WO2013089262A1 - Al系めっき鋼材及びその製造方法 - Google Patents
Al系めっき鋼材及びその製造方法 Download PDFInfo
- Publication number
- WO2013089262A1 WO2013089262A1 PCT/JP2012/082591 JP2012082591W WO2013089262A1 WO 2013089262 A1 WO2013089262 A1 WO 2013089262A1 JP 2012082591 W JP2012082591 W JP 2012082591W WO 2013089262 A1 WO2013089262 A1 WO 2013089262A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- plating layer
- steel material
- pseudo
- plating
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0478—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/1275—Next to Group VIII or IB metal-base component
- Y10T428/12757—Fe
Definitions
- the present invention relates to an Al-based plated steel material and a method for producing the same, and in particular, intends to further improve the corrosion resistance as compared with the prior art.
- Al-based plated steel materials are widely used in automobile muffler materials and building materials fields.
- the corrosion products stabilize and show excellent corrosion resistance in a corrosive environment under dry conditions, whereas in an environment exposed to wet conditions, the plating elution rate is extremely fast and the steel plate corrodes easily. Therefore, there is a problem that sufficient corrosion resistance cannot be exhibited.
- Patent Document 1 includes an intermetallic compound coating layer containing Al, Fe, Si and having a thickness of 5 ⁇ m or less on the surface of the steel sheet, and the metal A hot dip galvanized steel sheet having a coating layer consisting of Si: 2 to 13% by weight, Mg: more than 3% to 15%, and the balance substantially consisting of Al is disclosed on the surface of the intermetallic compound coating layer.
- Patent Document 2 a molten Al—Mg—Si-based plating layer containing Mg: 3 to 10% and Si: 1 to 15% by weight, the balance being Al and unavoidable impurities is provided on the surface of the steel sheet.
- High corrosion resistance having a metallographic structure in which the plated layer is composed of at least “Al phase” and “Mg 2 Si phase”, and the major axis of “Mg 2 Si phase” is 10 ⁇ m or less.
- a plated steel sheet is disclosed.
- Patent Document 3 discloses that a mass between metals composed of one or more Group IIa (alkaline earth metal) elements and one or more Group IVb elements in an Al-based plating layer on the surface of a steel material.
- An aluminum-plated surface-treated steel material excellent in corrosion resistance, containing a compound, wherein the major axis of the intermetallic compound is 1 ⁇ m or more and the ratio of the minor axis to the major axis is 0.4 or more is disclosed.
- Patent Document 1 has a problem that massive Mg 2 Si or Al 3 Mg 2 phases are precipitated, and local dissolution of the plating layer starting from these precipitates proceeds.
- Patent Document 2 has a problem that preferential dissolution of the Mg 2 Si phase and local dissolution of the plating layer starting from the periphery thereof occur.
- Patent Document 3 has a problem of preferential dissolution of the intermetallic compound phase and local dissolution of the plating layer.
- the present inventors are a steel material having a sacrificial anticorrosive coating containing Al, Mg, and Si, and containing 6 to 10% by mass of Mg.
- a steel material is proposed in which Si is specified in a range of 3 to 7% by mass and Mg / Si is specified in a range of 1.1 to 3.0.
- JP 2000-239820 A Japanese Patent No. 4199404 Re-published WO00 / 56945 JP 2010-168645A
- Patent Document 4 The development of the steel material of Patent Document 4 further improved the corrosion resistance. However, sometimes the corrosion resistance deteriorated locally.
- the present invention is a further improvement of the steel material of Patent Document 4 described above, and aims to further improve the corrosion resistance including prevention of local deterioration of the corrosion resistance.
- the present inventors have repeatedly investigated the cause of local corrosion resistance deterioration of a steel sheet on which an Al-based plating layer is formed.
- the plating layer has an elongated needle-like or plate-like Al—
- the present inventors have found that the presence of Fe compound precipitates causes corrosion of the plating layer by causing the precipitates to start from corrosion.
- This invention was made
- a plating layer composed of unavoidable impurities the plating layer having an ⁇ Al—Mg 2 Si— (Al—Fe—Si—Mn) pseudo ternary eutectic structure, and the quasi ternary co-crystal in the plating layer.
- An Al-based plated steel material having an area ratio of crystal structure of 30% or more.
- the plating layer should satisfy the following molar ratio: Mg / Si is 1.7 to 2.3, Mn / Fe is 0.1 to 1.0, and Mg 2 Si / Al is 1 or less.
- Mg / Si is 1.7 to 2.3
- Mn / Fe is 0.1 to 1.0
- Mg 2 Si / Al is 1 or less.
- the steel to be plated is made of Mg: 6 to 10% by mass, Si: 3 to 7% by mass, Fe: 2% by mass or less (including 0%) and Mn: 0.02 to 2% by mass. And the balance is Al and inevitable impurities, and the bath temperature is (melting point + 20 ° C.) to 750 ° C., immersed in a plating bath for 0.5 seconds or more, and then at a cooling rate of 20 ° C./s or more.
- a method for producing an Al-based plated steel material characterized by cooling.
- Alpha Al-Mg 2 Si- in the plating layer (Al-Fe-Si-Mn ) is a photograph for explaining a pseudo-ternary eutectic structure. It is the photograph which showed the Al-Fe compound which precipitated in the plating layer, (a) The state of the plating layer which has an Al-Fe compound, (b) after being immersed in 0.5 mol NaCl solution for 3 days The state of a plating layer is shown. Graph showing the cooling rate after immersion in the plating bath, the relationship between ⁇ Al-Mg 2 Si- (Al- Fe-Si-Mn) pseudo ternary eutectic structure area ratio of the area ratio and Al-Fe compound in It is.
- the Al-based plated steel material according to the present invention has Mg: 6 to 10% by mass, Si: 3 to 7% by mass, Fe: 0.2 to 2% by mass, and Mn: 0.02 to 2% by mass on the surface of the steel material.
- a plating layer comprising Al and inevitable impurities, the plating layer having an ⁇ Al—Mg 2 Si— (Al—Fe—Si—Mn) pseudo ternary eutectic structure, The area ratio of the pseudo ternary eutectic structure is 30% or more.
- FIG. 2 is a photograph showing the Al—Fe compound precipitated in the Al-based plating layer.
- an elongated needle-like or plate-like precipitate (hereinafter referred to as "acicular Al-Fe compound") made of an Al-Fe compound in the plating layer. 2), and the Al—Fe compound becomes a starting point of corrosion, which causes a problem of causing corrosion of the plating layer as shown in FIG.
- FIG. 1 ⁇ Al—Mg 2 Si— (Al—Fe) composed of ⁇ Al, Mg 2 Si, and (Al—Fe—Si—Mn) in the Al-based plating layer.
- ⁇ Al—Mg 2 Si— (Al—Fe—Si—Mn) pseudo-ternary eutectic structure includes ⁇ Al, Mg 2 Si, and a compound composed of Al, Fe, Si and Mn. It means a eutectic structure consisting of these components. As shown in FIG. 1, the quasi-ternary eutectic structure is finer than the acicular Al—Fe compound, and the average particle size (longitudinal direction) is 0.5 to 5 ⁇ m. Degree. Specific examples of the pseudo ternary eutectic structure include the balance Al-7 mass% Mg-4 mass% Si-0.8 mass% Fe-0.1 mass% Mn, and the balance Al-7.5 mass%.
- the acicular Al—Fe compound is a compound containing Al and Fe, and examples thereof include ⁇ -AlFeSi, ⁇ -AlFeSi, ⁇ -AlFe, ⁇ -AlFe, and ⁇ -AlFeSi.
- the acicular shape of the acicular Al—Fe compound refers to a shape having a ratio of the major axis to the minor axis (aspect ratio) of 5 or more when the structure of the compound is observed.
- the area ratio of the ⁇ Al—Mg 2 Si— (Al—Fe—Si—Mn) pseudo ternary eutectic structure in the plating layer needs to be 30% or more. The reason is that when the area ratio of the pseudo ternary eutectic structure is less than 30%, the precipitation of the needle-like Al—Fe compound cannot be sufficiently reduced, and the desired corrosion resistance cannot be obtained. It is. From the viewpoint of further improving the corrosion resistance, the area ratio of the ⁇ Al—Mg 2 Si— (Al—Fe—Si—Mn) pseudo-ternary eutectic structure is preferably 35% or more, and 40% or more. More preferably, it is particularly preferably 45% or more.
- the area ratio of the ⁇ Al—Mg 2 Si— (Al—Fe—Si—Mn) pseudo-ternary eutectic structure refers to the ratio of the pseudo-ternary eutectic structure in the cross section of the plating layer. For example, it can be obtained by measuring the area of the pseudo ternary eutectic structure in any one visual field in which the cross-sectional observation of the plating layer is performed, and calculating the ratio (%) to the observation visual field.
- the acicular Al—Fe compound may be 2% or less in area ratio. Is acceptable.
- the area ratio of the acicular Al—Fe compound is 2% or less, the starting point of corrosion does not increase, and sufficient corrosion resistance can be obtained.
- the area ratio of the acicular Al—Fe compound is preferably 1% or less, and more preferably 0.5% or less.
- the plating layer may include an Al—Mg 2 Si pseudo binary eutectic structure.
- Al—Mg 2 Si pseudo binary eutectic structure By having an Al—Mg 2 Si pseudo binary eutectic structure, a metal structure in which Mg 2 Si active against corrosion is finely and uniformly dispersed can be obtained. Further, the dissolution of the pseudo binary and pseudo ternary eutectic structures by anodic polarization is almost uniform dissolution, and it is possible to prevent uneven dissolution or localized corrosion of the plating layer.
- the area ratio of the Al—Mg 2 Si pseudo binary eutectic structure in the plating layer is not particularly limited. From the viewpoint of reducing the precipitation amount of the Al—Fe compound and obtaining excellent corrosion resistance, 0 to It is preferably in the range of 40%, more preferably in the range of 10 to 25%.
- the major diameter of the massive Mg 2 Si is preferably less than 5 ⁇ m. This is because when the major axis of the massive Mg 2 Si is less than 5 ⁇ m, a metal structure in which Mg 2 Si active against corrosion is finely and uniformly dispersed can be obtained.
- the remaining structure in the plating layer is mainly primary ⁇ Al as shown in FIG.
- the plated layer of the Al-based plated steel material according to the present invention contains Mg: 6 to 10% by mass, Si: 3 to 7% by mass, Fe: 0.2 to 2% by mass, and Mn: 0.02 to 2% by mass.
- the balance consists of Al and inevitable impurities.
- Mg is an element contained in the plating layer in order to maintain uniform dissolution characteristics of the plating layer and ensure sacrificial anticorrosion characteristics.
- the content should be 6 to 10% by mass. If it is less than 6 masses, uniform dissolution characteristics of the plating layer cannot be obtained, and sufficient sacrificial anticorrosion performance cannot be obtained. On the other hand, if it exceeds 10% by mass, large-sized massive Mg 2 Si or Al 3 Mg 2 is precipitated, which may lead to deterioration of corrosion resistance.
- Si 3-7% by mass Si is an element contained in the plating layer in order to uniformly disperse Mg in the plating layer as a fine eutectic structure of Mg 2 Si in order to obtain uniform dissolution characteristics of the plating layer.
- the content needs to be 3 to 7% by mass.
- excess Mg is precipitated as Al 3 Mg 2 in the plating layer to accelerate local dissolution of the plating layer.
- large-sized massive Mg 2 This is because Si may be precipitated.
- Fe 0.2-2% by mass Fe is an element that is contained in the plating layer as a result of Fe dissolved from the steel material being mixed into the plating bath when the plating layer is formed on the steel material.
- About the upper limit of the content it is 2 mass% from the relationship of the saturated dissolution amount of Fe in a plating bath. If it exceeds 2% by mass, the Fe content increases, so that the amount of precipitation of the needle-like Al—Fe compound increases, and sufficient corrosion resistance may not be obtained.
- the lower limit of Fe is 0.2% by mass. However, when it is less than 0.2% by mass, corrosion due to precipitation of the Al—Fe compound hardly occurs, and the effect of the present invention is exhibited. This is because it is difficult.
- Mn is an element necessary for forming a pseudo-ternary eutectic structure of ⁇ Al—Mg 2 Si— (Al—Fe—Si—Mn) in the plating layer.
- Fe becomes a more stable (Al-Fe-Si-Mn) compound as compared with the acicular Al-Fe compound, and as a result of becoming a fine precipitate at a large cooling rate, The pseudo ternary eutectic structure is formed.
- the content of Mn is 0.02 to 2% by mass, preferably 0.1 to 2% by mass.
- the plating layer contains diffusion from the steel material and inevitable impurities contained in the Al alloy raw material.
- the inevitable impurities include Cr, Cu, Mo, Ni, Ti, and Zr.
- the total content of the inevitable impurities is not particularly limited, but is preferably 1% by mass or less from the viewpoint of maintaining the corrosion resistance and uniform dissolution characteristics of the plating layer.
- about content of the inevitable impurity illustrated above respectively Cr: 100 mass ppm or less, Cu: 100 mass ppm or less, Mo: 100 mass ppm or less, Ni: 100 mass ppm or less, Ti: 100 mass ppm or less , Zr: 10 ppm by mass or less is preferable.
- the plating layer should satisfy the following molar ratios: Mg / Si is 1.7 to 2.3, Mn / Fe is 0.1 to 1.0, and Mg 2 Si / Al is 1 or less. Is preferred.
- Mg and Si are elements necessary for forming an Al—Mg 2 Si pseudo binary eutectic structure, and the ratio of Mg to Si (Mg / Si) is 1.7-2. A range of 3 is preferable. If Mg / Si is 1.7 or more, the amount of Mg will not decrease. On the other hand, if Mg / Si is 2.3 or less, the amount of Si will not decrease. This is because a 2 Si pseudo binary eutectic structure is formed.
- Mn / Fe 0.1 to 1.0
- Fe and Mn are elements necessary for forming a pseudo-ternary eutectic structure of ⁇ Al—Mg 2 Si— (Al—Fe—Si—Mn), and the ratio of Mn to Fe (Mn / Fe) is preferably in the range of 0.1 to 1.0. If Mn / Fe is 0.1 or more, the amount of Mn will not decrease. On the other hand, if Mn / Fe is 1.0 or less, the amount of Mn will not increase too much and Mn-containing compounds will not be formed. This is because the quasi-ternary eutectic structure is formed in this range.
- Mg 2 Si / Al 1 or less If the ratio of Mg 2 Si to Al (Mg 2 Si / Al) is 1 or less, the amount of Mg 2 Si compared to Al does not increase too much, and Al—Mg 2 This is because the Si pseudo binary eutectic structure is sufficiently formed, the amount of acicular Al—Fe compound deposited is not increased, and the plating layer is uniformly dissolved.
- the amount of adhesion of the plating layer is not particularly limited, and can be appropriately selected depending on the application.
- the amount of adhesion of the plating layer is preferably 25 g / m 2 or more from the viewpoint of surely obtaining desired corrosion resistance, and the upper limit of the amount of adhesion is 125 g / m 2 from the viewpoint of ensuring good workability.
- m is preferably 2 or less.
- a predetermined chemical conversion film can be formed on the plating layer. This is because the formation of the chemical conversion film can be expected to further improve the corrosion resistance, adhesion, and scratch resistance.
- the type of the chemical conversion film is not particularly limited, but it is preferable that chromium is not included from the viewpoint of environmental load.
- silica fine particles either wet silica or dry silica may be used, but it is preferable that silica fine particles having a large effect of improving adhesion, particularly dry silica, be contained.
- a predetermined coating film can be formed on the plating layer or the chemical conversion film.
- the kind of steel materials which form the said plating layer if it is a steel material which can form a plating layer on the surface, it will not specifically limit, For example, a steel plate, a steel pipe, a strip, etc. are mentioned.
- the steel material to be plated is made of Mg: 6 to 10% by mass, Si: 3 to 7% by mass, Fe: 2% by mass or less (however, including 0%) and Mn : 0.02 to 2% by mass, with the balance being Al and inevitable impurities, and after immersing in a plating bath having a bath temperature of (melting point + 20 ° C.) to 750 ° C. for 0.5 seconds or longer, The cooling is performed at a cooling rate of 20 ° C./s or more.
- the Al-based plated steel material manufactured by the above-described manufacturing method can reduce the precipitation of acicular Al-Fe compounds that become the starting point of corrosion in the formed plating layer, and is therefore superior to conventional Al-based plated steel materials. Corrosion resistance.
- the plate-treated steel material used in the production method of the present invention is not particularly limited.
- a steel plate, a steel pipe, a bar steel, etc. are mentioned.
- the method for obtaining the steel to be plated is not particularly limited.
- the said steel plate it manufactures by a hot rolling process, a pickling process, a cold rolling process, and a recrystallization annealing process.
- the hot rolling process may be performed by a normal method of winding through slab heating, rough rolling, and finish rolling. Further, the heating temperature, finish rolling temperature, etc. are not particularly specified, and can be carried out at ordinary temperatures.
- the pickling step performed after the hot rolling may be performed by a commonly used method, and examples include cleaning using hydrochloric acid, sulfuric acid, or the like.
- the cold rolling process performed after the pickling is not particularly limited, but can be performed at a rolling reduction of 30 to 90%, for example. If the rolling reduction is 30% or more, the mechanical properties are not deteriorated, and if it is 90% or less, the rolling cost does not increase.
- the recrystallization annealing step for example, using an annealing furnace of a continuous hot dip plating facility, after performing cleaning treatment by degreasing, etc., then performing heat treatment to heat the steel sheet to a predetermined temperature in the preceding heating zone, A predetermined heat treatment can be performed in the soaking zone. It is preferred to process at temperature conditions that have the required mechanical properties.
- the atmosphere in an annealing furnace anneals with Fe in a reducing atmosphere.
- the kind of reducing gas is not specifically limited, It is preferable to use the reducing gas atmosphere already generally used.
- the plating bath used in the production method of the present invention includes Mg: 6 to 10% by mass, Si: 3 to 7% by mass, Fe: 2% by mass or less (including 0%) and Mn: 0. It contains 02 to 2% by mass, and the balance is composed of Al and inevitable impurities.
- the bath temperature of the plating bath is in the range of (melting point + 20 ° C.) to 750 ° C.
- the lower limit of the bath temperature is the melting point + 20 ° C., in order to perform the hot dipping process, the bath temperature needs to be equal to or higher than the freezing point. This is to prevent local coagulation of the composition component due to a local decrease in bath temperature.
- the upper limit of the bath temperature is set to 750 ° C. When the temperature exceeds 750 ° C., rapid cooling of the plating layer becomes difficult, and the thickness of the Al—Fe alloy layer formed between the plating layer and the steel plate becomes thick. Because it becomes.
- the temperature of the plating steel material that enters the plating bath is not particularly limited, but from the viewpoint of ensuring plating characteristics and preventing changes in bath temperature in continuous hot-dip plating operations.
- the temperature of the plating bath is preferably controlled within ⁇ 20 ° C.
- the immersion time in the plating bath of the said steel material to be plated it is required that it is 0.5 second or more. When the time is less than 0.5 seconds, there is a possibility that a sufficient plating layer cannot be formed on the surface of the steel material to be plated.
- the upper limit of the immersion time is not particularly limited, but if the immersion time is increased, the thickness of the Al—Fe alloy layer formed between the plating layer and the steel sheet may be increased. It is considered sufficient to form the layer.
- the immersion conditions in the plating bath are not particularly limited.
- it when performing plating on mild steel, it can be performed at a line speed of about 150 to 230 mpm, and when performing plating on thick materials, it can be performed at a line speed of about 40 mpm. It can be about 5 to 7 m.
- Cooling rate is particularly important in the production method of the present invention. That is, after the steel material to be treated is immersed in the plating bath, it is cooled at a cooling rate of 20 ° C./s or more. A desired ⁇ Al—Mg 2 Si— (Al—Fe—Si—Mn) pseudo ternary eutectic structure can be formed in the formed plating layer by high-speed cooling of 20 ° C./s or more. This is because the thickness of the Al—Fe alloy layer formed between the steel plates can be reduced.
- FIG. 3 shows the cooling rate (° C./s) after the steel material to be treated is immersed in the plating bath and the area ratio of ⁇ Al—Mg 2 Si— (Al—Fe—Si—Mn) pseudo ternary eutectic structure. (%) And the result investigated about the relationship with the area ratio (%) of an acicular Al-Fe compound. As can be seen from FIG. 3, it can be seen that the higher the cooling rate, the larger the area ratio of the pseudo ternary eutectic and the smaller the area ratio of the acicular Al—Fe compound.
- the cooling rate is set to 20 ° C./s or more so that the area ratio of the pseudo ternary eutectic in the plating layer is reliably 30% or more, and 25 ° C./s or more. Is preferable, 30 ° C./s or more is more preferable, and 35 ° C./s or more is particularly preferable.
- the conditions of the Al plating treatment other than those described above are not particularly limited, and can be performed according to a commonly used method.
- Examples 1--7 The cold-rolled steel sheet was annealed in a reducing gas at 800 ° C. for 30 seconds and then immersed in a plating bath maintained at 680 ° C. at a plate temperature of 700 ° C. for 5 seconds to perform hot dip plating. After the hot dip plating, the plating layer structure was controlled by adjusting the cooling rate (Table 1) to produce an Al-based plated steel sheet. Table 1 shows the coating adhesion amount, plating layer composition, and plating layer structure per side of the obtained Al-based plated steel sheet.
- the obtained plated steel sheet was subjected to ⁇ -Al—Mg 2 Si— (Al -Fe-Si-Mn) pseudo ternary eutectic structure, Al-Mg 2 Si pseudo binary eutectic tissue, performed the observation of ⁇ Al and acicular Al-Fe compound was calculated and their area ratio.
- ⁇ Al—Mg 2 Si— (Al—Fe—S—Mn) pseudo-ternary eutectic structure Al—Mg 2 Si pseudo-binary eutectic structure, ⁇ Al and acicular Al—Fe compounds Is shown in Table 1.
- the surface area ratio of the steel plate made of the same material as the plated steel plate and the base material was 10: 1.
- the observation results were evaluated according to the following criteria. The evaluation results are shown in Table 2.
- ⁇ There is no corrosion on the surface of the scratched base steel and the surface of the connected steel plate after being immersed for 7 days, and the metallic luster is maintained.
- ⁇ Red rust is not observed on the surface of the scratched base steel and the surface of the connected steel plate after being immersed for 7 days, but the surface of the scratched base steel or the surface of the connected steel plate after being immersed for 7 days is discolored.
- X The surface of the base steel in the scratched part or the surface of the connected steel sheet after being immersed for 7 days is covered with red rust.
- Samples 1 to 4 of the inventive example were particularly excellent in terms of local corrosivity compared to Samples 5 to 6 of the comparative example.
- This means that for a sample of the inventive example is, ⁇ Al-Mg 2 Si- (Al -Fe-Si-Mn) in the plating layer since it forms many pseudo ternary eutectic structure, acicular Al-Fe compound This is considered to be because the progress of corrosion starting from is suppressed.
- the acicular Al—Fe compound is the starting point of corrosion, it is considered that local corrosion is likely to occur.
- a plating layer having an ⁇ Al—Mg 2 Si— (Al—Fe—Si—Mn) pseudo ternary eutectic structure it is particularly excellent in local corrosion resistance compared to conventional products.
- An Al-based plated steel material and a method for producing the same can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Coating With Molten Metal (AREA)
- Laminated Bodies (AREA)
Abstract
Description
すなわち、特許文献1には、塊状のMg2SiあるいはAl3Mg2相が析出し、それらを起点とするめっき層の局部的な溶解が進行するという問題があった。
また、特許文献2には、Mg2Si相の優先溶解とその周辺を起点とするめっき層の局部溶解が起こるという問題があった。
さらに、特許文献3には、金属間化合物相の優先溶解とめっき層の局部的な溶解進行という問題があった。
(1)鋼材の表面に、Mg:6~10質量%、Si:3~7質量%、Fe:0.2~2質量%及びMn:0.02~2質量%を含有し、残部がAl及び不可避的不純物からなるめっき層を備え、該めっき層が、αAl−Mg2Si−(Al−Fe−Si−Mn)擬3元共晶組織を有し、該めっき層中の擬3元共晶組織の面積率が30%以上であることを特徴とするAl系めっき鋼材。
本発明によるAl系めっき鋼材は、鋼材の表面に、Mg:6~10質量%、Si:3~7質量%、Fe:0.2~2質量%及びMn:0.02~2質量%を含有し、残部がAl及び不可避的不純物からなるめっき層を備え、該めっき層が、αAl−Mg2Si−(Al−Fe−Si−Mn)擬3元共晶組織を有し、該めっき層中の擬3元共晶組織の面積率が30%以上であることを特徴とする。
従来のAl系めっき鋼板については、図2(a)に示すように、めっき層中にAl−Fe化合物からなる細長い形状の針状又は板状析出物(以下、「針状Al−Fe化合物」という。)を有し、そのAl−Fe化合物が腐食の起点となることで、図2(b)に示すように、めっき層の腐食を引き起こすという問題があった。
これに対し、図1に示すように、Al系めっき層中に、αAlと、Mg2Siと、(Al−Fe−Si−Mn)とから構成されるαAl−Mg2Si−(Al−Fe−Si−Mn)擬3元共晶組織を形成させた場合には、この擬3元共晶組織中にFe成分が微細に取り込まれ、腐食の起点となる針状Al−Fe化合物の析出を阻止できるため、従来のAl系めっき鋼材に比べて優れた耐食性を実現できるのである。
また、前記針状Al−Fe化合物とは、Al及びFeを含む化合物のことであり、例えば、α−AlFeSi、β−AlFeSi、η−AlFe、θ−AlFe、θ−AlFeSi等が挙げられる。なお、前記針状Al−Fe化合物の針状形状とは、該化合物の組織を観察したときの長径と短径との比(アスペクト比)が5以上である形状のことをいう。
ここで、前記αAl−Mg2Si−(Al−Fe−Si−Mn)擬3元共晶組織の面積率とは、前記めっき層の断面中に占める前記擬3元共晶組織の割合のことであり、例えば、前記めっき層の断面観察を行った任意の1視野において、前記擬3元共晶組織の面積を測定し、観察視野に対する割合(%)を算出することによって得ることができる。
Mgは、めっき層の均一な溶解特性を維持し,犠牲防食特性を確保するために前記めっき層中に含有される元素である。その含有量については、6~10質量%とする必要がある。6質量未満の場合、めっき層の均一な溶解特性が得られず,十分な犠牲防食性能が得られない。一方、10質量%を超えると、サイズの大きな塊状のMg2SiあるいはAl3Mg2を析出させ、耐食性の悪化を招くおそれがあるからである。
Siは、めっき層の均一な溶解特性を得るためにMgをMg2Siの微細な共晶組織としてめっき層内に均一に分散させるために前記めっき層中に含有される元素である。その含有量については、3~7質量%とする必要がある。3質量%未満の場合、過剰なMgがAl3Mg2としてめっき層内に析出してめっき層の局部的な溶解を加速し、一方、7質量%を超えると、サイズの大きな塊状のMg2Siを析出させるおそれがあるからである。
Feは、前記鋼材にめっき層を形成する際、鋼材から溶け出したFeがめっき浴中に混入する結果、めっき層中に含まれることとなる元素である。その含有量の上限については、めっき浴中のFeの飽和溶解量の関係から2質量%である。仮に2質量%を超える場合には、Feの含有量が多くなることから、前記針状Al−Fe化合物の析出量が多くなり、十分な耐食性を得ることができないおそれもある。一方、Feの下限値については0.2質量%であるが、0.2質量%未満の場合、前記Al−Fe化合物の析出に起因した腐食がほとんど発生せず、本発明による効果が発揮されにくいためである。
Mnは、前記めっき層中に、αAl−Mg2Si−(Al−Fe−Si−Mn)の擬3元共晶組織を形成するために必要な元素である。前記めっき層中にMnを含有することで、Feが針状Al−Fe化合物に比べてより安定な(Al−Fe−Si−Mn)化合物となり、大きな冷却速度では微細な析出物となる結果、前記擬3元共晶組織が形成される。
前記Mnの含有量については、0.02~2質量%であり、0.1~2質量%であることが好ましい。前記Mnの含有量が0.02質量%未満の場合、前記αAl−Mg2Si−(Al−Fe−Si−Mn)の擬3元共晶組織を十分に形成することができず、一方、前記Mnの含有量が2質量%を超えると、別のMn含有化合物を形成するため、前記擬3元共晶組織が形成され難くなるからである。
前記めっき層中には、前記鋼材からの拡散や、前記Al合金原料中に含有した可避的不純物が含まれる。不可避的不純物の種類については、例えば、Cr、Cu、Mo、Ni、Ti、Zr等が挙げられる。前記不可避的不純物の総含有量については、特に限定はされないが、めっき層の耐食性と均一な溶解特性を維持するという観点から、1質量%以下であることが好ましい。また、上記例示した不可避的不純物の含有量については、それぞれ、Cr:100質量ppm以下、Cu:100質量ppm以下、Mo:100質量ppm以下、Ni:100質量ppm以下、Ti:100質量ppm以下、Zr:10質量ppm以下であることが好ましい。
MgとSiは、上述したように、互いにAl−Mg2Si擬2元系共晶組織の形成に必要な元素であり、MgとSiとの比(Mg/Si)が1.7~2.3の範囲であることが好ましい。Mg/Siが1.7以上であればMgの量が少なくなることがなく、一方、Mg/Siが2.3以下であればSiの量が少ないことがなくなるため、この範囲ではAl−Mg2Si擬2元系共晶組織が形成されるからである。
FeとMnは、上述したように、互いにαAl−Mg2Si−(Al−Fe−Si−Mn)の擬3元共晶組織の形成に必要な元素であり、MnとFeとの比(Mn/Fe)が0.1~1.0の範囲であることが好ましい。Mn/Feが0.1以上であればMnの量が少なくなることがなく、一方、Mn/Feが1.0以下であればMnの量が多くなりすぎず、Mn含有化合物を形成しないため、この範囲では前記擬3元共晶組織が形成されるからである。
Mg2SiとAlとの比(Mg2Si/Al)が1以下であれば、Alに比べてのMg2Si量が多くなりすぎず、Al−Mg2Si擬2元系共晶組織が十分に形成され、針状Al−Fe化合物の析出量が多くならず、めっき層の均一な溶解が生じるからである。
さらにまた、前記めっき層又は前記化成皮膜上に、所定の塗膜を形成することも可能である。
本発明によるAl系めっき鋼材の製造方法は、被めっき処理鋼材を、Mg:6~10質量%、Si:3~7質量%、Fe:2質量%以下(ただし、0%を含む)及びMn:0.02~2質量%を含有し、残部がAl及び不可避的不純物からなる組成で、浴温が(融点+20℃)~750℃のめっき浴中に、0.5秒以上浸漬した後、20℃/s以上の冷却速度で冷却することを特徴とする。
本発明の製造方法に用いられる被めっき処理鋼材については、特に限定はしない。例えば、鋼板や、鋼管、条鋼などが挙げられる。
例えば、前記鋼板の場合、熱間圧延工程、酸洗工程、冷間圧延工程及び再結晶焼鈍工程によって製造する。
本発明の製造方法に用いられるめっき浴は、Mg:6~10質量%、Si:3~7質量%、Fe:2質量%以下(ただし、0%を含む)及びMn:0.02~2質量%を含有し、残部がAl及び不可避的不純物からなる組成を有する。
また、前記めっき浴に浸入する前記めっき処理鋼材の温度(浸入板温)は、特に限定はしないが、連続式溶融めっき操業におけるめっき特性の確保や浴温度の変化を防ぐ点から、前記めっき浴の温度に対して±20℃以内に制御することが好ましい。
前記被めっき処理鋼材のめっき浴中の浸漬時間については、0.5秒以上であることを要する。0.5秒未満の場合、前記被めっき処理鋼材の表面に十分なめっき層を形成できないおそれがある。前記浸漬時間の上限については特に限定はしないが、浸漬時間を長くするとめっき層と鋼板との間に形成するAl−Fe合金層の厚さが厚くなる恐れがあり、5秒程度あれば前記めっき層の形成には十分であると考えられる。
本発明の製造方法では、この冷却速度が特に重要である。すなわち、被処理鋼材をめっき浴中へ浸漬させた後、20℃/s以上の冷却速度で冷却する。20℃/s以上の高速冷却によって、形成されためっき層中に所望のαAl−Mg2Si−(Al−Fe−Si−Mn)擬3元共晶組織を形成することができ、めっき層と鋼板との間に形成するAl−Fe合金層の厚さを薄くすることができるからである。
前記Alめっき処理の上述した以外の条件については、特に限定はされず、通常用いられる方法に従って行うことができる。
冷延鋼板を、還元ガス中において800℃で30秒間焼鈍した後、板温700℃で、680℃に保持されためっき浴に5秒間浸漬させることにより、溶融めっきを行なった。溶融めっき後、冷却速度を調整することで(表1)めっき層組織の制御を行い、Al系めっき鋼板を製造した。得られたAl系めっき鋼板の、片面当たりのめっき付着量、めっき層組成、めっき層組織については表1に示す。
得られた各サンプルについて、以下の評価を行った。
各サンプルのめっき鋼板を、0.5kmol/m3のNaCl水溶液に浸漬し、3日及び7日経過後のめっき表面について、目視及び光学顕微鏡により観察を行った。
観察した7日経過後のめっき表面について、以下の基準に従って評価を行った。評価結果を表2に示す。
○: めっき層の溶解、腐食生成物の付着がない。
△: めっき層の一部が溶解し、腐食生成物に覆われている。
×: めっき層の全体が溶解し、全面に赤錆が付着している。
各サンプルのめっき層に、下地鋼板が露出する幅1mmのX字状の傷をつけた後、サンプルを0.5kmol/m3のNaCl水溶液に3日間浸漬させた。その後、傷部の鋼板の腐食状況を目視及び光学顕微鏡によって観察した。
また、各サンプルのめっき鋼板について、めっき鋼板と素地と同一材質の鋼板を電気的に短絡又は無抵抗電流計によって接続した状態で、0.5kmol/m3のNaCl水溶液に3日間及び7日間浸漬した後、鋼板表面の腐食状況を目視及び光学顕微鏡により観察した。なお、めっき鋼板と素地と同一材質の鋼板の表面積比は10:1とした。
観察の結果について、以下の基準に従って評価を行った。評価結果を表2に示す。
○:傷部の下地鋼表面及び7日間浸漬後の接続した鋼板表面に腐食がなく、金属光沢を保っている。
△:傷部の下地鋼表面及び7日間浸漬後の接続した鋼板表面に赤錆の発生は見られないが、傷部の下地鋼表面あるいは7日間浸漬後の接続した鋼板表面が変色している。
×:傷部の下地鋼表面あるいは7日間浸漬後の接続した鋼板表面が赤錆で覆われている。
各サンプルのめっき鋼板を、0.5モル/LのNaCl水溶液に浸漬し、3日及び7日経過後のめっき表面について、目視及び光学顕微鏡により、めっき層の局部的な溶解の有無を確認した。以下の基準について7日経過後のめっき表面の評価を行った。評価結果を表2に示す。
○: めっき層表面に局所的な溶解が起っていない。
×: めっき層表面に局所的な溶解がみられる。
Claims (3)
- 鋼材の表面に、Mg:6~10質量%、Si:3~7質量%、Fe:0.2~2質量%及びMn:0.02~2質量%を含有し、残部がAl及び不可避的不純物からなるめっき層を備え、
該めっき層が、αAl−Mg2Si−(Al−Fe−Si−Mn)擬3元共晶組織を有し、該めっき層中の擬3元共晶組織の面積率が30%以上であることを特徴とするAl系めっき鋼材。 - 前記めっき層において、モル比で、Mg/Siが1.7~2.3、Mn/Feが0.1~1.0、Mg2Si/Alが1以下、を満足することを特徴とする請求項1に記載のAl系めっき鋼材。
- 被めっき処理鋼材を、Mg:6~10質量%、Si:3~7質量%、Fe:2質量%以下(ただし、0%を含む)及びMn:0.02~2質量%を含有し、残部がAl及び不可避的不純物からなる組成で、浴温が(融点+20℃)~750℃のめっき浴中に、0.5秒以上浸漬した後、20℃/s以上の冷却速度で冷却することを特徴とするAl系めっき鋼材の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/364,357 US9493868B2 (en) | 2011-12-12 | 2012-12-10 | Aluminum or aluminum alloy-coated steel material and method of manufacturing the same |
KR1020147015801A KR101641006B1 (ko) | 2011-12-12 | 2012-12-10 | Al 계 도금 강재 및 그 제조 방법 |
EP12856630.4A EP2792764B1 (en) | 2011-12-12 | 2012-12-10 | Aluminiumalloy coated steel material and method for manufacturing the same |
CN201280060697.0A CN103975089B (zh) | 2011-12-12 | 2012-12-10 | Al系镀覆钢材及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-271533 | 2011-12-12 | ||
JP2011271533A JP5430022B2 (ja) | 2011-12-12 | 2011-12-12 | Al系めっき鋼材及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013089262A1 true WO2013089262A1 (ja) | 2013-06-20 |
WO2013089262A8 WO2013089262A8 (ja) | 2014-05-22 |
Family
ID=48612701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082591 WO2013089262A1 (ja) | 2011-12-12 | 2012-12-10 | Al系めっき鋼材及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9493868B2 (ja) |
EP (1) | EP2792764B1 (ja) |
JP (1) | JP5430022B2 (ja) |
KR (1) | KR101641006B1 (ja) |
CN (1) | CN103975089B (ja) |
TW (1) | TWI463035B (ja) |
WO (1) | WO2013089262A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017528595A (ja) * | 2014-07-16 | 2017-09-28 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG | アルミニウム合金の腐食防止コーティングを有する鋼製品およびその製造のための方法 |
WO2023176100A1 (ja) * | 2022-03-14 | 2023-09-21 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板、ならびにそれらの製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101583886B1 (ko) * | 2013-12-18 | 2016-01-08 | 현대자동차주식회사 | 알루미늄합금 및 차량용 부품 |
KR101839253B1 (ko) * | 2016-12-23 | 2018-03-15 | 주식회사 포스코 | 가공부 내식성이 우수한 알루미늄계 합금 도금강판 |
JP6812996B2 (ja) | 2017-03-31 | 2021-01-13 | Jfeスチール株式会社 | 溶融Al系めっき鋼板とその製造方法 |
KR102043519B1 (ko) * | 2017-12-22 | 2019-11-12 | 주식회사 포스코 | 내식성 및 용접성이 우수한 용융 알루미늄 합금 도금강판 및 그 제조방법 |
KR102043522B1 (ko) * | 2017-12-22 | 2019-11-12 | 주식회사 포스코 | 용접 액화 취성에 대한 저항성 및 도금 밀착성이 우수한 알루미늄 합금 도금강판 |
WO2020179147A1 (ja) * | 2019-03-01 | 2020-09-10 | Jfe鋼板株式会社 | 溶融Al−Zn−Mg−Si−Srめっき鋼板及びその製造方法 |
KR20210078277A (ko) * | 2019-12-18 | 2021-06-28 | 주식회사 포스코 | 알루미늄합금 도금강판, 열간성형 부재 및 이들의 제조방법 |
KR102451001B1 (ko) * | 2020-12-18 | 2022-10-07 | 주식회사 포스코 | 내식성 및 용접성이 우수한 고강도 알루미늄계 도금강판 및 제조방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04259363A (ja) * | 1991-02-13 | 1992-09-14 | Nippon Steel Corp | 耐食性の優れた溶融アルミメツキ鋼板 |
JP2000239820A (ja) | 1998-12-25 | 2000-09-05 | Nippon Steel Corp | 耐食性に優れた溶融アルミめっき鋼板 |
WO2000056945A1 (fr) | 1999-03-19 | 2000-09-28 | Nippon Steel Corporation | Produit en acier traite en surface, prepare par placage a base d'etain ou d'aluminium |
JP2005272967A (ja) * | 2004-03-25 | 2005-10-06 | Nippon Steel Corp | めっき欠陥の少ない溶融Al系めっき鋼板の製造方法 |
JP4199404B2 (ja) | 1999-03-15 | 2008-12-17 | 新日本製鐵株式会社 | 高耐食性めっき鋼板 |
JP2010168645A (ja) | 2008-12-22 | 2010-08-05 | Tokyo Institute Of Technology | 犠牲防食被膜、水素非侵入防食被膜、鋼材、および鋼材の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04199404A (ja) | 1990-11-29 | 1992-07-20 | Matsushita Electric Ind Co Ltd | 制御装置 |
JP4136286B2 (ja) | 1999-08-09 | 2008-08-20 | 新日本製鐵株式会社 | 耐食性に優れたZn−Al−Mg−Si合金めっき鋼材およびその製造方法 |
BRPI0520616B1 (pt) * | 2005-09-01 | 2016-03-08 | Nippon Steel & Sumitomo Metal Corp | material de aço revestido de liga zn-al por imersão a quente com excelente capacidade de trabalho por dobramento e método de produção do mesmo |
CA2729942C (en) * | 2008-07-11 | 2013-08-06 | Nippon Steel Corporation | Aluminum plated steel sheet for rapid heating hot-stamping, production method of the same and rapid heating hot-stamping method by using this steel sheet |
-
2011
- 2011-12-12 JP JP2011271533A patent/JP5430022B2/ja active Active
-
2012
- 2012-12-10 WO PCT/JP2012/082591 patent/WO2013089262A1/ja active Application Filing
- 2012-12-10 KR KR1020147015801A patent/KR101641006B1/ko active IP Right Grant
- 2012-12-10 CN CN201280060697.0A patent/CN103975089B/zh active Active
- 2012-12-10 US US14/364,357 patent/US9493868B2/en active Active
- 2012-12-10 EP EP12856630.4A patent/EP2792764B1/en active Active
- 2012-12-12 TW TW101146879A patent/TWI463035B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04259363A (ja) * | 1991-02-13 | 1992-09-14 | Nippon Steel Corp | 耐食性の優れた溶融アルミメツキ鋼板 |
JP2000239820A (ja) | 1998-12-25 | 2000-09-05 | Nippon Steel Corp | 耐食性に優れた溶融アルミめっき鋼板 |
JP4199404B2 (ja) | 1999-03-15 | 2008-12-17 | 新日本製鐵株式会社 | 高耐食性めっき鋼板 |
WO2000056945A1 (fr) | 1999-03-19 | 2000-09-28 | Nippon Steel Corporation | Produit en acier traite en surface, prepare par placage a base d'etain ou d'aluminium |
JP2005272967A (ja) * | 2004-03-25 | 2005-10-06 | Nippon Steel Corp | めっき欠陥の少ない溶融Al系めっき鋼板の製造方法 |
JP2010168645A (ja) | 2008-12-22 | 2010-08-05 | Tokyo Institute Of Technology | 犠牲防食被膜、水素非侵入防食被膜、鋼材、および鋼材の製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017528595A (ja) * | 2014-07-16 | 2017-09-28 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG | アルミニウム合金の腐食防止コーティングを有する鋼製品およびその製造のための方法 |
US10287440B2 (en) | 2014-07-16 | 2019-05-14 | Thyssenkrupp Steel Europe Ag | Steel product with an anticorrosive coating of aluminum alloy and method for the production thereof |
WO2023176100A1 (ja) * | 2022-03-14 | 2023-09-21 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板、ならびにそれらの製造方法 |
JP7485219B2 (ja) | 2022-03-14 | 2024-05-16 | Jfeスチール株式会社 | 熱間プレス部材および熱間プレス用鋼板、ならびにそれらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2792764B1 (en) | 2016-03-23 |
US20140377583A1 (en) | 2014-12-25 |
JP5430022B2 (ja) | 2014-02-26 |
EP2792764A4 (en) | 2015-05-06 |
TWI463035B (zh) | 2014-12-01 |
KR101641006B1 (ko) | 2016-07-19 |
CN103975089B (zh) | 2016-04-27 |
WO2013089262A8 (ja) | 2014-05-22 |
KR20140092900A (ko) | 2014-07-24 |
CN103975089A (zh) | 2014-08-06 |
JP2013122079A (ja) | 2013-06-20 |
TW201331415A (zh) | 2013-08-01 |
US9493868B2 (en) | 2016-11-15 |
EP2792764A1 (en) | 2014-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013089262A1 (ja) | Al系めっき鋼材及びその製造方法 | |
TWI658149B (zh) | 鍍敷鋼板 | |
TWI666341B (zh) | 鍍敷鋼板 | |
JP7244722B2 (ja) | 加工後耐食性に優れた亜鉛合金めっき鋼材及びその製造方法 | |
WO2013002358A1 (ja) | 外観均一性に優れた高耐食性溶融亜鉛めっき鋼板およびその製造方法 | |
CN110352261B (zh) | 热浸镀Al系钢板及其制造方法 | |
JP6683258B2 (ja) | 溶融Al系めっき鋼板及び溶融Al系めっき鋼板の製造方法 | |
JP2000328216A (ja) | 高耐食性めっき鋼板 | |
CN116670317A (zh) | 密封剂粘合性优异的镀覆钢板及其制造方法 | |
JP7401827B2 (ja) | 溶融Zn系めっき鋼板 | |
JP7546055B2 (ja) | 耐腐食性に優れた溶融合金めっき鋼材及びその製造方法 | |
JP7496876B2 (ja) | 加工部耐食性に優れたZn-Al-Mg系溶融合金めっき鋼材及びその製造方法 | |
CN102712988B (zh) | 金属镀覆钢带 | |
JPH07188887A (ja) | 耐食性に優れた溶融アルミニウムめっき鋼板 | |
JP2007270341A (ja) | 溶融亜鉛めっき鋼板の製造方法 | |
JP2003328099A (ja) | 高強度溶融亜鉛めっき鋼板の製造方法 | |
TW201812054A (zh) | 熔融Al-Zn系鍍覆鋼板 | |
WO2018181392A1 (ja) | 溶融Al系めっき鋼板とその製造方法 | |
WO2024214329A1 (ja) | 溶融Al-Zn系めっき鋼板及びその製造方法 | |
WO2024219123A1 (ja) | 溶融めっき鋼材 | |
JP2002105615A (ja) | 溶融Sn−Mg系めっき鋼板 | |
JP6409647B2 (ja) | 耐遅れ破壊性と耐食性に優れた高強度鋼板 | |
JPH06104859B2 (ja) | 耐火性に優れた建築用低降伏比溶融亜鉛メッキ冷延鋼板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280060697.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12856630 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012856630 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147015801 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14364357 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |