner as in Example 1 except that the height of the convex portion of the uneven jig was changed from 0.6 mm in Example 1 to 1.8 mm.
  • the average tension after widening was 1.7 kgf (16.7 N), and a reinforcing fiber strand of sufficient quality was obtained although it was slightly inferior to that of Example 1 in terms of the strand width after widening.
  • the strand width after widening was 15 mm.
  • Example 9 As in Example 1, the reinforcing fiber strand was passed in the order of the converging jig, the uneven jig, and the widening jig, and subsequently, as a guide mechanism, the diameter ⁇ of stainless steel subjected to hard chrome plating was 20 mm. Processing was performed with a cylindrical flat bar (note that all the jigs were arranged in a straight line). The tension immediately after passing through the flat bar was 1.7 kgf (16.7 N) on average, and a stable reinforcing fiber strand having a strand width of 20 mm after widening was obtained.
  • Example 10 The treatment was performed in the same manner as in Example 1 except that the adhesion amount of the sizing agent of the reinforcing fiber used was changed from 1 wt% to 5 wt%.
  • the tension after widening was 1.6 kgf (15.7 N) on average, and the fibers were uniformly dispersed, and a stable reinforcing fiber strand having a strand width of 16 mm after widening was obtained.
  • Example 11 Processing was performed in the same manner as in Example 1 except that the diameter ⁇ of the converging jig, the uneven jig, and the widening jig was changed to 90 mm.
  • the central portions of the converging jig, the uneven jig, and the widening jig are arranged in a straight line, the center distance of each pin is 100 mm, the holding angle of the pin strand is about 140 °, and the value of L is 35 mm.
  • the average tension after widening was 2.0 kgf (19.6 N), the fibers were uniformly dispersed, and the strand width after widening was a stable reinforcing fiber strand of 22 mm.
  • Example 12 The processing was performed in the same manner as in Example 1 except that a bar heater ( ⁇ 12 mm) was inserted from each side of the converging jig, the uneven jig, the widening jig, and the temperature of each jig was set to 120 ° C.
  • the average tension after widening was 1.8 kgf (17.6 N)
  • the fibers were uniformly dispersed
  • the strand width after widening was a stable reinforcing fiber strand of 21 mm.
  • the obtained reinforcing fiber strand was cut in the same manner as in Example 1 and processed into a random mat composed of fibers and resin. As a result, a random mat with excellent physical properties was obtained.
  • the standard deviation of the tensile strength of the fiber-reinforced composite material molded plate obtained by molding such a random mat was as small as 19, and a molded plate having a uniform shape and physical properties with small variations in strength could be obtained.
  • Example 13 The processing was performed in the same manner as in Example 3 except that a bar heater ( ⁇ 12 mm) was inserted from each side of the converging jig, the uneven jig, the widening jig, and the temperature of each jig was set to 120 ° C. In addition, the bar heater is not used for the 2nd uneven
  • the average tension after widening was 1.8 kgf (17.6 N), the fibers were uniformly dispersed, and the strand width after widening was a stable reinforcing fiber strand of 21 mm.
  • the obtained reinforcing fiber strand was cut in the same manner as in Example 1 and processed into a random mat composed of fibers and resin. As a result, a random mat with excellent physical properties was obtained.
  • the standard deviation of the tensile strength of the fiber-reinforced composite material molded plate obtained by molding such a random mat was as small as 19, and a molded plate having a uniform shape and physical properties with small variations in strength could be obtained.
  • Example 14 Other than changing the value of L to 180 mm by changing the diameter ⁇ of the converging jig, uneven jig, widening jig and second uneven jig to 90 mm, and further changing the center distance of each pin to 200 mm Were processed in the same manner as in Example 13.
  • tool was arrange
  • the tension immediately after the widening treatment is 1.5 kgf (14.7 N) on average, the fibers are uniformly split, the strand width after widening is 16 mm, and the continuous operation was continued for 2 hours. There was no change in the subsequent strand width.
  • Example 15 Dividing the concavo-convex jig and the widening jig used in Example 14 in half, and preparing a substantially integrated concavo-convex jig and widening jig as shown in FIG. did.
  • the center distance between the integrated jig and each jig is 110 mm (the strand holding angle of the jig is about 110 °).
  • the same treatment as in Example 14 was performed. That is, the transfer distance L between the uneven jig and the widening jig in Example 15 was 0 mm.
  • the tension immediately after the widening treatment was an average of 1.6 kgf (15.7 N), the fibers were uniformly split, and the strand width after widening was 20 mm.
  • the incident angle of the strands to the widening jig was almost zero, and no change was seen in the width of the strands after widening even when time passed.
  • Example 16 Example 14 except that the value of L was changed to 240 mm (24 times the fiber strand width) by setting the center distance of the converging jig, the uneven jig, the widening jig, and the second uneven jig to 250 mm. Processing was carried out in the same manner. In addition, the center part of the convergence jig
  • the average tension immediately after the widening treatment was 1.6 kgf (15.7 N), and although the incident angle to the widening jig was somewhat unstable, a reinforcing fiber strand having a strand width of 15 mm after widening could be obtained. It was.
  • the obtained reinforcing fiber strand was cut in the same manner as in Example 1 and processed into a random mat composed of fibers and resin. As a result, a random mat with excellent physical properties was obtained.
  • the standard deviation of the tensile strength of the fiber reinforced composite material molded plate obtained by molding such a random mat was as small as 27, and a molded plate having a uniform shape and physical properties with small variations in strength could be obtained.
  • a method for producing a reinforcing fiber strand which is a simple mechanism but can stably widen the strand even under high-speed processing conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Reinforced Plastic Materials (AREA)
  • Inorganic Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本発明の課題は、ストランドの拡幅方法において、簡便な機構でありながら、高速処理の条件下においても安定して拡幅される補強繊維ストランドの製造方法を提供することである。 かかる課題を解決する本発明は、補強繊維からなるストランドが凹凸治具、拡幅治具を順に通過し、凹凸治具が凹部と凸部からなる複数の凹凸を有し、ストランドが凸部によって分けられる補強繊維ストランドの製造方法である。さらには、凹凸治具が、ストランド厚さの0.01~10倍の高低差の凹凸を有する治具であることや、ストランドが凹凸治具の前に収束治具を通過することが好ましい。また、補強繊維が炭素繊維であることや、拡幅前のストランドの幅が1~300mmであることが好ましく、治具がロールまたはピンであることが好ましい。

Description

補強繊維ストランドの製造方法
 本発明は補強繊維ストランドに関し、さらに詳しくは繊維強化複合材料に最適な拡幅された補強繊維ストランドの製造方法に関する。
 従来、ストランドを拡幅する方法としては、水流や高圧空気流を補強繊維ストランドに当てて構成繊維を幅方向へ散ける方法、空気中あるいは液体中で超音波等によりストランドに振動を与えて広げる方法、あるいはストランドと拡幅治具との接触によりストランドを延し広げる方法などが知られている。
 例えば水流や高圧空気流を作用させる方法としては、特許文献1や特許文献2などが知られている。しかし、流体に水などを使用すると拡幅後の乾燥工程に大きなエネルギーを必要とし、吸引高圧空気流を使用する場合、多錘化や高速化などのスケールアップに伴って多大な付帯設備を要するという問題があった。その点、特許文献3~5のようにストランドに振動を与えて広げる方法は比較的小型の装置で実施可能である。しかしこのように振動する治具を用いた方法では、一定のライン速度を越えると振動数が不足し、十分なストランド幅を得られないという問題があった。
 結局のところ工業的には、拡幅治具との接触による方法が設備投資が比較的少なく効率的な生産が可能であるという利点がある。例えば特許文献6では、表面が凸曲面の曲面バーと凹曲面の曲面バーを用いることにより均一で十分に拡幅された強化繊維ストランドを得る方法が開示されている。しかし工程上ではストランドの張力に変動が生じ、凸曲面の中心部からストランドの中心部が外れ、拡幅が不均一になるという問題があった。
日本国特開昭57-77342号公報 日本国特許第3049225号公報 日本国特開昭56-43435号公報 日本国特開平1-282362号公報 日本国特開2007-313697号公報 日本国特開平3-146736号公報
 本発明は、簡便な機構でありながら、高速処理の条件下においても安定してストランドが拡幅される、補強繊維ストランドの製造方法を提供することにある。
 本発明の補強繊維ストランドの製造方法は、補強繊維からなるストランドが凹凸治具、拡幅治具を順に通過し、凹凸治具が凹部と凸部からなる複数の凹凸を有し、ストランドが凸部によって分けられることを特徴とする。さらには、凹凸治具が、ストランド厚さの0.01~10倍の高さの凹凸を有する治具であることや、ストランドが凹凸治具の前に収束治具を通過することが好ましい。本発明において、凹凸治具から拡幅治具間の距離であるストランド渡し距離Lは下記不等式(1)を満たすことが好ましい。
  L≦20×W(1)
  L:凹凸治具から拡幅治具間のストランド渡し距離(mm)
  W:拡幅前の繊維ストランド幅(mm)
 また、拡幅治具が一つの凸部を形成する治具であることや、拡幅治具の後に第2の凹凸治具を有することが好ましい。本発明では、補強繊維が炭素繊維であることや、拡幅前のストランドの幅が1~300mmであることが好ましく、治具がロールまたはピンであることや、収束治具が一つの凹部を形成する治具であることが好ましい。
 本発明によれば、簡便な機構でありながら、高速処理の条件下においても安定してストランドが拡幅される、補強繊維ストランドの製造方法が提供される。
凹凸治具の模式図。 拡幅治具の模式図。 収束治具の模式図。 本発明の補強繊維ストランドの製造方法に、カット工程を組み合わせた模式図。 補強繊維にかかる張力の方向を説明する模式図。 凹凸治具と拡幅治具の、ストランド渡し距離(L)が短い例。 凹凸治具と拡幅治具の、ストランド渡し距離(L)が長い例。 凹凸治具と拡幅治具が一体化した、L=0の例。 凹凸治具が、横方向に複数並んだ図。 拡幅治具(凸治具)が、横方向に複数並んだ図。 収束治具(凹治具)が、横方向に複数並んだ図。
 1.収束治具
 2.凹凸治具
 3.拡幅治具
 4.ロータリーカッター本体
 5.ゴムローラー
 6.補強用繊維の糸道
 7.ガイド機構
 8.拡幅治具へ入射時のストランド引き取りテンション
 9.軌道修正力となるストランド引き取りテンションの反力
 本発明は、補強繊維からなるストランドが凹凸治具、拡幅治具を順に通過し、凹凸治具が凹部と凸部からなる複数の凹凸を有し、ストランドが凸部によって分けられる補強繊維ストランドの製造方法である。凹凸治具の複数の凸部は、ストランドをその進行方向の直角方向(幅方向)に複数に分ける働きを有し、その結果、繊維束(ストランド)は幅方向に一旦分繊される。その後拡幅治具等を通過した後も、小型の繊維束に一旦分かれたストランドは、単繊維同士の弱い結合と強い結合が共存する状態を維持できる。本発明の補強繊維ストランドの製造方法では、補強繊維からなるストランドが最終的には、各々小型の繊維束に凹凸治具の凸部によって分けられるのである。
 また、拡幅治具としては、繊維ストランドの幅を広げることができれば特に制限はないが、一つの凸部を有する治具であることが好ましく、図2にあるような一つのゆるやかな凸部を有する治具であることがより好ましい。すなわち拡幅治具としてはいわゆる太鼓形状(より詳しくは和太鼓形状や樽形状)の治具(以下、凸治具)であることが好ましい。このような治具は図10のように長尺方向に連結させることで、容易に多錘化に対応することができ、多錘化して工業的に大量生産する際に特に有用である。
 本発明の製造方法では、凹凸治具から拡幅治具間のストランドの渡し距離Lは小さいことが好ましく、少なくとも拡幅前の繊維ストランドの幅Wの20倍以下の距離であることが好ましい。
 本発明で用いられる補強繊維としては、繊維強化複合材料に用いることが可能な高強度繊維であれば繊維の種類について特に限定は無いが、無機系繊維としては炭素繊維、ガラス繊維、玄武岩繊維、アルミナ繊維、ボロン繊維、スチール繊維などが、有機系合成繊維としては芳香族ポリアミド繊維、PBO繊維、高強度ポリエチレン繊維などを好ましく挙げることができる。なかでも本発明の製造方法を適用するにあたっては炭素繊維が好適である。炭素繊維としては、ポリアクリロニトリル(PAN)系、石油・石炭ピッチ系、レーヨン系、リグニン系など、何れの炭素繊維も使用することができるが、特に、PANを原料としたPAN系炭素繊維であることが、工業規模における生産性及び機械的特性に優れており特に最適である。
 補強繊維の引張強度としては、600MPa~12GPaであることが好ましく、特には3000~10000MPaの範囲であることが好ましい。また、補強繊維のストランド引張弾性率としては、100~1000GPaであることが好ましく、特には200~500GPaであることが好ましい。
 補強繊維の直径としては用途により1μm~30μmの幅広い範囲を用いることができ、特には3~10μmの範囲であることが、マトリックス樹脂への補強効果が高く好ましい。
 本発明で用いる補強繊維からなるストランドは、複数の単繊維が集合し束となったものである。束を構成する単繊維の本数としては1000本~10万本の繊維から構成された繊維束(ストランド)であることが、本発明の拡幅効果が明確となり好ましい。さらには6000本~5万本の範囲であることが好ましい。本数が少なすぎる場合には本発明の拡幅効果が少なくなる傾向にある。ストランドの総繊度としては30tex~50万texであることが好ましく、特には200~4000texであることが好ましい。
 このようなストランドの幅としては、用いる補強繊維の繊維径にもよるが、補強繊維100texあたり0.1~10mmであることが好ましく、0.5~5mmであることがより好ましい。また、加工性の観点から、ストランド一本辺りの幅が1mm~300mmの範囲であることが好ましく、より好ましくは3~90mm、特には5~40mmの範囲が最適である。また、これらのストランドは製造当初から繊維からなる束を構成していても良いし、複数本のストランドを集めて一度に処理することも可能である。そしてストランドを複数用いる場合には、多錘で供給しても良い。投入するストランドの本数および幅に応じて、各治具を軸方向に延長する事により、本発明の製造方法においては容易に対応することが出来る。
 本発明に用いられる補強繊維からなるストランドの形状としては扁平であることが好ましく、とくに限定されるものではないが、長方形、円形および楕円形であることが好ましい。ストランドの厚さとしては0.01~20mmの範囲であることが好ましく、特には0.02~10mmの厚さであることが好ましい。この厚さは、ノギスやマイクロメーターを用いて測定する事が可能で有る。拡幅前のストランドは通常サイジング剤によって収束されており、例えばそのような炭素繊維であれば、厚さも容易に測定が可能である。またそれが困難な場合においても、ストランドに樹脂を含浸させた試験片の切断断面を研磨し、顕微鏡等で観察し、正確に厚みを測定することが可能である。
 また、本発明に用いられる補強繊維ストランドはその前工程にてサイジング剤を付与しているものであることが好ましい。サイジング剤の付着量としては、繊維100質量部に対し、0超~10質量部であることが好ましく、0.5~5質量部であることがより好ましい。またサイジング剤としては、特に制限はないが、得られる複合材料の物性の観点から、後にストランドが補強する対象となるマトリックス樹脂と同じ樹脂系のサイジング剤であることが好ましい。また、軟化点を有する熱硬化性または熱可塑性の樹脂を主剤として含むサイジング剤が好ましい。本発明の製造方法では、このようなサイジング剤が付着した開繊しにくい繊維ストランドも、高速処理が可能である。
 本発明の補強繊維ストランドの製造方法では、上記のような補強繊維からなるストランドを、凹凸治具、拡幅治具の順に通過させる工程を必須としている。そしてこの凹凸治具がストランドの進行方向に対し直角方向に粗密斑が生じるように複数の凹凸を有することが重要である。また凹凸治具から拡幅治具間のストランドの渡し距離Lが下記不等式(1)を満たすような位置関係で配置されていることが好ましい。
  L≦20×W (1)
  L:凹凸治具から拡幅治具間のストランド渡し距離(mm)
  W:拡幅前の繊維ストランド幅(mm)
 本発明の製造方法では、凹凸治具から拡幅治具間のストランドの渡し距離Lは小さいことが好ましく、少なくとも拡幅前の繊維ストランドの幅Wの20倍以下の距離であることが好ましい。さらには繊維ストランドの幅Wの5倍以下、特には2倍以下が好ましい。距離Lの下限値としては凹凸治具と拡幅治具が一体化し、図8のように実質的にはLがゼロの場合も好ましい態様である。
 また、本発明においては、補強繊維ストランドを凹凸治具、拡幅治具についで、ストランドの糸道を安定化させるガイド機構を通過させることが好ましい。拡幅治具を用いてストランドの幅を広げる場合、ストランドに対して幅方向(X方向)の分力が加えられるが、この時、例えば図5において+X方向、-X方向の分力が、拡幅に十分な大きさであることもさることながら、両者のバランスが取れていることが理想的である。仮に+X方向が極端に大きい場合は、ストランド全体が+X方向に偏ってしまい、ストランドが均一かつ十分に拡幅されない傾向がある。
 拡幅治具において、ストランドに対し+X、―X双方向に分力をバランスよく加えるためにはストランド自体を拡幅治具の中心を走行させることが好ましい。そのため、拡幅治具へのストランド入射位置及び角度を制御し、ストランド幅方向の糸道を規制することが好ましい。
 拡幅治具へのストランド入射位置としては、(i)ストランド中心が拡幅治具上の中心(X=0)の位置を走行すること、(ii)中心(X=0)の軸とストランドの入射方向とでなす角度(ストランド入射角度)が0度であること、が理想的である。しかし、実際には補強繊維ストランドの拡幅処理を、工業的に高速かつ連続的に行う場合、上記(i)、(ii)を常時、継続して満足することは困難である。
 本発明において、補強繊維ストランドを凹凸治具、拡幅治具の順に通過させると、ストランド全体が+X方向に偏った場合にも、糸道を修正するために-X方向に力(軌道修正力)が加わる。さらに、補強繊維ストランドを凹凸治具、拡幅治具についで、ストランドの糸道を安定化させるガイド機構を通過させた場合には、例えば図6(拡幅治具への入射位置X’)に示すように拡幅治具上でストランド全体が+X方向に偏ったとしても、ガイド機構がストランド幅方向の糸道ズレに対して支点として作用することで、X方向の凹凸治具上のストランドに-X方向の反力を生じさせ、この反力を軌道修正力として利用しやすい。ここで-X方向の反力はストランドの繊維軸方向に作用させているストランドの引き取りテンションのX方向分力であるので、ストランドの幅方向に対する凹凸治具と拡幅治具の位置関係が上記不等式(1)を満足することでより大きな効果が得られる。
 そのため凹凸治具からストランド拡幅治具間のストランドの渡し距離Lは小さい方が好ましく、ストランドの引き取りテンションのX方向分力を大きくするために、距離Lがストランドの幅Wの20倍以下であることがより好ましい。さらにはLがWの5倍以下であることが好ましく、特には2倍以下であることが好ましい。
 このような構成をとることにより、ストランドの糸道が多少ズレた場合でも、実用的な範囲に軌道が修正されやすくなるのである。従来から軌道修正の方法としては、センサー等で糸道のズレを検知してフィードバック制御を行う方法などがあるが、本発明の方法では、このような設備的に大掛かりなものは不要となり、特に多錘化して工業的に安定生産する上で効果的である。
 またさらには、ストランドが凹凸治具を通過する前にあらかじめ一度収束治具を通過することが好ましい。収束治具をあらかじめ通過することによりストランドがより安定した糸道を通過し、張力変動等の工程調子の影響をより少なくすることが可能となる。
 さらにストランドが拡幅治具を通過した後に、第2の凹凸治具を通過することも好ましい。処理後のストランドが、再度、複数の凹凸を有した凹凸治具を通過することにより、後の工程においても拡幅状態をより均一に保持することが可能となる。
 このような本発明の製造方法に用いられる凹凸治具は、ストランドの進行方向の直角方向(幅方向)に、ストランドの粗密斑が発生するよう配置された凹凸を有することを必須とする治具である。凹凸により補強繊維からなるストランドを予め分繊し、拡幅を安定化させると共に、ストランドの糸道を一定にするガイド機構としての効果がある。
 通常補強用繊維を拡幅させる場合には、ストランドの厚さをストランドの幅方向に対して均一に保つ必要性があり、本発明のような凹凸治具の使用は避けられてきた。複合材料中の繊維の存在率が高い部分と低い部分でマトリックス樹脂の補強効果が異なると考えられてきたためである。しかし、補強繊維ストランドの使用方法としてはそのままマトリックス樹脂中に含浸させる以外にも、拡幅した状態にて樹脂を浸漬し、収束した後に樹脂を固化させカットしてペレットとして使用する方法や、拡幅した状態にて補強繊維ストランドをカットしランダムマットに用いる方法などの活用方法がある。これらの場合は工程途中にて安定したストランド全体の幅と厚さが得られることが特に重要であり、ストランドの幅方向における局所的な厚さ変動は何ら問題とはならない。却って規則的であれば局所的な幅方向の厚さ変動が有る方が好ましいことが、本発明者らの努力により判明したのである。
 凹凸治具は、ストランドを構成するフィラメントがより安定な谷部(凹部)を走行しやすいため、簡易な機構でもX方向に対し、十分に、ストランドの糸道を安定化する支点として機能する。また、図9のように図1のような凹凸治具を長尺方向に連結させることで、容易に多錘化に対応することが可能であり好ましい。
 本発明で用いる凹凸治具としては、その凹凸による高低差がストランド厚さの0.01~10倍程度の高さであることが好ましい。ストランドの厚さより凹凸の高低差が小さい場合には糸道の安定と共に、ストランドの幅方向の局所的な厚さ変動も押さえることが可能となる。一方ストランドの厚さよりも凹凸の高低差が大きい場合には糸道のより高い安定化を得ることができる。また、ストランド中に多数のより小型の繊維束が生じるため、後の含浸処理やカット工程にてそれぞれの小型の繊維束(ストランド)がまとまって処理されるという特徴を有する。本発明の製造方法によれば、元のストランドより細い、小型の繊維束が多数生じる結果を得ることが可能となる。凹凸による高低差は0.01~20mmが好ましく、さらには0.05~5mmが最適である。
 このような凹凸治具としては、ロールやピンなどの形状でも良いし、固定した治具のストランドが通過する面に凹凸を形成したものでも良い。例えばギザギザの凹凸を有する図1のようなピン形状であることが好ましい。ロールやピンなどの円筒形の形状を取る場合には、その直径としては5~900mmであることが好ましく、10~200mmであることがより好ましく、さらには10~90mmであることが特に好ましい。
 また糸道上に凹部と凸部からなる複数の凹凸部を有するのであればその断面形状は特には問わないが、抱き角や糸道の自由度が高い点から、治具の断面形状は円形であることが好ましい。抱き角としては1~350°の範囲であることが好ましく、30~180°であることがより好ましい。この抱き角は治具間の距離や高さを変更することにより容易に調整することが可能である。
 本発明で用いられる凹凸治具においては凹凸が複数であることが必要で有る。凹凸の各凸部のピッチとしては0.1~10mmの間隔であることが好ましく、さらには5mm以下であることが好ましい。また、凸部のピッチは、拡幅前の補強繊維ストランドの幅に対して1/2以下の間隔であることが好ましく、より好ましくは1/5以下、1/10以下のピッチ間隔であることが特に好ましい。一つの凸部の側面の角度としては特に限定しないが15°~90°であることが好ましく、さらには30°~90°の範囲が最適である。
 凸部の頂点は、補強繊維を傷つけないように曲率を有することが好ましく、曲率半径R1 は凹凸の幅と間隔にもよるが、R1 =0.01mm~30mm、特には10mm以下であることが好ましい。またストランドが通過する凹凸の底部となる凹部の頂点の曲率半径R2 は凹凸幅と間隔にもよるが、R2 =0.01mm~50mmの範囲であることが、特には30mm以下であることが好ましい。
 また、本発明で用いられる凹凸治具としては、全体的に鼓状(より詳しくは小鼓形状)の形状をとり、その一つの大きな凹部の中に小さな凹凸部を形成させることにより、収束治具と凹凸治具を兼ねた治具として用いることも可能である。
 本発明に用いられる凹凸治具を形成する材質は特に限定しないが、ステンレス、鉄、銅等の金属や、ガラスやアルミナ、ジルコニア等のセラミックスが好ましい。金属には梨地加工や磨き加工、クロムメッキ等の表面処理、セラミックスにはフッ素樹脂等の合成樹脂をコーティングしておくこともできる。もっとも好ましくは、ステンレス鋼にハードクロムメッキ加工を施したものである。特に炭素繊維のように剛性が高い繊維を用いる場合、擦過による治具の耐摩耗性を向上させるために特に好ましい。またその表面は目的により、鏡面加工を施しても梨地処理等を施しても良い。またさらに凹凸治具に超音波振動等の振動や、加熱・冷却を与える事でより好適に使用できる場合もある。
 本発明の製造方法においては、このような例えば図1のような凹凸治具を用いることにより、凹凸により補強繊維からなるストランドを分繊し、拡幅を安定化させると共に、ストランドの糸道を一定にすることができる。
 本発明の補強繊維ストランドの製造方法では、ストランドは凹凸治具を通過後、拡幅治具を通過する。拡幅治具としては、ストランドを拡幅できる治具であれば特に制限は無いが、一般には拡幅治具としては多錘化して工業的に生産することを考慮すると図2のような一つのゆるやかな凸部を形成する治具(凸治具)であることが好ましい。いわゆる太鼓形状(より詳しくは和太鼓形状)の治具である。このような治具は図10のように長尺方向に連結させることで、容易に多錘化に対応できる。
 このような拡幅治具としては、ロールやピンなどの形状でも良いし、固定した治具の繊維束(ストランド)が通過する面に凸部を形成したものでも良い。ロールやピンなどの円筒形の形状を取る場合には、最大部の直径としては5~900mmであることが好ましく、10~200mmであることがより好ましく、さらには10~90mmであることが好ましい。
 また糸道上に凸部を有するのであればその断面形状は特には問わないが、抱き角や糸道の自由度が高い点からは、治具の断面形状は円形であることが好ましい。抱き角としては1~350°の範囲であることが好ましく、30~180°の範囲であることがより好ましい。この抱き角は治具間の距離や高さを変更することにより容易に調整することが可能である。
 凸部は、治具の中央に近い程大径になっており、いわゆる太鼓形状(より詳しくは和太鼓形状)」に加工されている。凸部を有する拡幅治具である凸治具は中央部と端部では径が異なる。繊維は糸道上において、その行路長が短くなるようなルートで走行する傾向がある。したがって、凸治具において径が大きい中央部を走行する繊維は行路長が長くなり易いため、繊維は幅方向に広がることで行路長が短くなるルートを走行しストランドの拡幅がなされる。一方で、拡幅するということは、繊維がストランドの走行方向に対し角度をもったルートを走行することであるため、この角度が大き過ぎると行路長が長くなる方向となる。したがって、繊維は両者のバランスが取れた最も行路長が短くなるルートを走行することになる。
 凸部は円弧状であることも好ましく、その場合の曲率半径Rは、R=10mm~900mmが好ましく、さらにはR=10mm~500mmの範囲であることがより好ましい。拡幅治具の曲率半径が小さすぎると拡幅状態が不良になりやすく、曲率半径が大きすぎると拡幅が不十分になる傾向に有る。
 また、拡幅治具の有効幅を設定することにより、補強繊維ストランドの拡幅後の幅を調整することが可能である。さらには有効幅を規定したフラットバーやピン、ロール等の治具を用いることにより、より品質の安定した補強繊維ストランドを得ることが可能となる。また、本発明の製造方法においては、補強繊維ストランドが拡幅治具を通過した後に、例えば、規制幅を設定したピンガイドや溝付きローラーなどの糸幅規制治具を通過させることも好ましい。糸幅規制治具を用いることで、補強繊維ストランドの拡幅後の幅を調整し、また拡幅後の補強繊維ストランドに生じた目隙を低減することができる。
 本発明に用いられる拡幅治具を形成する材質は特に限定しないが、ステンレス、鉄、銅等の金属や、ガラスやアルミナ、ジルコニア等のセラミックスが好ましい。金属には梨地加工や磨き加工、クロムメッキ等の表面処理、セラミックスにはフッ素樹脂等の合成樹脂をコーティングしておくこともできる。もっとも好ましくは、ステンレス鋼にハードクロムメッキ加工を施したものである。特に炭素繊維のように剛性が高い繊維を用いる場合、擦過による治具の耐摩耗性を向上させるために特に好ましい。さらに拡幅治具に超音波振動等の振動や、加熱・冷却を与える事でより好適に使用できる場合もある。
 上述の通り、凸治具を用いた場合には中央を走行する繊維は行路長が長くなるため、拡幅後のストランドは中央部が薄くなり易い傾向にある。そこでストランド幅方向の凹凸治具からストランド拡幅治具間のストランドの渡し距離Lを小さくすることで、中央部の繊維が過度に幅方向に逃げることが抑制され、安定的に均一な厚みと幅の拡幅ストランドが得られる。したがって、図8のようにストランド幅方向の凹凸治具と拡幅治具を実質的に一体化させたものは特に有効である。
 また、拡幅治具の後にガイド機構が配置されている場合、このガイド機構は、糸道がズレたときの軌道修正を行うために下流側の支点として働く。ガイド機構としては、下流側の支点として作用できれば特に限定されないが、例えば、フラットバーやピン、ロール等の治具などがあげられる。特には、ストランド幅方向の凹凸治具と同様にX方向に凹凸を有する固定された凹凸治具を用いることが好ましい。ガイド機構として凹凸治具を用いることで、ストランドを構成するフィラメントがより安定な凹部を走行しやすいため、簡易な機構でもX方向に対し十分に支点として機能し、かつ、長尺方向に連結させることで、容易に多錘化に対応でき、さらには後の工程においても拡幅状態をより均一に保持することが可能となる。また、凹凸治具を用いた場合には、ストランドの進行方向の直角方向(X方向)にストランドの粗密斑が発生するよう配置された凹凸が存在するため、これにより補強繊維からなるストランドを予め分繊する効果がある。
 このようなあらかじめ分繊された補強用繊維束は、拡幅した状態にて樹脂を浸漬し、収束した後に樹脂を固化させカットして得られるペレットや、拡幅した状態にてカットされた補強繊維を分散させて製造されるランダムマットに、特に好ましく用いられる。これらの場合は工程途中にて安定したストランド全体の幅と厚さが得られることが特に重要であるからである。
 従来繊維を拡幅して連続繊維として補強材に用いる場合には、ストランドを目透きなく均一に保つことが重視されてきた。補強繊維ストランドの使用方法としてはそのままマトリックス樹脂中に含浸させる方法が主流だったからである。そのため、分繊作用を有する本発明のような凹凸治具の使用は一般的に避けられてきた。複合材料中の繊維の存在率が高い部分と低い部分とでマトリックス樹脂の補強効果が異なり、欠点となると考えられてきたためである。しかし上記のペレットやランダムマットとして使用する場合には、ストランドの幅方向における局所的な厚さ変動は何ら問題とはならない。特に拡幅後のストランドをカットしてランダムマットとして用いる場合、マットのムラを軽減させるためには、逆に積極的にストランドを分繊し、繊維及び繊維束の本数を増加させることが効果的であり、本発明の凹凸治具の使用は、ストランドの分繊作用を有しているために、特に好ましい方法となる。
 また本発明の製造方法においては、ストランドが上記のような凹凸治具や拡幅治具を通過する前にあらかじめ収束治具を通過することが好ましい。そのような収束治具としては、ストランドの糸道を固定化できる治具であれば特に制限は無いが、例えば、多錘化して工業的に生産することを考慮すると、図3のようにロールやピンなどのストランドが通過する面に凹部を形成した治具(凹治具)であることが好ましい。いわゆる鼓形状(より詳しくは小鼓形状)の治具である。このような治具は図11のように長尺方向に連結させることで、容易に多錘化に対応できる。
 収束治具をあらかじめ通過することにより上述の(i)の条件、「ストランド中心が拡幅治具上のX=0の位置を走行すること」を高い基準で満足し、ストランドがより安定した糸道を通過するため、安定した拡幅が可能となり、最終的に得られるストランドの拡幅幅も安定する。
 収束治具の機能としては、上述のロールやピンなどの円筒形の形状を取る場合には、最大部の直径としては5~900mmであることが好ましく、10~200mmであることがより好ましく、さらには10~90mmであることが好ましい。
 糸道上に凹部を有するのであればその断面形状は特には問わないが、抱き角や糸道の自由度が高い点からは、治具の断面形状は円形であることが好ましい。抱き角としては1~350°の範囲であることが好ましく、30~180°であることがより好ましい。この抱き角は治具間の距離や高さを変更することにより容易に調整することが可能である。
 収束治具の凹部は、治具の中央程小径になっており、いわゆる鼓形状(より詳しくは小鼓形状)に加工されている。凹部は円弧状であることも好ましく、その場合の曲率半径Rは、R=10mm~900mmが好ましく、さらにはR=10mm~500mmの範囲であることがより好ましい。
Rが小さすぎると繊維が収束されすぎ、逆に大きすぎると位置決め効果が劣る傾向となる。
 本発明に用いられる収束治具を形成する材質は特に限定しないが、ステンレス、鉄、銅等の金属や、ガラスやアルミナ、ジルコニア等のセラミックスが好ましい。金属には梨地加工や磨き加工、クロムメッキ等の表面処理、セラミックスにはフッ素樹脂等の合成樹脂をコーティングしておくこともできる。もっとも好ましくは、ステンレス鋼にハードクロムメッキ加工を施したものである。特に炭素繊維のように剛性が高い繊維を用いる場合、擦過による治具の耐摩耗性を向上させるために特に好ましい。さらに収束治具に超音波振動等の振動や、加熱・冷却を与える事でより好適に使用できる場合もある。
 本発明に好ましく用いられる、収束治具、凹凸治具、拡幅治具、ガイド機構などには、さらに端部に「つば」などで繊維が通過する範囲を規制することで、これらの治具に有効幅を設定し、補強繊維ストランドの拡幅後の幅を調整することが可能である。
 また本発明に用いられる収束治具、凹凸治具、拡幅治具、ガイド機構などには、超音波振動等の振動や、加熱・冷却を与える事が、ストランドの拡幅性の向上及び糸道のブレ抑制を図ることが可能となるため、好ましい。上述のように補強繊維ストランドにはマトリックス材料との接着向上やストランドの収束性を高める目的で各種サイジング剤を付与することが好ましく、振動・加熱・冷却などによってこの収束力を低減することで比較的小さな張力でも効果的に拡幅を行うことができるようになる。ただし、収束力が大きすぎると、所望のストランド幅に拡幅するために大きな張力が必要となる場合がある。特に、サイジング剤が固体の樹脂成分を含む場合には、収束治具、ストランド幅方向の凹凸治具、拡幅治具、ガイド機構などをサイジング剤の軟化温度以上、分解温度未満に加熱することが好ましく、工程途中におけるサイジング剤の収束力を一時的に低下させることができ、生産性が向上する。なお、サイジング剤が熱硬化性樹脂成分を含む場合には、加熱温度は硬化温度未満であることがより好ましい。治具の加熱温度としては、ストランド自体の熱劣化、ストランド‐各機構の接触時間、サイジング剤の成分によっても異なるが、一般的には50~300℃が好ましく、70~250℃がより好ましい。
 本発明の補強繊維ストランドの製造方法では、補強繊維からなるストランドが凹凸治具、拡幅治具に接触しながら順に走行するものであるが、接触長、接触時間、糸道、治具とストランドの摩擦係数、等を適宜調整する事によって、張力や拡幅状態を適宜最適化する事ができる。
 一般には本発明の製造方法のライン速度としては1~500m/分の範囲が好ましく、特には2~90m/分の範囲であることが好ましい。また、処理する前のストランドにかける張力としては0.098~98N(0.01~10kgf)の範囲が好ましく、0.98N(0.1kgf)以上であることが最適である。
 このような本発明の製造方法にて得られた補強繊維ストランドをマトリックス樹脂と組み合わせ、例えば、射出成形、プレス成形、フィラメントワインディング成形、樹脂トランスファー成形、オートクレーブ成形など、公知の成形手段・成形方法により繊維強化複合材料が得られる。本発明の製造方法にて得られた補強繊維ストランドは、例えば、かかる補強繊維ストランドを一方向に引き揃え、もしくは織編物や不織布、多軸織物、組物等に成形した補強繊維材料、補強繊維ストランドを任意の繊維長に切断したチョップドストランドとして、特に好ましくは、樹脂含浸ストランドや補強繊維ペレット、あるいはランダムマットとして、最終的には繊維強化複合材料に特に好適に用いることができる。例えば樹脂含浸ストランドとするには拡幅された補強繊維ストランドを、熱可塑性樹脂などに含浸し、冷却し切断することにより補強繊維ペレットとすることができる。
 マトリックス樹脂としては、特に制限はなく、熱硬化性樹脂又は熱可塑性樹脂が用いられる。
 熱可塑性樹脂としては、例えばポリエチレン樹脂やポリプロピレン樹脂、およびその共重合体やブレンド物であるポリオレフィン系樹脂、ポリアミド66、ポリアミド6、ポリアミド12等の脂肪族ポリアミド系樹脂、酸成分として芳香族成分を有する半芳香族ポリアミド系樹脂、ポリエチレンテレフタレート樹脂(PET)やポリブチレンテレフタレート樹脂(PBT)等の芳香族ポリエステル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂(ポリスチレン樹脂、AS樹脂、ABS樹脂等)、あるいは、ポリ乳酸系などの脂肪族ポリエステル系樹脂などを挙げることができる。なかでも好ましくはポリカーボネート系樹脂や脂肪族ポリアミド系樹脂、ポリオレフィン系樹脂が好ましく挙げられる。
 熱硬化性樹脂の具体例としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、ビニルエステル樹脂、シアン酸エステル樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂とシアン酸エステル樹脂の予備重合樹脂、ビスマレイミド樹脂、アセチレン末端を有するポリイミド樹脂及びポリイソイミド樹脂、ナジック酸末端を有するポリイミド樹脂等を挙げることができる。これらは1種又は2種以上の混合物として用いることもできる。中でも、耐熱性、弾性率、耐薬品性に優れたエポキシ樹脂やビニルエステル樹脂が、特に好ましい。これらの熱硬化性樹脂には、硬化剤、硬化促進剤以外に、通常用いられる着色剤や各種添加剤等が含まれていてもよい。複合材料中に占める樹脂組成物の含有率は、10~90質量%、好ましくは20~60質量%、更に好ましくは25~45質量%である。
 本発明の補強繊維ストランドは十分に拡幅されており、樹脂が容易に含浸されるため、これらを用いた複合材料は高い物性を得ることが可能となる。
 また、本発明の補強繊維ストランドは、特に、任意の繊維長の補強繊維をランダム配向させた疑似等方性の不織布基材であるランダムマットの製造に使用される補強繊維ストランドとして好ましく使用することができ、例えば次のような工程を経ることにより得られるランダムマット及びそれを使用した繊維強化複合材料に使用することで特に高い効果を発揮することが可能である(図4)。
 1.(カット)補強繊維ストランドをカットする工程、
 2.(分割)カットされた補強繊維ストランドを管内に導入し、空気を繊維ストランドに吹き付ける事により、ストランドを分割させる工程、
 3.(繊維散布)分割させた各補強繊維ストランドを拡散させる工程(同時に、繊維状又はパウダー状のマトリックス樹脂とともに吸引し、補強繊維とマトリックス樹脂を同時に散布する塗布工程とすることもできる)、
 4.(定着)塗布された補強繊維およびマトリックス樹脂を定着させ、ランダムマットを得る工程。
 5.(プレス)得られたランダムマットをプレス成形する工程。
 特に本発明の製造方法にて得られた補強繊維ストランドは、凹凸治具処理に由来する幅方向に規則的な粗密斑が有り、カット工程後のバラバラに分割する工程にて特に品質の高い分割した繊維ストランドを得ることが可能となる。
 かかるランダムマットに使用するマトリックス樹脂としては、特に制限はないが、熱可塑性樹脂を用いることが好ましい。また、プレスは4の工程にて得られたランダムマットを複数枚重ねて、所望の厚さとすることができる。プレス成形の方法および条件にはとくに制限はないが、マトリックス樹脂が熱可塑性樹脂である場合には、熱可塑性樹脂の融点以上、融点分解温度以下の条件にて熱プレスすることが好ましい。プレスの圧力およびプレス時間も適宜選択できる。また、ランダムマットに用いる樹脂は上記の3の工程と同時に塗布してもいいし、繊維散布したマットの上に、樹脂フィルムや溶融した樹脂を重ねて次の4の定着工程を行ってもよい。
 ランダムマットに用いるマトリックス樹脂の存在量は、補強繊維100質量部に対し、50~1000質量部であることが好ましい。より好ましくは、補強繊維100質量部に対し、マトリックス樹脂100~600質量部、更に好ましくは、補強繊維100質量部に対し、マトリックス樹脂150~300質量部である。
 ランダムマットに適した熱可塑性樹脂の種類としては例えば塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、アクリロニトリル-スチレン樹脂(AS樹脂)、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)、アクリル樹脂、メタクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66樹脂、ポリアミド610樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂などの 単量体、共重合体、及びそれら2種以上の混合体が好ましく挙げられる。この中でも、ポリプロピレン樹脂、ポリアミド樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエーテルエーテルケトン樹脂などが望ましい。
 また本発明の補強繊維ストランドを用いて最終的に得られる繊維強化複合材料中には、本発明の目的を損なわない範囲で、本発明の補強繊維ストランドに用いた繊維以外に、他のガラス繊維等の無機繊維や有機繊維等の各種繊維状または非繊維状フィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤の添加剤を含んでいてもよい。
ランダムマットを用いて、繊維強化複合材料である成形品を得る方法としては、特に限定はしないが、プレス成形、熱成形が好ましい。かかる成形工程は、上記ランダムマットの製造工程における5のプレス成型工程において、直接最終成形品の形状に成形するものであってもよいし、5のプレス成型工程において、例えば板状など取り扱いやすい形状に予備成形した繊維強化複合材料を、プレス成形もしくは熱成形など任意の成形方法により最終成形品の形状に成形するものであってもよい。
 具体的には、金型内にランダムマットあるいは予備成形した繊維強化複合材料を配置し、融点以上あるいはガラス転移点以上(マトリックス樹脂が熱硬化性樹脂である場合には硬化温度以上)まで昇温しつつ、プレス成形を行い、次いで金型を融点未満あるいはガラス転移温度未満まで冷却する、いわゆるホットプレスにより好ましく成形品を得る事ができる。
 また、マトリックス樹脂が熱硬化性樹脂である場合には、ランダムマットあるいは予備成形した繊維強化複合材料を融点以上あるいはガラス転移点以上まで加熱し、これを得ようとする成形体の形状に合わせ単独または複数枚重ね、融点未満あるいはガラス転移点未満に保持した金型内に投入し、加圧した後、冷却する、いわゆるコールドプレスにても好ましく成形品を得る事ができる。
 このような本発明で得られる補強繊維ストランドを用いた繊維強化複合材料は、樹脂の含浸が十分に行われ、高い物性と高効率の加工性を有する経済効率の高い複合材料となり、機械物性に優れ、そのばらつきも小さいため、スポーツ用途、レジャー用途、一般産業用途、航空・宇宙用途、自動車用途など、様々な用途に広く適用できるものとなる。
 以下、実施例を挙げて本発明をより詳細に説明する。なお、複合材料の製造および物性の評価は以下に示す方法で行った。
 (補強繊維ストランドの幅の測定)
 補強繊維ストランドの幅を、ノギスを用いて、繊維の長さ方向1m置きに計10点測定し、その平均を補強繊維ストランドの幅とした。
 (ランダムマットの製造)
 補強繊維ストランドを、ロータリーカッターを用い繊維長20mmにカットした。カットされたストランドをSUS304製の二重管中に導入し、150m/secの圧縮空気を吹き付けることによりストランドを分割させた。さらに引き続き、ストランドを拡散させると同時に、マトリックス樹脂としてポリアミド樹脂(PA6パウダー、ユニチカ株式会社製 A1030FP)を供給し、繊維と樹脂を同時に散布した後、繊維にポリアミド樹脂を定着させランダムマットを作成した。
 (成形板の製造方法)
 350mm×300mmの大きさに裁断した上記ランダムマットを、成形後の厚みが5mmになるように積層し、260℃に加熱したプレス機を用いて4MPaの圧力で3分間熱プレスして、繊維強化複合材料成形板を得た。
 (引張強度測定)
 上記の製造方法により得られた繊維強化複合材料成形板を用いて、JIS K7164に従い、幅45mm、長さ215mm(つかみ具間の長さ115mm、測定部での幅25mm)のダンベル型の試験片を作製し、試験速度10mm/minで引張試験を実施した。同様の試験を10回繰り返し、その標準偏差を引張強度のバラツキ度合の指標として求めた。
 [実施例1]
 補強繊維ストランドとして、東邦テナックス株式会社製の炭素繊維 テナックス(登録商標)(平均直径7μm、フィラメント本数24000本、繊度1600tex、引張強度4000MPa)を用い、ポリアミド樹脂系樹脂(軟化点90℃)を主剤とするサイジング剤にて、幅10mm、厚み0.15mmの偏平状態に集束させたストランド(サイジング剤付着量1.0wt%)を用意した。
 このストランドが下記の収束治具、凹凸治具、拡幅治具を順に、ラインスピード40m/分、拡幅前張力(収束治具直前)平均0.7kgf(6.9N)(ロードセル式デジタルテンションメーターにて測定)の条件にて、連続的に給糸体から搬送される条件にて処理を行い、幅20mmに拡幅した補強繊維ストランドを得た。収束治具、凹凸治具、拡幅治具は全てピン(円柱形)で、その中心部は一直線に配置されており、各ピンの中心距離は40mm、ピンのストランドの抱き角は約70°であった。この時のLの値は35mmであった。
 (収束治具)
 材質はハードクロムメッキ処理を施したステンレス鋼であり、糸道の有効幅が40mm、一つの凹部が存在し、凹部曲率の半径Rが100mm、収束治具の最大部直径Φが20mmであった。
 (凹凸治具)
 材質はステンレス鋼であり、糸道の有効幅が40mm、凹凸が多数形成されており、凸部側面の角度θは80°、凸部頂点の半径Rが0.05mm、凹部底部の半径Rが0.2mm、凹凸治具の直径が20mm、凸部の頂点間隔が1mm、凸部の高さ(凹凸の高低差)が0.6mmであった。
 (拡幅治具)
 材質はステンレス鋼であり、糸道の有効幅が20mm、一つの凸部が存在し、凸部曲率の半径Rが100mm、拡幅治具の直径Φが25mmであった。
 拡幅処理直後の張力は平均1.5kgf(14.7N)であり、均一に繊維が分散され、拡幅後のストランド幅は20mmであり、2時間連続運転したが、時間が経過しても拡幅後のストランド幅に変化は見られなかった。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したところ、優れた物性のランダムマットが得られた。
[実施例2]
 実施例1と同様に、補強繊維ストランドを、収束治具、凹凸治具、拡幅治具の順に通過させ、その後引き続き、糸幅規制治具である規制幅18mmの平ピンより処理を行った(なお、全ての治具は平ピンを含め一直線に配置されていた)。
平ピン通過直後の張力は平均1.6kgf(15.7N)に若干高まったものの、実施例1よりもより均一に繊維が分散され、拡幅後のストランド幅は18mmの安定した補強繊維ストランドが得られた。平ピン処理を行ったことにより凹凸治具による目隙が減少した効果によるものだと考えられる。
 引き続き得られた補強繊維ストランドをカットし、繊維と樹脂からなるランダムマットに加工したところ、優れた物性のランダムマットが得られた。
[実施例3]
 実施例1と同様に、補強繊維ストランドを、収束治具、凹凸治具、拡幅治具の順に通過させ、その後引き続きガイド機構として第2の凹凸治具により処理を行った(なお、全ての治具は一直線に配置されていた)。第2の凹凸治具は、最初の凹凸治具と同一のものである。
 第2の凹凸治具通過直後の張力は平均1.8kgf(17.6N)に高まり、1mmピッチの分繊繊維跡が見られたものの、全体的には均一に繊維が分散され、拡幅後のストランド幅は20mmの安定した補強繊維ストランドが得られた。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したところ、実施例1と同等の優れた物性のランダムマットが得られた。
[実施例4]
 拡幅治具の凸部曲率の半径Rを実施例1の100mmから300mmに変更した以外は、実施例1と同様に処理を行った。拡幅後の張力は平均1.6kgf(15.7N)であり、実施例1よりも拡幅後のストランド幅の点でやや劣るものの十分な品位の補強繊維ストランドが得られた。拡幅後のストランド幅は16mmであった。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したところ、優れた物性のランダムマットが得られた。
[実施例5]
 用いた補強繊維のサイジング剤をポリアミド樹脂系からウレタン系に変更し、実施例4と同じく拡幅治具の凸部曲率の半径Rが300mmのものを用いた以外は、実施例1と同様に処理を行った。拡幅後の張力は平均1.6kgf(15.7N)であり、均一に繊維が分散され、拡幅後のストランド幅は16mmから20mmに拡大し、安定した補強繊維ストランドであった。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したところ、実施例1と同等の優れた物性のランダムマットが得られた。
[実施例6]
 用いた補強繊維のフィラメント数を24000本(24K)から12000本(12K)に変更し、実施例4と同じく拡幅治具の凸部曲率の半径Rが300mmのものを用いた以外は、実施例1と同様に処理を行った。拡幅後の張力は平均1.5kgf(14.7N)であり、均一に繊維が分散され、拡幅後のストランド幅は20mmの安定した補強繊維ストランドであった。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したところ、優れた物性のランダムマットが得られた。
[比較例1]
 凹凸治具を使用しなかった以外は実施例1と同様に処理を行った。拡幅後の張力は平均1.6kgf(15.7N)に若干高まっただけであったが、糸道が不安定で、収束治具通過後の原糸が、拡幅ピンの中央を走行せず、安定した拡幅効果を得られなかった。糸道がズレる為に目的のストランド幅を得られなかった。
 引き続き得られた補強繊維ストランドをカットし、繊維と樹脂からなるランダムマットに加工したものの、拡幅処理を行わない補強繊維ストランドと同等の物性の物しか得られなかった。かかるランダムマットを成形し得られた繊維強化複合材料成形板の引張強度の標準偏差は40と大きく、強度のばらつきが大きく、不均一な成形板であった。
[比較例2]
 凹凸治具の代わりに、ハードクロムメッキ処理を施したステンレス鋼製の直径Φが20mmの円筒形のフラットバーを使用した以外は実施例1と同様に処理を行った。拡幅後の張力は平均1.7kgf(16.7N)に高まり、また、糸道が不安定で、収束治具通過後の原糸が、拡幅ピンの中央を走行せず、安定した拡幅効果を得られなかった。得られたストランドのストランド幅は、13mmと凹凸治具を使用した時と比べ狭く、十分な拡幅効果を得られなかった。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したものの、拡幅処理を行わない補強繊維ストランドと同等の物性の物しか得られなかった。かかるランダムマットを成形し得られた繊維強化複合材料成形板の引張強度の標準偏差は37と大きく、強度のばらつきが大きく、不均一な成形板であった。
[実施例7]
 凹凸治具の凸部の頂点間隔を実施例1の1mmから6mmに変更した以外は、実施例1と同様に処理を行った。拡幅後の張力は平均1.3kgf(12.7N)であり、実施例1よりも拡幅後のストランド幅の点でやや劣るものの十分な品位の補強繊維ストランドが得られた。拡幅後のストランド幅は16mmであった。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したところ、優れた物性のランダムマットが得られた。
[実施例8]
 凹凸治具の凸部の高さを実施例1の0.6mmから1.8mmに変更した以外は、実施例1と同様に処理を行った。拡幅後の張力は平均1.7kgf(16.7N)であり、実施例1よりも拡幅後のストランド幅の点でやや劣るものの十分な品位の補強繊維ストランドが得られた。拡幅後のストランド幅は15mmであった。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したところ、優れた物性のランダムマットが得られた。
[実施例9]
 実施例1と同様に、補強繊維ストランドを、収束治具、凹凸治具、拡幅治具の順に通過させ、その後引き続きガイド機構として、ハードクロムメッキ処理を施したステンレス鋼製の直径Φが20mmの円筒形のフラットバーにより処理を行った(なお、全ての治具は一直線に配置されていた)。フラットバー通過直後の張力は平均1.7kgf(16.7N)であり、拡幅後のストランド幅は20mmの安定した補強繊維ストランドが得られた。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したところ、実施例1と同等の優れた物性のランダムマットが得られた。
[実施例10]
 用いた補強繊維のサイジング剤の付着量を1wt%から5wt%に変更した以外は、実施例1と同様に処理を行った。拡幅後の張力は平均1.6kgf(15.7N)であり、均一に繊維が分散され、拡幅後のストランド幅が16mmの安定した補強繊維ストランドが得られた。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したところ、実施例1と同等の優れた物性のランダムマットが得られた。
[実施例11]
 収束治具、凹凸治具、拡幅治具の直径Φを90mmに変更した以外は実施例1と同様に処理を行った。なお、収束治具、凹凸治具、拡幅治具の中心部は一直線に配置されており、各ピンの中心距離は100mm、ピンのストランドの抱き角は約140°であり、Lの値は35mmであった。拡幅後の張力は平均2.0kgf(19.6N)であり、均一に繊維が分散され、拡幅後のストランド幅は22mmの安定した補強繊維ストランドであった。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したところ、優れた物性のランダムマットが得られた。かかるランダムマットを成形し得られた繊維強化複合材料成形板の引張強度の標準偏差は18と小さく、強度のばらつきの小さな、均一な形状と物性を有する成形板を得ることができた。
[実施例12]
 収束治具、凹凸治具、拡幅治具、それぞれの側面から棒ヒーター(Φ12mm)を挿入し、各治具の温度を120℃とした以外は実施例1と同様に処理を行った。拡幅後の張力は平均1.8kgf(17.6N)であり、均一に繊維が分散され、拡幅後のストランド幅は21mmの安定した補強繊維ストランドであった。
 引き続き得られた補強繊維ストランドを、実施例1と同様の方法で、カットし、繊維と樹脂からなるランダムマットに加工したところ、優れた物性のランダムマットが得られた。かかるランダムマットを成形し得られた繊維強化複合材料成形板の引張強度の標準偏差は19と小さく、強度のばらつきの小さな、均一な形状と物性を有する成形板を得ることができた。
[実施例13]
 収束治具、凹凸治具、拡幅治具、それぞれの側面から棒ヒーター(Φ12mm)を挿入し、各治具の温度を120℃とした以外は実施例3と同様に処理を行った。なお、第2の凹凸治具には棒ヒーターを使用していない。拡幅後の張力は平均1.8kgf(17.6N)であり、均一に繊維が分散され、拡幅後のストランド幅は21mmの安定した補強繊維ストランドであった。
 引き続き得られた補強繊維ストランドを、実施例1と同様の方法で、カットし、繊維と樹脂からなるランダムマットに加工したところ、優れた物性のランダムマットが得られた。かかるランダムマットを成形し得られた繊維強化複合材料成形板の引張強度の標準偏差は19と小さく、強度のばらつきの小さな、均一な形状と物性を有する成形板を得ることができた。
 [実施例14]
 収束治具、凹凸治具、拡幅治具および第2の凹凸治具の直径Φを90mmに変更し、さらに、各ピンの中心距離を200mmとすることで、Lの値を180mmに変更した以外は実施例13と同様に処理を行った。なお、収束治具、凹凸治具、拡幅治具の中心部は一直線に配置されており、ピンのストランドの抱き角は50°であった。拡幅処理直後の張力は平均1.5kgf(14.7N)であり、均一に繊維が分繊され、拡幅後のストランド幅は16mmであり、2時間連続運転したが、時間が経過しても拡幅後のストランド幅に変化は見られなかった。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したところ、優れた物性のランダムマットが得られた。かかるランダムマットを成形し得られた繊維強化複合材料成形板の引張強度の標準偏差は25と小さく、強度のばらつきの小さな、均一な形状と物性を有する成形板を得ることができた。
[実施例15]
 実施例14において用いた、凹凸治具及び拡幅治具をそれぞれ半割りにして、その断面を合わせることで実質的に凹凸治具と拡幅治具を図8のように一体化させたものを用意した。そして上記の一体化治具と、各治具(収束治具及び第2の凹凸治具)間の中心距離をそれぞれ110mm(治具へのストランドの抱き角は約110°)としたこと以外は、実施例14と同様に処理を行った。すなわち、この実施例15における凹凸治具-拡幅治具間の渡し距離Lは0mmであった。拡幅処理直後の張力は平均1.6kgf(15.7N)であり、繊維が均一に分繊され、拡幅後のストランド幅は20mmであった。2時間連続運転したところ、ストランドの拡幅治具への入射角度はほぼゼロであり、時間が経過しても拡幅後のストランド幅に変化は見られなかった。
 引き続き得られた補強繊維ストランドを、カットし、繊維と樹脂からなるランダムマットに加工したところ、優れた物性のランダムマットが得られた。かかるランダムマットを成形し得られた繊維強化複合材料成形板の引張強度の標準偏差は17と小さく、強度のばらつきの小さな、均一な形状と物性を有する成形板を得ることができた。
 [実施例16] 
 収束治具、凹凸治具、拡幅治具および第2の凹凸治具の中心距離を250mmとすることで、Lの値を240mm(繊維ストランド幅の24倍)に変更した以外は実施例14と同様に処理を行った。なお、収束治具、凹凸治具、拡幅治具の中心部は一直線に配置されており、ピンのストランドの抱き角は45°であった。全体的に15mm程度まで拡幅された補強繊維拡幅ストランドを得た。拡幅処理直後の張力は平均1.6kgf(15.7N)であり、拡幅治具への入射角度が多少不安定ではあったが、拡幅後のストランド幅が15mmの補強繊維ストランドを得ることができた。
 引き続き得られた補強繊維ストランドを、実施例1と同様の方法で、カットし、繊維と樹脂からなるランダムマットに加工したところ、優れた物性のランダムマットが得られた。かかるランダムマットを成形し得られた繊維強化複合材料成形板の引張強度の標準偏差は27と小さく、強度のばらつきの小さな、均一な形状と物性を有する成形板を得ることができた。
 本発明によれば、簡便な機構でありながら、高速処理の条件下においても安定してストランドが拡幅される、補強繊維ストランドの製造方法が提供される。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年12月22日出願の日本特許出願(特願2011-281507)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (10)

  1.  補強繊維からなるストランドが凹凸治具、拡幅治具を順に通過し、凹凸治具が凹部と凸部からなる複数の凹凸を有し、ストランドが凸部によって分けられることを特徴とする補強繊維ストランドの製造方法。
  2.  凹凸治具が、ストランド厚さの0.01~10倍の高さの凹凸を有する治具である請求項1記載の補強繊維ストランドの製造方法。
  3.  凹凸治具から拡幅治具間の距離であるストランド渡し距離Lが下記不等式(1)を満たす請求項1または2に記載の補強繊維ストランドの製造方法。
      L≦20×W (1)
      L:凹凸治具から拡幅治具間のストランド渡し距離(mm)
      W:拡幅前の繊維ストランド幅(mm)
  4.  ストランドが凹凸治具の前に収束治具を通過する請求項1~3のいずれか1項記載の補強繊維ストランドの製造方法。
  5.  拡幅治具が一つの凸部を有する治具である請求項1~4のいずれか1項記載の補強繊維ストランドの製造方法。
  6.  拡幅治具の後に第2の凹凸治具を通過する請求項1~5のいずれか1項記載の補強繊維ストランドの製造方法。
  7.  補強繊維が炭素繊維である請求項1~6のいずれか1項記載の補強繊維ストランドの製造方法。
  8.  拡幅前のストランドの幅が1mm~300mmである請求項1~7のいずれか1項記載の補強繊維ストランドの製造方法。
  9.  治具がロールまたはピンである請求項1~8のいずれか1項記載の補強繊維ストランドの製造方法。
  10.  収束治具が一つの凹部を有する治具である請求項4~9のいずれか1項記載の補強繊維ストランドの製造方法。
PCT/JP2012/083292 2011-12-22 2012-12-21 補強繊維ストランドの製造方法 WO2013094742A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12860793.4A EP2796599B1 (en) 2011-12-22 2012-12-21 Method for manufacturing reinforcing fiber strands
KR1020147016590A KR20140105477A (ko) 2011-12-22 2012-12-21 보강 섬유 스트랜드의 제조 방법
CN201280063968.8A CN104011273B (zh) 2011-12-22 2012-12-21 用于制造增强纤维股线的方法
JP2013550358A JP5764222B2 (ja) 2011-12-22 2012-12-21 補強繊維ストランドの製造方法
US14/367,248 US9528200B2 (en) 2011-12-22 2012-12-21 Method for manufacturing reinforcing fiber strand

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011281507 2011-12-22
JP2011-281507 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013094742A1 true WO2013094742A1 (ja) 2013-06-27

Family

ID=48668619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083292 WO2013094742A1 (ja) 2011-12-22 2012-12-21 補強繊維ストランドの製造方法

Country Status (6)

Country Link
US (1) US9528200B2 (ja)
EP (1) EP2796599B1 (ja)
JP (1) JP5764222B2 (ja)
KR (1) KR20140105477A (ja)
CN (1) CN104011273B (ja)
WO (1) WO2013094742A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069759A (ja) * 2014-09-30 2016-05-09 帝人株式会社 繊維束の拡幅方法
WO2016173886A1 (de) 2015-04-30 2016-11-03 Evonik Degussa Gmbh Verfahren und vorrichtung zur herstellung eines faserverbundwerkstoffs
JP2018076620A (ja) * 2016-11-10 2018-05-17 三菱ケミカル株式会社 繊維束の分割方法及び分割装置、並びに繊維強化樹脂材料の製造方法及び製造装置
JP2018512515A (ja) * 2015-03-10 2018-05-17 ファイバ リーインフォースト サーモプラスティックス ベー.フェー. 一方向繊維強化テープを作製するための開繊機要素
US20210213716A1 (en) * 2016-04-11 2021-07-15 Mitsubishi Chemical Corporation Method for manufacturing fiber reinforced resin material and apparatus for manufacturing fiber reinforced resin material

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9828702B2 (en) * 2013-04-19 2017-11-28 Fukui Prefectural Government Method and device for opening fiber bundle
DE102013218102A1 (de) * 2013-09-10 2015-03-12 Thermoplast Composite Gmbh Vorrichtung zur verdrillfreien Breitenänderung eines die Vorrichtung durchlaufenden Faserbandes sowie System mit mehreren derartigen Vorrichtungen
KR101601233B1 (ko) * 2014-11-28 2016-03-08 현대자동차 주식회사 섬유 다발의 개섬 장치
KR101676729B1 (ko) * 2015-01-19 2016-11-17 주식회사 티포엘 스프레딩 장치 및 그 스프레딩 장치를 포함하는 원사의 스프레딩 시스템
CN105177792B (zh) * 2015-10-16 2018-01-30 北京合力星新材料技术有限公司 碳纤维扩展装置
JP6574491B2 (ja) * 2015-12-18 2019-09-11 帝人株式会社 プレス成形体の製造方法
KR102305073B1 (ko) * 2016-01-26 2021-09-28 효성첨단소재 주식회사 탄소섬유 다발의 사이징제 부여방법
JP7001998B2 (ja) * 2016-06-22 2022-01-20 東レ株式会社 部分分繊繊維束の製造方法と部分分繊繊維束、および部分分繊繊維束を用いた繊維強化樹脂成形材料とその製造方法
JP6821417B2 (ja) 2016-12-16 2021-01-27 芝浦機械株式会社 搬送装置および搬送ヘッド
CN110520463B (zh) * 2017-05-26 2020-09-11 三菱瓦斯化学株式会社 树脂粒料的制造方法
CN109338599B (zh) * 2018-09-14 2021-08-17 丹东天皓净化材料有限公司 用玻纤纱束分散制做玻纤长纤毡加工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4971220A (ja) * 1972-11-15 1974-07-10
JPS5643435A (en) 1979-09-19 1981-04-22 Nippon Carbon Co Ltd Opening method of yarn or the like
JPS5777342A (en) 1980-10-27 1982-05-14 Shingijutsu Kaihatsu Jigyodan Uniform development of fiber bundle
JPH01282362A (ja) 1988-05-09 1989-11-14 Nippon Oil Co Ltd 炭素繊維束の開繊方法
JPH03146736A (ja) 1989-11-01 1991-06-21 Toray Ind Inc 強化繊維束の拡開方法
JP2000136457A (ja) * 1998-10-30 2000-05-16 Toray Ind Inc 開繊繊維束の製造方法および製造装置
JP3049225B2 (ja) 1997-12-09 2000-06-05 福井県 開繊シートの製造方法、および開繊シート製造装置
JP2007313697A (ja) 2006-05-24 2007-12-06 Toyota Motor Corp 繊維束の開繊装置、繊維束の開繊方法及び圧力容器

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3032829A (en) * 1958-02-11 1962-05-08 Celanese Corp Processing tow
US3144025A (en) * 1960-04-25 1964-08-11 Reeves Bros Inc Tobacco smoke filters
CA674101A (en) * 1961-11-13 1963-11-12 T. Dunlap Donald Tow opening
US3384944A (en) * 1965-02-10 1968-05-28 Du Pont Apparatus for extruding and blending
JPS4421506Y1 (ja) 1965-11-19 1969-09-11
US3440689A (en) * 1966-06-30 1969-04-29 Osaka Kiko Co Ltd Apparatus for separating filaments of tow (filament bundle)
US3708832A (en) * 1970-08-10 1973-01-09 Turbo Machine Co Method for leveling tow
US3739566A (en) * 1971-07-01 1973-06-19 P Smith Apparatus to produce yarn
FR2581086B1 (fr) 1985-04-29 1987-06-12 Rhone Poulenc Fibres Dispositif pour l'etalement d'un cable de filaments continus
US5101542A (en) * 1989-04-05 1992-04-07 Ube Industries, Ltd. Fiber separator for producing fiber reinforced metallic or resin body
FR2761380B1 (fr) 1997-03-28 1999-07-02 Europ Propulsion Procede et machine pour la realisation de nappes fibreuses multiaxiales
JP2001254255A (ja) * 2000-03-09 2001-09-21 Toray Ind Inc 炭素・炭素複合材料用繊維シートおよびその製造方法
FR2819434B1 (fr) * 2001-01-12 2003-05-30 Voultaine De Transformes Ind S Procede de fabrication d'un element de renfort longitudinal a base de fibre de carbone, fibre ainsi obtenue, et pneumatique incorporant une telle fibre
FR2826672B1 (fr) * 2001-06-29 2003-09-26 Snecma Moteurs Procede et dispositif pour realiser une nappe fibreuse par etalement de cables
US6385828B1 (en) * 2001-08-28 2002-05-14 Zoltek Companies, Inc. Apparatus and method for splitting a tow of fibers
EP2213775B1 (en) * 2003-07-08 2011-11-23 Fukui Prefectural Government Method of producing a spread multi-filament bundle and an apparatus used in the same
JP4128169B2 (ja) * 2004-10-27 2008-07-30 弘治 大石橋 拡繊装置
DE102007012607B4 (de) * 2007-03-13 2009-02-26 Eads Deutschland Gmbh Spreizvorrichtung zum Aufspreizen von Faserfilamentbündeln sowie damit versehene Preform-Herstellvorrichtung
US20120213997A1 (en) * 2011-02-21 2012-08-23 United States Council For Automotive Research Fiber tow treatment apparatus and system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4971220A (ja) * 1972-11-15 1974-07-10
JPS5643435A (en) 1979-09-19 1981-04-22 Nippon Carbon Co Ltd Opening method of yarn or the like
JPS5777342A (en) 1980-10-27 1982-05-14 Shingijutsu Kaihatsu Jigyodan Uniform development of fiber bundle
JPH01282362A (ja) 1988-05-09 1989-11-14 Nippon Oil Co Ltd 炭素繊維束の開繊方法
JPH03146736A (ja) 1989-11-01 1991-06-21 Toray Ind Inc 強化繊維束の拡開方法
JP3049225B2 (ja) 1997-12-09 2000-06-05 福井県 開繊シートの製造方法、および開繊シート製造装置
JP2000136457A (ja) * 1998-10-30 2000-05-16 Toray Ind Inc 開繊繊維束の製造方法および製造装置
JP2007313697A (ja) 2006-05-24 2007-12-06 Toyota Motor Corp 繊維束の開繊装置、繊維束の開繊方法及び圧力容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2796599A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069759A (ja) * 2014-09-30 2016-05-09 帝人株式会社 繊維束の拡幅方法
JP2018512515A (ja) * 2015-03-10 2018-05-17 ファイバ リーインフォースト サーモプラスティックス ベー.フェー. 一方向繊維強化テープを作製するための開繊機要素
US10814524B2 (en) 2015-03-10 2020-10-27 Fibre Reinforced Thermoplastics B.V. Method for making unidirectional fiber-reinforced tapes
US10864657B2 (en) 2015-03-10 2020-12-15 Fibre Reinforced Thermoplastics B.V. Fiber-reinforced composite
US10953569B2 (en) 2015-03-10 2021-03-23 Fibre Reinforced Thermoplastics B.V. Spreader element for manufacturing unidirectional fiber-reinforced tapes
WO2016173886A1 (de) 2015-04-30 2016-11-03 Evonik Degussa Gmbh Verfahren und vorrichtung zur herstellung eines faserverbundwerkstoffs
US20210213716A1 (en) * 2016-04-11 2021-07-15 Mitsubishi Chemical Corporation Method for manufacturing fiber reinforced resin material and apparatus for manufacturing fiber reinforced resin material
JP2018076620A (ja) * 2016-11-10 2018-05-17 三菱ケミカル株式会社 繊維束の分割方法及び分割装置、並びに繊維強化樹脂材料の製造方法及び製造装置

Also Published As

Publication number Publication date
JP5764222B2 (ja) 2015-08-12
EP2796599B1 (en) 2016-12-14
US9528200B2 (en) 2016-12-27
EP2796599A1 (en) 2014-10-29
EP2796599A4 (en) 2015-09-02
CN104011273A (zh) 2014-08-27
CN104011273B (zh) 2017-03-08
JPWO2013094742A1 (ja) 2015-04-27
US20150259832A1 (en) 2015-09-17
KR20140105477A (ko) 2014-09-01

Similar Documents

Publication Publication Date Title
JP5764222B2 (ja) 補強繊維ストランドの製造方法
CN109070391B (zh) 在流化床中制造用热塑性聚合物预浸渍的纤维材料的方法
JP2009114612A (ja) チョップド繊維束および成形材料の製造方法、成形材料、繊維強化プラスチック
EP1342544B1 (en) Moulding material
JP2009114611A (ja) チョップド繊維束および成形材料の製造方法、成形材料、繊維強化プラスチック
WO2013129541A1 (ja) 繊維強化プラスチック成形体用シート及びその成形体
JP2009062648A (ja) チョップド繊維束、成形材料、および繊維強化プラスチックの製造方法
CN104781316A (zh) 复合基材
KR20190126810A (ko) 프리프레그의 제조 방법 및 섬유 강화 복합 재료의 제조 방법
JP2014122449A (ja) 拡幅ストランドの製造方法
JP6722406B2 (ja) 繊維強化樹脂成形材料およびその製造方法
WO2020195756A1 (ja) 繊維強化樹脂成形材料成形品およびその製造方法
WO2016152563A1 (ja) 炭素繊維強化樹脂複合材料
JP4988230B2 (ja) 繊維強化熱可塑性樹脂シートとその製造方法
JP2005335296A (ja) トウプリプレグの製造方法
JP2014172998A (ja) 強化繊維束の製造方法
JP2013076193A (ja) 繊維束の開繊装置及び開繊方法
JP5667484B2 (ja) 開繊繊維の製造法、製造装置
CN107108915B (zh) 增强纤维复合材料
US9981447B2 (en) Fiber-reinforced resin joined body having caulked part and manufacturing method thereof
JP6445822B2 (ja) 強化繊維束、強化繊維束の開繊装置及び強化繊維束の開繊方法
JP2004162055A (ja) プリプレグの製造方法および製造装置
JP2004225222A (ja) 強化繊維束の開繊方法および開繊装置
JP3672043B2 (ja) 熱可塑性コンポジットの連続成形品および連続成形方法
JP2004225183A (ja) 強化繊維束の開繊方法および開繊装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860793

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550358

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147016590

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14367248

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012860793

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012860793

Country of ref document: EP