WO2013094494A1 - 精製茶抽出物の製造方法 - Google Patents

精製茶抽出物の製造方法 Download PDF

Info

Publication number
WO2013094494A1
WO2013094494A1 PCT/JP2012/082209 JP2012082209W WO2013094494A1 WO 2013094494 A1 WO2013094494 A1 WO 2013094494A1 JP 2012082209 W JP2012082209 W JP 2012082209W WO 2013094494 A1 WO2013094494 A1 WO 2013094494A1
Authority
WO
WIPO (PCT)
Prior art keywords
tea extract
mass
exchange resin
polymer catechins
cation exchange
Prior art date
Application number
PCT/JP2012/082209
Other languages
English (en)
French (fr)
Inventor
健一 四方
英雄 大南
佐藤 仁
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US14/365,254 priority Critical patent/US20150004290A1/en
Priority to EP12860850.2A priority patent/EP2796053B1/en
Priority to CN201280063340.8A priority patent/CN104010517B/zh
Publication of WO2013094494A1 publication Critical patent/WO2013094494A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/16Tea extraction; Tea extracts; Treating tea extract; Making instant tea
    • A23F3/20Removing unwanted substances
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23FCOFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
    • A23F3/00Tea; Tea substitutes; Preparations thereof
    • A23F3/16Tea extraction; Tea extracts; Treating tea extract; Making instant tea
    • A23F3/20Removing unwanted substances
    • A23F3/205Using flocculating or adsorbing agents

Definitions

  • the present invention relates to a method for producing a purified tea extract.
  • tea beverages containing functional substances such as non-polymer catechins have attracted attention.
  • Tea drinks are usually manufactured by blending functional substances such as non-polymer catechins in the beverage in a dissolved state using tea extract and the like. Types of tea extract to be blended in tea drinks In some cases, the commercial value may be lost due to bitterness and turbidity.
  • a green tea extract is dispersed in a mixed solution having an organic solvent and water weight ratio of 91/9 to 97/3, and contacted with activated carbon and acid clay or activated clay, so that caffeine is not deteriorated without deteriorating the hue.
  • Patent Document 1 A selective removal method (Patent Document 1), by bringing a green tea extract obtained from green tea leaves into contact with a sodium-type cation exchange resin, to improve the flavor and to suppress the clogging and precipitation when stored for a long time Method (Patent Document 2), a method of removing metal ions, particularly calcium and magnesium in the extract, and improving transparency by bringing the green tea extract into contact with a food grade cation exchange resin (Patent Document 3), etc. has been proposed.
  • the present invention provides a method for producing a purified tea extract, wherein the tea extract is brought into contact with a magnesium-type or lithium-type cation exchange resin.
  • the present invention also provides a purified tea extract having a mass ratio of (magnesium + lithium) / non-polymer catechins of 0.1 or more.
  • the tea extract is usually dissolved or dispersed in an appropriate solvent such as ethanol.
  • an appropriate solvent such as ethanol.
  • the subject of this invention is providing the manufacturing method of the refined tea extract which improved the solubility with respect to the solvent of non-polymer catechins, and the refined tea extract obtained by the said manufacturing method.
  • a purified tea extract having improved solubility of non-polymer catechins in a solvent can be obtained.
  • the purified tea extract of the present invention is useful as a raw material for further purification process because the solubility of non-polymer catechins in solvents such as high concentration ethanol is improved.
  • the manufacturing method of the refined tea extract of this invention is demonstrated.
  • the tea extract is brought into contact with a magnesium-type or lithium-type cation exchange resin.
  • the “tea extract” used in the present invention include a tea extract or a concentrate thereof, and there are various forms such as a solid, a liquid, a solution, and a slurry.
  • the “tea extract” is extracted from tea leaves using hot water or a hydrophilic organic solvent by kneader extraction or column extraction, and is not concentrated or purified.
  • the hydrophilic organic solvent include alcohols such as methanol and ethanol, and ketones such as acetone.
  • the “tea extract concentrate” refers to a product obtained by removing at least part of the solvent from the tea extract to increase the concentration of non-polymer catechins.
  • JP-A-59-219384 It can be prepared by the methods described in JP-A-4-20589, JP-A-5-260907, JP-A-5-306279, and the like.
  • tea leaves used for the extraction include tea leaves selected from the genus Camellia, for example, C. var. Sinensis (including Yabuta species), C. var. Assamica, and hybrids thereof. Tea leaves can be broadly classified into non-fermented tea, semi-fermented tea, and fermented tea depending on the processing method.
  • non-fermented tea include green tea such as sencha,nadoha, gyokuro, tencha, fried tea, and stem tea, stick tea, bud tea, and the like.
  • semi-fermented tea include oolong tea such as iron kannon, color type, golden katsura, and martial arts tea.
  • non-polymer catechins refers to non-epimeric catechins such as catechin, gallocatechin, catechin gallate and gallocatechin gallate, and epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin. It is a collective term for epi-catechins such as gallate.
  • concentration of non-polymer catechins is defined based on the total amount of the above eight types.
  • the cation exchange resin used in the present invention is a magnesium type or lithium type cation exchange resin.
  • the magnesium-type or lithium-type cation exchange resin can be prepared by converting hydrogen ions of a hydrogen-type (H-type) cation exchange resin into magnesium ions or lithium ions.
  • a preparation method a conventional method can be adopted.
  • the following method can be exemplified.
  • a magnesium type cation exchange resin an aqueous solution of magnesium hydroxide, magnesium chloride or the like is brought into contact with the hydrogen type cation exchange resin.
  • an aqueous solution such as lithium hydroxide or lithium chloride is brought into contact with the hydrogen cation exchange resin.
  • the cation exchange resin after the contact treatment is washed with ion exchange water until the pH of the wash water does not show alkalinity.
  • Examples of the resin matrix of the hydrogen-type cation exchange resin used for preparing the magnesium-type or lithium-type cation exchange resin include styrene resins such as styrene-divinylbenzene, acrylic acid resins, and methacrylic acid resins. Can do.
  • Examples of the matrix structure include a gel type and a porous type.
  • examples of the form of the resin include powder, sphere, fiber, and film. In the present invention, these can be appropriately selected and used.
  • the hydrogen type cation exchange resin includes strong acid or weak acid cation exchange resin.
  • a strongly acidic cation exchange resin is preferable from the viewpoint of the removal efficiency of potassium and the yield of non-polymer catechins during the ion exchange treatment.
  • strongly acidic cation exchange resins include Diaion SK1B, SK104, SK110, SK112, SK116, PK208, PK212, PK216, PK218, PK220, PK228 (above, manufactured by Mitsubishi Chemical Corporation), Amberlite IR120B, IR124, 200CT, 252 (Above, manufactured by Rohm and Hirsch), Dowex 50Wx2, 50Wx4, 50Wx8 (above, manufactured by Dow Chemical Co.) can be used.
  • the tea extract is brought into contact with the magnesium-type or lithium-type cation exchange resin prepared as described above, and the potassium ions contained in the tea extract are magnesium ions or lithium ions of the cation-exchange resin. Is replaced with As a result, the potassium content is greatly reduced, while the magnesium or lithium content is increased, so that the solubility of non-polymer catechins in solvents is greatly improved.
  • the pH (20 ° C.) of the tea extract when contacting with the cation exchange resin is Preferably it is 2 or more, more preferably 3.5 or more, more preferably 4 or more, and from the viewpoint of the stability of non-polymer catechins, it is preferably 6 or less, more preferably 5.5 or less, still more preferably Is 5 or less.
  • the pH range is preferably 2 to 6, more preferably 3.5 to 5.5, and still more preferably 4 to 5.
  • the concentration of non-polymer catechins in the tea extract when contacting with a magnesium-type or lithium-type cation exchange resin is preferably 0.1% by mass or more, more preferably 0.25% by mass. Or more, more preferably 0.5% by mass or more, further preferably 0.75% by mass or more, and preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass or less. .
  • the concentration range of such non-polymer catechins is preferably 0.1 to 10% by mass, more preferably 0.25 to 5% by mass, still more preferably 0.5 to 5% by mass, and still more preferably 0.5%. To 3% by mass, more preferably 0.75 to 3% by mass.
  • the tea extract may be concentrated or diluted as necessary.
  • the cation exchange resin is added to the tea extract, stirred and adsorbed, and then the cation exchange resin is recovered by filtration. And a column system in which a tea extract is passed through a column packed with the cation exchange resin and subjected to continuous adsorption treatment.
  • the contact conditions can be appropriately set depending on the contact method. For example, in the case of a batch method, the contact time is preferably 0.1 hours or more, more preferably 0.
  • the range of contact time is preferably 0.1 to 5 hours, more preferably 0.3 to 5 hours, still more preferably 0.5 to 5 hours, still more preferably 1 to 5 hours, and further preferably 2 to 5 hours.
  • the time is more preferably 3 to 5 hours, more preferably 3 to 4 hours.
  • the space velocity (SV) is preferably 10 / hr or less, more preferably 8 / hr or less, and preferably 0.5 / hr or more, more preferably 2 / hr or more. More preferably, it is 5 / hr or more.
  • the range of the space velocity (SV) is preferably 0.5 to 10 / hr, more preferably 2 to 10 / hr, still more preferably 5 to 10 / hr, and further preferably 5 to 8 / hr.
  • the contact temperature between the tea extract and the magnesium-type or lithium-type cation exchange resin is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, more preferably 20 ° C. or higher, regardless of the contact method. Preferably it is 40 degrees C or less, More preferably, it is 35 degrees C or less, More preferably, it is 30 degrees C or less.
  • the contact temperature range is preferably 0 to 40 ° C, more preferably 10 to 35 ° C, and still more preferably 20 to 30 ° C.
  • the amount of magnesium-type or lithium-type cation exchange resin can be set as appropriate depending on the contact method.
  • the volume ratio (v / v) of tea extract / cation exchange resin is used. 1 or more, preferably 5 or more, more preferably 10 or more, and preferably 200 or less, more preferably 150 or less, still more preferably 100 or less, still more preferably 80 or less, still more preferably 60 or less. More preferably, it is 40 or less, more preferably 30 or less.
  • the volume ratio (v / v) is preferably 1 to 200, more preferably 5 to 150, still more preferably 10 to 100, still more preferably 10 to 80, still more preferably 10 to 60, still more preferably 10 to 40, more preferably 10-30.
  • the cation exchange resin after the contact treatment can be reused repeatedly by regenerating it into a magnesium type or lithium type cation exchange resin by the method described above.
  • the purified tea extract of the present invention can be obtained.
  • the product form may be liquid or solid, and if a solid is desired, it can be pulverized by a conventional method such as spray drying or freeze drying.
  • the mass ratio of (magnesium + lithium) / non-polymer catechins is 0.1 or more, preferably 0.13 or more, more preferably from the viewpoint of improving the solubility of non-polymer catechins. It is 0.15 or more.
  • an upper limit is not specifically limited, From a viewpoint of production efficiency, Preferably it is 1, More preferably, it is 0.6, More preferably, it is 0.4.
  • the range of the mass ratio is preferably 0.1 to 1, more preferably 0.13 to 0.6, and still more preferably 0.15 to 0.4.
  • the total content of magnesium and lithium in the solid content is preferably 3% by mass or more, more preferably 4% by mass or more, and further preferably 5% by mass from the viewpoint of improving the solubility of non-polymer catechins. And preferably 30% by mass or less, more preferably 20% by mass or less, and still more preferably 10% by mass or less.
  • the range of the total content is preferably 3 to 30% by mass, more preferably 4 to 20% by mass, and further preferably 5 to 10% by mass.
  • the mass ratio of potassium / non-polymer catechins is preferably 0.26 or less, more preferably 0.24 or less, and still more preferably 0.22 or less, from the viewpoint of improving the solubility of non-polymer catechins.
  • a minimum is not specifically limited, From a viewpoint of production efficiency, Preferably it is 0.01, More preferably, it is 0.05, More preferably, it is 0.1.
  • the range of the mass ratio is preferably 0.01 to 0.26, more preferably 0.05 to 0.24, and still more preferably 0.1 to 0.22.
  • the content of potassium in the solid content is preferably 8.5% by mass or less, more preferably 8% by mass or less, and still more preferably 7% by mass or less, from the viewpoint of improving the solubility of non-polymer catechins. And preferably 2% by mass or more, more preferably 3% by mass or more, and still more preferably 4% by mass or more.
  • the content range is preferably 2 to 8.5% by mass, more preferably 3 to 8% by mass, and still more preferably 4 to 7% by mass.
  • the content of non-polymer catechins in the solid content is preferably 25% by mass or more, more preferably 28% by mass or more, still more preferably 30% by mass or more, from the viewpoint of physiological effects, and Preferably it is 45 mass% or less, More preferably, it is 44 mass% or less, More preferably, it is 43 mass% or less.
  • the content range is preferably 25 to 45% by mass, more preferably 28 to 44% by mass, and still more preferably 30 to 43% by mass.
  • the elution rate of non-polymer catechins in ethanol calculated by the following formula (1) is preferably 92 to 100%, more preferably 92.5 to 100%, still more preferably 93 to 100%.
  • the pH (20 ° C.) of the aqueous solution when the purified tea extract is diluted with distilled water so that the concentration of non-polymer catechins is 1% by mass is preferably 3 or more, more preferably 4 or more, More preferably, it is 4.5 or more, preferably 7 or less, more preferably 6.5 or less, and further preferably 6 or less.
  • the pH range is preferably 3 to 7, more preferably 4 to 6.5, and still more preferably 4.5 to 6.
  • non-polymer catechins and “magnesium, lithium, potassium” are measured in accordance with the methods described in Examples below.
  • Solid content and “dry solid content” refer to a residue obtained by drying a sample for 3 hours in an electric constant temperature dryer at 105 ° C. to remove volatile substances.
  • the purified green tea extract of the present invention has improved solubility of non-polymer catechins in various solvents including high-concentration ethanol, so that it can be used as a raw material for further purification steps.
  • the purified green tea extract of the present invention obtained by bringing the tea extract into contact with a magnesium-type or lithium-type cation exchange resin can be brought into contact with an organic solvent aqueous solution to produce a further purified tea extract. it can.
  • ethanol is mentioned as a preferable organic solvent
  • the organic solvent concentration in the preferable organic solvent aqueous solution is 75% by mass or more, preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more.
  • this invention discloses the manufacturing method of the following refined tea extracts, or a refined tea extract further.
  • a method for producing a purified tea extract comprising bringing a tea extract into contact with a magnesium-type or lithium-type cation exchange resin.
  • ⁇ 1-2> The method for producing a purified tea extract according to the above ⁇ 1-1>, wherein the cation exchange resin is preferably a strongly acidic ion exchange resin.
  • the pH of the tea extract upon contact with the cation exchange resin is preferably 2 or more, more preferably 3.5 or more, still more preferably 4 or more, preferably 6 or less, more preferably 5.5 or less, The method for producing a purified tea extract according to ⁇ 1-1> or ⁇ 1-2>, more preferably 5 or less.
  • the pH of the tea extract upon contact with the cation exchange resin is preferably 2 to 6, more preferably 3.5 to 5.5, and still more preferably 4 to 5, ⁇ 1-1> to ⁇ 1 -3>
  • the concentration of non-polymer catechins in the tea extract is preferably 0.1% by mass or more, more preferably 0.25% by mass or more, still more preferably 0.5% by mass or more, and further preferably 0.75% by mass. % Or more, more preferably 1% by mass or more, preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 3% by mass or less.
  • the concentration of non-polymer catechins in the tea extract is preferably 0.1 to 10% by mass, more preferably 0.25 to 5% by mass, still more preferably 0.5 to 5% by mass, and still more preferably 0.
  • the amount of cation exchange resin used is a tea extract / cation exchange resin volume ratio, preferably 1 or more, more preferably 5 or more, still more preferably 10 or more, preferably 200 or less, more preferably 150 or less, More preferably 100 or less, more preferably 80 or less, further preferably 60 or less, more preferably 40 or less, and further preferably 30 or less, as described in any one of the above ⁇ 1-1> to ⁇ 1-6>.
  • a tea extract / cation exchange resin volume ratio preferably 1 or more, more preferably 5 or more, still more preferably 10 or more, preferably 200 or less, more preferably 150 or less, More preferably 100 or less, more preferably 80 or less, further preferably 60 or less, more preferably 40 or less, and further preferably 30 or less, as described in any one of the above ⁇ 1-1> to ⁇ 1-6>.
  • the amount of cation exchange resin used is the tea extract / cation exchange resin volume ratio, preferably 1 to 200, more preferably 5 to 150, still more preferably 10 to 100, still more preferably 10 to 80, still more preferably 10
  • ⁇ 1-9> The method for producing a purified tea extract according to any one of the above ⁇ 1-1> to ⁇ 1-8>, wherein the base of the cation exchange resin is a styrene resin, an acrylic acid resin, or a methacrylic acid resin.
  • ⁇ 1-10> The method for producing a purified tea extract according to any one of the above ⁇ 1-1> to ⁇ 1-9>, wherein the cation exchange resin is preferably a gel type or a porous type.
  • the temperature when contacting with the cation exchange resin is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, further preferably 20 ° C. or higher, preferably 40 ° C. or lower, more preferably 35 ° C. or lower, still more preferably.
  • the method for producing a purified tea extract according to any one of ⁇ 1-1> to ⁇ 1-10> which is 30 ° C. or lower.
  • ⁇ 1-12> Any of the above ⁇ 1-1> to ⁇ 1-11>, wherein the temperature when contacting with the cation exchange resin is preferably 0 to 40 ° C., more preferably 10 to 35 ° C., and still more preferably 20 to 30 ° C.
  • ⁇ 1-13> The method for producing a purified tea extract according to any one of ⁇ 1-1> to ⁇ 1-12>, wherein the contact method with the cation exchange resin is preferably a batch method.
  • the time for contacting in a batch mode is preferably 0.1 hour or longer, more preferably 0.3 hour or longer, more preferably 0.5 hour or longer, further preferably 1 hour or longer, more preferably 2 hours or longer,
  • the method for producing a purified tea extract according to the above ⁇ 1-13> which is more preferably 3 hours or longer, preferably 5 hours or shorter, more preferably 4 hours or shorter.
  • the time for contacting in a batch mode is preferably 0.1 to 5 hours, more preferably 0.3 to 5 hours, still more preferably 0.5 to 5 hours, still more preferably 1 to 5 hours, still more preferably.
  • the method for producing a purified tea extract according to the above ⁇ 1-13> or ⁇ 1-14> which is 2 to 5 hours, more preferably 3 to 5 hours, and further preferably 3 to 4 hours.
  • ⁇ 1-16> The method for producing a purified tea extract according to any one of the above ⁇ 1-1> to ⁇ 1-12>, wherein the contact method with the cation exchange resin is preferably a column system.
  • the space velocity at the time of contacting by the column method is preferably 10 / hr or less, more preferably 8 / hr or less, preferably 0.5 / hr or more, more preferably 2 / hr or more, and still more preferably 5 / Hr or more, the method for producing a purified tea extract according to the above ⁇ 1-16>.
  • the space velocity when contacting in the column system is preferably 0.5 to 10 / hr, more preferably 2 to 10 / hr, still more preferably 5 to 10 / hr, and further preferably 5 to 8 / hr.
  • ⁇ 1-19> The method for producing a purified tea extract according to any one of ⁇ 1-1> to ⁇ 1-18>, wherein the tea extract is a green tea extract.
  • a purified tea extract having a mass ratio of (magnesium + lithium) / non-polymer catechins of 0.1 or more.
  • the mass ratio of (magnesium + lithium) / non-polymer catechins is preferably 0.13 or more, more preferably 0.15 or more, preferably 1 or less, more preferably 0.6 or less, still more preferably
  • the mass ratio of (magnesium + lithium) / non-polymer catechins is preferably 0.1 to 1, more preferably 0.13 to 0.6, and still more preferably 0.15 to 0.4.
  • the total content of magnesium and lithium in the solid content is preferably 3% by mass or more, more preferably 4% by mass or more, still more preferably 5% by mass or more, and preferably 30% by mass or less, more preferably 20%.
  • the potassium content in the solid content is preferably 8.5% by mass or less, more preferably 8% by mass or less, still more preferably 7% by mass or less, preferably 2% by mass or more, more preferably 3% by mass. % Or more, more preferably 4% by mass or more, The purified tea extract according to any one of the above ⁇ 2-1> to ⁇ 2-5>.
  • the content of potassium in the solid content is preferably 2 to 8.5% by mass, more preferably 3 to 8% by mass, and further preferably 4 to 7% by mass, ⁇ 2-1> to ⁇ 2- The purified tea extract according to any one of 6>.
  • the mass ratio of potassium / non-polymer catechins is preferably 0.26 or less, more preferably 0.24 or less, still more preferably 0.22 or less, preferably 0.01 or more, more preferably 0.8.
  • the mass ratio of potassium / non-polymer catechins is preferably 0.01 to 0.26, more preferably 0.05 to 0.24, and still more preferably 0.1 to 0.22.
  • the elution rate of non-polymer catechins in ethanol calculated by the following formula (1) is preferably 92 to 100%, more preferably 92.5 to 100%, still more preferably 93 to 100%.
  • ⁇ 2-13> The pH of the aqueous solution when diluted with distilled water so that the concentration of non-polymer catechins is 1% by mass is preferably 3 or more, more preferably 4 or more, still more preferably 4.5 or more, preferably
  • the purified tea extract according to any one of ⁇ 2-1> to ⁇ 2-12> which is 7 or less, more preferably 6.5 or less, and even more preferably 6 or less.
  • the pH of the aqueous solution when diluted with distilled water so that the concentration of non-polymer catechins is 1% by mass is preferably 3 to 7, more preferably 4 to 6.5, still more preferably 4.5 to 6.
  • the mobile phase A solution was a distilled aqueous solution containing 0.1 mol / L of acetic acid
  • the B solution was an acetonitrile solution containing 0.1 mol / L of acetic acid
  • the sample injection amount was 20 ⁇ L
  • the UV detector wavelength was 280 nm.
  • lithium-type cation exchange resin 10 g of a strongly acidic cation exchange resin (H type, SK1BH, manufactured by Mitsubishi Chemical Corporation) was sampled, and the operation of stirring for 1 hour in 500 g of 2M lithium hydroxide was performed three times. . Next, after filtration, washing was performed 3 times with 1200 g of ion exchange water to produce a lithium type (Li type) cation exchange resin.
  • H type strongly acidic cation exchange resin
  • sodium type cation exchange resin was produced in the same manner as in the Li type cation exchange resin except that 2M sodium hydroxide was used.
  • Example 9 Except that hydrochloric acid was added and the pH was adjusted to 4.0, the same operation as in Example 8 was performed to obtain 7.0 g of purified tea extract 11 (non-polymer catechins 32.3 mass%).
  • Table 3 shows the analysis results of the purified tea extract 11 and the elution rate of non-polymer catechins in 92.4% by mass ethanol.
  • the result of the dissolution test of the purified tea extract 6 was a non-polymer catechin concentration of the supernatant of 6.13% by mass and a dry solid content of 9.97% by mass.
  • the result of the dissolution test of the purified tea extract 7 was a non-polymer catechin concentration of the supernatant of 6.86% by mass and a dry solid content of 13.62% by mass.
  • the result of the dissolution test of the purified tea extract 8 was a non-polymer catechin concentration of the supernatant of 6.82% by mass and a dry solid content of 12.37% by mass.
  • Example 15 As a result of conducting a dissolution test of the purified tea extract 2 in a mixed solvent of ethanol and water having an ethanol concentration of 95% by mass, the concentration of non-polymer catechins in the supernatant was 6.05% by mass and the dry solid content was 9.22% by mass. %, And the elution rate of non-polymer catechins was 82.4%.
  • Example 18 As a result of conducting a dissolution test of the purified tea extract 2 in a mixed solvent of ethanol and water having an ethanol concentration of 75% by mass, the concentration of non-polymer catechins in the supernatant was 6.86% by mass, and the dry solid content was 14.42% by mass. %, And the elution rate of non-polymer catechins was 98.6%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Tea And Coffee (AREA)

Abstract

 本発明は、非重合体カテキン類の溶媒に対する溶解性を高めた精製茶抽出物の製造方法を提供する。 本発明の精製茶抽出物の製造方法は、茶抽出物をマグネシウム型又はリチウム型のカチオン交換樹脂と接触させるものである。

Description

精製茶抽出物の製造方法
 本発明は、精製茶抽出物の製造方法に関する。
 消費者の嗜好の多様化、健康志向の高揚により多種多様の飲料が上市されている。中でも、非重合体カテキン類などの機能性物質を含む茶飲料が注目されている。茶飲料は、通常、茶抽出物などを利用して非重合体カテキン類などの機能性物質を飲料に溶解状態で配合して製造されているが、茶飲料に配合される茶抽出物の種類によって、苦渋味や濁りにより商品価値が損なわれることがあった。
 そこで、このような問題を解決すべく、茶飲料に配合すべき茶抽出物の精製方法について様々な検討がなされている。例えば、緑茶抽出物を有機溶媒と水の重量比が91/9~97/3の混合溶液に分散させ、活性炭及び酸性白土又は活性白土と接触させることにより、色相を悪化させずにカフェインを選択的に除去する方法(特許文献1)、緑茶葉から得た緑茶抽出液をナトリウム型陽イオン交換樹脂に接触させることにより、風味を改善し、かつ長期保存したときのおりや沈殿を抑制する方法(特許文献2)、緑茶抽出物を食品用銘柄陽イオン交換樹脂に接触させることにより、抽出物中の金属イオン、特にカルシウム及びマグネシウムを除去し、透明度を改善する方法(特許文献3)などが提案されている。
特開2005-270094号公報 特開2004-159634号公報 特表平11-504224号公報
 本発明は、茶抽出物をマグネシウム型又はリチウム型のカチオン交換樹脂と接触させる、精製茶抽出物の製造方法を提供するものである。
 本発明はまた、(マグネシウム+リチウム)/非重合体カテキン類の質量比が0.1以上である、精製茶抽出物を提供するものである。
 茶抽出物の精製工程においては、通常茶抽出物をエタノールなど適当な溶媒に溶解ないし分散して使用しているが、茶抽出物を高濃度のエタノールに溶解すると、非重合体カテキン類の溶解性が低下することが判明した。
 したがって、本発明の課題は、非重合体カテキン類の溶媒に対する溶解性を高めた精製茶抽出物の製造方法及び当該製造方法により得られた精製茶抽出物を提供することにある。
 本発明者らは、上記課題に鑑み種々検討した結果、茶抽出物に含まれるカリウムが非重合体カテキン類と複合体を形成して非重合体カテキン類の溶解を阻害していることが判明した。そして、茶抽出物を特定の金属イオンを対イオンとして有するカチオン交換樹脂と接触させることにより、非重合体カテキン類の溶媒に対する溶解性が大幅に改善された精製茶抽出物が得られることを見出した。
 本発明によれば、非重合体カテキン類の溶媒に対する溶解性を高めた精製茶抽出物を得ることができる。また、本発明の精製茶抽出物は、高濃度のエタノールを始めとする溶媒に対する非重合体カテキン類の溶解性が改善されているため、更に精製工程に供するための原料としても有用である。
 先ず、本発明の精製茶抽出物の製造方法について説明する。
 本発明の精製茶抽出物の製造方法は、茶抽出物をマグネシウム型又はリチウム型のカチオン交換樹脂と接触させるものである。
 本発明で使用する「茶抽出物」としては、例えば、茶抽出液又はその濃縮物が挙げられ、その形態としては、固体、液体、溶液、スラリーなど種々のものがある。
 ここで、本明細書において「茶抽出液」とは、茶葉から熱水又は親水性有機溶媒を用いてニーダー抽出やカラム抽出などにより抽出したものであって、濃縮や精製操作が行われていないものをいう。なお、親水性有機溶媒としては、例えば、メタノール、エタノールなどのアルコール、アセトンなどのケトンを挙げることができる。また、「茶抽出液の濃縮物」とは、茶抽出液から溶媒の少なくとも一部を除去して非重合体カテキン類濃度を高めたものをいい、例えば、特開昭59-219384号公報、特開平4-20589号公報、特開平5-260907号公報、特開平5-306279号公報などに記載の方法により調製することができる。
 抽出に使用する茶葉としては、例えば、Camellia属、例えば、C.var.sinensis(やぶきた種を含む)、C.var.assamica及びそれらの雑種から選択される茶葉が挙げられる。茶葉は、その加工方法により、不発酵茶、半発酵茶、発酵茶に大別することができる。
 不発酵茶としては、例えば、煎茶、番茶、玉露、てん茶、釜炒り茶などの緑茶が挙げられ、茎茶、棒茶、芽茶なども使用することができる。また、半発酵茶としては、例えば、鉄観音、色種、黄金桂、武夷岩茶などの烏龍茶が挙げられる。更に、発酵茶としては、ダージリン、アッサム、スリランカなどの紅茶が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。中でも、非重合体カテキン類の含有量の点から、緑茶が好ましい。ここで、本明細書において「非重合体カテキン類」とは、カテキン、ガロカテキン、カテキンガレート及びガロカテキンガレートなどの非エピ体カテキン類、並びにエピカテキン、エピガロカテキン、エピカテキンガレート及びエピガロカテキンガレートなどのエピ体カテキン類を併せての総称である。非重合体カテキン類濃度は、上記8種の合計量に基づいて定義される。
 本発明においては、茶抽出液又はその濃縮物の固形物として、例えば、三井農林(株)の「ポリフェノン」、伊藤園(株)の「テアフラン」、太陽化学(株)の「サンフェノン」などの市販品を使用することもできる。
 本発明で使用するカチオン交換樹脂は、マグネシウム型又はリチウム型のカチオン交換樹脂である。マグネシウム型又はリチウム型のカチオン交換樹脂は、水素型(H型)カチオン交換樹脂の水素イオンをマグネシウムイオン又はリチウムイオンに変換して調製することができる。調製方法としては常法を採用することが可能であるが、例えば、次の方法を挙げることができる。マグネシウム型カチオン交換樹脂の場合、水酸化マグネシウム、塩化マグネシウムなどの水溶液を水素型カチオン交換樹脂と接触させる。また、リチウム型カチオン交換樹脂の場合、水酸化リチウム、塩化リチウムなどの水溶液を水素型カチオン交換樹脂と接触させる。次いで、接触処理後のカチオン交換樹脂をイオン交換水で、洗浄水のpHがアルカリ性を示さなくなるまで洗浄する。
 マグネシウム型又はリチウム型のカチオン交換樹脂の調製に使用する水素型カチオン交換樹脂の樹脂母体としては、例えば、スチレン-ジビニルベンゼンなどのスチレン系樹脂、アクリル酸系樹脂、メタクリル酸系樹脂などを挙げることができる。また、母体構造としては、例えば、ゲル型、ポーラス型が挙げられる。更に、樹脂の形態としては、例えば、粉状、球状、繊維状、膜状などを挙げることができる。本発明においては、これらを適宜選択して使用することができる。
 また、水素型カチオン交換樹脂には、強酸性又は弱酸性のカチオン交換樹脂が存在する。中でも、カリウムの除去効率、イオン交換処理時の非重合体カテキン類の収率の観点から、強酸性カチオン交換樹脂が好ましい。強酸性カチオン交換樹脂として、例えば、ダイヤイオンSK1B、SK104、SK110、SK112、SK116、PK208、PK212、PK216、PK218、PK220、PK228(以上、三菱化学社製)、アンバーライトIR120B、IR124、200CT、252(以上、ローム・アンド・ハーシュ社製)、ダウエックス50Wx2、50Wx4、50Wx8(以上、ダウ・ケミカル社製)などを使用することができる。
 本発明においては、上記のようにして調製されたマグネシウム型又はリチウム型のカチオン交換樹脂に茶抽出物を接触させるが、茶抽出物に含まれるカリウムイオンは、カチオン交換樹脂のマグネシウムイオン又はリチウムイオンと置換される。その結果、カリウム含有量が大幅に低減される一方、マグネシウム又はリチウムの含有量が高められるため、非重合体カテキン類の溶媒に対する溶解性が大幅に改善される。
 カチオン交換樹脂と接触させる際の茶抽出物のpH(20℃)は、イオン交換における効率面、エタノール溶出時の上清液中の固形分中の非重合体カテキン類の含有量の観点から、好ましくは2以上、より好ましくは3.5以上、更に好ましくは4以上であり、そして、非重合体カテキン類の安定性の観点から、好ましくは6以下、より好ましくは5.5以下、更に好ましくは5以下である。かかるpHの範囲としては、2~6が好ましく、3.5~5.5がより好ましく、4~5が更に好ましい。
 マグネシウム型又はリチウム型のカチオン交換樹脂に接触させる際の茶抽出物中の非重合体カテキン類濃度は、生産効率の観点から、好ましくは0.1質量%以上、より好ましくは0.25質量%以上、更に好ましくは0.5質量%以上、更に好ましくは0.75質量%以上であり、そして、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下である。かかる非重合体カテキン類濃度の範囲としては、好ましくは0.1~10質量%、より好ましくは0.25~5質量%、更に好ましくは0.5~5質量%、更に好ましくは0.5~3質量%、更に好ましくは0.75~3質量%である。なお、茶抽出物中の非重合体カテキン類濃度を上記範囲内に調整するために、茶抽出物を必要により濃縮又は希釈などしてもよい。
 茶抽出物とマグネシウム型又はリチウム型のカチオン交換樹脂との接触方法としては、茶抽出物に上記カチオン交換樹脂を添加し撹拌して吸着させた後、ろ過操作により上記カチオン交換樹脂を回収するバッチ方式、あるいは上記カチオン交換樹脂を充填したカラムに茶抽出物を通液して連続的に吸着処理を行なうカラム方式などを挙げることができる。接触条件は、接触方法により適宜設定することが可能であるが、例えば、バッチ方式で行う場合、接触時間は、イオン交換の効率の観点から、好ましくは0.1時間以上、より好ましくは0.3時間以上、更に好ましくは0.5時間以上、更に好ましくは1時間以上、更に好ましくは2時間以上、更に好ましくは3時間以上であり、そして、風味劣化抑制の観点から、好ましくは5時間以下、更に好ましくは4時間以下である。接触時間の範囲としては、好ましくは0.1~5時間、より好ましくは0.3~5時間、更に好ましくは0.5~5時間、更に好ましくは1~5時間、更に好ましくは2~5時間、更に好ましくは3~5時間、更に好ましくは3~4時間である。また、カラム方式で行う場合、空間速度(SV)は、好ましくは10/hr以下、更に好ましくは8/hr以下であり、そして、好ましくは0.5/hr以上、より好ましくは2/hr以上、更に好ましくは5/hr以上である。かかる空間速度(SV)の範囲としては、好ましくは0.5~10/hr、より好ましくは2~10/hr、更に好ましくは5~10/hr、更に好ましくは5~8/hrである。
 茶抽出物とマグネシウム型又はリチウム型のカチオン交換樹脂との接触温度は、接触方法の如何を問わず、好ましくは0℃以上、より好ましくは10℃以上、更に好ましくは20℃以上であって、好ましくは40℃以下、より好ましくは35℃以下、更に好ましくは30℃以下である。接触温度の範囲としては、好ましくは0~40℃、より好ましくは10~35℃、更に好ましくは20~30℃である。
 マグネシウム型又はリチウム型のカチオン交換樹脂の使用量は、接触方法により適宜設定可能であるが、カリウムの除去効率の観点から、例えば、茶抽出物/カチオン交換樹脂の容量比(v/v)として、好ましくは1以上、より好ましくは5以上、更に好ましくは10以上であり、そして、好ましくは200以下、より好ましくは150以下、更に好ましくは100以下、更に好ましくは80以下、更に好ましくは60以下、更に好ましくは40以下、更に好ましくは30以下である。かかる容量比(v/v)としては、好ましくは1~200、より好ましくは5~150、更に好ましくは10~100、更に好ましくは10~80、更に好ましくは10~60、更に好ましくは10~40、更に好ましくは10~30である。
 接触処理後のカチオン交換樹脂は、前述した方法によりマグネシウム型又はリチウム型のカチオン交換樹脂に再生することにより、繰り返し再使用することができる。
 このようにして本発明の精製茶抽出物が得られるが、製品形態としては液体でも固体でもよく、固体が望ましい場合は、噴霧乾燥や凍結乾燥などの常法により粉体化することができる。
 また、本発明の精製茶抽出物は、以下の特性を具備することができる。
(i)(マグネシウム+リチウム)/非重合体カテキン類の質量比は、非重合体カテキン類の溶解性向上の観点から、0.1以上であるが、好ましくは0.13以上、更に好ましくは0.15以上である。なお、上限は特に限定されないが、生産効率の観点から、好ましくは1、より好ましくは0.6、更に好ましくは0.4である。かかる質量比の範囲としては、好ましくは0.1~1、より好ましくは0.13~0.6、更に好ましくは0.15~0.4である。
(ii)固形分中のマグネシウム及びリチウムの合計含有量は、非重合体カテキン類の溶解性向上の観点から、好ましくは3質量%以上、より好ましくは4質量%以上、更に好ましくは5質量%以上であり、そして、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下である。かかる合計含有量の範囲としては、好ましくは3~30質量%、より好ましくは4~20質量%、更に好ましくは5~10質量%である。
(iii)カリウム/非重合体カテキン類の質量比は、非重合体カテキン類の溶解性向上の観点から、好ましくは0.26以下、より好ましくは0.24以下、更に好ましくは0.22以下である。なお、下限は特に限定されないが、生産効率の観点から、好ましくは0.01、より好ましくは0.05、更に好ましくは0.1である。かかる質量比の範囲としては、好ましくは0.01~0.26、より好ましくは0.05~0.24、更に好ましくは0.1~0.22である。
(iv)固形分中のカリウムの含有量は、非重合体カテキン類の溶解性向上の観点から、好ましくは8.5質量%以下、より好ましくは8質量%以下、更に好ましくは7質量%以下であり、そして、好ましくは2質量%以上、より好ましくは3質量%以上、更に好ましくは4質量%以上である。かかる含有量の範囲としては、好ましくは2~8.5質量%、より好ましくは3~8質量%、更に好ましくは4~7質量%である。
(v)固形分中の非重合体カテキン類の含有量は、生理効果の観点から、好ましくは25質量%以上、より好ましくは28質量%以上、更に好ましくは30質量%以上であり、そして、好ましくは45質量%以下、より好ましくは44質量%以下、更に好ましくは43質量%以下である。かかる含有量の範囲としては、好ましくは25~45質量%、より好ましくは28~44質量%、更に好ましくは30~43質量%である。
(vi)後掲の下記式(1)により算出されるエタノールへの非重合体カテキン類の溶出率は、好ましくは92~100%、より好ましくは92.5~100%、更に好ましくは93~100%である。
(vii)精製茶抽出物を、非重合体カテキン類濃度が1質量%となるように蒸留水で希釈したときの水溶液のpH(20℃)は、好ましくは3以上、より好ましくは4以上、更に好ましくは4.5以上であって、好ましくは7以下、より好ましくは6.5以下、更に好ましくは6以下である。かかるpHの範囲としては、好ましくは3~7、より好ましくは4~6.5、更に好ましくは4.5~6である。
 ここで、本明細書において「非重合体カテキン類」及び「マグネシウム、リチウム、カリウム」の含有量の測定は、後掲の実施例に記載の方法にしたがうものとする。また、「固形分」、「乾燥固形分」とは、試料を105℃の電気恒温乾燥機で3時間乾燥して揮発物質を除いた残分をいう。
 また、本発明の精製緑茶抽出物は、高濃度のエタノールを始めとする種々の溶媒に対する非重合体カテキン類の溶解性が改善されているため、これを原料として更なる精製工程に供することが可能である。すなわち、茶抽出物をマグネシウム型又はリチウム型のカチオン交換樹脂と接触させて得られた本発明の精製緑茶抽出物を、有機溶媒水溶液と接触させ、更なる精製茶抽出物の製造を行うことができる。また、好ましい有機溶媒としてはエタノールが挙げられ、好ましい有機溶媒水溶液中の有機溶媒濃度としては75質量%以上、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上であり、そして、100質量%以下、より好ましくは99.5質量%以下、更に好ましくは95質量%以下である。
 すなわち、上記実施形態に関し、本発明は更に以下の精製茶抽出物の製造方法、あるいは精製茶抽出物を開示する。
<1-1>
 茶抽出物をマグネシウム型又はリチウム型のカチオン交換樹脂と接触させる、精製茶抽出物の製造方法。
<1-2>
 カチオン交換樹脂が好ましくは強酸性イオン交換樹脂である、前記<1-1>記載の精製茶抽出物の製造方法。
<1-3>
 カチオン交換樹脂と接触させる際の茶抽出物のpHが、好ましくは2以上、より好ましくは3.5以上、更に好ましくは4以上であって、好ましくは6以下、より好ましくは5.5以下、更に好ましくは5以下である、前記<1-1>又は<1-2>記載の精製茶抽出物の製造方法。
<1-4>
 カチオン交換樹脂と接触させる際の茶抽出物のpHが、好ましくは2~6、より好ましくは3.5~5.5、更に好ましくは4~5である、前記<1-1>~<1-3>のいずれか一に記載の精製茶抽出物の製造方法。
<1-5>
 茶抽出物中の非重合体カテキン類の濃度が、好ましくは0.1質量%以上、より好ましくは0.25質量%以上、更に好ましくは0.5質量%以上、更に好ましくは0.75質量%以上、更に好ましくは1質量%以上であって、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下である、前記<1-1>~<1-4>のいずれか一に記載の精製茶抽出物の製造方法。
<1-6>
 茶抽出物中の非重合体カテキン類の濃度が、好ましくは0.1~10質量%、より好ましくは0.25~5質量%、更に好ましくは0.5~5質量%、更に好ましくは0.5~3質量%、更に好ましくは0.75~3質量%、更に好ましくは1~3質量%である、前記<1-1>~<1-5>のいずれか一に記載の精製茶抽出物の製造方法。
<1-7>
 カチオン交換樹脂の使用量が茶抽出物/カチオン交換樹脂の容量比で、好ましくは1以上、より好ましくは5以上、更に好ましくは10以上であって、好ましくは200以下、より好ましくは150以下、更に好ましくは100以下、更に好ましくは80以下、更に好ましくは60以下、更に好ましくは40以下、更に好ましくは30以下である、前記<1-1>~<1-6>のいずれか一に記載の精製茶抽出物の製造方法。
<1-8>
 カチオン交換樹脂の使用量が茶抽出物/カチオン交換樹脂の容量比で、好ましくは1~200、より好ましくは5~150、更に好ましくは10~100、更に好ましくは10~80、更に好ましくは10~60、更に好ましくは10~40、更に好ましくは10~30である、前記<1-1>~<1-7>のいずれか一に記載の精製茶抽出物の製造方法。
<1-9>
 カチオン交換樹脂の母体がスチレン系樹脂、アクリル酸系樹脂又はメタアクリル酸系樹脂である、前記<1-1>~<1-8>のいずれか一に記載の精製茶抽出物の製造方法。
<1-10>
 カチオン交換樹脂が好ましくはゲル型又はポーラス型である、前記<1-1>~<1-9>のいずれか一に記載の精製茶抽出物の製造方法。
<1-11>
 カチオン交換樹脂と接触させる際の温度が、好ましくは0℃以上、より好ましくは10℃以上、更に好ましくは20℃以上であって、好ましくは40℃以下、より好ましくは35℃以下、更に好ましくは30℃以下である、前記<1-1>~<1-10>のいずれか一に記載の精製茶抽出物の製造方法。
<1-12>
 カチオン交換樹脂と接触させる際の温度が、好ましくは0~40℃、より好ましくは10~35℃、更に好ましくは20~30℃である、前記<1-1>~<1-11>のいずれか一に記載の精製茶抽出物の製造方法。
<1-13>
 カチオン交換樹脂との接触方法が好ましくはバッチ方式である、前記<1-1>~<1-12>のいずれか一に記載の精製茶抽出物の製造方法。
<1-14>
 バッチ方式で接触させる際の時間が、好ましくは0.1時間以上、より好ましくは0.3時間以上、更に好ましくは0.5時間以上、更に好ましくは1時間以上、更に好ましくは2時間以上、更に好ましくは3時間以上であって、好ましくは5時間以下、更に好ましくは4時間以下である、前記<1-13>記載の精製茶抽出物の製造方法。
<1-15>
 バッチ方式で接触させる際の時間が、好ましくは0.1~5時間、より好ましくは0.3~5時間、更に好ましくは0.5~5時間、更に好ましくは1~5時間、更に好ましくは2~5時間、更に好ましくは3~5時間、更に好ましくは3~4時間である、前記<1-13>又は<1-14>記載の精製茶抽出物の製造方法。
<1-16>
 カチオン交換樹脂との接触方法が好ましくはカラム方式である、前記<1-1>~<1-12>のいずれか一に載の精製茶抽出物の製造方法。
<1-17>
 カラム方式で接触させる際の空間速度が、好ましくは10/hr以下、更に好ましくは8/hr以下であって、好ましくは0.5/hr以上、より好ましくは2/hr以上、更に好ましくは5/hr以上である、前記<1-16>記載の精製茶抽出物の製造方法。
<1-18>
 カラム方式で接触させる際の空間速度が、好ましくは0.5~10/hr、より好ましくは2~10/hr、更に好ましくは5~10/hr、更に好ましくは5~8/hrである、前記<1-16>又は<1-17>記載の精製茶抽出物の製造方法。
<1-19>
 茶抽出物が緑茶抽出物である、前記<1-1>~<1-18>のいずれか一に記載の精製茶抽出物の製造方法。
<2-1>
 (マグネシウム+リチウム)/非重合体カテキン類の質量比が0.1以上である、精製茶抽出物。
<2-2>
 (マグネシウム+リチウム)/非重合体カテキン類の質量比が、好ましくは0.13以上、更に好ましくは0.15以上であって、好ましくは1以下、より好ましくは0.6以下、更に好ましくは0.4以下である、前記<2-1>記載の精製茶抽出物。
<2-3>
 (マグネシウム+リチウム)/非重合体カテキン類の質量比が、好ましくは0.1~1、より好ましくは0.13~0.6、更に好ましくは0.15~0.4である、前記<2-1>記載の精製茶抽出物。
<2-4>
 固形分中のマグネシウム及びリチウムの合計含有量が、好ましくは3質量%以上、より好ましくは4質量%以上、更に好ましくは5質量%以上であって、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下である、前記<2-1>~<2-3>のいずれか一に記載の精製茶抽出物。
<2-5>
 固形分中のマグネシウム及びリチウムの合計含有量が、好ましくは3~30質量%、より好ましくは4~20質量%、更に好ましくは5~10質量%である、前記<2-1>~<2-4>のいずれか一に記載の精製茶抽出物。
<2-6>
 固形分中のカリウムの含有量が、好ましくは8.5質量%以下、より好ましくは8質量%以下、更に好ましくは7質量%以下であって、好ましくは2質量%以上、より好ましくは3質量%以上、更に好ましくは4質量%以上である、前記<2-1>~<2-5>のいずれか一に記載の精製茶抽出物。
<2-7>
 固形分中のカリウムの含有量が、好ましくは2~8.5質量%、より好ましくは3~8質量%、更に好ましくは4~7質量%である、前記<2-1>~<2-6>のいずれか一に記載の精製茶抽出物。
<2-8>
 固形分中の非重合体カテキン類の含有量が、好ましくは25質量%以上、より好ましくは28質量%以上、更に好ましくは30質量%以上であって、好ましくは45質量%以下、より好ましくは44質量%以下、更に好ましくは43質量%以下である、前記<2-1>~<2-7>のいずれか一に記載の精製茶抽出物。
<2-9>
 固形分中の非重合体カテキン類の含有量が、好ましくは25~45質量%、より好ましくは28~44質量%、更に好ましくは30~43質量%である、前記<2-1>~<2-8>のいずれか一に記載の精製茶抽出物。
<2-10>
 カリウム/非重合体カテキン類の質量比が、好ましくは0.26以下、より好ましくは0.24以下、更に好ましくは0.22以下であって、好ましくは0.01以上、より好ましくは0.05以上、更に好ましくは0.1以上である、前記<2-1>~<2-9>のいずれか一に記載の精製茶抽出物。
<2-11>
 カリウム/非重合体カテキン類の質量比が、好ましくは0.01~0.26、より好ましくは0.05~0.24、更に好ましくは0.1~0.22である、前記<2-1>~<2-10>のいずれか一に記載の精製茶抽出物。
<2-12>
 後掲の下記式(1)により算出されるエタノールへの非重合体カテキン類の溶出率が、好ましくは92~100%、より好ましくは92.5~100%、更に好ましくは93~100%である、前記<2-1>~<2-11>のいずれか一に記載の精製茶抽出物。
<2-13>
 非重合体カテキン類濃度が1質量%となるように蒸留水で希釈したときの水溶液のpHが、好ましくは3以上、より好ましくは4以上、更に好ましくは4.5以上であって、好ましくは7以下、より好ましくは6.5以下、更に好ましくは6以下である、前記<2-1>~<2-12>のいずれか一に記載の精製茶抽出物。
<2-14>
 非重合体カテキン類濃度が1質量%となるように蒸留水で希釈したときの水溶液のpHが、好ましくは3~7、より好ましくは4~6.5、更に好ましくは4.5~6である、前記<2-1>~<2-13>のいずれか一に記載の精製茶抽出物。
1.非重合体カテキン類の測定
 茶抽出物、茶抽出物1、茶抽出液1~3、精製茶抽出物1~16を各々蒸留水で適宜希釈を行い、フィルター(0.45μm)で濾過し、高速液体クロマトグラフ(型式SCL-10AVP、島津製作所製)を用い、オクタデシル基導入液体クロマトグラフ用パックドカラム(L-カラムTM ODS、4.6mmφ×250mm:財団法人 化学物質評価研究機構製)を装着し、カラム温度35℃でグラジエント法で行った。カテキン類の標準品としては、三井農林製のものを使用し、検量線法で定量した。移動相A液は酢酸を0.1mol/L含有する蒸留水溶液、B液は酢酸を0.1mol/L含有するアセトニトリル溶液とし、試料注入量は20μL、UV検出器波長は280nmの条件で行った。
2.金属イオンの測定
 茶抽出物、茶抽出物1、茶抽出液1~3、精製茶抽出物1~16を各々蒸留水で適宜希釈を行い、フィルター(0.45μm)で濾過し、キャピラリー電気泳動装置Capi3000(大塚電子)に供した。各金属イオンの濃度は塩化物として算出を行った。
 泳動液:10mM イミダゾール、5mM 2―ヒドロキシイソ酪酸、2mM 18クラウン-6-エーテル、0.2wt% 酢酸
 検出:インダイレクトUV法、UV検出器波長210nm
3.pHの測定
 茶抽出物、茶抽出物1、茶抽出液1~3、精製茶抽出物1~16を各々蒸留水で非重合体カテキン類濃度が1質量%となるように希釈した溶液のpH(20℃)を測定した。
4.エタノールへの非重合体カテキン類の溶解試験
 茶抽出物1、精製茶抽出物1~16を各々1.0g採取し、それにろ過助剤(ソルカフロック、栗田工業)0.063g、酸性白土(ミズカエース#600、水澤化学)0.5g、92.4質量%エタノール4.0gを添加し、25℃で6時間混合した。スラリーを静置分離し、上清を0.2μmのフィルター処理を行い、上清液を回収した。この上清液中の非重合体カテキン類の含有量、乾燥固形分の測定を行った。
エタノールへの非重合体カテキン類の溶出率
 下記式(1)により算出した。
 エタノールへの非重合体カテキン類の溶出率=(上清液中の非重合体カテキン類量)/(茶抽出物中の非重合体カテキン類量)×100 ・・・(1)
製造例1
カチオン交換樹脂の製造
1)マグネシウム型カチオン交換樹脂の製造
 強酸性カチオン交換樹脂(H型、SK1BH、三菱化学社製)を10g採取し、それを水酸化マグネシウム20gを含むイオン交換水400g中で40時間攪拌を行った。次いで、濾別した後、イオン交換水1200gで水洗を3回行い、マグネシウム型(Mg型)カチオン交換樹脂を製造した。
2)リチウム型カチオン交換樹脂の製造
 強酸性カチオン交換樹脂(H型、SK1BH、三菱化学社製)を10g採取し、それを2M水酸化リチウム500g中で1時間攪拌を行う操作を3回行った。次いで、濾別した後、イオン交換水1200gで水洗を3回行い、リチウム型(Li型)カチオン交換樹脂を製造した。
3)カリウム型カチオン交換樹脂の製造
 2M水酸化カリウムを用いた以外は、Li型カチオン交換樹脂と同様の操作を行い、カリウム型(K型)カチオン交換樹脂を製造した。
4)ナトリウム型カチオン交換樹脂の製造
 2M水酸化ナトリウムを用いた以外は、Li型カチオン交換樹脂と同様の操作を行い、ナトリウム型(Na型)カチオン交換樹脂を製造した。
製造例2
茶抽出液1の調製
 茶抽出物(非重合体カテキン類32.9質量%)を3.23g採取し、イオン交換水967.7gに溶解して、非重合体カテキン類を1.0質量%含有する茶抽出液1を調製した。
製造例3
茶抽出液2の調製
 茶抽出物(非重合体カテキン類32.9質量%)を64.6g採取し、イオン交換水935.4gに溶解して、非重合体カテキン類を2.0質量%含有する茶抽出液2を調製した。
製造例4
茶抽出液3の調製
 茶抽出物(非重合体カテキン類32.9質量%)を96.9g採取し、イオン交換水903.1gに溶解して、非重合体カテキン類を3.0質量%含有する茶抽出液3を調製した。
実施例1
 茶抽出液1(非重合体カテキン類1.0質量%)107.0gに対して、Mg型カチオン交換樹脂5.0g(6.2mL)を添加し、25℃で4時間混合した後、濾別して精製茶抽出液1を103.8g(非重合体カテキン類0.95質量%)得た。その後、凍結乾燥を行い、精製茶抽出物1(非重合体カテキン類32.4質量%)を3.0g得た。精製茶抽出物1の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表1に示す。
実施例2
 茶抽出液1(非重合体カテキン類1.0質量%)250.1gに対して、Mg型カチオン交換樹脂5.0g(6.2mL)を添加した以外は、実施例1と同様の操作を行い、精製茶抽出物2(非重合体カテキン類32.8質量%)を7.2g得た。精製茶抽出物2の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表1に示す。
実施例3
 茶抽出液1(非重合体カテキン類1.0質量%)500.0gに対して、Mg型カチオン交換樹脂5.0g(6.2mL)を添加した以外は、実施例1と同様の操作を行い、精製茶抽出物3(非重合体カテキン類32.3質量%)を14.7g得た。精製茶抽出物3の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表1に示す。
実施例4
 Li型カチオン交換樹脂を用いた以外は、実施例2と同様の操作を行い、精製茶抽出物4(非重合体カテキン類31.4質量%)を7.0g得た。精製茶抽出物4の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表1に示す。
比較例1
 茶抽出液1(非重合体カテキン類1.0質量%)107.0gを凍結乾燥し、茶抽出物1(非重合体カテキン類31.9質量%)を3.0g得た。茶抽出物1の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表1に示す。
比較例2
 茶抽出液1(非重合体カテキン類1.0質量%)250.1gに対して、Na型カチオン交換樹脂5.0g(6.2mL)を添加した以外は、実施例1と同様の操作を行い、精製茶抽出物5(非重合体カテキン類31.5質量%)を7.2g得た。精製茶抽出物5の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表1に示す。
比較例3
 茶抽出液1(非重合体カテキン類1.0質量%)250.1gに対して、K型カチオン交換樹脂5.0g(6.2mL)を添加した以外は、実施例1と同様の操作を行い、精製茶抽出物6(非重合体カテキン類30.9質量%)を7.2g得た。精製茶抽出物6の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例5
 Li型カチオン交換樹脂を用いた以外は、実施例1と同様の操作を行い、精製茶抽出物7(非重合体カテキン類32.5質量%)を3.0g得た。精製茶抽出物7の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表2に示す。
実施例6
 Li型カチオン交換樹脂を用いて茶抽出物375.0gと接触させた以外は、実施例5と同様の操作を行い、精製茶抽出物8(非重合体カテキン類33.2質量%)を11.8g得た。精製茶抽出物8の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表2に示す。
実施例7
 Li型カチオン交換樹脂を用いて茶抽出物437.5gと接触させた以外は、実施例5と同様の操作を行い、精製茶抽出物9(非重合体カテキン類32.8質量%)を13.8g得た。精製茶抽出物9の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2より、茶抽出物をマグネシウム型又はリチウム型のカチオン交換樹脂と接触させることにより、非重合体カテキン類の溶媒に対する溶解性を高めた精製茶抽出物を得ることができることがわかる。
実施例8
 茶抽出液1に対して、塩酸を添加しpHを5.0に調整した以外は実施例2と同様の操作を行い、精製茶抽出物10(非重合体カテキン類32.1質量%)を7.0g得た。精製茶抽出物10の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表3に示す。
実施例9
 塩酸を添加しpHを4.0に調整した以外は実施例8と同様の操作を行い、精製茶抽出物11(非重合体カテキン類32.3質量%)を7.0g得た。精製茶抽出物11の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表3に示す。
実施例10
 塩酸を添加しpHを3.0に調整した以外は実施例8と同様の操作を行い、精製茶抽出物12(非重合体カテキン類31.7質量%)を7.1g得た。精製茶抽出物12の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表3に示す。
実施例11
 塩酸を添加しpHを2.0に調整した以外は実施例8と同様の操作を行い、精製茶抽出物13(非重合体カテキン類30.6質量%)を7.2g得た。精製茶抽出物13の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3より、カチオン交換樹脂に接触させる際の茶抽出物のpHが2~6の範囲内であれば、非重合体カテキン類の溶媒に対する溶解性が高められることがわかる。
実施例12
 茶抽出液2を用いた以外は実施例1と同様の操作を行い、精製茶抽出物14(非重合体カテキン類33.0質量%)を5.8g得た。精製茶抽出物14の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表4に示す。
実施例13
 茶抽出液3を用いた以外は実施例1と同様の操作を行い、精製茶抽出物15(非重合体カテキン類32.4質量%)を8.8g得た。精製茶抽出物15の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4より、カチオン交換樹脂に接触させる際の茶抽出物中の非重合体カテキン類濃度を高濃度化しても溶媒に対する溶解性の高い精製茶抽出物を得られることがわかる。
実施例14
 茶抽出液1(非重合体カテキン類1.0質量%)16656.9gを、Mg型カチオン交換樹脂271.0g(336.1mL)を充填したカラムに流量43.1mL/分(SV=7.7/Hr)で通液し、精製茶抽出液16を16504.7g(非重合体カテキン類0.985質量%)回収した。得られた精製茶抽出液16の凍結乾燥を行い、精製茶抽出物16(非重合体カテキン類32.9質量%)を480.0g得た。精製茶抽出物16の分析結果及び92.4質量%エタノールへの非重合体カテキン類の溶出率を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5より、カラム方式においても、溶媒に対する非重合体カテキン類の溶解性の高い精製茶抽出物を得られることがわかる。
 表1~5におけるエタノールへの非重合体カテキン類の溶解性試験の分析データを以下に示す。
・茶抽出物1の溶解試験の結果は、上清液の非重合体カテキン類濃度6.37質量%、乾燥固形分11.02質量%であった。
・精製茶抽出物1の溶解試験の結果は、上清液の非重合体カテキン類濃度6.93質量%、乾燥固形分12.02質量%であった。
・精製茶抽出物2の溶解試験の結果は、上清液の非重合体カテキン類濃度6.94質量%、乾燥固形分11.97質量%であった。
・精製茶抽出物3の溶解試験の結果は、上清液の非重合体カテキン類濃度6.71質量%、乾燥固形分11.56質量%であった。
・精製茶抽出物4の溶解試験の結果は、上清液の非重合体カテキン類濃度6.85質量%、乾燥固形分13.04質量%であった。
・精製茶抽出物5の溶解試験の結果は、上清液の非重合体カテキン類濃度6.48質量%、乾燥固形分10.96質量%であった。
・精製茶抽出物6の溶解試験の結果は、上清液の非重合体カテキン類濃度6.13質量%、乾燥固形分9.97質量%であった。
・精製茶抽出物7の溶解試験の結果は、上清液の非重合体カテキン類濃度6.86質量%、乾燥固形分13.62質量%であった。
・精製茶抽出物8の溶解試験の結果は、上清液の非重合体カテキン類濃度6.82質量%、乾燥固形分12.37質量%であった。
・精製茶抽出物9の溶解試験の結果は、上清液の非重合体カテキン類濃度6.68質量%、乾燥固形分11.84質量%であった。
・精製茶抽出物10の溶解試験の結果は、上清液の非重合体カテキン類濃度6.86質量%、乾燥固形分12.3質量%であった。
・精製茶抽出物11の溶解試験の結果は、上清液の非重合体カテキン類濃度6.88質量%、乾燥固形分13.3質量%であった。
・精製茶抽出物12の溶解試験の結果は、上清液の非重合体カテキン類濃度6.62質量%、乾燥固形分14.8質量%であった。
・精製茶抽出物13の溶解試験の結果は、上清液の非重合体カテキン類濃度6.19質量%、乾燥固形分15.7質量%であった。
・精製茶抽出物14の溶解試験の結果は、上清液の非重合体カテキン類濃度6.80質量%、乾燥固形分11.34質量%であった。
・精製茶抽出物15の溶解試験の結果は、上清液の非重合体カテキン類濃度6.85質量%、乾燥固形分11.33質量%であった。
・精製茶抽出物16の溶解試験の結果は、上清液の非重合体カテキン類濃度7.09質量%、乾燥固形分12.16質量%であった。
 以下、実施例2で得られた精製茶抽出物2を、エタノール濃度が95質量%、85質量%、80質量%、又は75質量%のエタノールと水との混合溶媒に溶解したときの非重合体カテキン類の溶解試験を行い、各エタノール濃度への非重合体カテキン類の溶出率を算出した。その結果を表6に示す。
実施例15
 精製茶抽出物2をエタノール濃度95質量%のエタノールと水との混合溶媒で溶解試験を行った結果、上清液の非重合体カテキン類濃度6.05質量%、乾燥固形分9.22質量%、非重合体カテキン類の溶出率は82.4%であった。
実施例16
 精製茶抽出物2をエタノール濃度85質量%のエタノールと水との混合溶媒で溶解試験を行った結果、上清液の非重合体カテキン類濃度6.89質量%、乾燥固形分12.87質量%、非重合体カテキン類の溶出率は97.0%であった。
実施例17
 精製茶抽出物2をエタノール濃度80質量%のエタノールと水との混合溶媒で溶解試験を行った結果、上清液の非重合体カテキン類濃度6.88質量%、乾燥固形分13.71質量%、非重合体カテキン類の溶出率は98.1%であった。
実施例18
 精製茶抽出物2をエタノール濃度75質量%のエタノールと水との混合溶媒で溶解試験を行った結果、上清液の非重合体カテキン類濃度6.86質量%、乾燥固形分14.42質量%、非重合体カテキン類の溶出率は98.6%であった。
比較例4
 比較例1で得られた茶抽出物1を用いてエタノール濃度95質量%のエタノールと水との混合溶媒で溶解試験を行った結果、上清液の非重合体カテキン類濃度5.00質量%、乾燥固形分7.43質量%、非重合体カテキン類の溶出率は67.2%であった。
比較例5
 茶抽出物1を用いてエタノール濃度85質量%のエタノールと水との混合溶媒で溶解試験を行った結果、上清液の非重合体カテキン類濃度6.72質量%、乾燥固形分12.20質量%、非重合体カテキン類の溶出率は94.5%であった。
比較例6
 茶抽出物1を用いてエタノール濃度80質量%のエタノールと水との混合溶媒で溶解試験を行った結果、上清液の非重合体カテキン類濃度6.79質量%、乾燥固形分13.22質量%、非重合体カテキン類の溶出率は96.9%であった。
比較例7
 茶抽出物1を用いてエタノール濃度75質量%のエタノールと水との混合溶媒で溶解試験を行った結果、上清液の非重合体カテキン類濃度6.73質量%、乾燥固形分13.88質量%、非重合体カテキン類の溶出率は96.8%であった。
Figure JPOXMLDOC01-appb-T000006
 表6より、茶抽出物をマグネシウム型又はリチウム型のカチオン交換樹脂と接触させることにより、75%以上のエタノール濃度において、非重合体カテキン類の溶解性の高い精製茶抽出物が得られることがわかる。
 

Claims (16)

  1.  茶抽出物をマグネシウム型又はリチウム型のカチオン交換樹脂と接触させる、精製茶抽出物の製造方法。
  2.  カチオン交換樹脂が強酸性イオン交換樹脂である、請求項1記載の精製茶抽出物の製造方法。
  3.  カチオン交換樹脂と接触させる際の茶抽出物のpHが2~6である、請求項1又は2記載の精製茶抽出物の製造方法。
  4.  茶抽出物中の非重合体カテキン類の濃度が0.1~10質量%である、請求項1~3のいずれか1項に記載の精製茶抽出物の製造方法。
  5.  カチオン交換樹脂の使用量が茶抽出物/カチオン交換樹脂の容量比で1~200である、請求項1~4のいずれか1項に記載の精製茶抽出物の製造方法。
  6.  カチオン交換樹脂の母体がスチレン系樹脂、アクリル酸系樹脂又はメタアクリル酸系樹脂である、請求項1~5のいずれか1項に記載の精製茶抽出物の製造方法。
  7.  カチオン交換樹脂がゲル型又はポーラス型である、請求項1~6のいずれか1項に記載の精製茶抽出物の製造方法。
  8.  カチオン交換樹脂と接触させる際の温度が0~40℃である、請求項1~7のいずれか1項に記載の精製茶抽出物の製造方法。
  9.  カチオン交換樹脂との接触方法がバッチ方式である、請求項1~8のいずれか1項に記載の精製茶抽出物の製造方法。
  10.  バッチ方式で接触させる際の時間が0.1~5時間である、請求項9記載の精製茶抽出物の製造方法。
  11.  カチオン交換樹脂との接触方法がカラム方式である、請求項1~8のいずれか1項に記載の精製茶抽出物の製造方法。
  12.  カラム方式で接触させる際の空間速度が10/hr以下である、請求項11記載の精製茶抽出物の製造方法。
  13.  (マグネシウム+リチウム)/非重合体カテキン類の質量比が0.1以上である、精製茶抽出物。
  14.  固形分中のマグネシウム及びリチウムの合計含有量が3~30質量%である、請求項13記載の精製茶抽出物。
  15.  固形分中のカリウムの含有量が8.5質量%以下である、請求項13又は14記載の精製茶抽出物。
  16.  固形分中の非重合体カテキン類の含有量が25~45質量%である、請求項13~15のいずれか1項に記載の精製茶抽出物。
     
PCT/JP2012/082209 2011-12-21 2012-12-12 精製茶抽出物の製造方法 WO2013094494A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/365,254 US20150004290A1 (en) 2011-12-21 2012-12-12 Method for producing purified tea extract
EP12860850.2A EP2796053B1 (en) 2011-12-21 2012-12-12 Method for producing purified tea extract
CN201280063340.8A CN104010517B (zh) 2011-12-21 2012-12-12 精制茶提取物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011279691 2011-12-21
JP2011-279691 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013094494A1 true WO2013094494A1 (ja) 2013-06-27

Family

ID=48668387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082209 WO2013094494A1 (ja) 2011-12-21 2012-12-12 精製茶抽出物の製造方法

Country Status (5)

Country Link
US (1) US20150004290A1 (ja)
EP (1) EP2796053B1 (ja)
JP (2) JP6010444B2 (ja)
CN (1) CN104010517B (ja)
WO (1) WO2013094494A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113367A (ja) * 2014-12-10 2016-06-23 サントリーホールディングス株式会社 液状組成物の製造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219384A (ja) 1983-05-30 1984-12-10 Mitsui Norin Kk 天然抗酸化剤の製造方法
JPH0420589A (ja) 1990-05-16 1992-01-24 Mitsui Norin Kk 茶ポリフェノールの製造方法
JPH05260907A (ja) 1992-03-17 1993-10-12 Mitsui Norin Kk 低カフェイン含量茶ポリフェノールの製造法
JPH05306279A (ja) 1992-04-07 1993-11-19 Shokuhin Sangyo High Separeeshiyon Syst Gijutsu Kenkyu Kumiai 茶カテキン類の製造方法およびその製造装置
JPH10165096A (ja) * 1996-12-12 1998-06-23 Itouen:Kk 茶の製造方法
JPH11504224A (ja) 1996-02-26 1999-04-20 ザ プロクター アンド ギャンブル カンパニー 透明度および色を改善するための陽イオン交換処理および微小濾過が施された緑茶抽出物
JP2004159634A (ja) 2003-02-04 2004-06-10 Kao Corp 容器詰飲料及びその製造法
JP2005270094A (ja) 2004-02-26 2005-10-06 Kao Corp 精製緑茶抽出物の製造方法
EP1618793A1 (en) * 2004-07-20 2006-01-25 Cognis IP Management GmbH Extracts of Camellia sinensis with low alkaloid content
JP2010263816A (ja) * 2009-05-13 2010-11-25 Lotte Co Ltd ポリアミンを含有する飲食品の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA717113B (en) * 1971-01-22 1972-07-26 Ceylon Inst Of Scient And Ind Improvements in the preparation of tea extracts suitable for chilled beverages
CN1136400A (zh) * 1995-04-18 1996-11-27 北京伍恩服装服饰有限公司 一种果味复合矿化营养茶
CN100506057C (zh) * 2002-12-24 2009-07-01 花王株式会社 容器装茶饮料
JP2007521010A (ja) * 2003-07-03 2007-08-02 ザ プロクター アンド ギャンブル カンパニー 緑茶カテキン及び1つまたは複数の多価ミネラルカチオンを含有する組成物
JP4694974B2 (ja) * 2005-05-20 2011-06-08 花王株式会社 精製緑茶抽出物の製造方法
JP4644058B2 (ja) * 2005-07-08 2011-03-02 花王株式会社 容器詰緑茶飲料
JP4569965B2 (ja) * 2006-04-17 2010-10-27 花王株式会社 精製緑茶抽出物の製造法
JP5297649B2 (ja) * 2006-12-27 2013-09-25 花王株式会社 容器詰飲料
JP5111096B2 (ja) * 2007-12-27 2012-12-26 花王株式会社 茶抽出物の製造法
JP2010116327A (ja) * 2008-11-11 2010-05-27 Hayashibara Biochem Lab Inc ミネラル調整水

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219384A (ja) 1983-05-30 1984-12-10 Mitsui Norin Kk 天然抗酸化剤の製造方法
JPH0420589A (ja) 1990-05-16 1992-01-24 Mitsui Norin Kk 茶ポリフェノールの製造方法
JPH05260907A (ja) 1992-03-17 1993-10-12 Mitsui Norin Kk 低カフェイン含量茶ポリフェノールの製造法
JPH05306279A (ja) 1992-04-07 1993-11-19 Shokuhin Sangyo High Separeeshiyon Syst Gijutsu Kenkyu Kumiai 茶カテキン類の製造方法およびその製造装置
JPH11504224A (ja) 1996-02-26 1999-04-20 ザ プロクター アンド ギャンブル カンパニー 透明度および色を改善するための陽イオン交換処理および微小濾過が施された緑茶抽出物
JPH10165096A (ja) * 1996-12-12 1998-06-23 Itouen:Kk 茶の製造方法
JP2004159634A (ja) 2003-02-04 2004-06-10 Kao Corp 容器詰飲料及びその製造法
JP2005270094A (ja) 2004-02-26 2005-10-06 Kao Corp 精製緑茶抽出物の製造方法
EP1618793A1 (en) * 2004-07-20 2006-01-25 Cognis IP Management GmbH Extracts of Camellia sinensis with low alkaloid content
JP2010263816A (ja) * 2009-05-13 2010-11-25 Lotte Co Ltd ポリアミンを含有する飲食品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKIRA SAKAMOTO ET AL.: "The Compositions of the Respective Infusions of Sencha Brewed Three Times", TEA RESEARCH JOURNAL, vol. 94, 2002, pages 45 - 55, XP055162400 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016113367A (ja) * 2014-12-10 2016-06-23 サントリーホールディングス株式会社 液状組成物の製造方法

Also Published As

Publication number Publication date
EP2796053B1 (en) 2019-01-23
US20150004290A1 (en) 2015-01-01
JP2013146265A (ja) 2013-08-01
CN104010517B (zh) 2018-06-22
JP2017023149A (ja) 2017-02-02
EP2796053A4 (en) 2015-08-19
EP2796053A1 (en) 2014-10-29
CN104010517A (zh) 2014-08-27
JP6010444B2 (ja) 2016-10-19
JP6272422B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP4902655B2 (ja) 茶抽出物
KR101436645B1 (ko) 정제 차 추출물의 제조 방법
JP5816096B2 (ja) 茶ポリフェノール及びその製造方法
JP4690741B2 (ja) 非重合体カテキン類組成物の製造方法
JP4242908B2 (ja) 精製茶抽出物の製造方法
JP5698332B1 (ja) 飲料製造方法
JP6272422B2 (ja) 精製茶抽出物
JP5336340B2 (ja) 精製茶抽出物の製造方法
JP4694920B2 (ja) 容器詰紅茶飲料
JP6338845B2 (ja) 茶飲料またはコーヒー飲料の製造方法
JP6312418B2 (ja) 茶抽出物の製造方法
JP6033080B2 (ja) 茶抽出物の製造方法
JP4751113B2 (ja) 非重合体カテキン類組成物の製造方法
JP5634858B2 (ja) 精製茶抽出物の製造方法
JP2012147782A (ja) 精製茶抽出物の製造方法
JP4242891B2 (ja) 精製茶抽出物の製造方法
JP5307649B2 (ja) 精製茶抽出物の製造方法
JP5183567B2 (ja) 精製茶抽出物の製造方法
CN106538750A (zh) 一种绿茶茶水的制备方法
JP2010136703A (ja) 非重合体カテキン類の非ガレート体の製造方法
JP2011015614A (ja) 精製茶抽出物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860850

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012860850

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14365254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE