WO2014047842A1 - 车辆对中控制系统和车辆 - Google Patents

车辆对中控制系统和车辆 Download PDF

Info

Publication number
WO2014047842A1
WO2014047842A1 PCT/CN2012/082189 CN2012082189W WO2014047842A1 WO 2014047842 A1 WO2014047842 A1 WO 2014047842A1 CN 2012082189 W CN2012082189 W CN 2012082189W WO 2014047842 A1 WO2014047842 A1 WO 2014047842A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cylinder
centering
pressure
port
Prior art date
Application number
PCT/CN2012/082189
Other languages
English (en)
French (fr)
Inventor
詹纯新
刘权
宋院归
李英智
张建军
张虎
李义
Original Assignee
中联重科股份有限公司
湖南中联重科专用车有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联重科股份有限公司, 湖南中联重科专用车有限责任公司 filed Critical 中联重科股份有限公司
Priority to PCT/CN2012/082189 priority Critical patent/WO2014047842A1/zh
Publication of WO2014047842A1 publication Critical patent/WO2014047842A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/142Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering specially adapted for particular vehicles, e.g. tractors, carts, earth-moving vehicles, trucks
    • B62D7/144Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering specially adapted for particular vehicles, e.g. tractors, carts, earth-moving vehicles, trucks for vehicles with more than two axles

Definitions

  • the present invention relates to vehicle steering and centering systems, and more particularly to a vehicle centering control system having a flexible lock and a centering tendency.
  • FIG. 1 is a hydraulic assisting device in a vehicle steering and centering system disclosed in Chinese Patent No. CN102030037A, in which a centering is installed between the front and rear sides of the axle 13 and between the left and right wheels 14 Cylinder 5 and two steering assist cylinders 15.
  • a steering assist cylinder 15 on the side of the axle 13 and an extended end of the centering cylinder 5 are respectively hinged at both ends of the connecting rod 16 connected to the knuckle arm of the side wheel 14, and the middle portion of the connecting rod 16 passes
  • the hinge shaft 17 is hinged to the axle 13.
  • the steering assist cylinder 15 realizes the deflection of the side wheel 14 by pushing the link 16.
  • the extended end of one of the steering assist cylinders 15 on the other side of the axle 13 is directly connected to the knuckle arm of the other side wheel 14 to urge the other side wheel 14 to turn.
  • the steering wheel 15 can be pushed to the left or right by the steering assist cylinder 15, in which case the centering cylinder 5 is required to follow the corresponding movement of the steering assist cylinder 15.
  • the extended end of the steering assist cylinder 15 can be locked by locking the extended end of the centering cylinder 5, i.e., the centering cylinder 5 is in a locked state, so that the vehicle can be kept in a straight state.
  • two or more commutation widths are generally used to respectively control the oil inlet and return oil passages of the centering cylinder, and combined with the control wide group of the steering assist cylinder 15
  • Control, control logic is complex, and it requires two commutations to be powered or de-energized at the same time, so the reliability is poor and there are security risks.
  • the piston rod 10 moves toward the end of the cylinder 9 and pushes the first piston 11 or the second piston 12 to move as well.
  • the first piston 11 and the second piston 12 and the cylinder 9 have a large frictional force, the first piston 11 or the second piston 12 at the end position of the cylinder 9 cannot follow or immediately follow the movement of the piston rod 10. .
  • the pressure oil source is required to push the first piston 11 or the second piston 12 back to the initial position, so that the response speed is relatively slow and a certain impact is caused due to the large stroke of the piston rod 10. , increased the volume of the pressure oil source.
  • the present invention provides a vehicle centering control system including a pressure oil source, a centering cylinder, a fuel tank, a pressure control width, and a commutation width, and the pressure control is widely used for controlling the a maximum pressure value of the oil flowing into the rod chamber and the rodless chamber of the middle cylinder, wherein the commutation is disposed at a flow path of the pressure oil source to the centering cylinder of the centering cylinder.
  • the rod chamber and the rodless chamber which are used to control the centering cylinder, are connected to the pressure oil source in a locked state of the centering cylinder and are connected to the tank in a neutral state of the centering cylinder.
  • the centering control system further comprises a one-way width, the one-way width being disposed on the oil inlet path between the pressure oil source and the commutation width.
  • the pressure control is wide to a first overflow
  • the first overflow includes a first port and a second port
  • the first overflowing first port is connected to the one-way
  • a second oil port on the oil inlet path between the wide and the centering cylinder and the first overflow is connected to the oil tank.
  • the pressure oil source is a constant pressure pump, and the overflow pressure of the first relief valve is greater than The constant pressure and wide oil pressure.
  • the commutation width comprises a pressure oil port, a oil return port and a working oil port
  • the commutating wide working oil port is connected to the centering cylinder, and the reversing wide pressure port connection device
  • the source of pressurized oil and the reversing oil return port are connected to the fuel tank.
  • the centering cylinder includes a cylinder and a piston rod, a first piston and a second piston disposed in the cylinder, one end of the piston rod is disposed between the first piston and the second piston, and One end passes through the first piston and passes out from the end of the cylinder, wherein a rod cavity and a rodless cavity at both ends of the cylinder are connected to the commutating working oil port, the centering cylinder An oil return port is disposed thereon, and an intermediate cavity between the first piston and the second piston communicates with the oil tank through a oil return port of the centering cylinder.
  • the centering control system further includes a back pressure wide disposed on the oil passage between the commutation width and the oil tank, the back pressure being wide for the centering in the neutral state of the centering cylinder
  • the oily liquid phase in the rod chamber and the rodless chamber of the cylinder has a back pressure on the oil in the intermediate chamber.
  • the back pressure is wide to a second overflow
  • the second overflow includes a first port and a second port
  • the second overflowing first port connects the commutation
  • the oil return port of the second overflow is connected to the fuel tank.
  • the present invention also provides a vehicle comprising the above described vehicle centering control system in accordance with the present invention.
  • the vehicle is provided with a heat dissipation motor, and the oil return oil passage of the heat dissipation motor is connected to the second overflow wide first oil port.
  • the vehicle centering control system by connecting the oil return port of the centering cylinder to the oil tank, a single commutation width is set in the oil inlet passage of the centering cylinder to control the oil inlet passage.
  • the high-pressure oil or low-pressure oil is introduced into the middle, so that the control cylinder is in a locked state or a follow-up state, and the control logic is simple and reliable.
  • the instantaneous excitation can be released instantly in the locked state of the centering cylinder, and the flexible locking of the center cylinder is realized, thereby avoiding the impact of the instantaneous excitation on the structural member.
  • a one-way wide can be set to help lock the center cylinder. It also prevents the instantaneous excitation transfer from acting into the pressurized fluid.
  • Figure 1 is a schematic illustration of the construction of a hydraulic booster for a vehicle steering and centering system in accordance with the prior art
  • FIG. 2 is a schematic view showing the hydraulic principle of a vehicle centering control system in accordance with a preferred embodiment of the present invention
  • Figure 3 is an enlarged schematic view of the centering cylinder control wide group of Figure 2;
  • Figure 4 is an enlarged schematic view of the back pressure portion of Figure 2;
  • Figure 5 is a schematic structural view of the centering cylinder portion of Figure 2;
  • Figure 6 is a schematic view showing the hydraulic principle of the single-bridge control circuit after the vehicle centering control system of Figure 2;
  • Figure 7 is a schematic view showing the state of the single-bridge control loop shown in Figure 6 when the wheel is turned right;
  • Figure 8 is a schematic view showing the state of the single-bridge control loop shown in Figure 6 when the wheel is turned to the left.
  • the present invention provides a vehicle centering control system including a pressure oil source 1, a centering cylinder 5, and a fuel tank 6.
  • the centering control system also includes The pressure control is wide and the commutation width is 4, and the pressure control is widely used to control the maximum pressure value of the oil in the rod chamber and the rodless chamber of the center cylinder 5, that is, the highest of the two chambers of the center cylinder 5 is restricted.
  • the pressure, the reversing width 4 is set on the oil inlet path of the pressure oil source 1 to the centering cylinder 5, and the reversing width 4 is used to control the rod cavity and the rodless cavity of the centering cylinder 5 to be connected in the locked state of the centering cylinder.
  • the pressure oil source 1 is connected to the fuel tank 6 while the centering cylinder is being driven.
  • the centering cylinder 5 and the steering assist cylinder 15 are generally disposed in the steering axle of the vehicle, and the centering cylinder 5 is controlled by a separate hydraulic circuit to make the control logic simple and reliable.
  • the control of the steering assist cylinder 15 and the following control of the center cylinder 5 and the steering assist cylinder 15 can be used in the prior art, and will not be described herein.
  • the return oil passage of the centering cylinder 5 is directly connected to the system return oil passage, that is, the oil tank 6.
  • the rod chamber and the rodless chamber of the centering cylinder 5 are selectively connected to the pressure oil source 1 or the oil tank 6, thereby controlling the rod chamber of the center cylinder 5.
  • the high-pressure oil or the low-pressure oil is introduced into the rodless chamber, so that the centering cylinder 5 is correspondingly in a locked state or a follow-up state.
  • the commutation width 4 can be electromagnetic wide, servo wide, etc., and can include a pressure port, a return port and a working port.
  • the working port of the reversing width 4 is connected with the centering cylinder 5, and is changed.
  • the pressure oil source 1 is connected to the pressure port of the wide 4 and the oil return port of the reversing width 4 is connected to the oil tank 6.
  • the commutation width is 4, the electromagnet is wide, and the electromagnetic oil is in the de-energized state, and the pressurized oil enters the two chambers of the center cylinder 5, so that the wheel 14 is in a straight state.
  • the steering assist cylinder 15 is activated.
  • the middle cylinder 5 needs to be in the follow-up state, and the electromagnetic width is in the power-on state according to the control, so that the oil inlet passage of the center cylinder 5 is connected to the oil tank 6, and the centering cylinder 5 is in the follow-up state, and the control logic is simple and clear. High reliability.
  • the oil inlet passage here is for the centering cylinder 5, and the rod chamber and the rodless chamber at both ends of the center cylinder 5 are connected to an oil inlet passage, and the inlet oil passage can be Connecting the pressure oil source or the return tank (ie, the fuel tank 6), and setting the return port and the return oil passage to the intermediate chamber of the center cylinder 5, the return oil passage can also be connected to the pressure oil source or the return tank, but the present invention
  • the return oil passage of the centering cylinder 5 is directly returned to the return tank, which will be described below.
  • a unidirectional width 2 is also set in the oil inlet passage, and the unidirectional width 2 is disposed between the pressure oil source 1 and the commutation width 4, so that the high pressure oil can only pass from the pressure oil source 1 to the centering Cylinder 5 is difficult to return
  • the flow prevents the instantaneous excitation from acting on the pressure oil source 1, avoiding the impact on the pressure oil source 1, and also preventing the excitation interaction between the axles.
  • the pressure control of the centering cylinder 5 can also be widened to release the instantaneous excitation in the locked state of the centering cylinder, which will be described in detail below.
  • the locking operation of the middle cylinder 5 can be realized by setting the reversing width 4, and the flexible locking of the center cylinder 5 can be realized by setting the unidirectional width 2 and the pressure control to avoid the instantaneous excitation pair. The impact of the structural parts.
  • the pressure control may be a wide variety of pressure control wide or wide groups, and it is preferable to use an overflow in the present embodiment.
  • the first overflow width 3 used as the pressure control width may include a first oil port and a second oil port, and the first oil port of the first overflow wall 3 is connected to the one-way width. 2 is connected to the oil inlet passage between the centering cylinder 5 and the second oil port is connected to the oil tank 6.
  • 3 is a centering cylinder control wide group 100 shown in the virtual box of FIG.
  • the centering cylinder control wide group 100 includes a unidirectional width 2, a first overflow width 3, and a commutation width 4, wherein
  • the first port of the overflow 3 is preferably connected to the oil path between the unidirectional width 2 and the reversing width 4 by means of a node for limiting the highest pressure in the oil inlet passage of the centering cylinder 5.
  • the pressure oil source 1 in the present invention is preferably a constant pressure pump, for example, a constant pressure pump having an oil pressure of 20 MPa, and the overflow pressure value of the first overflow width 3 is designed to be slightly larger than constant.
  • the oil pressure in the swell, the first overflow width 3 shown in Figure 3 has an overflow pressure of 23 MPa.
  • the pressure on the left or right end of the center cylinder 5 is increased, and the instantaneous high pressure oil in the oil inlet passage is exceeded.
  • the overflow pressure value (for example, 23 MPa) set in the overflow width 3 can overflow from the first overflow width 3 and flow to the oil tank 6, thereby releasing the instantaneous excitation, thereby realizing the flexible locking of the center cylinder 5, Avoid the impact of transient excitation on the structural members. After the transient excitation, the high pressure oil is replenished by a constant pressure pump.
  • the centering cylinder includes a cylinder block 9 and a piston rod 10 disposed in the cylinder block 9, a first piston 11 and a second piston 12, one end of which is disposed at Between the first piston 11 and the second piston 12, the other end passes through the first piston 11 and passes through the end of the cylinder block 9, wherein the rod body and the rodless cavity at both ends of the cylinder block 9 and the commutation width 4
  • the working oil ports are connected, and the oil return port is provided on the center cylinder, and the intermediate cavity between the first piston 11 and the second piston 12 communicates with the oil tank 6 through the oil return port of the centering cylinder.
  • the back pressure is preferably set on the oil inlet path between the reversing width 4 and the oil tank 6 to be in the state of the centering cylinder.
  • the oil-liquid phase in the rod chamber and the rodless chamber of the centering cylinder 5 is caused to have a back pressure against the oil in the intermediate chamber.
  • the wheel 14 is switched to the straight state by the steering process, that is, when the high pressure oil is supplied, the running stroke of the first piston 11 or the second piston 12 is small, and the response speed is further Fast, the centering trend is better, so the volume of the constant pressure pump that provides the pressure oil source for the middle cylinder can be reduced, the cost is saved, and the impact due to the large stroke centering is also reduced.
  • the back pressure can be designed as a second overflow width 7.
  • the second overflow wall 7 includes a first oil port and a second oil port, and the first oil port of the second overflow wall 7 is connected to the oil return port of the reversing width 4, and the second The second port of the overflow width 7 is connected to the fuel tank 6.
  • the overflow pressure value of the second overflow width 7 is set to 2.2 MPa, which has a certain pressure value with respect to the oil in the fuel tank 6 whose pressure is almost negligible.
  • other oil passages having a certain pressure value on the vehicle may be introduced on the basis of the second overflow width 7 to be connected to the neutral cylinder.
  • the return oil circuit of the heat dissipation motor 8 can be introduced.
  • the pressure value in the return oil passage of the heat dissipation motor 8 is substantially equivalent to the overflow pressure value of the second overflow width 7, which can be connected to the first port of the second overflow width 7. .
  • the return oil path of the heat-dissipating motor 8 has the characteristics of continuous flow and low flow rate, which can meet the requirements for the use of the medium-cylinder 5, and does not cause the system to generate heat, and can be complemented with the centering cylinder 5 by oil and liquid.
  • FIG. 6 it is a schematic diagram of the hydraulic principle of the single-bridge control loop after the vehicle centering control system of the present invention is used.
  • the commutating wide control group adopts electromagnetic wide, and the pressure control is wide and the overflow control is wide.
  • the steering control loops of the two steering assist cylinders 15 can also adopt a separate constant pressure pump, and the high pressure oil in the constant pressure pump passes through the first
  • the steering control block 101 selectively opens into the rodless cavity of the right end steering assist cylinder 15 of the axle 13 and the rodless cavity of the left end steering assist cylinder 15 to urge the wheel 14 to deflect to the left as shown in Fig. 8, or vice versa Passing into the rodless cavity of the right-hand steering assist cylinder 15 and the rod-shaped cavity of the left-end steering assist cylinder 15 to urge the wheel 14 to be as shown in FIG. Right deflection.
  • the orientation words "left and right” as used herein and in the following description respectively indicate the directions of the longitudinal ends of the axle, that is, the upper ends of the axles 13 in Figs. 6, 7, and 8 are the right ends, and the lower ends are the left ends.
  • the oil source enters the right-end steering assist cylinder 15 In the rod-cavity of the rodless chamber and the left end steering assist cylinder 15, the right end of the axle 13 is turned into the rod chamber of the boost cylinder 15 and the rodless chamber of the left end steering assist cylinder 15 is passed into the tank 6.
  • the centering cylinder control wide group 100 including the one-way wide 2, the commutation width 4 and the first overflow width 3 is energized, so that the centering cylinder 5 is in a follow-up state.
  • the steering assist cylinder 15 pushes the wheel 14 and the link 16, the knuckle arm (not shown) to rotate, and the link 16 drives the piston rod 10 of the centering cylinder 5 to extend, and at the same time, the piston rod 10 pushes the first piston 11 to the right end.
  • the wheel 14 turns from the right to the left, and the connecting rod 16 drives the piston rod 10 of the centering cylinder to retract, and the first piston 11 acts to build back the back pressure.
  • the friction against the inside of the center cylinder 5 is overcome, and the movement of the piston rod 10 is followed.
  • the wheel 14 is ensured to be switched from the turning process to the centering process, the movement strokes of the first piston 11 and the second piston 12 are small, and the response is accelerated.
  • the overflow is also separately set to prevent the impact of the instantaneous excitation.
  • the pressure value of the high-pressure oil flowing into the steering assist cylinder 15 should be less than the pressure value of the high-pressure oil in the center cylinder 5, and the pressure value of the high-pressure oil flowing into the steering assist cylinder 15 in Fig.
  • the pressure value of the high pressure oil in the middle cylinder 5 is less than or equal to 23 MPa, so as to avoid the centering cylinder 5 losing the centering lock state when the high pressure oil is supplied to both the steering assist cylinder 15 and the centering cylinder 5. Accordingly, when the second steering control width 102 is cut off and the lower end of the first steering control width 101 is energized, the steering of the wheel shown in FIG. 8 is reversed, and the steering and centering control processes are reversed. When the wheel 14 shown in FIG. 6 is in the straight state, the first steering control width 101 is cut off and the second steering control width 102 is turned on, and both the rod cavity and the rodless cavity of the two steering assist cylinders 15 are connected to the oil tank 6 .
  • the present invention accordingly also provides a vehicle comprising the above-described vehicle centering control system of the present invention.
  • a vehicle is preferably a large-tonnage construction machine vehicle having a steering axle such as a truck crane.
  • the flexible lock when the vehicle goes straight can be realized.
  • the centering cylinder has a good centering tendency, and the impact when the steering process is switched to the centering process is small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Actuator (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种车辆对中控制系统,包括压力油源(1)、单向阀(2)、压力控制阀(3)、换向阀(4)、对中缸(5)和油箱(6),压力控制阀(3)用于控制对中缸(5)的有杆腔和无杆腔中所通入的油液的最大压力值,单向阀(2)和换向阀(4)依次设置在压力油源流向对中缸(5)的进油油路上,换向阀(4)用于控制对中缸(5)的有杆腔和无杆腔在对中缸(5)锁定状态下连接压力油源(1)并在对中缸(5)随动状态下连接油箱(6)。此外,该系统还可包括设置在换向阀(4)与油箱(6)之间的油路上的背压阀(7),以在对中缸(5)随动状态下使得对中缸(5)的有杆腔和无杆腔中的油液相对于中间腔的油液形成有背压。该车辆对中控制系统的控制逻辑简单可靠,能实现对中缸的柔性锁定和获得较佳的对中趋势。

Description

车辆对中控制系统和车辆
技术领域
本发明涉及车辆转向和对中系统, 具体地, 涉及一种具有柔性锁定和 具有对中趋势的车辆对中控制系统。 背景技术
在车辆转向和对中系统的设计中, 对于大吨位工程机械车辆而言, 通 常采用液压助力的方式以方便快捷地进行转向或对中, 使车辆拐弯或直行。 因此, 如图 1所示的是中国专利 CN102030037A中所公开的一种车辆转向 和对中系统中的液压助力装置, 在车桥 13 的前后两侧以及左右两车轮 14 之间安装有一个对中缸 5和两个转向助力缸 15。其中, 车桥 13—侧的一个 转向助力缸 15和对中缸 5的伸出端分别铰接在与该侧车轮 14的转向节臂 相连的连杆 16的两端, 该连杆 16的中部通过铰接轴 17铰接在车桥 13上。 转向助力缸 15通过推动连杆 16实现该侧车轮 14的偏转。 车桥 13另一侧 的一个转向助力缸 15的伸出端则直接连接到该另一侧车轮 14的转向节臂 上以推动该另一侧车轮 14转向。 这样, 当车辆需要左转或右转时, 可通过 转向助力缸 15推动车轮 14向左或向右偏转, 此时需要对中缸 5处于随动 状态, 即跟随转向助力缸 15的相应运动。 当车辆需要直行时, 则可通过锁 定对中缸 5的伸出端来锁定转向助力缸 15的伸出端, 即对中缸 5处于锁定 状态, 从而可使得车辆保持直行状态。 对于对中缸 5 的对中控制, 通常采 用 2个或更多个换向阔来分别控制对中缸的进油油路和回油油路, 并且结 合转向助力缸 15的控制阔组进行联合控制, 控制逻辑复杂, 而且需要 2个 换向阔同时得电或失电, 因而可靠性差, 存在安全隐患。
此外, 车辆在道路上行驶时, 时常会碰到类似于小石头之类物体, 引 发对于对中缸的瞬时激励, 这种瞬时激励为时间短、 冲击大, 如不及时释 放该瞬时激励, 则会通过油缸憋压将该瞬时激励传递给对中控制系统中的 结构件如连杆 16等, 长时间作用下容易导致结构件疲劳。 另外, 在图 5所 示的对中缸的结构中, 当对中缸处于随动状态时, 对中缸的有杆腔和无杆 腔均接入低压油, 此时在转向助力缸的带动下, 活塞杆 10向缸体 9的端部 移动并推动第一活塞 11或第二活塞 12同样移动。 但由于第一活塞 11和第 二活塞 12与缸体 9之间具有较大的摩擦力, 处于缸体 9端部位置的第一活 塞 11或第二活塞 12不能跟随或者即时跟随活塞杆 10移动。 这样, 在对中 缸转为锁定状态时, 则需要压力油源推动第一活塞 11或第二活塞 12回复 到初始位置, 从而响应速度相对变慢并且由于活塞杆 10的行程大而造成一 定冲击, 增加了压力油源的容积。 发明内容
本发明的目的是提供一种车辆对中控制系统, 控制逻辑简单可靠, 能 实现对中缸的柔性锁定并防止瞬时激励对结构件造成的疲劳影响。
为了实现上述目的, 本发明提供一种车辆对中控制系统, 该对中控制 系统包括压力油源、 对中缸、 油箱、 压力控制阔和换向阔, 所述压力控制 阔用于控制所述对中缸的有杆腔和无杆腔中所通入的油液的最大压力值, 所述换向阔设置在所述压力油源流向所述对中缸的进油油路上, 所述换向 阔用于控制所述对中缸的有杆腔和无杆腔在对中缸锁定状态下连接所述压 力油源并在对中缸随动状态下连接所述油箱。
优选地, 该对中控制系统还包括单向阔, 该单向阔设置在所述压力油 源与所述换向阔之间的所述进油油路上。
优选地, 所述压力控制阔为第一溢流阔, 该第一溢流阔包括第一油口 和第二油口, 所述第一溢流阔的第一油口连接到所述单向阔与对中缸之间 的进油油路上并且所述第一溢流阔的第二油口与所述油箱相连接。
优选地, 所述压力油源为恒压泵, 所述第一溢流阀的溢流压力值大于 所述恒压阔中的油液压力。
优选地, 所述换向阔包括压力油口、 回油口和工作油口, 所述换向阔 的工作油口与所述对中缸相连接, 所述换向阔的压力油口连接所述压力油 源并且所述换向阔的回油口与所述油箱相连。
优选地, 上述对中缸包括缸体和设置在该缸体内的活塞杆、 第一活塞 和第二活塞, 所述活塞杆的一端设置在所述第一活塞与第二活塞之间, 另 一端穿过所述第一活塞并从缸体的端部穿出, 其中, 所述缸体两端的有杆 腔和无杆腔与所述换向阔的工作油口相连, 所述对中缸上设有回油口, 所 述第一活塞和第二活塞之间的中间腔通过所述对中缸的回油口连通所述油 箱。
优选地, 该对中控制系统还包括设置在所述换向阔与所述油箱之间的 油路上的背压阔, 该背压阔用于在对中缸随动状态下使得所述对中缸的有 杆腔和无杆腔中的油液相对于中间腔中的油液形成有背压。
优选地, 所述背压阔为第二溢流阔, 该第二溢流阔包括第一油口和第 二油口, 所述第二溢流阔的第一油口连接所述换向阔的回油口, 所述第二 溢流阔的第二油口连接所述油箱。
此外, 本发明还提供了一种车辆, 该车辆包括根据本发明上述的车辆 对中控制系统。
优选地, 该车辆上设有散热马达, 该散热马达的回油油路连接至所述 第二溢流阔的第一油口。
通过上述技术方案, 根据本发明的车辆对中控制系统中, 通过将对中 缸的回油口连接油箱, 在对中缸的进油油路中设置单个换向阔, 以控制进 油油路中通入高压油液或低压油液, 从而控制对中缸处于锁定状态或随动 状态, 控制逻辑简单可靠。 并且, 通过设置连接对中缸的压力控制阔, 可 在对中缸锁定状态下即时释放瞬时激励, 实现对中缸的柔性锁定, 避免瞬 时激励对结构件的冲击。 在进油油路中还可设置单向阔以助于对中缸的锁 定并能够防止瞬时激励传递作用到压力油液中。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说 明。 附图说明
附图是用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与下面的具体实施方式一起用于解释本发明, 但并不构成对本发明的限制。 在附图中:
图 1 是根据现有技术的车辆转向和对中系统的液压助力装置的结构示 意图;
图 2是根据本发明一种优选实施方式的车辆对中控制系统的液压原理 示意图;
图 3是图 2中的对中缸控制阔组的放大示意图;
图 4是图 2中的背压阔部分的放大示意图;
图 5是图 2中的对中缸部分的结构示意图;
图 6是采用图 2中的车辆对中控制系统后的单桥控制回路的液压原理 示意图;
图 7是图 6所示的单桥控制回路在车轮右转时的状态示意图; 图 8是图 6所示的单桥控制回路在车轮左转时的状态示意图。 具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是, 此处所描述的具体实施方式仅用于说明和解释本发明, 并不用于限制本发 明。
如图 2和图 3所示, 本发明提供了一种车辆对中控制系统, 该对中控 制系统包括压力油源 1、 对中缸 5和油箱 6。 此外, 该对中控制系统还包括 压力控制阔和换向阔 4,压力控制阔用于控制对中缸 5的有杆腔和无杆腔中 所通入的油液的最大压力值, 即限制对中缸 5两腔中的最高压力, 换向阔 4 设置在压力油源 1流向对中缸 5的进油油路上,换向阔 4用于控制对中缸 5 的有杆腔和无杆腔在对中缸锁定状态下连接压力油源 1 并在对中缸随动状 态下连接油箱 6。 在本发明中, 对中缸 5和转向助力缸 15通常设置在车辆 的转向桥中, 采用单独的液压回路对所述对中缸 5进行控制, 以使得控制 逻辑简单、 可靠。 同时, 转向助力缸 15的控制以及对中缸 5和转向助力缸 15的随动控制则可采用现有技术, 在此不再赘述。 在本发明的对中缸 5的 独立液压控制回路中, 将对中缸 5 的回油油路直接接入系统回油油路, 即 油箱 6中。而在进油油路中, 通过设置换向阔 4, 以选择性使对中缸 5的有 杆腔和无杆腔连通压力油源 1或油箱 6,从而控制对中缸 5的有杆腔和无杆 腔中通入高压油液或低压油液, 使得对中缸 5相应地处于锁定状态或随动 状态。 如图 3所示, 换向阔 4可以是电磁阔、 伺服阔等, 可包括压力油口、 回油口和工作油口, 换向阔 4的工作油口与对中缸 5相连接, 换向阔 4的 压力油口连接压力油源 1并且换向阔 4的回油口与油箱 6相连。 换向阔 4 为电磁阔时, 电磁阔处于失电状态则压力油液进入对中缸 5 的两腔, 使车 轮 14处于直行状态, 当车辆转向时, 转向助力缸 15起作用, 此时对中缸 5 需处于随动状态, 电磁阔根据控制要要而处于得电状态, 使得对中缸 5 的 进油油路连通油箱 6, 保证对中缸 5处于随动状态,控制逻辑简单明了且可 靠性高。 需要说明的是, 此处的进油油路是针对对中缸 5而言的, 对中缸 5 两端的有杆腔和无杆腔所连接的为进油油路, 该进油油路可连接压力油源 或回油箱 (即油箱 6), 而对中缸 5的中间腔室设置回油口和回油油路, 该 回油油路同样可连接压力油源或回油箱, 但本发明中的对中缸 5 的回油油 路直接回流至回油箱, 以下将述及。
其中, 在进油油路中还设置了单向阔 2, 该单向阔 2设置在压力油源 1 与换向阔 4之间, 使得高压油液只能从压力油源 1通向对中缸 5而难以回 流, 可防止瞬时激励作用到压力油源 1 中, 避免对压力油源 1造成冲击, 并且还能防止各车桥之间的激励相互影响。 在对中缸 5 处于锁定状态下, 即使转向助力缸 15中错误地通入高压油液,由于单向阔 2的反向截止作用, 也有助于对中缸 5的锁定。 并且, 在设置单向阔 2的基础上, 还可通过设 置连接对中缸 5 的压力控制阔, 以在对中缸锁定状态下及时释放出瞬时激 励, 以下将详述。 综上, 通过设置换向阔 4可实现对中缸 5的锁定或随动 状态的控制操作, 并且通过设置单向阔 2和压力控制阔可实现对中缸 5的 柔性锁定, 避免瞬时激励对结构件的冲击。
具体地, 所述压力控制阔可以是适合的各种压力控制阔或阔组, 本实 施方式中优选采用溢流阔。 如图 2或图 3所示, 用作压力控制阔的第一溢 流阔 3可包括第一油口和第二油口, 该第一溢流阔 3的第一油口连接到单 向阔 2与对中缸 5之间的进油油路上并且第二油口与油箱 6相连接。 图 3 为图 2中虚框中所示的一种对中缸控制阔组 100,该对中缸控制阔组 100包 括单向阔 2、 第一溢流阔 3和换向阔 4, 其中第一溢流阔 3的第一油口优选 地通过节点连接在单向阔 2与换向阔 4之间的油路上, 用于限制对中缸 5 的进油油路中的最高压力。 其中, 为方便设计和控制, 本发明中的压力油 源 1优选为恒压泵, 例如油液压力为 20Mpa的恒压泵, 而第一溢流阔 3的 溢流压力值设计为略大于恒压阔中的油液压力,图 3中所示的第一溢流阔 3 的溢流压力值为 23Mpa。 当车辆在直行状态时 (即对中缸的锁定状态下) 产生瞬时激励时, 对中缸 5 的左端或右端的压力会增大, 此时进油油路中 的瞬时高压油液若超出第一溢流阔 3中设定的溢流压力值 (例如 23Mpa), 则可从第一溢流阔 3中溢流并流至油箱 6, 从而释放瞬时激励, 实现对中缸 5的柔性锁定, 避免瞬时激励对结构件的冲击。 瞬时激励过后, 通过恒压泵 补充高压油液。
另外, 如前所述, 在图 5所示的对中缸结构中, 当对中缸处于随动状 态时, 活塞难以及时跟随活塞杆 10的移动, 当对中缸由随动状态转换至锁 定状态时, 则可能影响对中的响应速度并对所述对中缸中的结构件造成一 定冲击。为便于清楚地理解, 可参见图 5, 其中的对中缸包括缸体 9和设置 在该缸体 9内的活塞杆 10、 第一活塞 11和第二活塞 12, 活塞杆 10的一端 设置在第一活塞 11与第二活塞 12之间, 另一端穿过第一活塞 11并从缸体 9的端部穿出, 其中, 缸体 9两端的有杆腔和无杆腔与换向阔 4的工作油口 相连, 对中缸上设有回油口, 第一活塞 11和第二活塞 12之间的中间腔通 过对中缸的回油口连通油箱 6。在这种对中缸的结构中,根据实际经验可知, 对中缸 5中内部的摩擦力较大, 若将处于随动状态下的对中缸 5的左右两 腔简单地接入主回油管路, 则车轮 14在由向左转转向或向右转向时, 主回 油管路的背压不足以克服对中缸 5内部的摩擦力, 第一活塞 11或第二活塞 12将处于最大行程的位置, 当车轮 14由转向过程切换到对中过程时, 会由 于活塞行程大而造成冲击, 同时也增加了动力源的容积。 因此, 有必要设 置背压阔, 以在对中缸处于随动状态时, 使得连接至油箱 6 的进油油路中 形成一定的背压, gp : 使得对中缸两端的有杆腔和无杆腔中的油液压力值 相对于中间腔中的油液压力值稍大, 从而促使第一活塞 11 或第二活塞 12 克服摩擦力并时刻跟随活塞杆 10的移动, 也就是使得对中缸的对中趋势更 佳。 由于是在对中缸的随动状态下需要形成所述背压, 因而背压阔优选地 设置在换向阔 4与油箱 6之间的进油油路上, 以在对中缸随动状态下使得 对中缸 5 的有杆腔和无杆腔中的油液相对于中间腔中的油液形成有背压。 这样, 在对中缸中存在背压的情况下, 当车轮 14由转向过程切换至直行状 态, 即通入高压油液时, 第一活塞 11或第二活塞 12的运行行程小, 响应 速度更快, 对中趋势更优, 因而为对中缸提供压力油源的恒压泵的容积可 减小, 节约成本, 同时也减小了因为大行程对中而造成的冲击。
为形成上述背压以克服对中缸 5 内部的摩擦力, 背压阔的数值可能相 对较大, 若直接提高系统主回油管路背压, 则会造成系统发热严重, 能源 浪费。 若额外增加一个泵提供单独的动力源以促使增加对中缸 5 的对中趋 势, 也会造成成本增加。 因而, 在本发明中, 作为一种可选的实施方式, 所述背压阔可设计为第二溢流阔 7。如图 2或图 4所示, 该第二溢流阔 7包 括第一油口和第二油口, 第二溢流阔 7的第一油口连接换向阔 4的回油口, 第二溢流阔 7的第二油口连接油箱 6。 图 4中可见, 该第二溢流阔 7的溢流 压力值设定为 2.2Mpa, 相对于压力几乎可忽略的油箱 6中的油液而言具有 一定的压力值。 当对中缸 5 由锁定状态切换至随动状态时, 在对中缸 5的 进油油路中形成了相对于对中缸 5的回油油路的背压。
此外, 作为另一种可选的实施方式, 在设置上述第二溢流阔 7 的基础 上, 可引入车辆上的其它具有一定压力值的其它油路, 以连接至对中缸随 动状态下的进油油路中。 例如, 对于车辆尤其是工程机械车辆而言, 可将 散热马达 8的回油油路引入。 如图 6所示, 该散热马达 8的回油油路中的 压力值大致相当于第二溢流阔 7的溢流压力值,可将其连接至第二溢流阔 7 的第一油口。 散热马达 8 的回油油路具有持续流量且流量不大的特点, 既 能满足对中缸 5的使用要求, 又不会造成系统发热, 与对中缸 5可进行油 液互补。 在车轮 14转向时, 由于对中缸 5的左右两腔存在背压, 能保证转 向启动过程的平稳性, 克服转向过程中的负负载, 增大转向过程中的负载 刚度。
以下将以单桥控制回路为例具体描述利用本发明的对中控制系统与对 转向助力缸进行转向控制的转向控制系统之间的联合控制并阐述对中缸的 对中趋势。 如图 6所示, 为采用本发明上述的车辆对中控制系统后的单桥 控制回路的液压原理结构示意图。 其中, 换向阔等控制阔组采用电磁阔, 压力控制阔采用溢流阔, 两个转向助力缸 15的转向控制回路可同样采用单 独恒压泵, 恒压泵中的高压油液通过第一转向控制阔 101 选择性地通入车 桥 13的右端转向助力缸 15的有杆腔和左端转向助力缸 15的无杆腔中, 以 促使车轮 14如图 8所示地向左偏转, 或者相反地通入右端转向助力缸 15 的无杆腔和左端转向助力缸 15的有杆腔中以促使车轮 14如图 7所示地向 右偏转。 此处和以下描述中所用的方位词 "左、 右"分别指示的是车桥的 纵向两端的方向, 即图 6、 图 7和图 8中的车桥 13的上端为右端, 下端为 左端。 结合图 1和图 5并以如图 7所示的车轮右转为例, 在第二转向控制 阔 102截止且第一转向控制阔 101的上端得电时, 油源进入右端转向助力 缸 15的无杆腔和左端转向助力缸 15的有杆腔中, 车桥 13的右端转向助力 缸 15的有杆腔和左端转向助力缸 15的无杆腔中通入油箱 6。此时包括单向 阔 2、换向阔 4和第一溢流阔 3在内的对中缸控制阔组 100得电, 使对中缸 5处于随动状态。 转向助力缸 15推动车轮 14和连杆 16、 转向节臂 (未显 示) 转动, 连杆 16带动对中缸 5的活塞杆 10伸出, 同时, 活塞杆 10推动 第一活塞 11 向右端移动。 当转向向右转进入极限位置后, 车轮 14由向右 转转向向左转, 连杆 16带动对中缸的活塞杆 10缩回, 第一活塞 11在背压 阔所建立的背压的作用下, 克服对中缸 5内部的摩擦力, 跟随活塞杆 10的 运动。 保证车轮 14由转向过程切换到对中过程时, 第一活塞 11和第二活 塞 12的运动行程小, 响应加快。 其中, 在转向控制回路的高压油液进油油 路中, 同样分别设置溢流阔, 以防瞬时激励的冲击。 其中, 转向助力缸 15 中通入的高压油液的压力值应小于对中缸 5 中高压油液的压力值, 如图 7 中的转向助力缸 15中通入的高压油液的压力值应小于等于 18Mpa, 而对中 缸 5中高压油液的压力值小于等于 23Mpa, 以免在转向助力缸 15和对中缸 5中均通入高压油液时对中缸 5失去对中锁定状态。相应地, 在第二转向控 制阔 102截止且第一转向控制阔 101的下端得电时, 如图 8所示的车轮左 转,其转向和对中控制过程相反。在如图 6所示的车轮 14处于直行状态时, 则第一转向控制阔 101截止且第二转向控制阔 102导通, 两个转向助力缸 15的有杆腔和无杆腔均连通油箱 6。
在上述基础上, 本发明还相应地提供了一种车辆, 该车辆包括本发明 上述的车辆对中控制系统。 其中, 此种车辆优选为汽车起重机等具有转向 驱动桥的大吨位工程机械车辆。 在这种车辆中可实现车辆直行时的柔性锁 定, 并且对中缸具有较好地对中趋势, 在转向过程切换至对中过程时的冲 击小。
以上结合附图详细描述了本发明的优选实施方式, 但是, 本发明并不 限于上述实施方式中的具体细节, 在本发明的技术构思范围内, 可以对本 发明的技术方案进行多种简单变型, 这些简单变型均属于本发明的保护范 围。
另外需要说明的是, 在上述具体实施方式中所描述的各个具体技术特 征, 在不矛盾的情况下, 可以通过任何合适的方式进行组合, 为了避免不 必要的重复, 本发明对各种可能的组合方式不再另行说明。
此外, 本发明的各种不同的实施方式之间也可以进行任意组合, 只要 其不违背本发明的思想, 其同样应当视为本发明所公开的内容。

Claims

权利要求
1、车辆对中控制系统,该对中控制系统包括压力油源(1 )、对中缸(5) 和油箱(6),其特征在于,该对中控制系统还包括压力控制阔和换向阔(4), 所述压力控制阔用于控制所述对中缸(5) 的有杆腔和无杆腔中所通入的油 液的最大压力值, 所述换向阔 (4) 设置在所述压力油源 (1 ) 流向所述对 中缸 (5 ) 的进油油路上, 所述换向阔 (4) 用于控制所述对中缸 (5) 的有 杆腔和无杆腔在对中缸锁定状态下连接所述压力油源 (1 ) 并在对中缸随动 状态下连接所述油箱 (6)。
2、 根据权利要求 1所述的车辆对中控制系统, 其中, 该对中控制系统 还包括单向阔 (2), 该单向阔 (2) 设置在所述压力油源 (1 ) 与所述换向 阔 (4) 之间的所述进油油路上。
3、 根据权利要求 2所述的车辆对中控制系统, 其中, 所述压力控制阔 为第一溢流阔 (3), 该第一溢流阔 (3) 包括第一油口和第二油口, 所述第 一溢流阔 (3) 的第一油口连接到所述单向阔 (2) 与对中缸 (5) 之间的进 油油路上并且所述第一溢流阔 (3) 的第二油口与所述油箱 (6) 相连接。
4、根据权利要求 3所述的车辆对中控制系统,其中,所述压力油源(1 ) 为恒压泵, 所述第一溢流阔 (3 ) 的溢流压力值大于所述恒压阔中的油液压 力。
5、 根据权利要求 1所述的车辆对中控制系统, 其中, 所述换向阔 (4) 包括压力油口、 回油口和工作油口, 所述换向阔 (4) 的工作油口与所述对 中缸 (5 ) 相连接, 所述换向阔 (4) 的压力油口连接所述压力油源 (1 ) 并 且所述换向阔 (4) 的回油口与所述油箱 (6) 相连。
6、 根据权利要求 1-5中任意一项所述的车辆对中控制系统, 其中, 所 述对中缸 (5 ) 包括缸体 (9) 和设置在该缸体 (9) 内的活塞杆 (10)、 第 一活塞 (11 ) 和第二活塞 (12), 所述活塞杆 (10) 的一端设置在所述第一 活塞 (11 ) 与第二活塞 (12) 之间, 另一端穿过所述第一活塞 (11 ) 并从 缸体 (9) 的端部穿出, 其中, 所述缸体 (9) 两端的有杆腔和无杆腔与所 述换向阔 (4) 的工作油口相连, 所述对中缸 (5 ) 上设有回油口, 所述第 一活塞 (11 ) 和第二活塞 (12) 之间的中间腔通过所述对中缸 (5) 的回油 口连通所述油箱 (6)。
7、 根据权利要求 6中所述的车辆对中控制系统, 其中, 该对中控制系 统还包括设置在所述换向阔 (4) 与所述油箱 (6) 之间的油路上的背压阔, 该背压阔用于在对中缸随动状态下使得所述对中缸(5) 的有杆腔和无杆腔 中的油液相对于中间腔中的油液形成有背压。
8、 根据权利要求 7所述的车辆对中控制系统, 其中, 所述背压阔为第 二溢流阔 (7), 该第二溢流阔 (7) 包括第一油口和第二油口, 所述第二溢 流阔(7) 的第一油口连接所述换向阔 (4) 的回油口, 所述第二溢流阔(7) 的第二油口连接所述油箱 (6)。
9、 车辆, 该车辆包括根据权利要求 1-8中任意一项所述的车辆对中控 制系统。
10、 根据权利要求 9所述的车辆, 其中, 该车辆上设有散热马达 (8), 该散热马达 (8) 的回油油路连接至所述第二溢流阔 (7) 的第一油口。
PCT/CN2012/082189 2012-09-27 2012-09-27 车辆对中控制系统和车辆 WO2014047842A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/082189 WO2014047842A1 (zh) 2012-09-27 2012-09-27 车辆对中控制系统和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/082189 WO2014047842A1 (zh) 2012-09-27 2012-09-27 车辆对中控制系统和车辆

Publications (1)

Publication Number Publication Date
WO2014047842A1 true WO2014047842A1 (zh) 2014-04-03

Family

ID=50386823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/082189 WO2014047842A1 (zh) 2012-09-27 2012-09-27 车辆对中控制系统和车辆

Country Status (1)

Country Link
WO (1) WO2014047842A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20160336A1 (it) * 2016-02-02 2017-08-02 R P F Spa Dispositivo di assistenza alla sterzata di un asse autosterzante di un veicolo
CN113062904A (zh) * 2021-02-24 2021-07-02 安徽柳工起重机有限公司 后桥转向锁止阀及液压系统和汽车起重机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286684A (en) * 1980-03-03 1981-09-01 Caterpillar Tractor Co. Hydraulic servo steering system
CN200944550Y (zh) * 2006-08-28 2007-09-05 东元电机股份有限公司 强制散热模块
CN202368642U (zh) * 2011-12-21 2012-08-08 中联重科股份有限公司 工程机械车辆和车辆转向随动控制系统
CN102673639A (zh) * 2012-05-29 2012-09-19 徐州重型机械有限公司 液压转向控制系统及具有该系统的起重机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286684A (en) * 1980-03-03 1981-09-01 Caterpillar Tractor Co. Hydraulic servo steering system
CN200944550Y (zh) * 2006-08-28 2007-09-05 东元电机股份有限公司 强制散热模块
CN202368642U (zh) * 2011-12-21 2012-08-08 中联重科股份有限公司 工程机械车辆和车辆转向随动控制系统
CN102673639A (zh) * 2012-05-29 2012-09-19 徐州重型机械有限公司 液压转向控制系统及具有该系统的起重机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20160336A1 (it) * 2016-02-02 2017-08-02 R P F Spa Dispositivo di assistenza alla sterzata di un asse autosterzante di un veicolo
EP3202644A1 (en) * 2016-02-02 2017-08-09 R.P.F. S.p.A. An axle of a vehicle with a self-tracking steering, equipped with an assisted steering device
CN113062904A (zh) * 2021-02-24 2021-07-02 安徽柳工起重机有限公司 后桥转向锁止阀及液压系统和汽车起重机

Similar Documents

Publication Publication Date Title
JP6648031B2 (ja) 油圧支援システム
WO2013091424A1 (zh) 工程机械车辆、车辆转向随动控制系统及方法
CN114179906B (zh) 应急转向系统及作业车辆
WO2013059386A1 (en) Hydraulic system having multiple closed-loop circuits
CN106741158B (zh) 双向行驶车辆转向系统
US20150020511A1 (en) Method for energy recovery of hydraulic motor
US8978373B2 (en) Meterless hydraulic system having flow sharing and combining functionality
CN108556910B (zh) 一种全轮转向系统
CN109501855B (zh) 一种多模式转向系统
WO2014047842A1 (zh) 车辆对中控制系统和车辆
CN110294018A (zh) 特种车及其全轮转向系统
CN107472357B (zh) 液压转向助力系统及工程机械
CN106240634B (zh) 铰接式双向驾驶车辆全液压转向系统
WO2014056169A1 (zh) 液压助力转向系统和工程车辆的底盘
CN210949317U (zh) 一种压路机振动工况行驶自限速液压系统
CN107176204B (zh) 液压轮毂马达辅助差动助力转向系统
CN103085657B (zh) 可制动的开式液压系统及其制动方法、行走机械
CN206900471U (zh) 液压轮毂马达辅助差动助力转向系统
CN102701119B (zh) 前移式叉车门架前移防冲击液压系统
CN206589954U (zh) 一种电控变流量转向助力系统
CN106143600B (zh) 运梁车液压转向系统及运梁车
CN208102101U (zh) 特种车及其全轮转向系统
US9995387B2 (en) Hydrostatic traction drive system
CN204383120U (zh) 一种双通道控制液压马达式主动稳定杆系统
CN111005900A (zh) 一种压路机振动工况行驶自限速液压系统及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12885258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12885258

Country of ref document: EP

Kind code of ref document: A1