WO2013093146A1 - Procedimiento de diseño y de fabricación de una lente oftálmica monofocal y lente correspondiente - Google Patents

Procedimiento de diseño y de fabricación de una lente oftálmica monofocal y lente correspondiente Download PDF

Info

Publication number
WO2013093146A1
WO2013093146A1 PCT/ES2012/070849 ES2012070849W WO2013093146A1 WO 2013093146 A1 WO2013093146 A1 WO 2013093146A1 ES 2012070849 W ES2012070849 W ES 2012070849W WO 2013093146 A1 WO2013093146 A1 WO 2013093146A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
coefficients
lens
ophthalmic lens
values
Prior art date
Application number
PCT/ES2012/070849
Other languages
English (en)
French (fr)
Inventor
Juan Carlos DÜRSTELER LÓPEZ
Javier Vegas Caballero
Manuel ESPÍNOLA ESTEPA
Sara Chamadoira Hermida
Glòria CASANELLAS PEÑALVER
Original Assignee
Indo Internacional S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46018201&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013093146(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Indo Internacional S.A. filed Critical Indo Internacional S.A.
Priority to EP12822976.2A priority Critical patent/EP2799914A1/en
Priority to CA2858995A priority patent/CA2858995A1/en
Priority to AU2012356705A priority patent/AU2012356705A1/en
Priority to CN201280062754.9A priority patent/CN104054010A/zh
Priority to MX2014007353A priority patent/MX2014007353A/es
Publication of WO2013093146A1 publication Critical patent/WO2013093146A1/es
Priority to IL233214A priority patent/IL233214A0/en
Priority to ECIEPI20149541A priority patent/ECSP14009541A/es

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/028Special mathematical design techniques
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses

Definitions

  • the invention relates to monofocal lenses, more commonly known as spherocylindrical (or spherical) lenses. These lenses correspond to optical elements of constant power throughout the surface that are generally represented in ophthalmic optics by the values of sphere, cylinder and axis of the cylinder. Specifically, the invention relates to processes for the design and manufacture of a monofocal ophthalmic lens. The invention also relates to monofocal ophthalmic lenses defined analytically by a certain function.
  • the coefficients are calculated by an iterative calculation comprising the following steps: [a] set a value for the refractive index of the ophthalmic lens and for the base curve that will be used to manufacture the ophthalmic lens,
  • [e] calculate the value of a merit function of the type: where m ⁇ is the value of the optical property at a particular viewing angle ⁇ with respect to the optical axis of the lens, it is already a weighting value,
  • the merit function includes the value of 30 and oblique astigmatism and advantageously the value aj for oblique astigmatism value is between 0.8 and 0.98.
  • the merit function includes the value of the field curvature at 30 e and, advantageously, the value a for the value of the field curvature is between 0.02 and 0.2.
  • the merit function includes the two previous optical properties (oblique astigmatism and field curvature). Indeed, the remaining aberrations usually present in the lenses are, in general, a Composition of these two. Therefore, the merit function is already reflecting, in a direct or indirect way, any aberration of interest.
  • the surface designed by the method according to the invention could be both the concave and the convex surface, but it is preferable that it be the concave surface of the lens.
  • the coefficients a ⁇ can be simplified, specifically it can be made equal to 0, 2 equal to the radius of curvature in the center of the surface, with a negative sign, and 5 equal to the radius of curvature in the center of the surface. Indeed, with these conditions it is ensured that, on the one hand, the function passes through the point (0, 0, 0) and, on the other hand, that the lens has the desired power.
  • each of the coefficients of the analytical function has a value that is between +/- 30% of the corresponding nominal value obtained from the optimization.
  • the process according to the invention allows the coefficients to be calculated with great precision, however, small deviations from the optimal values give results almost equally satisfactory. This has been demonstrated through a sensitivity analysis, in which some variations in the coefficients obtained ( ⁇ 30%) have been introduced and the differences in height (z) of the new surfaces with respect to the original ones have been analyzed as well as medium power and astigmatism isolineas obtained by ray tracing. Different combinations of coefficient variations have been studied, to which both a reduction and an increase in the coefficients have been applied with respect to the exact values (those obtained from the iterative process).
  • the cases that have been studied are: reduction or increase of the hyperbola coefficients (to 3 , to 4 ), reduction or increase of the exponential coefficients (to 6 , to 7 , to 8 ), reduction or increase of the even coefficients (a 4 , a 6 , a 8 ), reduction or increase of odd coefficients (a 3 , a 7 ), and a reduction or increase of all coefficients (a 3 , a 4 , a 6 , a 7 , a 8 ).
  • This sensitivity analysis has been done by setting the values of the coefficients aa 2 and 5 , thus fixing the center of the surface and the curvature at the center of the surface, as discussed above. For this, different graduations have been chosen.
  • the values of a ⁇ are not calculated in the previous procedure but can be chosen directly from pre-established ranges.
  • 6 have a value between -2x10 "8 and 5x10" 8 mm "4
  • 7 have a value between -2x10" 8 and 1, 2x10 "7 mm” 4
  • a subject of the invention is also a method of manufacturing a monofocal ophthalmic lens, characterized in that it comprises a machining stage of an ophthalmic lens surface where the surface is defined by an analytical function of the type:
  • a subject of the invention is also a monofocal ophthalmic lens, characterized in that it has a surface defined by an analytical function of the type:
  • the coefficients are the coefficients obtainable by the design procedure according to the invention.
  • Fig. 1 four comparisons of cross sections (z coordinate) of lens surfaces defined by a purely hyperbolic surface, a purely exponential surface and the combination of both.
  • Fig. 2 a comparison of cross sections of spherical lens surfaces and a surface according to the invention.
  • Fig. 3 a comparison of cross sections of aspherical lens surfaces and a surface according to the invention.
  • Fig. 4 a table with first values of the coefficients a - to 8 .
  • Fig. 5 maps of average power (a) and astigmatism (b), every 0.25D, up to 30 and obtained with an analytical surface with the coefficients of Fig. 4.
  • Fig. 6, a table with a few second values of the coefficients a ⁇ - a 8 .
  • Fig. 7 maps of average power (a) and astigmatism (b), every 0.25D, up to 30 and obtained with an analytical surface with the coefficients of Fig. 6.
  • Fig. 8 a table with third values of the coefficients a - to 8 .
  • Fig. 9 maps of average power (a) and astigmatism (b), every 0.10D, up to 30 and obtained with an analytical surface with the coefficients of Fig. 8.
  • Fig. 10 a table with fourth values of the coefficients ai - a 8 .
  • Fig. 1 comparing maps of astigmatism and average power, every 0.25D, up to 30 and obtained with a spherical surface ((a) and (c)) and with an analytical surface with the coefficients of Fig. 10 ( (b) and (d)).
  • Fig. 12 a table with about fifth values of the coefficients ai - a 8 .
  • Fig. 13 comparison of astigmatism and average power maps, every 0.25D, up to 30 and obtained with a spherical surface ((a) and (c)) and with an analytical surface with the coefficients of Fig. 12 (( b) and (d)).
  • Fig. 14 a table with some sixth values of the coefficients a - to 8 .
  • Fig. 15 comparing maps of astigmatism and average power, every 0.05D, up to 30 and obtained with a spherical surface ((a) and (c)) and with an analytical surface with the coefficients of Fig. 14 (( b) and (d)).
  • Fig. 16 a table with about seventh values of the coefficients a ⁇ - a 8 .
  • Fig. 17 comparative maps of astigmatism and average power, every 0.10D, up to 30 and obtained with a spherical surface ((a) and (c)) and with an analytical surface with the coefficients of Fig. 16 (( b) and (d)).
  • Fig. 18 graph of variation of the coefficient to 7 as a function of the sphere and cylinder values for index 1, 6.
  • Fig. 20 comparative graph of coefficient variation to 8 as a function of sphere values, for two different indices.
  • Fig. 21 comparative graph of coefficient variation to 8 as a function of cylinder values, for two different indices.
  • Fig. 1 in the graphs (a) to (d) it is shown, in a schematic way, the contribution made to a surface according to the invention each of the hyperbolic and exponential components.
  • the solid line represents the cross section of the lens surface obtained in accordance with the invention
  • the dashed line shows the hyperbolic component
  • the dotted line shows the exponential component.
  • the hyperbolic component is the dominant component in the central part of the lens
  • the exponential component allows changes (which may become substantial) to be introduced in the perimeter part of the lens.
  • the combination of both components allows generating surfaces that could not be obtained with one of the components in isolation.
  • the curves corresponding to the four figures have been calculated with the following starting data: - Fig.
  • merit function a function of the type: which includes the value of oblique astigmatism at 30 e , weighted with a value of 0.9, and the value of the field curvature at 30 e , weighted with a value of 0.1.
  • Fig. 1 b sphere: + 8D, cylinder: -4D, base curve: 67,833 mm, index: 1, 6, merit function: the same as in Fig. 1 a.
  • Fig. 1 c sphere: -6D, cylinder: 0D, base curve: 498 mm, index: 1, 6, merit function: the same as in Fig. 1 a.
  • Fig. 1 d sphere: -6D, cylinder: -4D, base curve: 498 mm, index: 1, 6, merit function: the same as in Fig. 1 a.
  • FIG 2 the profiles of spheres with a plurality of radii of curvature (dashed lines) superimposed on the profile of a lens according to the invention, calculated from the following starting data are shown: sphere: + 8D, cylinder: -2.0D, base curve: 67.83 mm, index: 1, 6, merit function: the same as in Fig. 1 a.
  • Figure 3 the profiles of some spheres with a plurality of asphericities for a given radius of curvature (dashed lines) superimposed on the profile of the lens according to the invention of Figure 2 are shown.
  • none of The spherical or aspherical curves can be superimposed on the surface curve according to the invention. Therefore, the surface according to the invention can offer improved optical properties with respect to spherical or aspherical lenses.
  • An optimization was carried out with a merit function of the type: which includes the value of oblique astigmatism at 30 e , weighted with a value of 0.9, and the value of the field curvature at 30 e , weighted with a value of 0.1.
  • Fig. 5 the maps of average power (a) and astigmatism (b) are shown up to 30 and obtained with an analytical surface with the coefficients of Fig. 4.
  • FIG. 10 Examples of base curve changes are shown in Figures 10 to 17.
  • a spherical lens is compared with a lens with a surface according to the invention.
  • the upper maps are astigmatism maps ((a) and (b)), and the lower maps are medium power maps ((c) and (d)).
  • the maps on the left are the spherical lens maps ((a) and (c)) while the maps on the right are those that a lens with a surface according to the invention, obtained from the coefficients of the Tables 10, 12, 14 and 16, respectively. In all cases the same merit function has been used as in the previous examples.
  • a variation graph of the coefficient at 7 is shown in Fig. 18 as a function of the sphere (X axis) and cylinder (Y axis) values, in a case where the base curve is 52.3 mm and the refractive index n is 1, 7.
  • the same merit function of the previous examples has been used to calculate a 7 .
  • FIG. 19 A variation graph of the coefficient at 8 in function of the sphere values (X axis) is shown in Fig. 19, for various base curves.
  • the refractive index n is 1, 7 and the cylinder value is -2.0D.
  • n 1

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Eyeglasses (AREA)
  • Lenses (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Procedimiento de diseño y de fabricación de una lente oftálmica monofocal y lente correspondiente. Procedimiento de diseño de una superficie de una lente oftálmica monofocal, en el que la superficie está definida por una función analítica del tipo: Formula (I) donde a5 es diferente de 0 y por lo menos uno de los coeficientes a6, a7 y a8 es diferente de 0, de manera que incluye una componente hiperbólica y una componente exponencial. Los coeficientes se pueden calcular mediante un cálculo iterativo y una función de mérito del tipo: Formula (II) donde mi es el valor de dicha propiedad óptica a un ángulo de visión β determinado respecto del eje óptico de la lente, y αi es un valor de ponderación. Las propiedades ópticas se puedes calcular empleando, por ejemplo, trazado de rayos.

Description

PROCEDIMIENTO DE DISEÑO Y DE FABRICACIÓN DE UNA LENTE OFTÁLMICA MONOFOCAL Y LENTE CORRESPONDIENTE
DESCRIPCIÓN
El trabajo que ha dado lugar a este invento ha recibido financiación del Séptimo Programa Marco de la Comunidad Europea [PM7/2007-2013] en virtud del acuerdo de subvención ne CT-212002.
Campo de la invención
La invención se refiere a lentes monofocales, mas comúnmente conocidas como lentes esferocilíndricas (o esferotóricas). Estas lentes se corresponden con elementos ópticos de potencia constante en toda la superficie que se representan generalmente en óptica oftálmica mediante los valores de esfera, cilindro y eje del cilindro. Concretamente, la invención se refiere a unos procedimientos de diseño y de fabricación de una lente oftálmica monofocal. La invención también se refiere a unas lentes oftálmicas monofocales definidas analíticamente mediante una función determinada.
Estado de la técnica Con el fin de aportar valor añadido a este tipo de lentes se han ido desarrollando diferentes diseños a lo largo de los años. Estos diseños pretenden corregir las aberraciones, percibidas por el usuario, debidas, entre otras cosas, al hecho de colocar la lente en una determinada posición e inclinación respecto al ojo. Para ello los diseños de monofocales que intentan corregir esas posibles aberraciones introducen variaciones en la geometría de la superficie esferotórica con el fin de disminuir dichas aberraciones de la lente o equivalentemente incrementar el confort del usuario. Estas modificaciones pueden ser por ejemplo la introducción de superficies asféricas, asferotóricas o atóricas para la disminución del astigmatismo oblicuo; o la inclusión de una pequeña adición en la lente para mejorar el confort en visión cercana.
La bibliografía muestra diversas posibilidades a la hora de diseñar las nuevas superficies siendo las más comunes las generadas por curvas cónicas: c(y2 + (1 + Q)x2) - 2x = 0 siendo c la curvatura de la superficie en el origen y Q la asfericidad. En función del valor de Q podremos generar superficies hiperbólicas (Q<-1 ), parabólicas (Q=-1 ), esféricas (Q=0) y en forma de elipsoides (-1 <Q<0 ó Q>0). Con dichas curvas cónicas es posible disminuir diferentes tipos de aberraciones (astigmatismo oblicuo, curvatura de campo, distorsión, magnificación, etc.) que se generan debido a la posición de la lente respecto al ojo.
Estudios previos han dado como límite del desplazamiento de la línea de mirada respecto a la posición neutra (correspondiente a 0o), un ángulo α de 30°. A partir del cual el usuario acompaña con movimientos de cabeza el giro que desea realizar. Por lo que, en general, se usan las curvas cónicas para minimizar el peso de las aberraciones teniendo en cuenta un cono de visión que forma la dirección de mirada del usuario a 30 °, ya que también es conocido el hecho de que si se corrige a 30°, todos los ángulos inferiores a él tienen un nivel de aberraciones sensiblemente bajo. Aun así, estas optimizaciones suelen estar limitadas a ciertos rangos de prescripción o de curvas base o al tallado de una de las dos caras de la lente.
En los documentos US 3.960.442, US 5.083.859, US 5.825.454, US 2006/0132708 y ES 2.337.970 se describen diversos ejemplos. Sumario de la invención La invención tiene por objeto superar estos inconvenientes. Esta finalidad se consigue mediante un procedimiento de diseño del tipo indicado al principio caracterizado porque la superficie está definida por una función analítica del tipo:
V 2 2 J 4 4 2 2 L l - a3x - a4y + a5 exp\a6x + a7y + asx y / donde a5 es diferente de 0 y por lo menos uno de los coeficientes a6, a7 y a8 es diferente de 0. Efectivamente, como puede observarse esta función analítica comprende una parte hiperbólica y una parte exponencial. Son conocidas las lentes definidas mediante funciones analíticas hiperbólicas, pero lo que es novedoso es el hecho de añadirle la componente exponencial. Esta componente exponencial permite corregir errores que no es posible corregir por otros medios. Concretamente, el término hiperbólico suele ser dominante en la zona central de la lente mientras que el término exponencial influye principalmente en la parte más periférica. Además, la componente exponencial puede ejercer su influencia de formas muy diversas en función de los valores de los coeficientes a5, a6, a7 y a8. Como se verá a continuación, esta función analítica permite obtener unos resultados muy superiores respecto de los conocidos en el estado de la técnica.
En una forma preferente de realización de la invención, los coeficientes se calculan mediante un cálculo iterativo que comprende las siguientes etapas: [a] fijar un valor para el índice de refracción de la lente oftálmica y para la curva base que se empleará para fabricar la lente oftálmica,
[b] fijar unos valores de esfera, cilindro y eje del cilindro que deberá cumplir la lente oftálmica,
[c] fijar unos valores nominales iniciales para los coeficientes - a8, [d] calcular, preferentemente por trazado de rayos, por lo menos una propiedad óptica de una lente con estos valores nominales,
[e] calcular el valor de una función de mérito del tipo:
Figure imgf000006_0001
donde m¡ es el valor de la propiedad óptica a un ángulo de visión β determinado respecto del eje óptico de la lente, y a¡ es un valor de ponderación,
[f] optimizar la función de mérito mediante la fijación de nuevos valores nominales para los coeficientes a - a8 y
[g] repetición de los pasos [c] a [f] hasta la obtención del nivel de optimización deseado.
Efectivamente, de esta manera se pueden obtener los valores de los coeficientes a¡ para cualquier lente y con la precisión que se desee. Además se puede escoger aquella propiedad óptica o combinación de propiedades ópticas que se considere más relevante en cada caso.
Preferentemente la función de mérito incluye el valor del astigmatismo oblicuo a 30e y, ventajosamente, el valor a¡ para el valor del astigmatismo oblicuo está comprendido entre 0,8 y 0,98.
Preferentemente la función de mérito incluye el valor de la curvatura de campo a 30e y, ventajosamente, el valor a¡ para el valor de la curvatura de campo está comprendido entre 0,02 y 0,2.
Es particularmente ventajoso que la función de mérito incluya las dos propiedades ópticas anteriores (el astigmatismo oblicuo y la curvatura de campo). Efectivamente, las restantes aberraciones usualmente presentes en las lentes son, en general, una composición de estas dos. Por lo tanto la función de mérito ya está reflejando, de una forma directa o indirecta cualquier aberración de interés.
En general la superficie diseñada mediante el procedimiento de acuerdo con la invención podría ser tanto la superficie cóncava como la convexa, pero es preferible que se trate de la superficie cóncava de la lente. En este caso, los coeficientes a¡ pueden simplificarse, concretamente se puede hacer a igual a 0, a2 igual al radio de curvatura en el centro de la superficie, con signo negativo, y a5 igual al radio de curvatura en el centro de la superficie. Efectivamente, con estas condiciones se asegura que, por un lado, la función pase por el punto (0, 0, 0) y, por otro lado, que la lente tenga la potencia deseada.
Preferentemente cada uno de los coeficientes de la función analítica tiene un valor que está comprendido entre +/- 30% del valor nominal correspondiente obtenido a partir de la optimización. Efectivamente, el procedimiento de acuerdo con la invención permite calcular los coeficientes a¡ con una gran precisión, sin embargo, pequeñas desviaciones respecto de los valores óptimos dan resultados prácticamente igual de satisfactorios. Esto se ha demostrado a través de un análisis de sensibilidad, en el que se han introducido unas variaciones en los coeficientes obtenidos (<30%) y se han analizado tanto las diferencias en altura (z) de las nuevas superficies respecto a las originales como las isolineas de potencia media y de astigmatismo obtenidas mediante trazado de rayos. Se han estudiado distintas combinaciones de variaciones de los coeficientes, a las cuales se les ha aplicado tanto una reducción como un aumento de los coeficientes respecto a los valores exactos (los obtenidos a partir del proceso iterativo). Los casos que han sido estudiados son: reducción o aumento de los coeficientes de la hipérbola (a3, a4), reducción o aumento de los coeficientes de la exponencial (a6, a7, a8), reducción o aumento de los coeficientes pares (a4, a6, a8), reducción o aumento de los coeficientes impares (a3, a7), y reducción o aumento de todos los coeficientes (a3, a4, a6, a7, a8). Este análisis de sensibilidad se ha hecho fijando los valores de los coeficientes a a2 y a5, fijando así el centro de la superficie y la curvatura en el centro de la superficie, tal como se ha comentado anteriormente. Para ello se han escogido distintas graduaciones. Tras el análisis de los distintos casos se concluye que una variación suave (<30%) sobre los coeficientes de la hipérbola genera variaciones significativas respecto a la graduación de la lente, por tanto, son muy sensibles a pequeños cambios de dichos coeficientes. En cambio, variaciones suaves sobre los coeficientes que acompañan a la exponencial no aportan variaciones significativas sobre las superficies y por tanto, sobre las lentes.
En otra forma preferente de realización de la invención, los valores de a¡, específicamente los valores a6i a7j y a8, no son calculados en el procedimiento anterior sino que pueden ser escogidos directamente a partir de unos rangos preestablecidos. En este sentido es ventajoso que a6 tenga un valor comprendido entre -2x10"8 y 5x10"8 mm"4, que a7 tenga un valor comprendido entre -2x10"8 y 1 ,2x10"7 mm"4, y/o que a8 tenga un valor comprendido entre -2x10"8 y 1 ,2x10"7 mm"4. Efectivamente mediante los citados análisis de sensibilidad se ha podido confirmar que dentro de los rangos indicados los resultados obtenidos han sido satisfactorios, ya que los resultados obtenidos en todos los casos analizados son equivalentes, por lo que cualquier otra combinación posible de variaciones suaves de coeficientes generara el mismo resultado. Se han hecho adicionalmente otros análisis, en los que no se han modificado los coeficientes asociados a la parte hiperbólica y, en cambio, se han modificado de una forma más pronunciada los valores asociados a la parte exponencial (a6, a7, a8), hasta alcanzar diferencias de un 600% respecto del valor obtenido a partir del proceso iterativo. Los resultados obtenidos confirman que, para los valores a6, a7, a8, los rangos indicados son los que permiten obtener lentes con las propiedades ópticas mejoradas. La invención también tiene por objeto un procedimiento de fabricación de una lente oftálmica monofocal, caracterizado porque comprende una etapa de mecanización de una superficie de la lente oftálmica donde la superficie está definida por una función analítica del tipo:
V 2 2 J 4 4 2 2
l - a3x - a4y + a5 exp\a6x + a7y + a x y Las ventajas de esta superficie analítica ya han sido comentadas más arriba. En este sentido es particularmente ventajoso que los coeficientes sean los coeficientes obtenibles mediante el procedimiento de diseño de acuerdo con la invención.
La invención tiene asimismo por objeto una lente oftálmica monofocal, caracterizada porque tiene una superficie definida por una función analítica del tipo:
V 2 2 J 4 4 2 2 L l - a3x - a4y + a5 exp\a6x + a7y + asx y / cuyas ventajas ya han sido comentadas más arriba. Como ya se ha indicado anteriormente, ventajosamente los coeficientes son los coeficientes obtenibles mediante el procedimiento de diseño de acuerdo con la invención.
Breve descripción de los dibujos
Otras ventajas y características de la invención se aprecian a partir de la siguiente descripción, en la que, sin ningún carácter limitativo, se relatan unos modos preferentes de realización de la invención, haciendo mención de los dibujos que se acompañan. Las figuras muestran:
Fig. 1 , cuatro comparativas de secciones transversales (coordenada z) de superficies de lentes definidas por una superficie puramente hiperbólica, una superficie puramente exponencial y la combinación de ambas.
Fig. 2, una comparativa de secciones transversales de superficies de lentes esféricas y una superficie de acuerdo con la invención.
Fig. 3, una comparativa de secciones transversales de superficies de lentes asféricas y una superficie de acuerdo con la invención.
Fig. 4, una tabla con unos primeros valores de los coeficientes a - a8. Fig. 5, mapas de potencia media (a) y astigmatismo (b), cada 0,25D, hasta 30e obtenidos con una superficie analítica con los coeficientes de la Fig. 4. Fig. 6, una tabla con unos segundos valores de los coeficientes a^ - a8.
Fig. 7, mapas de potencia media (a) y astigmatismo (b), cada 0,25D, hasta 30e obtenidos con una superficie analítica con los coeficientes de la Fig. 6. Fig. 8, una tabla con unos terceros valores de los coeficientes a - a8.
Fig. 9, mapas de potencia media (a) y astigmatismo (b), cada 0,10D, hasta 30e obtenidos con una superficie analítica con los coeficientes de la Fig. 8. Fig. 10, una tabla con unos cuartos valores de los coeficientes ai - a8.
Fig. 1 1 , comparativa de mapas de astigmatismo y potencia media, cada 0,25D, hasta 30e obtenidos con una superficie esférica ((a) y (c)) y con una superficie analítica con los coeficientes de la Fig. 10 ((b) y (d)).
Fig. 12, una tabla con unos quintos valores de los coeficientes ai - a8.
Fig. 13, comparativa de mapas de astigmatismo y potencia media, cada 0,25D, hasta 30e obtenidos con una superficie esférica ((a) y (c)) y con una superficie analítica con los coeficientes de la Fig. 12 ((b) y (d)).
Fig. 14, una tabla con unos sextos valores de los coeficientes a - a8.
Fig. 15, comparativa de mapas de astigmatismo y potencia media, cada 0,05D, hasta 30e obtenidos con una superficie esférica ((a) y (c)) y con una superficie analítica con los coeficientes de la Fig. 14 ((b) y (d)).
Fig. 16, una tabla con unos séptimos valores de los coeficientes a^ - a8. Fig. 17, comparativa de mapas de astigmatismo y potencia media, cada 0,10D, hasta 30e obtenidos con una superficie esférica ((a) y (c)) y con una superficie analítica con los coeficientes de la Fig. 16 ((b) y (d)).
Fig. 18, gráfico de variación del coeficiente a7 en función de los valores de esfera y de cilindro para el índice 1 ,6.
Fig. 19, gráfico de variación del coeficiente a8 en función de los valores de esfera para el índice 1 ,6.
Fig. 20, gráfico comparativo de variación del coeficiente a8 en función de los valores de esfera, para dos índices diferentes. Fig. 21 , gráfico comparativo de variación del coeficiente a8 en función de los valores de cilindro, para dos índices diferentes.
Descripción detallada de unas formas de realización de la invención
En la Fig. 1 , en los gráficos (a) a (d) se muestra, de una forma esquematizada, la aportación que hacen a una superficie de acuerdo con la invención cada una de las componentes hiperbólica y exponencial. Efectivamente, en estas figuras, la línea de trazo continuo representa la sección transversal de la superficie de la lente obtenida de acuerdo con la invención, la línea a rayas discontinuas muestra la componente hiperbólica y la línea de puntos muestra la componente exponencial. Se observa claramente que la componente hiperbólica es la componente dominante en la parte central de la lente, mientras que la componente exponencial permite introducir cambios (que pueden llegar a ser sustanciales) en la parte perimetral de la lente. Además, la combinación de ambas componentes permite generar superficies que no podrían ser obtenidas con una de las componentes aisladamente. Las curvas correspondientes a las cuatro figuras han sido calculadas con los siguientes datos de partida: - Fig. 1 a: esfera: +8D, cilindro: OD, curva base: 67,83 mm, índice: 1 ,6, función de mérito: una función del tipo:
Figure imgf000012_0001
que incluye el valor del astigmatismo oblicuo a 30e, ponderado con un valor 0,9, y el valor de la curvatura de campo a 30e, ponderado con un valor 0,1 .
- Fig. 1 b: esfera: +8D, cilindro: -4D, curva base: 67,833 mm, índice: 1 ,6, función de mérito: la misma de la Fig. 1 a.
- Fig. 1 c: esfera: -6D, cilindro: 0D, curva base: 498 mm, índice: 1 ,6, función de mérito: la misma de la Fig. 1 a.
- Fig. 1 d: esfera: -6D, cilindro: -4D, curva base: 498 mm, índice: 1 ,6, función de mérito: la misma de la Fig. 1 a.
Por su parte, en la figura 2 se representan los perfiles de unas esferas con una pluralidad de radios de curvatura (trazos discontinuos) superpuestos al perfil de una lente de acuerdo con la invención, calculada a partir de los siguientes datos de partida: esfera: +8D, cilindro: -2,0D, curva base: 67,83 mm, índice: 1 ,6, función de mérito: la misma de la Fig. 1 a. Análogamente, en la figura 3 se representan los perfiles de unas asferas con una pluralidad de asfericidades para un radio de curvatura determinado (trazos discontinuos) superpuestos al perfil de la lente de acuerdo con la invención de la figura 2. Como puede verse, ninguna de las curvas esféricas o asféricas puede superponerse a la curva de la superficie de acuerdo con la invención. Por lo tanto, la superficie de acuerdo con la invención puede ofrecer unas propiedades ópticas mejoradas respecto de las lentes esféricas o asféricas.
En la Fig. 4 se muestran los coeficientes obtenidos para el caso de una lente con un valor de esfera = 8D, cilindro = 0D, curva base = 67,83 mm e índice de refracción n = 1 ,6. Se ha realizado una optimización con una función de mérito del tipo:
Figure imgf000013_0001
que incluye el valor del astigmatismo oblicuo a 30e, ponderado con un valor 0,9, y el valor de la curvatura de campo a 30e, ponderado con un valor 0,1 . En la Fig. 5 se muestran los mapas de potencia media (a) y astigmatismo (b) hasta 30e obtenidos con una superficie analítica con los coeficientes de la Fig. 4.
En la Fig. 6 se muestran los coeficientes obtenidos para el caso de una lente con un valor de esfera = 8D, cilindro = -2D, curva base = 67,83 mm e índice de refracción n = 1 ,6. Se ha realizado una optimización con la misma función de mérito del ejemplo anterior. En la Fig. 7 se muestran los mapas de potencia media (a) y astigmatismo (b) hasta 30e obtenidos con una superficie analítica con los coeficientes de la Fig. 6.
En la Fig. 8 se muestran los coeficientes obtenidos para el caso de una lente con un valor de esfera = -3,25D, cilindro = -2D, curva base = 183,51 mm e índice de refracción n = 1 ,6. Se ha realizado una optimización con la misma función de mérito del ejemplo anterior. En la Fig. 9 se muestran los mapas de potencia media (a) y astigmatismo (b) hasta 30e obtenidos con una superficie analítica con los coeficientes de la Fig. 8.
En las figuras 10 a 17 se muestra unos ejemplos de cambios de curva base. En cada una de las figuras 1 1 , 13, 15 y 17 se compara una lente esférica con una lente con una superficie de acuerdo con la invención. Los mapas superiores son los mapas de astigmatismo ((a) y (b)), y los mapas inferiores son los mapas de potencia media ((c) y (d)). Los mapas de la izquierda son los mapas de la lente esférica ((a) y (c)) mientras que los mapas de la derecha son los que una lente con una superficie de acuerdo con la invención, obtenida a partir de los coeficientes de las tablas 10, 12, 14 y 16, respectivamente. En todos los casos se ha empleado la misma función de mérito que en los ejemplos anteriores.
Las figuras 10 a 13 se corresponden con una lente con un valor de esfera = +7,0D, cilindro = 0D e índice de refracción n = 1 ,6, donde las figuras 10 y 1 1 se corresponden al caso de una curva base de 54,36 mm, mientras que las figuras 12 y 13 se corresponden al caso de una curva base de 67,83 mm.
Por su parte, las figuras 14 a 17 se corresponden con una lente con un valor de esfera = -4,0D, cilindro = 0D e índice de refracción n = 1 ,6, donde las figuras 14 y 15 se corresponden al caso de una curva base de 79,73 mm, mientras que las figuras 16 y 17 se corresponden al caso de una curva base de 183,51 mm.
En la Fig. 18 se muestra un gráfico de variación del coeficiente a7 en función de los valores de esfera (eje X) y de cilindro (eje Y), en un caso en el que la curva base es 52,3 mm y el índice de refracción n es 1 ,7. Para el cálculo de a7 se ha empleado la misma función de mérito de los ejemplos anteriores.
En la Fig. 19 se muestra un gráfico de variación del coeficiente a8 en función de los valores de esfera (eje X), para diversas curvas base. El índice de refracción n es 1 ,7 y el valor de cilindro es -2,0D. Para el cálculo de a8 se ha empleado la misma función de mérito de los ejemplos anteriores. En la Fig. 20 se muestran los resultados comparativos entre dos índices (1 ,5 y 1 ,7) en función de los valores de esfera (eje X) (valor de cilindro = -2,0D), mientras que en la Fig. 21 se muestran los resultados en función de los valores de cilindro (eje X) (valor de esfera = -2,0D).

Claims

REIVINDICACIONES
1 - Procedimiento de diseño de una superficie de una lente oftálmica monofocal, caracterizado porque dicha superficie está definida por una función analítica del tipo:
V 2 2 J 4 4 2 2 L l - a3x - a4y + a5 exp\a6x + a7y + asx y / donde a5 es diferente de 0 y por lo menos uno de los coeficientes a6, a7 y a8 es diferente de 0.
2 - Procedimiento según la reivindicación 1 , caracterizado porque dichos coeficientes se calculan mediante un cálculo iterativo que comprende las siguientes etapas:
[a] fijar un valor para el índice de refracción de la lente oftálmica y para la curva base que se empleará para fabricar la lente oftálmica, [b] fijar unos valores de esfera, cilindro y eje del cilindro que deberá cumplir la lente oftálmica,
[c] fijar unos valores nominales iniciales para los coeficientes ai - a8, [d] calcular, preferentemente por trazado de rayos, por lo menos una propiedad óptica de una lente con dichos valores,
[e] calcular el valor de una función de mérito del tipo:
fin
Figure imgf000015_0001
donde m¡ es el valor de dicha propiedad óptica a un ángulo de visión β determinado respecto del eje óptico de la lente, y a¡ es un valor de ponderación,
[f] optimizar dicha función de mérito mediante la fijación de nuevos valores nominales para dichos coeficientes a - a8 y
[g] repetición de los pasos [c] a [f] hasta la obtención del nivel de optimización deseado. 3 - Procedimiento según la reivindicación 2, caracterizado porque dicha función de mérito incluye el valor del astigmatismo oblicuo a 30e y, preferentemente, el valor a¡ para el valor del astigmatismo oblicuo está comprendido entre 0,8 y 0,98.
4 - Procedimiento según una de las reivindicaciones 2 ó 3, caracterizado porque dicha función de mérito incluye el valor de la curvatura de campo a 30e y, preferentemente, el valor a¡ para el valor de la curvatura de campo está comprendido entre 0,02 y 0,2.
5 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, caracterizado porque dicha superficie es la superficie cóncava de dicha lente.
6 - Procedimiento según la reivindicación 5, caracterizado porque a es igual a 0, a2 es igual al radio de curvatura en el centro de dicha superficie, con signo negativo, y a5 es igual al radio de curvatura en el centro de dicha superficie.
7 - Procedimiento según cualquiera de las reivindicaciones 1 , 5 y 6, caracterizado porque a6 tiene un valor comprendido entre -2x10"8 y 5x10"8 mm"4.
8 - Procedimiento según cualquiera de las reivindicaciones 1 , 5, 6 y 7, caracterizado porque a7 tiene un valor comprendido entre -2x10"8 y 1 ,2x10"7 mm"4.
9 - Procedimiento según cualquiera de las reivindicaciones 1 , 5, 6, 7 y 8, caracterizado porque a8 tiene un valor comprendido entre -2x10"8 y 1 ,2x10"7 mm"4. 10 - Procedimiento según cualquiera de las reivindicaciones 2 a 6, caracterizado porque cada uno de los coeficientes de dicha función analítica tiene un valor que está comprendido entre +/- 30% del valor nominal correspondiente obtenido a partir de dicha optimización.
1 1 - Procedimiento de fabricación de una lente oftálmica monofocal, caracterizado porque comprende una etapa de mecanización de una superficie de dicha lente oftálmica donde dicha superficie está definida por una función analítica del tipo:
V 2 2 J 4 4 2 2 L l - a3x - a4y + a5 exp\a6x + a7y + asx y /
12 - Procedimiento según la reivindicación 1 1 , caracterizado porque dichos coeficientes son los coeficientes obtenibles mediante el procedimiento de las reivindicaciones 1 a 10.
13 - Lente oftálmica monofocal, caracterizada porque tiene una superficie definida por una función analítica del tipo:
V 2 2 J 4 4 2 2 L l - a3x - a4y + a5 exp\a6x + a7y + a x y ]
14 - Lente según la reivindicación 13, caracterizado porque dichos coeficientes son los coeficientes obtenibles mediante el procedimiento de las reivindicaciones 1 a 10.
PCT/ES2012/070849 2011-12-19 2012-12-05 Procedimiento de diseño y de fabricación de una lente oftálmica monofocal y lente correspondiente WO2013093146A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP12822976.2A EP2799914A1 (en) 2011-12-19 2012-12-05 Method for designing and manufacturing a monofocal ophtalmic lens and corresponding lens
CA2858995A CA2858995A1 (en) 2011-12-19 2012-12-05 Method for designing and manufacturing a monofocal ophtalmic lens and corresponding lens
AU2012356705A AU2012356705A1 (en) 2011-12-19 2012-12-05 Method for designing and manufacturing a monofocal ophthalmic lens and corresponding lens
CN201280062754.9A CN104054010A (zh) 2011-12-19 2012-12-05 用于设计和制造单焦点眼镜镜片的方法与对应镜片
MX2014007353A MX2014007353A (es) 2011-12-19 2012-12-05 Procedimiento de diseño y de fabricacion de una lente oftalmica monofocal y lente correspondiente.
IL233214A IL233214A0 (en) 2011-12-19 2014-06-18 A method for designing and manufacturing monofocal eye lenses and parallel lenses
ECIEPI20149541A ECSP14009541A (es) 2011-12-19 2014-07-16 Procedimiento de diseño y de fabricación de una lente oftálmica monofocal y lente correspondiente

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201132048A ES2380979B1 (es) 2011-12-19 2011-12-19 "Procedimiento de diseño y de fabricación de una lente oftálmica monofocal y lente correspondiente"
ESP201132048 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013093146A1 true WO2013093146A1 (es) 2013-06-27

Family

ID=46018201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070849 WO2013093146A1 (es) 2011-12-19 2012-12-05 Procedimiento de diseño y de fabricación de una lente oftálmica monofocal y lente correspondiente

Country Status (12)

Country Link
US (1) US9170433B2 (es)
EP (1) EP2799914A1 (es)
CN (1) CN104054010A (es)
AU (1) AU2012356705A1 (es)
CA (1) CA2858995A1 (es)
CO (1) CO7010795A2 (es)
EC (1) ECSP14009541A (es)
ES (1) ES2380979B1 (es)
IL (1) IL233214A0 (es)
MX (1) MX2014007353A (es)
PE (1) PE20142218A1 (es)
WO (1) WO2013093146A1 (es)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX344975B (es) * 2012-11-14 2017-01-12 Essilor Int Metodo para determinar la viabilidad de una lente oftalmica.
US10386654B2 (en) * 2015-04-15 2019-08-20 Vision Ease, Lp Ophthalmic lens with graded microlenses
CN112426122B (zh) * 2020-11-23 2023-06-09 张云峰 一种单焦点人工晶体全程视力规划方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960442A (en) 1974-08-05 1976-06-01 American Optical Corporation Ophthalmic lens series
FR2509482A1 (fr) * 1981-07-08 1983-01-14 Rodenstock Optik G Verre de lunettes a forte vergence positive
US5083859A (en) 1991-01-02 1992-01-28 Opticorp, Inc. Aspheric lenses
WO1992006400A1 (en) * 1990-10-02 1992-04-16 Volk Donald A Aspheric ophthalmic accommodating lens design for intraocular lens and contact lens
US5815237A (en) * 1996-07-01 1998-09-29 Bausch & Lomb Incorporated Contact lens and method for making the same
US5825454A (en) 1996-01-16 1998-10-20 Hoya Corporation Aspherical spectacle lens
US20060132708A1 (en) 2004-12-16 2006-06-22 Enrique Landgrave Spectacle lenses incorporating atoric surfaces
US20100079723A1 (en) * 2008-10-01 2010-04-01 Kingston Amanda C Toric Ophthalimc Lenses Having Selected Spherical Aberration Characteristics
ES2337970A1 (es) 2007-09-26 2010-04-30 Indizen Optical Technologies, S.L. Lentes oftalmicas monofocales con superficies esfericas y/o asfericas combinadas.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3516575A1 (de) * 1985-05-08 1986-11-13 Hecht Contactlinsen GmbH, 7800 Freiburg Contactlinse
US5050981A (en) * 1990-07-24 1991-09-24 Johnson & Johnson Vision Products, Inc. Lens design method and resulting aspheric lens
US5436680A (en) * 1994-04-20 1995-07-25 Volk; Donald A. Indirect ophthalmoscopy lens providing apparent image curvature
US6709105B2 (en) * 2001-04-10 2004-03-23 Johnson & Johnson Vision Care, Inc. Progressive addition lenses
CN101446683B (zh) * 2001-04-26 2013-04-24 Hoya株式会社 散光用眼镜镜片的设计方法和散光用眼镜镜片
JP2004534964A (ja) * 2001-04-27 2004-11-18 ノバルティス アクチエンゲゼルシャフト 自動レンズ設計及び製造システム
US6554427B1 (en) * 2001-12-11 2003-04-29 Johnson & Johnson Vision Care, Inc. Methods for designing contact lenses
AR062067A1 (es) * 2006-07-17 2008-10-15 Novartis Ag Lentes de contacto toricas con perfil de potencia optica controlado

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960442A (en) 1974-08-05 1976-06-01 American Optical Corporation Ophthalmic lens series
FR2509482A1 (fr) * 1981-07-08 1983-01-14 Rodenstock Optik G Verre de lunettes a forte vergence positive
WO1992006400A1 (en) * 1990-10-02 1992-04-16 Volk Donald A Aspheric ophthalmic accommodating lens design for intraocular lens and contact lens
US5083859A (en) 1991-01-02 1992-01-28 Opticorp, Inc. Aspheric lenses
US5825454A (en) 1996-01-16 1998-10-20 Hoya Corporation Aspherical spectacle lens
US5815237A (en) * 1996-07-01 1998-09-29 Bausch & Lomb Incorporated Contact lens and method for making the same
US20060132708A1 (en) 2004-12-16 2006-06-22 Enrique Landgrave Spectacle lenses incorporating atoric surfaces
ES2337970A1 (es) 2007-09-26 2010-04-30 Indizen Optical Technologies, S.L. Lentes oftalmicas monofocales con superficies esfericas y/o asfericas combinadas.
US20100079723A1 (en) * 2008-10-01 2010-04-01 Kingston Amanda C Toric Ophthalimc Lenses Having Selected Spherical Aberration Characteristics

Also Published As

Publication number Publication date
PE20142218A1 (es) 2014-12-20
ES2380979A1 (es) 2012-05-22
US20130155374A1 (en) 2013-06-20
CO7010795A2 (es) 2014-07-31
EP2799914A1 (en) 2014-11-05
CA2858995A1 (en) 2013-06-27
AU2012356705A1 (en) 2014-08-07
US9170433B2 (en) 2015-10-27
IL233214A0 (en) 2014-08-31
ECSP14009541A (es) 2015-07-31
MX2014007353A (es) 2014-08-27
CN104054010A (zh) 2014-09-17
ES2380979B1 (es) 2013-01-30

Similar Documents

Publication Publication Date Title
ES2361175T3 (es) Lente oftálmica.
ES2541912T3 (es) Elemento de lente oftálmica
ES2599510T3 (es) Elemento de lente oftálmica para corrección de la miopía
ES2253391T3 (es) Metodo para fabricacion de gafas.
ES2444698T3 (es) Procedimiento de determinación de una lente oftálmica
ES2301232T3 (es) Lentillas oftalmicas toricas.
ES2611037T3 (es) Procedimiento para la fabricación de una lente para gafas con cara anterior esférica y cara posterior multifocal
ES2371004T3 (es) Procedimiento de determinación de una lente oftálmica.
ES2545599T3 (es) Elemento de lente con efecto prismático mejorado
ES2361043T3 (es) Lente oftálmica.
ES2323088T3 (es) Lente progresiva para gafas.
ES2632315T3 (es) Método para optimizar una lente de gafa con una rejilla de difracción
ES2695098T3 (es) Un procedimiento para determinar una lente oftálmica
ES2694772T3 (es) Un procedimiento para determinar una lente oftálmica progresiva
RU2010130316A (ru) Поверхность линзы с комбинированными дифракционными, торическими и асферическими компонентами
ES2709443T3 (es) Método para reducir el grosor de una forma de lente y pieza elemental de lente sin tallar
ES2971062T3 (es) Lentes de potencia progresiva
ES2878025T3 (es) Telescopio compacto con una pluralidad de distancias focales compensadas por un espejo deformable
ES2336418T3 (es) Procedimiento para la fabricacion de una lente para gafas, lente para gafas y familia de lentes para gafas.
ES2728331T3 (es) Método de producción de lente precursora para lente globular
ES2832873T3 (es) Lente progresiva ajustable y método de diseño
ES2241013T3 (es) Lente de gafas multifocales.
WO2013093146A1 (es) Procedimiento de diseño y de fabricación de una lente oftálmica monofocal y lente correspondiente
ES2619402T3 (es) Método para la determinación de un sistema básico de rejillas de difracción para la corrección del espacio de color de cristales para gafas
ES2365307T3 (es) Cristal de gafa progresivo con dos superficies asfericas progresivas.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2858995

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 233214

Country of ref document: IL

Ref document number: MX/A/2014/007353

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 000996-2014

Country of ref document: PE

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012822976

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012822976

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14156156

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 2012356705

Country of ref document: AU

Date of ref document: 20121205

Kind code of ref document: A