WO2013091424A1 - 工程机械车辆、车辆转向随动控制系统及方法 - Google Patents

工程机械车辆、车辆转向随动控制系统及方法 Download PDF

Info

Publication number
WO2013091424A1
WO2013091424A1 PCT/CN2012/082153 CN2012082153W WO2013091424A1 WO 2013091424 A1 WO2013091424 A1 WO 2013091424A1 CN 2012082153 W CN2012082153 W CN 2012082153W WO 2013091424 A1 WO2013091424 A1 WO 2013091424A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
wide
oil
hydraulically
control
Prior art date
Application number
PCT/CN2012/082153
Other languages
English (en)
French (fr)
Inventor
詹纯新
刘权
李英智
宋院归
李义
张建军
Original Assignee
中联重科股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 中联重科股份有限公司
Publication of WO2013091424A1 publication Critical patent/WO2013091424A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/142Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering specially adapted for particular vehicles, e.g. tractors, carts, earth-moving vehicles, trucks
    • B62D7/144Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering specially adapted for particular vehicles, e.g. tractors, carts, earth-moving vehicles, trucks for vehicles with more than two axles

Definitions

  • Construction machinery vehicle Construction machinery vehicle, vehicle steering follow-up control system and method
  • the present invention relates to the field of vehicle steering, and more particularly to a construction machine vehicle, a vehicle steering follow-up control system, and a vehicle steering follow-up control method. Background technique
  • a device for changing the direction or driving in a series of directions is called a steering system.
  • the function of the vehicle steering system is to control the direction of travel of the vehicle in accordance with the driver's operation.
  • the vehicle steering system is critical to the vehicle's driving safety, so the parts of the vehicle's steering system are called security pieces.
  • the power steering method is generally adopted, including hydraulic power and electric assist, wherein the assist force is not only the size of the assist
  • the steering angle is also related to the speed of the car. Power steering makes driving easier and more relaxed, and makes the vehicle more agile and improves safety to a certain extent.
  • Hydraulic assist is the most common type of boost, and it is widely used because of its proven technology and low cost.
  • the main components of the hydraulic power assist system are hydraulic pump, oil pipe, pressure fluid control, V-drive belt, oil storage tank, electric motor, vehicle speed sensor and electromagnetic wide. According to the different flow patterns in the system, it can be divided into normal pressure hydraulic assist and constant flow hydraulic boost.
  • the constant pressure hydraulic power assist system is characterized in that the oil in the system piping always maintains a high pressure state regardless of whether the steering wheel is in the center position or the steering position, the steering wheel remains stationary or in rotation; and the steering oil pump of the constant flow hydraulic steering assist system Always working, but when the hydraulic booster system is not working, the oil pump is in the idling state, the pipeline load is smaller than the normal pressure type, and most hydraulic steering assist systems now use the constant flow type.
  • the steering assist cylinder, the steering control wide, the centering cylinder and the centering control are wide.
  • the steering assist cylinder When the vehicle is turning, the steering assist cylinder is assisted by the steering control, the wheel is in the steering state, and the center cylinder is in the following state; when the vehicle goes straight, the centering cylinder is controlled by the centering control, the wheel is in a straight state, the steering assist cylinder In the follow-up state.
  • the follow-up control mode of the patent DE10245618 (A1) mainly controls the centering of the centering cylinder and the follow-up action of the steering assist cylinder through the two-way five-way electromagnetic wide, but the two-way five-way electromagnetic wide blocking performance is not ideal. Affecting the volumetric efficiency during the steering process, and because the two-way five-way electromagnetic is an uncommon hydraulic component, the inter-grounding imposes higher requirements on other hydraulic components, increasing production costs.
  • the invention mainly solves the technical problem that there is a safety hazard due to the low performance of the steering follower system of the center cylinder and the steering assist cylinder, and provides a construction machinery vehicle, a vehicle steering follow-up control system and a vehicle steering follow-up control method , can effectively solve the above technical problems.
  • a technical solution adopted by the present invention is: providing a vehicle steering follow-up control system, including a control wide group, a steering assist cylinder and a centering cylinder, the control wide group including a servo wide, an electromagnetic wide, and a liquid Unidirectional control and hydraulic control are wide.
  • the servo is widely connected to the steering assist cylinder for controlling the steering assist cylinder to perform steering assist when the wheel is in a steering state;
  • the electromagnetic width is connected to the centering cylinder for controlling the centering cylinder when the wheel is in a straight state
  • Both the rod chamber and the rodless chamber enter the high pressure oil;
  • the hydraulic control one-way wide includes the first port, the second port and the control port,
  • the hydraulically controlled one-port wide first port is connected to the steering assist cylinder, and the hydraulically controlled one-way wide second port is connected to the return tank;
  • the hydraulically controlled commutation includes a control port and a working port.
  • the hydraulically controlled reversing control port is in communication with the electromagnetic circuit between the electromagnet and the centering cylinder, and the hydraulically controlled wide working port is connected to the hydraulically controlled one-way wide control port.
  • the hydraulically controlled commutating controls the two-way hydraulic conduction between the first oil port and the second oil port of the hydraulic control one-way wide.
  • the hydraulic control one-way wide comprises a first hydraulic control one-way wide and a second hydraulic control one-way wide
  • the steering assist cylinder comprises a first steering assist cylinder and a second steering assist cylinder
  • the first hydraulic control one-way wide The first port is connected to the rod cavity of the first steering assist cylinder and the rodless cavity of the second steering assist cylinder
  • the second hydraulically controlled one-way wide first port and the second steering assist cylinder The rod cavity is connected to the rodless cavity of the first steering assist cylinder
  • the first hydraulically controlled one-way wide second port and the second hydraulically controlled one-way wide second port are hydraulically connected to each other.
  • the servo width includes a pressure port, a return port, a first working port and a second working port, the first working port of the servo and the rod cavity of the first steering assist cylinder and the second a rodless cavity connection of the steering assist cylinder, the servo wide second working port is connected with the rod cavity of the second steering assist cylinder and the rodless cavity of the first steering assist cylinder, the servo wide pressure oil
  • the port is connected with a pressure oil source, and the servo wide oil return port is connected with the return oil tank;
  • the electromagnetic wide includes a pressure oil port, a oil return port and a working oil port, and the working oil port is connected with the centering cylinder and
  • the hydraulically controlled commutating control port is connected, and the electromagnetic wide pressure port is connected with the pressure oil source, and the electromagnetic wide oil return port is connected with the return oil tank.
  • a damping hole is arranged between the second hydraulic port of the first hydraulically controlled one-way wide port and the second hydraulic port of the second hydraulically controlled one-way wide port, and the returning oil tank, the damping hole is used for the damping hole
  • the flow is restricted when the wheel is in a straight state, so that the first steering assist cylinder and the second steering assist cylinder are fluidly complementary.
  • the hydraulically controlled commutation further comprises a return port connected to the return tank.
  • the steering state of the wheel includes a left turn steering state of the wheel and a right turn steering state of the wheel:
  • the servo wide pressure port and the servo wide first working port are hydraulically connected
  • the servo wide return port and the servo wide second working port are hydraulically connected.
  • the electromagnetic wide working oil port is hydraulically connected to the electromagnetic wide return port, the hydraulically commutated wide working oil port and the hydraulically commutated wide oil return port are hydraulically connected, the first hydraulic control one-way
  • the wide first port is disconnected from the first hydraulically controlled one-way wide second port, the second hydraulically controlled one-way wide first port and the second liquid-controlled one-way wide second port
  • the port is disconnected; when the wheel is turned to the right, the servo wide pressure port and the servo wide second working port are hydraulically turned on, the servo wide return port and the servo wide first work
  • the hydraulic port of the hydraulic port is electrically connected, and the electromagnetic working port is hydraulically connected to the electromagnetic wide return port, and the hydraulically commutated working port and the hydraulically commutated oil return port are hydraulically connected.
  • the wide first oil port is disconnected from the second hydraulically controlled one-way wide second oil port; when the wheel is in a straight state, the electromagnetic wide pressure oil port is hydraulically connected to the electromagnetic wide working oil port, The hydraulically controlled reversing control port and the hydraulically controlled wide working port are hydraulically connected to cause the high pressure oil to enter the hydraulically controlled one-way wide control port, the first hydraulically controlled one-way wide.
  • the first oil port and the first hydraulically controlled one-way wide second port are hydraulically connected, the second hydraulically controlled one-way wide first port and the second hydraulically controlled one-way wide second port hydraulic pressure Conducting, the first hydraulically controlled one-way wide second port and the second hydraulically controlled one-way wide second port are hydraulically connected to each other, the servo wide pressure port and the servo wide return port Hydraulically conductive.
  • another technical solution adopted by the present invention is to provide an engineering mechanical vehicle including the above-described vehicle steering follow-up control system.
  • Providing a vehicle steering follow-up control method comprising the steps of: determining a running state of the vehicle; and when determining that the vehicle is in a steering state, controlling the electromagnetic wide
  • the rod chamber and the rodless chamber of the middle cylinder are connected with the return tank, and the control servo widens the high pressure oil into the steering assist cylinder; when it is judged that the wheel is in the straight state, the electromagnetic wide causes the high pressure oil to enter the center cylinder at the same time.
  • the hydraulic control is widened, and the hydraulic control between the first port and the second port of the hydraulic control one-way wide is controlled by the hydraulic control, so that the steering assist cylinder is
  • the first steering assist cylinder and the second steering assist cylinder are electrically connected to each other.
  • the hydraulically controlled one-way wide comprises a first hydraulically controlled one-way wide and a second hydraulically controlled one-way wide, the first and second oil ports of the one-way wide hydraulic control by the hydraulic control
  • the step of hydraulically conducting between the first steering assist cylinder and the second steering assist cylinder of the steering assist cylinder includes: the second hydraulic port and the second liquid of the first hydraulically controlled one-way wide
  • the second port of the one-way wide control is hydraulically connected, and the oil is complemented by the action between the first steering assist cylinder and the second steering assist cylinder through the action of the damping hole.
  • the vehicle includes a first bridge, a second bridge, a third bridge, and a fourth bridge arranged in sequence.
  • the step of determining the running state of the vehicle includes: determining a vehicle speed of the vehicle; when the vehicle speed is not greater than the first When the speed threshold is set, the first bridge, the second bridge, the third bridge, and the fourth bridge are brought into a wheel steering state; when the vehicle speed is greater than the first preset speed threshold and not greater than the second preset speed threshold, The first bridge and the second bridge enter a wheel straight state, and the third bridge and the fourth bridge enter a wheel steering state; when the vehicle speed is greater than the second preset speed threshold, the first bridge and the second bridge are made The third bridge and the fourth bridge enter the wheel straight state.
  • the present invention controls the follow-up relationship between the middle cylinder and the steering assist cylinder by controlling one electromagnetic wide control in the wide group, and the hydraulic oil is commutated by the hydraulic control.
  • the hydraulic conduction relationship between the first oil port and the second oil port of the one-way wide control liquid control port avoids the safety caused by the fact that two electromagnetic poles are used at the same time and cannot be simultaneously powered and de-energized.
  • Hidden dangers also ensure the one-way wide locking performance of the hydraulic control, thereby improving the performance of the steering system of the center cylinder and the steering assist cylinder, and reducing safety hazards.
  • FIG. 1 is a schematic structural view of a hydraulic principle of a bridge of a vehicle steering follow-up control system of the present invention
  • FIG. 2 is an enlarged schematic view of a control wide group of the vehicle steering follow-up control system of FIG. 1
  • FIG. 3B is a schematic diagram showing the connection structure of the first part of the vehicle steering follow-up control system of FIG. 3A;
  • FIG. 4 is a schematic flow chart of an embodiment of a vehicle steering follow-up control method of the present invention
  • FIG. 5 is a flow chart of another embodiment of a vehicle steering follow-up control method of the present invention.
  • the vehicle steering follow-up control system of the present invention includes a control wide group 10, a steering assist cylinder 11, a centering cylinder 12, pressure oil sources 13 and 14 and a return tank dand! ⁇ .
  • P1 and P2 represent the hydraulic passages of the pressure oil sources 13 and 14, respectively.
  • control wide group 10 includes a servo width 20, a hydraulically controlled one-way width 21, a hydraulically controlled commutation width 22, a orifice 23 and an electromagnetic width 24.
  • the servo width 20 is coupled to the steering assist cylinder 11 for controlling the steering assist cylinder 11 for steering assist when the wheel is turned.
  • the servo width 20 has a pressure port A1, a return port A2, a first working port A3 and a second working port A4, wherein the pressure port A1 is connected to the pressure oil source, and the return port A2 and the return tank T phase
  • the first working port A3 and the second working port A4 are connected to the steering assist cylinder 11.
  • the servo width 20 adopts a three-position four-way structure.
  • the hydraulically controlled one-way wide 21 includes a first hydraulically controlled one-way wide 211 and a second hydraulically controlled one-way wide 212.
  • the first hydraulically controlled one-way wide 211 includes a first port B1, a control port B2 and a second port B3.
  • the second hydraulic control unidirectional width 212 includes a first oil port bl, a control oil port b2 and a second oil port b3, wherein the first oil ports Bl and bl of the liquid control one-way width 21 are both connected to the steering assist cylinder 11 connection, the second port B3, b3 of the hydraulic control one-way wide 21 are connected with the return tank T, and the control ports B2 and b2 of the hydraulic control one-way wide 21 are connected with the hydraulic control commutation width 22.
  • the second port B3 of the first pilot unidirectional 211 and the second port b3 of the second pilot unidirectional 212 are hydraulically connected to each other to achieve between the two hydraulic passages.
  • the oil is complementary.
  • the hydraulically controlled one-way width 21 can be used in a corresponding manner, which is not limited herein.
  • the hydraulically controlled commutation width 22 includes a control port C1, a working port C2 and a return port C3. among them,
  • the control port C1 of the hydraulically controlled commutation width 22 is in communication with the hydraulic circuit between the electromagnetic width 24 and the centering cylinder 12, and the high pressure oil is taken from the hydraulic circuit between the electromagnetic width 24 and the centering cylinder 12;
  • the working oil port C2 of the hydraulically controlled commutating width 22 is connected with the control oil ports B2 and b2 of the hydraulic control one-way wide 21; in order to reduce the influence of the back pressure on the closing performance of the hydraulic control one-way wide 21, the liquid control
  • the oil return port C3 of the reversing width 22 is connected to the return tank L.
  • the damper hole 23 is disposed between the second port B3 of the first pilot unidirectional width 211 and the second port b3 of the second pilot unidirectional width 212 between the node 213 and the return tank T which are hydraulically connected to each other, as shown in the figure. 2 is shown.
  • the electromagnetic wide 24 includes a pressure port D1, a return port D2 and a working port D3.
  • the pressure port D1 is connected with the pressure oil source, and the oil return port D2 of the electromagnetic wide 24 is connected with the return tank T, and the working port D3 is
  • the intermediate cylinder 12 is connected to the control port C1 of the hydraulically controlled commutation width 22.
  • the steering assist cylinder 11 includes a first steering assist cylinder 111 and a second steering assist cylinder 112 which are disposed on the same bridge.
  • the first port B1 of the first pilot unidirectional 211 is connected to the rod chamber of the first steering assist cylinder 111 and the rodless chamber of the second steering assist cylinder 112, and the second pilot is unidirectional.
  • the first port bl of the width 212 is coupled to the rod chamber of the second steering assist cylinder 112 and the rodless chamber of the first steering assist cylinder 111.
  • the rod chamber and the rodless chamber of the center cylinder 12 are connected to the working port D3 of the electromagnetic wide 24 through the node P, and the return port R is connected to the return tank T.
  • the pressure oil sources 13, 14 are variable pumps for providing high pressure oil, including radial piston pumps and axial piston pumps, etc. In other embodiments, the pressure oil sources 13, 14 share a pressure oil source, and the return tank T, L may also be used in one manner, and will not be described in the scope understood by those skilled in the art.
  • the vehicle steering follow-up control system of the present invention will be described in detail below in conjunction with its working principle.
  • the running state of the vehicle includes a wheel straight state and a wheel steering state, and the wheel steering state includes a wheel left turn state and a wheel right turn state.
  • the servo width 20 is used to control the steering assist cylinder 11 for steering assist when the wheel is turned to the left turn state.
  • the hydraulic port A1 of the servo width 20 and the first working port A3 of the servo width 20 are hydraulically turned on, the oil return port ⁇ 2 of the servo width 20 and the second working port of the servo width 20
  • the A4 hydraulic pressure is turned on; and the working oil port D3 of the electromagnetic wide 24 is hydraulically connected to the oil return port D2 of the electromagnetic wide 24; meanwhile, the working oil port C2 of the hydraulic reversing width 22 and the oil return port C3 of the hydraulic reversing wide 22
  • the hydraulic pressure is turned on, the first port B1 of the first hydraulic control one-way wide 211 and the second port B3 of the first liquid-controlled one-way wide 211 are disconnected, and the first port of the second liquid control one-way wide 212
  • the bl is disconnected from the second port b3 of the second pilot unidirectional width 212.
  • the high-pressure oil enters the rod-cavity of the first steering assist cylinder 111 and the rodless chamber of the second steering assist cylinder 112 for assisting, while the centering cylinder 12 is in a follow-up state, and the vehicle makes a left-turning steering.
  • the pressure port A1 of the servo width 20 and the second working port A4 of the servo width 20 are hydraulically turned on, and the oil return port A2 of the servo width 20 and the first of the servo width 20 are 20 Working port A3 hydraulic conduction; Electromagnetic width 24 working port D3 and electromagnetic wide 24 return port D2 hydraulic conduction; hydraulic reversing 22 working port C2 and hydraulic reversing 22 return port C3
  • the hydraulic pressure is turned on; the first port B1 of the first pilot unidirectional 211 is disconnected from the second port B3 of the first pilot unidirectional 211, and the first port of the second pilot unidirectional 212 is disconnected.
  • the bl is disconnected from the second port b3 of the second pilot unidirectional width 212.
  • the high pressure oil enters the rod chamber of the second steering assist cylinder 112 and the rodless chamber of the first steering assist cylinder 111 for assisting, while the centering cylinder 12 is in a follow-up state, and the vehicle performs a right turn steering.
  • the electromagnetic wide control of the center cylinder 12 has a rod cavity and a rodless cavity into the high pressure oil.
  • the pressure port D1 of the electromagnetic wide 24 is hydraulically connected to the working port D3 of the electromagnetic wide 24; the control port C1 of the hydraulically controlled commutating width 22 and the working port C2 of the hydraulically controlled commutating width 22 are hydraulically connected to make the high pressure oil
  • the liquid enters the control port B2 and b2 of the hydraulic control one-way wide 21 ; the first port B1 of the first hydraulic one-way wide 211 and the second port B3 of the first liquid-controlled one-way wide 211 are hydraulically turned on,
  • the first port bl of the second pilot unidirectional width 212 and the second port b3 of the second pilot unidirectional width 212 are hydraulically turned on, and at the same time, the second port B3 of the first pilot unidirectional 211 is
  • the oil is hydraulically connected to each other, and the oil
  • the vehicle steering follow-up control system includes a controller (not shown).
  • the fifth bridge or more may be included, and details are not described herein.
  • the driving state of the vehicle is embodied in the vehicle speed n of the vector, such as the size.
  • the working process of the multi-bridge vehicle steering follower control system is as follows.
  • the first bridge 31, the second bridge 32, the third bridge 33, and the fourth bridge 34 are brought into a wheel steering state; at this time, the first electromagnetic width 301, The second electromagnetic wide 302, the third electromagnetic wide 303, and the fourth electromagnetic wide 304 are all energized, so that the centering cylinder is in a follower state.
  • the first bridge 31 and the second bridge 32 are brought into the wheel straight state, and the third bridge 33 and the third The four bridges 34 enter the wheel steering state; correspondingly, the first electromagnetic wide 301 and the second electromagnetic wide 302 are de-energized, and the corresponding steering assist cylinder is in a follow-up state, and the third electromagnetic wide 303 and the fourth electromagnetic wide 304 are electrified , the corresponding centering cylinder is in the following state.
  • the first bridge 31, the second bridge 32, the third bridge 33, and the fourth bridge 34 are brought into a wheel straight state, and at this time, the first electromagnetic width 301, The second electromagnetic wide 302, the third electromagnetic wide 303, and the fourth electromagnetic wide 304 are all de-energized, so that the steering assist cylinder is in a follow-up state.
  • the first preset speed threshold n1 and the second preset speed threshold n2 may be correspondingly set according to the type of the vehicle.
  • the first to fourth bridges may also correspond. It is added or directly replaced by a fifth bridge, a sixth bridge, a seventh bridge, and/or an eighth bridge or even more, and will not be described insofar as it is understood by those skilled in the art.
  • the embodiment of the present invention uses the electromagnetic wide 24 to control the centering and follow-up state of the center cylinder 12, and simultaneously
  • the electromagnetic wide 24 is used as the pilot control switch of the hydraulic control one-way wide 21 to control the following function of the steering assist cylinder 11 and the rapid response during the steering process by controlling the opening and closing of the hydraulic control one-way wide 21, and
  • the control reversing width 22 ensures a quick locking function of the hydraulic control one-way width 21 and a reliable locking function, and at the same time, the quick-following function of the steering assist cylinder 11 is realized through the damping hole 23.
  • the invention effectively avoids the safety hazard caused by the use of two electromagnetic poles in the prior art and cannot be simultaneously powered and de-energized, and also ensures the locking performance of the hydraulic control one-way wide 21, thereby improving the centering cylinder. 12 and the power steering system performance of the steering assist cylinder 11 reduces safety hazards.
  • the present embodiment uses conventional hydraulic components to effectively control the production cost.
  • the vehicle steering follow-up control method of the present invention includes: Step S401: determining a running state of the vehicle, if in a wheel turning state, performing step S402, if the wheel is in a straight state, performing Step 403.
  • the controller controls the follow-up state of the centering cylinder and the steering assist cylinder of each bridge in the multi-bridge vehicle steering control system.
  • Step S402 controlling the electromagnetic wide to make the rod cavity and the rodless cavity of the centering cylinder communicate with the return tank, and control the servo to make the high pressure oil enter the steering assist cylinder.
  • Step S403 the electromagnetic wide-opening enables the high-pressure oil to enter the center cylinder and the hydraulic control to be widened at the same time, and the hydraulic control between the first oil port and the second oil port of the one-way wide hydraulic control by the hydraulic control
  • the first steering assist cylinder and the second steering assist cylinder of the steering assist cylinder are electrically connected to each other.
  • the vehicle steering follow-up control method of the present invention includes: Step S500, starting.
  • step S501 the vehicle speed n of the vehicle is determined.
  • step S502 is performed.
  • step S503 is performed, when nl ⁇ n n2
  • step S504 is performed.
  • Step S502 the first bridge, the second bridge, the third bridge, and the fourth bridge are brought into a wheel steering state.
  • Step S503 the first bridge, the second bridge, the third bridge, and the fourth bridge are brought into a wheel straight state.
  • Step S504 the first bridge and the second bridge are brought into the wheel straight state, that is, the first bridge and the second bridge perform step S506, and the third bridge and the fourth bridge enter the wheel steering state, that is, the third bridge and the third bridge
  • the four bridges perform step S505.
  • Step S505 controlling the electromagnetic wide to make the rod cavity and the rodless cavity of the centering cylinder communicate with the return tank, and control the servo to make the high pressure oil enter the steering assist cylinder.
  • Step S506 the electromagnetic wide-opening enables the high-pressure oil to enter the center cylinder and the hydraulic control to be widened at the same time, and the hydraulic control between the first oil port and the second oil port of the one-way wide hydraulic control by the liquid-controlled reversing control
  • the first steering assist cylinder and the second steering assist cylinder of the steering assist cylinder are electrically connected to each other.
  • the first preset speed threshold n1 and the second preset speed threshold n2 may be correspondingly set according to the type of the vehicle, and in other embodiments, for the large tonnage or oversized tonnage crane, the first to the first
  • the four bridges may also be correspondingly added or directly replaced by a fifth bridge, a sixth bridge, a seventh bridge, and/or an eighth bridge or even more, and will not be described insofar as they are understood by those skilled in the art.
  • the vehicle steering follow-up control method of the invention effectively avoids the safety hazard caused by the use of two electromagnetic poles in the prior art and cannot be simultaneously powered and de-energized, and also ensures the one-way wide locking performance of the hydraulic control, thereby The performance of the steering follower system for the center cylinder and the steering assist cylinder is improved, and the safety hazard is reduced.
  • the present invention also provides a construction machine vehicle comprising the above-described vehicle steering follow-up control system and method, by which the small, medium and large construction machinery vehicles can be controlled, such as large tonnage
  • a mobile crane such as a wheeled crane or an all-terrain crane of a large tonnage automobile may be a general construction machinery vehicle, which is not limited herein.
  • the invention can effectively improve the performance of the steering system of the center cylinder and the steering assist cylinder, and reduce the safety hazard.
  • the construction machinery vehicle and the vehicle steering follow-up control system and method of the invention effectively avoid the present
  • due to the use of two electromagnetic poles the safety hazard caused by simultaneous power failure and power loss can be ensured, and the one-way wide locking performance of the hydraulic control is also ensured, thereby improving the steering follow-up of the center cylinder and the steering assist cylinder.
  • System performance reduces security risks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种工程机械车辆、车辆转向随动控制系统以及车辆转向随动控制方法。该系统包括控制阀组(10)、转向助力缸(11)和对中缸(12)。该控制阀组(10)包括伺服阀(20)、电磁阀(24)、液控单向阀(21)和液控换向阀(22)。该伺服阀(20)与该转向助力缸(11)相连接;该电磁阀(24)与该对中缸(12)相连接;该液控单向阀(21)包括第一油口(B1,b1)、第二油口(B3,b3)和控制油口(B2,b2),该液控单向阀(21)的第一油口(B1,b1)与该转向助力缸(11)连接,该液控单向阀(21)的第二油口(B3,b3)与回油箱(T)相连接;该液控换向阀(22)包括控制油口(C1)和工作油口(C2),该液控换向阀(22)的控制油口(C1)与该电磁阀(24)和该对中缸(12)之间的液压回路相连通,该液控换向阀(22)的工作油口(C2)与该液控单向阀(21)的控制油口(B2,b2)相连接。从而提高了转向助力缸(11)在随动和转向过程中的快速响应性,同时确保了液控单向阀(21)的快速闭锁功能。

Description

工程机械车辆、 车辆转向随动控制系统及方法
技术领域
本发明涉及车辆转向领域, 特别是涉及一种工程机械车辆、 车辆转向 随动控制系统以及车辆转向随动控制方法。 背景技术
现有技术中, 用来改变方向或保持方向行驶等系列动作的装置称为车 辆转向系统 (steering system)。车辆转向系统的功能就是按照驾驶员的操作来 控制车辆的行驶方向。 车辆转向系统对车辆的行驶安全至关重要, 因此车 辆转向系统的零件都称为保安件。
在车辆转向时, 为了抵抗转向阻力, 以让驾驶员轻松地对车辆特别是 大型车辆进行操作, 一般采用助力转向 (power steering) 的方式, 包括液 压助力和电动助力, 其中, 助力的大小不光与转向角度有关, 还与车速相 关。 助力转向让驾驶变得更加简单和轻松, 并且让车辆反应更加敏捷, 一 定程度上提高了安全性。
液压助力是最常见的一种助力方式, 由于技术成熟可靠, 而且成本低 廉, 得以被广泛普及。 液压助力系统的主要组成部分有液压泵、 油管、 压 力流体控制阔、 V型传动皮带、 储油罐、 电动机、 车速传感器和电磁阔等。 根据系统内液流方式的不同又可以分为常压式液压助力和常流式液压助 力。 常压式液压助力系统的特点是无论方向盘处于正中位置还是转向位置、 方向盘保持静止还是在转动, 系统管路中的油液总是保持高压状态; 而常 流式液压转向助力系统的转向油泵虽然始终工作, 但液压助力系统不工作 时, 油泵处于空转状态, 管路的负荷要比常压式小, 现在大多数液压转向 助力系统都采用常流式。 在专利 DE10245618(A1)提及的液压助力转向系统中,包括转向助力缸、 转向控制阔、 对中缸以及对中控制阔。 车辆转向时, 通过转向控制阔控制 转向助力缸进行助力, 车轮处于转向状态, 对中缸处于随动状态; 车辆直 行时, 通过对中控制阔控制对中缸, 车轮处于直行状态, 转向助力缸处于 随动状态。 该专利 DE10245618(A1)的随动控制方式主要是通过两位五通电 磁阔控制对中缸的对中以及和转向助力缸的随动动作, 但是两位五通电磁 阔的闭锁性能不理想, 影响转向过程中的容积效率, 而且由于两位五通电 磁阔为不常见的液压元件, 间接地对其他液压元件提出了更高的要求, 增 加了生产成本。
而在其他的现有技术中, 也有通过两个电磁阔控制转向助力缸和对中 缸的随动动作, 但是这种随动控制方式须保证两个电磁阔同时得电和同时 失电, 不然会造成车轮磨胎, 甚至出现安全事故, 因此, 在实际应用中存 在安全隐患。
如何解决现有技术中由于对中缸和转向助力缸的转向随动系统性能偏 低, 导致存在安全隐患的技术问题, 是本领域技术人员亟需解决的问题。 发明内容
本发明主要解决由于对中缸和转向助力缸的转向随动系统性能偏低, 导致存在安全隐患的技术问题, 提供了一种工程机械车辆、 车辆转向随动 控制系统以及车辆转向随动控制方法, 能够有效解决上述技术问题。
为解决上述技术问题, 本发明采用的一个技术方案是: 提供一种车辆 转向随动控制系统, 包括控制阔组、 转向助力缸和对中缸, 该控制阔组包 括伺服阔、 电磁阔、 液控单向阔和液控换向阔。 该伺服阔与该转向助力缸 相连接, 用于在车轮转向状态时控制该转向助力缸进行转向助力; 该电磁 阔与该对中缸相连接, 用于在车轮直行状态时控制该对中缸的有杆腔和无 杆腔均进入高压油液; 该液控单向阔包括第一油口、 第二油口和控制油口, 该液控单向阔的第一油口与该转向助力缸连接, 该液控单向阔的第二油口 与回油箱相连接; 该液控换向阔包括控制油口和工作油口, 该液控换向阔 的控制油口与该电磁阔和该对中缸之间的液压回路相连通, 该液控换向阔 的工作油口与该液控单向阔的控制油口相连接; 其中, 在车轮直行状态时, 该液控换向阔控制该液控单向阔的第一油口和第二油口之间双向液压导 通。
其中, 该液控单向阔包括第一液控单向阔和第二液控单向阔, 该转向 助力缸包括第一转向助力缸和第二转向助力缸, 该第一液控单向阔的第一 油口与该第一转向助力缸的有杆腔和该第二转向助力缸的无杆腔相连接, 该第二液控单向阔的第一油口与该第二转向助力缸的有杆腔和该第一转向 助力缸的无杆腔相连接, 该第一液控单向阔的第二油口和该第二液控单向 阔的第二油口相互液压导通。
其中, 该伺服阔包括压力油口、 回油口、 第一工作油口和第二工作油 口, 该伺服阔的第一工作油口与该第一转向助力缸的有杆腔和该第二转向 助力缸的无杆腔相连接, 该伺服阔的第二工作油口与该第二转向助力缸的 有杆腔和该第一转向助力缸的无杆腔相连接, 该伺服阔的压力油口与压力 油源相连接, 该伺服阔的回油口与回油箱相连接; 该电磁阔包括压力油口、 回油口和工作油口, 该工作油口与该对中缸相连接且与该液控换向阔的控 制油口相连接, 该电磁阔的压力油口与压力油源相连接, 该电磁阔的回油 口与回油箱相连接。
其中, 在该第一液控单向阔的第二油口和该第二液控单向阔的第二油 口相互液压导通的节点与回油箱之间设有阻尼孔, 该阻尼孔用于在车轮直 行状态时限流, 使得该第一转向助力缸和该第二转向助力缸之间进行油液 互补。
其中, 该液控换向阔还包括与回油箱相连接的回油口。
其中, 该车轮转向状态包括车轮左转转向状态和车轮右转转向状态: 在该车轮左转转向状态时, 该伺服阔的压力油口和该伺服阔的第一工作油 口液压导通, 该伺服阔的回油口和该伺服阔的第二工作油口液压导通, 该 电磁阔的工作油口与该电磁阔的回油口液压导通, 该液压换向阔的工作油 口和该液压换向阔的回油口液压导通, 该第一液控单向阔的第一油口和该 第一液控单向阔的第二油口之间断开, 该第二液控单向阔的第一油口和该 第二液控单向阔的第二油口之间断开; 在该车轮右转转向状态时, 该伺服 阔的压力油口和该伺服阔的第二工作油口液压导通, 该伺服阔的回油口和 该伺服阔的第一工作油口液压导通, 该电磁阔的工作油口与该电磁阔的回 油口液压导通, 该液压换向阔的工作油口和该液压换向阔的回油口液压导 通, 该第一液控单向阔的第一油口和该第一液控单向阔的第二油口之间断 开, 该第二液控单向阔的第一油口和该第二液控单向阔的第二油口之间断 开; 在该车轮直行状态时, 该电磁阔的压力油口与该电磁阔的工作油口液 压导通, 该液控换向阔的控制油口与该液控换向阔的工作油口液压导通使 得高压油液进入到该液控单向阔的控制油口, 该第一液控单向阔的第一油 口和该第一液控单向阔的第二油口液压导通, 该第二液控单向阔的第一油 口和该第二液控单向阔的第二油口液压导通, 该第一液控单向阔的第二油 口和该第二液控单向阔的第二油口相互液压导通, 该伺服阔的压力油口与 该伺服阔的回油口液压导通。
为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种工 程机械车辆, 包括上述的车辆转向随动控制系统。
为解决上述技术问题, 本发明采用的另一个技术方案是: 提供一种车 辆转向随动控制方法, 包括步骤: 判断该车辆的行驶状态; 当判断到处于 车轮转向状态时, 控制电磁阔使对中缸的有杆腔和无杆腔均与回油箱连通, 控制伺服阔使高压油液进入转向助力缸; 当判断到处于车轮直行状态时, 该电磁阔使高压油液同时进入对中缸和液控换向阔, 通过该液控换向阔控 制液控单向阔的第一油口和第二油口之间液压导通, 使得该转向助力缸的 第一转向助力缸和第二转向助力缸之间互相导通。
其中, 该液控单向阔包括第一液控单向阔和第二液控单向阔, 该通过 该液控换向阔控制液控单向阔的第一油口和第二油口之间液压导通, 使得 该转向助力缸的第一转向助力缸和第二转向助力缸之间互相导通的步骤中 包括: 将该第一液控单向阔的第二油口和第二液控单向阔的第二油口之间 液压导通, 并通过阻尼孔的作用使得该第一转向助力缸和该第二转向助力 缸之间进行油液互补。
其中, 该车辆包括依序排列的第一桥、 第二桥、 第三桥和第四桥, 该 判断该车辆的行驶状态的步骤包括: 判断该车辆的车速; 当该车速不大于 第一预设速度阈值 时, 使该第一桥、 第二桥、 第三桥和第四桥进入车轮转 向状态; 当该车速大于该第一预设速度阈值 且不大于第二预设速度阈值 时, 使该第一桥和第二桥进入车轮直行状态, 并使该第三桥和第四桥进入 车轮转向状态; 当该车速大于该第二预设速度阈值 时, 使该第一桥、 第二 桥、 第三桥和第四桥进入车轮直行状态。
本发明的有益效果是: 区别于现有技术的情况, 本发明通过控制阔组 中的一个电磁阔控制对中缸和转向助力缸之间的随动关系, 通过液控换向 阔的工作油口控制液控单向阔的第一油口和第二油口之间的液压导通关 系, 避免了现有技术中由于采用两个电磁阔而不能同时得电和失电时所引 起的安全隐患, 也保证了液控单向阔的闭锁性能, 从而提高了对中缸和转 向助力缸的转向随动系统性能, 减少了安全隐患。 附图说明
图 1是本发明车辆转向随动控制系统其中一桥的液压原理结构示意图; 图 2是图 1所述车辆转向随动控制系统的控制阔组的放大示意图; 图 3A是本发明车辆转向随动控制系统的第一部分连接结构示意图; 图 3B 是图 3A所述车辆转向随动控制系统的第二部分连接结构示意 图;
图 4是本发明车辆转向随动控制方法一实施例的流程示意图; 以及 图 5是本发明车辆转向随动控制方法另一实施例的流程示意图。 具体实施方式
请参阅图 1和图 2, 本发明车辆转向随动控制系统包括控制阔组 10、 转向助力缸 11、 对中缸 12、 压力油源 13和 14以及回油箱丁和!^。 其中, P1和 P2分别表示压力油源 13和 14的液压通道。
在本实施例中, 控制阔组 10包括伺服阔 20、 液控单向阔 21、 液控换 向阔 22、 阻尼孔 23和电磁阔 24。
请进一步参阅图 2, 伺服阔 20与转向助力缸 11相连接, 用于在车轮转 向状态时控制转向助力缸 11进行转向助力。 伺服阔 20具有压力油口 Al、 回油口 A2、 第一工作油口 A3和第二工作油口 A4, 其中, 压力油口 A1与 压力油源相连接, 回油口 A2与回油箱 T相连接, 第一工作油口 A3和第二 工作油口 A4与转向助力缸 11连接。在本实施例中, 伺服阔 20采用三位四 通的结构。
液控单向阔 21包括第一液控单向阔 211和第二液控单向阔 212第一液 控单向阔 211包括第一油口 Bl、 控制油口 B2和第二油口 B3, 同理, 第二 液控单向阔 212包括第一油口 bl、 控制油口 b2和第二油口 b3, 其中, 液 控单向阔 21的第一油口 Bl、 bl均与转向助力缸 11连接, 液控单向阔 21 的第二油口 B3、 b3均与回油箱 T相连接, 液控单向阔 21的控制油口 B2、 b2均与液控换向阔 22连接。值得注意的是, 第一液控单向阔 211的第二油 口 B3和第二液控单向阔 212的第二油口 b3之间相互液压导通, 以实现两 条液压通路之间的油液互补。 在另外的实施例中, 如果转向助力缸 11为一 个, 则液控单向阔 21可以对应采用一个的方式, 在此不作限定。
液控换向阔 22包括控制油口 Cl、 工作油口 C2和回油口 C3。 其中, 液控换向阔 22的控制油口 C1与电磁阔 24和对中缸 12之间的液压回路相 连通, 其高压油液取自电磁阔 24与对中缸 12之间的液压回路; 如前所述, 液控换向阔 22的工作油口 C2与液控单向阔 21的控制油口 B2、b2相连接; 为了减少背压对液控单向阔 21的关闭性能的影响, 液控换向阔 22的回油 口 C3与回油箱 L相连接。
阻尼孔 23设于第一液控单向阔 211的第二油口 B3和第二液控单向阔 212的第二油口 b3相互液压导通的节点 213与回油箱 T之间,如图 2所示。
电磁阔 24包括压力油口 Dl、 回油口 D2和工作油口 D3, 压力油口 D1 与压力油源相连接, 电磁阔 24的回油口 D2与回油箱 T相连接, 工作油口 D3与对中缸 12相连接且与液控换向阔 22的控制油口 C1相连接。
转向助力缸 11包括设置于同一桥的第一转向助力缸 111和第二转向助 力缸 112。 如前所述, 第一液控单向阔 211的第一油口 B1与第一转向助力 缸 111 的有杆腔和第二转向助力缸 112的无杆腔相连接, 第二液控单向阔 212的第一油口 bl与第二转向助力缸 112的有杆腔和第一转向助力缸 111 的无杆腔相连接。
对中缸 12的有杆腔和无杆腔通过节点 P同时与电磁阔 24的工作油口 D3相连接, 其回油口 R则与回油箱 T相连接。
压力油源 13、 14为提供高压油液的变量泵, 包括径向柱塞泵和轴向柱 塞泵等, 在其他实施例中, 压力油源 13、 14共享一个压力油源, 而回油箱 T、 L也可以采用一个的方式,在本技术领域人员理解的范围内, 不作赘述。
下面结合其工作原理以对本发明车辆转向随动控制系统作详细的描 述。 该车辆的行驶状态包括车轮直行状态和车轮转向状态, 而该车轮转向 状态又包括车轮左转转向状态和车轮右转转向状态。
在本实施例中, 在该车轮左转转向状态时, 伺服阔 20用于控制转向助 力缸 11进行转向助力。 伺服阔 20的压力油口 A1和伺服阔 20的第一工作 油口 A3液压导通, 伺服阔 20的回油口 Α2和伺服阔 20的第二工作油口 A4液压导通; 而电磁阔 24的工作油口 D3与电磁阔 24的回油口 D2液压 导通; 同时, 液压换向阔 22的工作油口 C2和液压换向阔 22的回油口 C3 液压导通,第一液控单向阔 211的第一油口 B1和第一液控单向阔 211的第 二油口 B3之间断开, 第二液控单向阔 212的第一油口 bl和第二液控单向 阔 212的第二油口 b3之间断开。 高压油液进入到第一转向助力缸 111的有 杆腔和第二转向助力缸 112的无杆腔以进行助力, 而对中缸 12处于随动状 态, 该车辆进行左转转向。
同理, 在该车轮右转转向状态时, 伺服阔 20的压力油口 A1和伺服阔 20的第二工作油口 A4液压导通,伺服阔 20的回油口 A2和伺服阔 20的第 一工作油口 A3液压导通; 电磁阔 24的工作油口 D3与电磁阔 24的回油口 D2液压导通; 液压换向阔 22的工作油口 C2和液压换向阔 22的回油口 C3 液压导通; 第一液控单向阔 211的第一油口 B1和第一液控单向阔 211的第 二油口 B3之间断开, 第二液控单向阔 212的第一油口 bl和第二液控单向 阔 212的第二油口 b3之间断开。 高压油液进入到第二转向助力缸 112的有 杆腔和第一转向助力缸 111的无杆腔以进行助力, 而对中缸 12处于随动状 态, 该车辆进行右转转向。
而在该车轮直行状态时, 电磁阔控制对中缸 12的有杆腔和无杆腔均进 入高压油液。 电磁阔 24的压力油口 D1与电磁阔 24的工作油口 D3液压导 通; 液控换向阔 22的控制油口 C1与液控换向阔 22的工作油口 C2液压导 通使得高压油液进入到液控单向阔 21 的控制油口 B2、 b2; 第一液控单向 阔 211的第一油口 B1和第一液控单向阔 211的第二油口 B3液压导通, 第 二液控单向阔 212的第一油口 bl和第二液控单向阔 212的第二油口 b3液 压导通, 同时, 第一液控单向阔 211的第二油口 B3和第二液控单向阔 212 的第二油口 b3相互液压导通, 通过阻尼孔 23的作用, 使得第一转向助力 缸 111和第二转向助力缸 112之间进行油液互补;伺服阔 20的压力油口 A1 与伺服阔 20的回油口 A2液压导通。 上述为对本发明车辆转向随动控制系统的其中一桥的结构和工作原理 进行描述, 请进一步参阅图 3A和图 3B, 本发明实施例中, 该车辆转向随 动控制系统包括控制器 (图未示)、 第一桥 31及其对应的第一电磁阔 301、 第二桥 32及其对应的第二电磁阔 302、 第三桥 33及其对应的第三电磁阔 303和第四桥 34及其对应的第四电磁阔 304, 当然, 在其他实施例中, 可 以包括第五桥或更多, 在此不作赘述。
该车辆的行驶状态具体体现在矢量的车速 n上, 譬如大小。 该多桥的 车辆转向随动控制系统的工作过程如下。
当该车速 n不大于第一预设速度阈值 nl时, 使该第一桥 31、 第二桥 32、 第三桥 33和第四桥 34进入车轮转向状态; 此时, 第一电磁阔 301、 第 二电磁阔 302、第三电磁阔 303以及第四电磁阔 304都得电, 使得对中缸处 于随动状态。
当该车速 n大于该第一预设速度阈值 nl 且不大于第二预设速度阈值 n2时, 使该第一桥 31和第二桥 32进入车轮直行状态, 并使该第三桥 33和 第四桥 34进入车轮转向状态; 对应地, 第一电磁阔 301和第二电磁阔 302 失电, 其对应的转向助力缸处于随动状态, 而第三电磁阔 303和第四电磁 阔 304得电, 其对应的对中缸处于随动状态。
当该车速 n大于该第二预设速度阈值 n2时, 使该第一桥 31、 第二桥 32、 第三桥 33和第四桥 34进入车轮直行状态, 此时, 第一电磁阔 301、 第 二电磁阔 302、第三电磁阔 303以及第四电磁阔 304都失电, 使转向助力缸 都处于随动状态。
其中, 该第一预设速度阈值 nl和该第二预设速度阈值 n2可以根据车 辆的种类而对应设置, 另外, 对于大吨位或超大吨位的起重机而言, 第一 至第四桥也可以相应地增加或直接替换为第五桥、 第六桥、 第七桥和 /或第 八桥甚至更多, 在本技术领域人员理解的范围内, 不作赘述。
本发明实施例采用电磁阔 24控制对中缸 12的对中和随动状态, 同时 将电磁阔 24作为液控单向阔 21的先导控制开关, 以控制液控单向阔 21的 开、 关实现转向助力缸 11的随动功能和转向过程中的快速响应性, 另外, 通过液控换向阔 22确保液控单向阔 21的快速闭锁功能及可靠的锁止功能, 同时通过阻尼孔 23实现转向助力缸 11 的快速随动功能。 本发明有效地避 免了现有技术中由于采用两个电磁阔而不能同时得电和失电时所引起的安 全隐患, 也保证了液控单向阔 21 的闭锁性能, 从而提高了对中缸 12和转 向助力缸 11的转向随动系统性能, 减少了安全隐患。 另外, 本实施例均采 用常用的液压元件, 有效地控制了生产成本。
请参阅图 4, 在本实施例中, 本发明车辆转向随动控制方法包括: 步骤 S401 , 判断该车辆的行驶状态, 如果处于车轮转向状态时, 执行 步骤 S402, 如果处于车轮直行状态时, 执行步骤 403。 如前所述, 通过控 制器控制多桥的车辆转向随动控制系统中的每一桥的对中缸和转向助力缸 的随动状态。
步骤 S402, 控制电磁阔使对中缸的有杆腔和无杆腔均与回油箱连通, 控制伺服阔使高压油液进入转向助力缸。
步骤 S403, 该电磁阔使高压油液同时进入对中缸和液控换向阔, 通过 该液控换向阔控制液控单向阔的第一油口和第二油口之间液压导通, 使得 该转向助力缸的第一转向助力缸和第二转向助力缸之间互相导通。
本发明车辆转向随动控制方法其具体工作原理请参阅前面针对车辆转 向随动控制系统的描述, 在本技术领域人员理解的范围内, 不作赘述。
请参阅图 5, 在本实施例中, 本发明车辆转向随动控制方法包括: 步骤 S500, 开始。
步骤 S501 , 判断该车辆的车速 n, 当该车速 n 第一预设速度阈值 nl 时,执行步骤 S502,当该车速 n>第二预设速度阈值 n2时,执行步骤 S503, 当 nl <n n2时, 执行步骤 S504。
步骤 S502, 使该第一桥、第二桥、第三桥和第四桥进入车轮转向状态。 步骤 S503, 使该第一桥、第二桥、第三桥和第四桥进入车轮直行状态。 步骤 S504, 使该第一桥和第二桥进入车轮直行状态, 即第一桥和第二 桥执行步骤 S506, 并使该第三桥和第四桥进入车轮转向状态, 即第三桥和 第四桥执行步骤 S505。
步骤 S505, 控制电磁阔使对中缸的有杆腔和无杆腔均与回油箱连通, 控制伺服阔使高压油液进入转向助力缸。
步骤 S506, 该电磁阔使高压油液同时进入对中缸和液控换向阔, 通过 该液控换向阔控制液控单向阔的第一油口和第二油口之间液压导通, 使得 该转向助力缸的第一转向助力缸和第二转向助力缸之间互相导通。
其中, 该第一预设速度阈值 nl和该第二预设速度阈值 n2可以根据车 辆的种类而对应设置, 而在其他实施例中, 对于大吨位或超大吨位的起重 机而言, 第一至第四桥也可以相应地增加或直接替换为第五桥、 第六桥、 第七桥和 /或第八桥甚至更多,在本技术领域人员理解的范围内, 不作赘述。
本发明车辆转向随动控制方法其具体工作原理请参阅前面针对车辆转 向随动控制系统的描述, 在本技术领域人员理解的范围内, 不作赘述。
本发明车辆转向随动控制方法有效地避免了现有技术中由于采用两个 电磁阔而不能同时得电和失电时所引起的安全隐患, 也保证了液控单向阔 的闭锁性能, 从而提高了对中缸和转向助力缸的转向随动系统性能, 减少 了安全隐患。
本发明还提供一种工程机械车辆, 包括上述的车辆转向随动控制系统 和方法, 通过该车辆转向随动控制系统和方法可实现对小型、 中型以及大 型的工程机械车辆进行控制, 譬如大吨位、 超大吨位汽车的轮式起重机或 全地面起重机等流动式起重机等, 当然, 也可以为一般的工程机械车辆, 在此不作限定。 本发明可以有效地提高对中缸和转向助力缸的转向随动系 统性能, 减少了安全隐患。
本发明工程机械车辆、 车辆转向随动控制系统和方法有效地避免了现 有技术中由于采用两个电磁阔而不能同时得电和失电时所引起的安全隐 患, 也保证了液控单向阔的闭锁性能, 从而提高了对中缸和转向助力缸的 转向随动系统性能, 减少了安全隐患。
以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡 是利用本发明说明书及附图内容所作的等效结构或等效流程变换, 或直接 或间接运用在其他相关的技术领域, 均同理包括在本发明的专利保护范围 内。

Claims

权利要求
1. 一种车辆转向随动控制系统, 其特征在于, 包括控制阔组、 转向助 力缸和对中缸, 所述控制阔组包括:
伺服阔, 所述伺服阔与所述转向助力缸相连接, 用于在车轮转向状态 时控制所述转向助力缸进行转向助力;
电磁阔, 所述电磁阔与所述对中缸相连接, 用于在车轮直行状态时控 制所述对中缸的有杆腔和无杆腔均进入高压油液;
液控单向阔, 所述液控单向阔包括第一油口、 第二油口和控制油口, 所述液控单向阔的第一油口与所述转向助力缸连接, 所述液控单向阔的第 二油口与回油箱相连接;
液控换向阔, 所述液控换向阔包括控制油口和工作油口, 所述液控换 向阔的控制油口与所述电磁阔和所述对中缸之间的液压回路相连通, 所述 液控换向阔的工作油口与所述液控单向阔的控制油口相连接;
其中, 在车轮直行状态时, 所述液控换向阀控制所述液控单向阀的第 一油口和第二油口之间双向液压导通。
2. 根据权利要求 1所述的系统, 其特征在于, 所述液控单向阔包括第 一液控单向阔和第二液控单向阔, 所述转向助力缸包括第一转向助力缸和 第二转向助力缸, 所述第一液控单向阔的第一油口与所述第一转向助力缸 的有杆腔和所述第二转向助力缸的无杆腔相连接, 所述第二液控单向阔的 第一油口与所述第二转向助力缸的有杆腔和所述第一转向助力缸的无杆腔 相连接, 所述第一液控单向阔的第二油口和所述第二液控单向阔的第二油 口相互液压导通。
3. 根据权利要求 2所述的系统, 其特征在于, 所述伺服阔包括压力油 口、 回油口、 第一工作油口和第二工作油口, 所述伺服阔的第一工作油口 与所述第一转向助力缸的有杆腔和所述第二转向助力缸的无杆腔相连接, 所述伺服阔的第二工作油口与所述第二转向助力缸的有杆腔和所述第一转 向助力缸的无杆腔相连接, 所述伺服阔的压力油口与压力油源相连接, 所 述伺服阔的回油口与回油箱相连接;
所述电磁阔包括压力油口、 回油口和工作油口, 所述工作油口与所述 对中缸相连接且与所述液控换向阔的控制油口相连接, 所述电磁阔的压力 油口与压力油源相连接, 所述电磁阔的回油口与回油箱相连接。
4. 根据权利要求 3所述的系统, 其特征在于, 在所述第一液控单向阔 的第二油口和所述第二液控单向阔的第二油口相互液压导通的节点与回油 箱之间设有阻尼孔, 所述阻尼孔用于在车轮直行状态时限流, 使得所述第 一转向助力缸和所述第二转向助力缸之间进行油液互补。
5. 根据权利要求 4所述的系统, 其特征在于, 所述液控换向阔还包括 与回油箱相连接的回油口。
6. 根据权利要求 5所述的系统, 其特征在于, 所述车轮转向状态包括 车轮左转转向状态和车轮右转转向状态:
在所述车轮左转转向状态时, 所述伺服阔的压力油口和所述伺服阔的 第一工作油口液压导通, 所述伺服阔的回油口和所述伺服阔的第二工作油 口液压导通, 所述电磁阔的工作油口与所述电磁阔的回油口液压导通, 所 述液压换向阔的工作油口和所述液压换向阔的回油口液压导通, 所述第一 液控单向阔的第一油口和所述第一液控单向阔的第二油口之间断开, 所述 第二液控单向阔的第一油口和所述第二液控单向阔的第二油口之间断开; 在所述车轮右转转向状态时, 所述伺服阔的压力油口和所述伺服阔的 第二工作油口液压导通, 所述伺服阔的回油口和所述伺服阔的第一工作油 口液压导通, 所述电磁阔的工作油口与所述电磁阔的回油口液压导通, 所 述液压换向阔的工作油口和所述液压换向阔的回油口液压导通, 所述第一 液控单向阔的第一油口和所述第一液控单向阔的第二油口之间断开, 所述 第二液控单向阔的第一油口和所述第二液控单向阔的第二油口之间断开; 在所述车轮直行状态时, 所述电磁阔的压力油口与所述电磁阔的工作 油口液压导通, 所述液控换向阔的控制油口与所述液控换向阔的工作油口 液压导通使得高压油液进入到所述液控单向阔的控制油口, 所述第一液控 单向阔的第一油口和所述第一液控单向阔的第二油口液压导通, 所述第二 液控单向阔的第一油口和所述第二液控单向阔的第二油口液压导通, 所述 第一液控单向阔的第二油口和所述第二液控单向阔的第二油口相互液压导 通, 所述伺服阔的压力油口与所述伺服阔的回油口液压导通。
7. 一种工程机械车辆, 其特征在于, 包括根据权利要求 1~6任一项所 述的车辆转向随动控制系统。
8. 一种车辆转向随动控制方法, 其特征在于, 包括:
判断所述车辆的行驶状态;
当判断到处于车轮转向状态时, 控制电磁阔使对中缸的有杆腔和无杆 腔均与回油箱连通, 控制伺服阔使高压油液进入转向助力缸;
当判断到处于车轮直行状态时, 所述电磁阔使高压油液同时进入对中 缸和液控换向阔, 通过所述液控换向阔控制液控单向阔的第一油口和第二 油口之间液压导通, 使得所述转向助力缸的第一转向助力缸和第二转向助 力缸之间互相导通。
9. 根据权利要求 8所述的方法, 其特征在于, 所述液控单向阀包括第 一液控单向阔和第二液控单向阔, 所述通过所述液控换向阔控制液控单向 阔的第一油口和第二油口之间液压导通, 使得所述转向助力缸的第一转向 助力缸和第二转向助力缸之间互相导通的步骤中包括:
将所述第一液控单向阔的第二油口和第二液控单向阔的第二油口之间 液压导通, 并通过阻尼孔的作用使得所述第一转向助力缸和所述第二转向 助力缸之间进行油液互补。
10. 根据权利要求 8或 9所述的方法, 其特征在于, 所述车辆至少包 括依序排列的第一桥、 第二桥、 第三桥和第四桥, 所述判断所述车辆的行 驶状态的步骤包括:
判断所述车辆的车速;
当所述车速不大于第一预设速度阈值 时, 使所述第一桥、 第二桥、 第 三桥和第四桥进入车轮转向状态;
当所述车速大于所述第一预设速度阈值 且不大于第二预设速度阈值 时, 使所述第一桥和第二桥进入车轮直行状态, 并使所述第三桥和第四桥 进入车轮转向状态;
当所述车速大于所述第二预设速度阈值 时, 使所述第一桥、 第二桥、 第三桥和第四桥进入车轮直行状态。
PCT/CN2012/082153 2011-12-21 2012-09-27 工程机械车辆、车辆转向随动控制系统及方法 WO2013091424A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110433026.1 2011-12-21
CN201110433026.1A CN102530064B (zh) 2011-12-21 2011-12-21 工程机械车辆、车辆转向随动控制系统及方法

Publications (1)

Publication Number Publication Date
WO2013091424A1 true WO2013091424A1 (zh) 2013-06-27

Family

ID=46338425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082153 WO2013091424A1 (zh) 2011-12-21 2012-09-27 工程机械车辆、车辆转向随动控制系统及方法

Country Status (2)

Country Link
CN (1) CN102530064B (zh)
WO (1) WO2013091424A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105235739A (zh) * 2015-10-22 2016-01-13 湖北三江航天万山特种车辆有限公司 一种带随动转向桥控制的半挂车制动系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102530064B (zh) * 2011-12-21 2014-02-26 中联重科股份有限公司 工程机械车辆、车辆转向随动控制系统及方法
CN102862600B (zh) * 2012-09-27 2015-09-02 中联重科股份有限公司 车辆对中控制系统和车辆
CN102951198B (zh) * 2012-11-14 2016-03-23 三一重工股份有限公司 一种车辆及液压转向驱动系统
CN106627754B (zh) * 2016-12-30 2019-03-29 中联重科股份有限公司 对中油缸控制系统和方法、电液控制转向系统及工程车辆
CN111874093B (zh) * 2019-04-22 2022-02-08 中国北方车辆研究所 一种前桥转向的操作方法及其操作系统
CN110304138B (zh) * 2019-07-15 2020-08-28 徐州重型机械有限公司 车辆液控转向系统及控制方法
CN111976829B (zh) * 2020-08-27 2022-04-05 徐工集团工程机械有限公司 全液压转向车辆和全液压转向车辆的转向方法
CN112623024B (zh) * 2020-12-30 2022-07-12 徐州徐工挖掘机械有限公司 转向系统及工程车辆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245618A1 (de) * 2002-09-30 2004-04-15 Liebherr-Werk Ehingen Gmbh Aktive Hinterachslenkung für einen Fahrzeugkran
JP2009190583A (ja) * 2008-02-15 2009-08-27 Tcm Corp 作業車両のステアリング装置
CN101947975A (zh) * 2010-09-28 2011-01-19 中国三江航天工业集团公司特种车辆技术中心 一种数控后组转向控制装置
CN102079331A (zh) * 2010-12-27 2011-06-01 长沙科达建设机械制造有限公司 轮式车辆多种行驶转向方式液压控制装置
CN201907559U (zh) * 2010-12-06 2011-07-27 徐州重型机械有限公司 六轴汽车底盘起重机及其转向控制系统
CN102530064A (zh) * 2011-12-21 2012-07-04 中联重科股份有限公司 工程机械车辆、车辆转向随动控制系统及方法
CN202368642U (zh) * 2011-12-21 2012-08-08 中联重科股份有限公司 工程机械车辆和车辆转向随动控制系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3905438A (en) * 1974-11-01 1975-09-16 Westinghouse Air Brake Co Hydraulic steering system for off-highway vehicle
WO1981002553A1 (en) * 1980-03-03 1981-09-17 Caterpillar Tractor Co Hydraulic servo steering system
CN200981579Y (zh) * 2006-01-27 2007-11-28 中国三江航天工业集团公司 多轴分组转向装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245618A1 (de) * 2002-09-30 2004-04-15 Liebherr-Werk Ehingen Gmbh Aktive Hinterachslenkung für einen Fahrzeugkran
JP2009190583A (ja) * 2008-02-15 2009-08-27 Tcm Corp 作業車両のステアリング装置
CN101947975A (zh) * 2010-09-28 2011-01-19 中国三江航天工业集团公司特种车辆技术中心 一种数控后组转向控制装置
CN201907559U (zh) * 2010-12-06 2011-07-27 徐州重型机械有限公司 六轴汽车底盘起重机及其转向控制系统
CN102079331A (zh) * 2010-12-27 2011-06-01 长沙科达建设机械制造有限公司 轮式车辆多种行驶转向方式液压控制装置
CN102530064A (zh) * 2011-12-21 2012-07-04 中联重科股份有限公司 工程机械车辆、车辆转向随动控制系统及方法
CN202368642U (zh) * 2011-12-21 2012-08-08 中联重科股份有限公司 工程机械车辆和车辆转向随动控制系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105235739A (zh) * 2015-10-22 2016-01-13 湖北三江航天万山特种车辆有限公司 一种带随动转向桥控制的半挂车制动系统
CN105235739B (zh) * 2015-10-22 2018-05-11 湖北三江航天万山特种车辆有限公司 一种带随动转向桥控制的半挂车制动系统

Also Published As

Publication number Publication date
CN102530064B (zh) 2014-02-26
CN102530064A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2013091424A1 (zh) 工程机械车辆、车辆转向随动控制系统及方法
CN102951198B (zh) 一种车辆及液压转向驱动系统
CN102862603B (zh) 比例转向阀、比例转向液压回路、比例转向系统及车辆
US9533704B2 (en) Electric-control multimode steering valve, steering hydraulic control system, and wheel type crane
CN102673639B (zh) 液压转向控制系统及具有该系统的起重机
CN107856732B (zh) 用于多模式控制的电液转向液压系统
CN204341185U (zh) 四模式转向液压控制系统及具有其的车辆
CN106741158B (zh) 双向行驶车辆转向系统
CN202368642U (zh) 工程机械车辆和车辆转向随动控制系统
CN104661899B (zh) 用于车辆后从动轴的转向系统
CN103950850B (zh) 汽车起重机回转平台液压制动系统
CN102700604B (zh) 转向油缸结构、转向装置和电控转向车桥
CN106090307A (zh) 一种用于电液转向系统的两位五通型电磁换向阀
CN103895699B (zh) 一种转向装置及遥控转向系统
CN109017981B (zh) 行走机械及其液压转向系统
CN104661900A (zh) 用于车辆的后从动轴的转向系统
CN106240634B (zh) 铰接式双向驾驶车辆全液压转向系统
CN111038579B (zh) 一种电驱底盘转向控制阀组控制装置
CN103895700B (zh) 一种转向装置及遥控转向系统
CN209414288U (zh) 行走底盘控制系统和工程机械
CN202449055U (zh) 全液压转向控制系统及越野起重机
WO2014047874A1 (zh) 比例转向阀、比例转向液压回路、比例转向系统及车辆
WO2014047842A1 (zh) 车辆对中控制系统和车辆
CN105485082B (zh) 一种转向控制阀
CN107879290A (zh) 一种多向叉车前轮转向的放大机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12859852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12859852

Country of ref document: EP

Kind code of ref document: A1