WO2013089061A1 - 導電性接着剤、及び電子部品の接続方法 - Google Patents

導電性接着剤、及び電子部品の接続方法 Download PDF

Info

Publication number
WO2013089061A1
WO2013089061A1 PCT/JP2012/081931 JP2012081931W WO2013089061A1 WO 2013089061 A1 WO2013089061 A1 WO 2013089061A1 JP 2012081931 W JP2012081931 W JP 2012081931W WO 2013089061 A1 WO2013089061 A1 WO 2013089061A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder particles
electronic component
organic peroxide
temperature
minute half
Prior art date
Application number
PCT/JP2012/081931
Other languages
English (en)
French (fr)
Inventor
佐藤 大祐
良介 小高
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020147018765A priority Critical patent/KR102005129B1/ko
Priority to US14/363,894 priority patent/US9752058B2/en
Priority to EP12857225.2A priority patent/EP2792722B1/en
Priority to IN1199MUN2014 priority patent/IN2014MN01199A/en
Priority to CN201280061643.6A priority patent/CN103987801B/zh
Publication of WO2013089061A1 publication Critical patent/WO2013089061A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0425Solder powder or solder coated metal powder

Definitions

  • the present invention relates to a conductive adhesive in which conductive particles are dispersed and a method for connecting an electronic component using the same.
  • an organic film decomposing component such as an acid component is blended in the anisotropic conductive adhesive film (see, for example, Patent Document 1), and preflux is washed and removed with trichloroethane or the like before pressure bonding. (For example, refer to Patent Document 2) and the like have been proposed.
  • the present invention has been proposed in view of such conventional circumstances, and provides a conductive adhesive capable of obtaining good conduction to a prefluxed substrate, and a method for connecting electronic components. To do.
  • solder particles As a result of intensive studies, the present inventors have used solder particles as conductive particles, and by using an organic peroxide having a half-life temperature of 1 minute lower than the solidus temperature of the solder particles as a polymerization initiator, It has been found that good electrical continuity can be obtained for a prefluxed substrate.
  • the conductive adhesive according to the present invention contains a polymerizable acrylic compound, an organic peroxide, and solder particles, and the one-minute half-life temperature of the organic peroxide is the solidity of the solder particles. It is characterized by being lower than the phase line temperature.
  • the electronic component connection method includes a film-forming resin, a polymerizable acrylic compound, an organic peroxide, and solder particles, and the organic peroxide has a one-minute half-life temperature.
  • a conductive adhesive having a temperature lower than the solidus temperature of the solder particles is sandwiched between the electrode of the first electronic component and the electrode of the second electronic component that have been prefluxed, and the first electronic component and the second electronic component
  • the second electronic component is thermocompression bonded to electrically connect the electrode of the first electronic component and the electrode of the second electronic component.
  • the one-minute half-life temperature of the organic peroxide is lower than the solidus temperature of the solder particles, so that the solder particles are crushed and the oxide film is removed at the time of thermocompression bonding.
  • the preflux layer on the bump surface is removed and conduction is ensured, and then the adhesive component is completely cured.
  • favorable conduction can be obtained with respect to the substrate subjected to the preflux treatment.
  • the conductive adhesive in this embodiment is a thermosetting adhesive main component comprising a polymerizable acrylic compound that initiates radical polymerization with an organic peroxide in order to lower the curing temperature at the time of connection and shorten the tact time. It is what.
  • the conductive adhesive in the present embodiment contains a film-forming resin, a polymerizable acrylic compound, an organic peroxide, and conductive particles.
  • thermoplastic elastomer such as phenoxy resin, epoxy resin, polyester resin, polyurethane resin, polyamide, EVA, or the like can be used.
  • a phenoxy resin synthesized from bisphenol A and epichlorohydrin can be preferably used for heat resistance and adhesiveness.
  • resin solids polymerization acrylic compound and film formation 80 to 30% by mass, more preferably 70 to 40% by mass, based on the total amount of the resin.
  • Polymerizable acrylic compounds include polyethylene glycol diacrylate, phosphate ester acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, t-butyl acrylate, isooctyl acrylate, bis Phenoxyethanol full orange acrylate, 2-acryloyloxyethyl succinic acid, lauryl acrylate, stearyl acrylate, isobornyl acrylate, tricyclodecane dimethanol dimethacrylate, cyclohexyl acrylate, tris (2-hydroxyethyl) isocyanurate triacrylate, tetrahydrofur Furyl acrylate, o-phthalic acid diglycidyl ether acrylate, ethoxy Bisphenol A dimethacrylate, bisphenol A type epoxy acrylate, urethane acrylate, epoxy acrylate, and can be given the corresponding (meth) acryl
  • the amount of the polymerizable acrylic compound used is too small, the conduction reliability will be low, and if it is too large, the adhesive strength will be low, and there is a tendency that a film cannot be formed.
  • Organic peroxides include di (4-methylbenzoyl) peroxide (1 minute half-life temperature 128.2 ° C), di (3-methylbenzoyl) peroxide (1 minute half-life temperature 131.1 ° C), dibenzoyl Peroxide (1 minute half-life temperature 130.0 ° C), t-hexyl peroxybenzoate (1 minute half-life temperature 160.3 ° C), t-butyl peroxybenzoate (1 minute half-life temperature 166.8 ° C), Diisobutyryl-peroxide (1-minute half-life temperature 85.1 ° C), 1,1,3,3-tetramethylbutyl-peroxy-2-ethylhexanoate (1-minute half-life temperature 124.3 ° C), dilauroyl-peroxide ( 1 minute half-life temperature 116.4 ° C), di (3,5,5-trimethylhexanoyl) peroxide (1 minute Half-life temperature 112.6 ° C), t-butyl peroxypivalate (1 minute half
  • the amount of the organic peroxide used is preferably 1 with respect to 100 parts by mass of the polymerizable acrylic compound. -10 parts by mass, more preferably 3-7 parts by mass.
  • the one-minute half-life temperature of the organic peroxide is lower than the solidus temperature of the solder particles. More preferably, the one-minute half-life temperature of the organic peroxide is lower by 0 ° C. or more and 20 ° C. or less than the solidus temperature of the solder particles.
  • the resin will not cure even if the solder particles melt, so good conduction to the prefluxed substrate I can't get it. Also, if the half-life temperature for 1 minute is lower than the solidus temperature of the solder particles by more than 20 ° C., the curing reaction of the conductive adhesive proceeds too quickly during thermocompression bonding. Conduction becomes difficult.
  • the 1 minute half-life temperature of the organic peroxide is preferably 160 ° C. or less. As a result, good conduction can be obtained under thermocompression bonding conditions at a low temperature and low pressure of 200 ° C. or lower and 2 to 3 MPa.
  • Sn (47) -Bi (53) system solidus temperature: 139 ° C.
  • Sn (49) -In (34) -Pb (17) system from the viewpoint of lowering the curing temperature
  • Sn (22) -Bi (50) -Pb (28) system solidus temperature: 124 ° C.
  • Sn (48) -In (52) system solidus temperature: Those having a low melting point such as 117 ° C. are preferably used.
  • the amount of solder particles used is too small, the possibility of poor conduction increases, and if it is too large, there is an increased possibility of short-circuiting. More preferably, it is 0.2 to 10 parts by mass.
  • the average particle size of the solder particles is usually 1 to 15 ⁇ m, more preferably 5 to 10 ⁇ m.
  • diluting monomers such as various acrylic monomers, fillers, softeners, colorants, flame retardants, thixotropes A tropic agent, a coupling agent, etc. can be contained.
  • the conductive adhesive having such a structure removes the oxide film because the one-minute half-life temperature of the organic peroxide is lower than the solidus temperature of the solder particles, so that the solder particles are crushed during thermocompression bonding.
  • the pre-flux layer on the bump surface is removed by melting and flowing, and after conduction is secured, the adhesive component is completely cured, so that good conduction to the pre-flux-treated substrate is achieved. Obtainable.
  • the one minute half-life temperature of the organic peroxide is lower by 0 ° C. or more and 20 ° C. or less than the solidus temperature of the solder particles, good conduction can be obtained under low pressure thermocompression bonding conditions. Furthermore, when the one-minute half-life temperature of the organic peroxide is 160 ° C. or lower, specifically, 80 ° C. or higher and 160 ° C. or lower, it is good at 200 ° C. or lower and 2 to 3 MPa low temperature / low pressure thermocompression bonding conditions. Conductivity can be obtained.
  • a composition containing a film-forming resin, a polymerizable acrylic compound, an organic peroxide, and solder particles is applied onto a release substrate. It has an application
  • the organic peroxide having a one-minute half-life temperature lower than the solidus temperature of the solder particles is blended and adjusted using an organic solvent, and then the composition is peeled off. It is coated on top using a bar coater, coating device or the like.
  • the organic solvent toluene, ethyl acetate, or a mixed solvent thereof, and other various organic solvents can be used.
  • the release substrate is made of, for example, a laminated structure in which a release agent such as silicone is applied to PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), and the like. And maintaining the film shape of the composition.
  • the composition on the release substrate is dried by a heat oven, a heat drying apparatus or the like.
  • the anisotropic conductive film in which the conductive adhesive mentioned above was formed in the film form can be obtained.
  • a method for connecting an electronic component as a specific example includes a film-forming resin, a polymerizable acrylic compound, an organic peroxide, and solder particles, and the half-life temperature of the organic peroxide is 1 minute.
  • the first electronic component and the second electronic component are sandwiched between the electrode of the first electronic component and the electrode of the second electronic component that have been prefluxed with a conductive adhesive lower than the solidus temperature of the first electronic component.
  • the electrode of the first electronic component and the electrode of the second electronic component are electrically connected.
  • the second electronic component may be prefluxed or not prefluxed.
  • the first electronic component and the second electronic component are thermocompression bonded at a temperature that is 5 ° C. or more higher than the solidus temperature of the solder particles, specifically, 5 ° C. or more and 30 ° C. or less.
  • the solder particles are crushed, the oxide film is removed, and the preflux layer on the bump surface can be removed by melting and flowing.
  • the adhesive component can be completely cured.
  • the solder particles are sufficiently crushed even at a low pressure.
  • the preflux layer on the bump surface can be removed by melting and flowing.
  • the one-minute half-life temperature of the organic peroxide is 160 ° C. or less
  • good conduction can be obtained under the low temperature and low pressure thermocompression bonding conditions of 200 ° C. or less and 2 to 3 MPa.
  • the first electrical component is a liquid crystal panel, a printed wiring board (PWB), etc.
  • the second electrical component is flexible. It can be preferably applied to a printed circuit board, a tape carrier package (TCP) board, a chip-on-film (COF) board, and the like. Moreover, it can also use for the connection of the electrode of a photovoltaic cell and a tab wire in a photovoltaic module.
  • connection body connected by the conductive adhesive of the present embodiment is connected by the solder particles as the conductive particles, it has high connection reliability.
  • an acrylic thermosetting conductive adhesive film containing solder particles having a predetermined solidus temperature and an organic peroxide having a predetermined 1 minute half-life temperature was produced.
  • substrate and the flexible substrate which were preflux-processed using this conductive adhesive film were connected, and conduction
  • Example 1 (Preparation of anisotropic conductive film) 38 parts by mass of phenoxy resin (trade name: YP50, manufactured by Toto Kasei Co., Ltd.), 20 parts by mass of urethane acrylate (trade name: MP1600, manufactured by Toa Gosei Co., Ltd.), bifunctional acrylic monomer (trade name: DCP, Shin Nakamura Chemical Co., Ltd.) 20 parts by mass, monofunctional acrylic monomer (trade name: A-SA, Shin-Nakamura Chemical Co., Ltd.) 10 parts by mass, organic peroxide (trade name: Nyper BW, manufactured by NOF Corporation, 1 minute half-life) 3 parts by mass of temperature (130 ° C.), 2 parts by mass of silica (trade name: RY200, manufactured by Nippon Aerosil Co., Ltd.), 10 parts by mass of rubber component (trade name: JER-91, manufactured by Japan Epoxy Resin Co., Ltd.), silane cup A resin composition was prepared by blending 1 part by
  • This resin composition was dissolved and mixed in 100 parts by mass of toluene, and then applied to the peeled PET using a bar coater, dried in an oven at 60 ° C. for 10 minutes, and an anisotropic conductive film having a thickness of 30 ⁇ m. A film was prepared.
  • Solder particles (solidus temperature: 139 ° C.) were produced as follows. An alloy in which Sn and Bi were melted (Sn: 47%, Bi: 53%) was sprayed into water from a predetermined nozzle and rapidly solidified by a water atomization method to obtain solder particles having an average particle size of 10 ⁇ m.
  • a rigid substrate subjected to preflux treatment also referred to as OSP (Organic Solderability Preservative) treatment
  • a flexible substrate obtained by Sn plating treatment of Cu wiring with a pitch of 200 ⁇ m were connected under predetermined conditions using the anisotropic conductive film.
  • the preflux treatment is performed by immersing the rigid substrate in a water-soluble preflux (trade name: F2LX, manufactured by Shikoku Kasei Co., Ltd.) at 25 to 40 ° C. for 3 to 5 minutes, and then reflowing the rigid substrate at a peak top of 260 ° C. Passed 3 times.
  • the conduction resistance at the initial stage and after the temperature cycle test (TCT: ⁇ 55 ° C., 15 minutes ⁇ ⁇ 125 ° C., 1000 cycles for 15 minutes) was measured by the 4-terminal method. A case where both the initial conduction resistance and the conduction resistance after TCT were 0.5 ⁇ or less was evaluated as ⁇ , and the others were evaluated as ⁇ .
  • Example 2 (Preparation of anisotropic conductive film) An anisotropic conductive film of Example 2 in the same manner as in Example 1 except that the organic peroxide (trade name: Parroyl L, manufactured by NOF Corporation, 1 minute half-life temperature: 116 ° C.) was changed to 3 parts by mass. Was made.
  • organic peroxide trade name: Parroyl L, manufactured by NOF Corporation, 1 minute half-life temperature: 116 ° C.
  • connection reliability evaluation structure The evaluation of the conduction resistance of the connection structure that was thermocompression bonded under the conditions of 145 ° C., 2 MPa, and 10 seconds using the anisotropic conductive film of Example 2 was x. Moreover, evaluation of the conduction resistance of the connection structure thermocompression-bonded on condition of 145 degreeC, 5 Mpa, and 10 second using the anisotropic conductive film of Example 2 was (circle). Table 1 shows the evaluation results of the conduction resistance.
  • Example 3 (Preparation of anisotropic conductive film)
  • the solidus temperature was 5 parts by mass of solder particles at 130 ° C., and 3 parts by mass of organic peroxide having a 1 minute half-life temperature of 116 ° C. (trade name: Parroyl L, manufactured by NOF Corporation),
  • An anisotropic conductive film of Example 3 was produced in the same manner as Example 1.
  • Solder particles (solidus temperature: 130 ° C.) were produced as follows. An alloy in which Sn, In, and Pb are melted (Sn: 49%, In: 34%, Pb: 17%) is sprayed into water from a predetermined nozzle and rapidly solidified by water atomization, and the average particle size is 10 ⁇ m. Solder particles were obtained.
  • connection reliability evaluation structure The evaluation of the conduction resistance of the connection structure that was thermocompression bonded using the anisotropic conductive film of Example 3 under the conditions of 135 ° C., 2 MPa, and 10 seconds was “good”. Table 1 shows the evaluation results of the conduction resistance.
  • Example 4 (Preparation of anisotropic conductive film)
  • the solidus temperature is 5 parts by mass of solder particles at 130 ° C. and 3 parts by mass of organic peroxide (trade name: Parroyl TCP, manufactured by NOF Corporation) with a 1 minute half-life temperature of 92 ° C.
  • An anisotropic conductive film of Example 4 was produced in the same manner as Example 1.
  • connection reliability evaluation structure The evaluation of the conduction resistance of the connection structure that was thermocompression bonded using the anisotropic conductive film of Example 4 under the conditions of 135 ° C., 2 MPa, and 10 seconds was x. Moreover, evaluation of the conduction resistance of the connection structure which carried out the thermocompression bonding on the conditions of 135 degreeC, 5 Mpa, and 10 second using the anisotropic conductive film of Example 2 was (circle). Table 1 shows the evaluation results of the conduction resistance.
  • connection reliability evaluation structure The evaluation of the conduction resistance of the connection structure that was thermocompression bonded under the conditions of 145 ° C., 2 MPa, and 10 seconds using the anisotropic conductive film of Comparative Example 1 was x. Table 1 shows the evaluation results of the conduction resistance.
  • Reference Example 1 (Preparation of anisotropic conductive film)
  • the anisotropic conductive material of Reference Example 1 was used in the same manner as in Example 1 except that 5 parts by mass of resin particles (Nihon Kagaku, average particle size 10 ⁇ m) subjected to Ni / Au plating were used instead of the solder particles. A film was prepared.
  • connection reliability evaluation structure The evaluation of the conduction resistance of the connection structure that was thermocompression bonded using the anisotropic conductive film of Reference Example 1 under the conditions of 145 ° C., 2 MPa, and 10 seconds was x. In addition, the evaluation of the conduction resistance of the connection structure that was thermocompression bonded under the conditions of 145 ° C., 2 MPa, and 10 seconds using a rigid substrate that was not prefluxed was “good”. Table 1 shows the evaluation results of the conduction resistance.
  • Example 1 when the solder particles are crushed by thermocompression bonding at a temperature higher than the solidus temperature of the solder particles by 5 ° C. or more, a part of the solder particles is removed together with the removal of the preflux. It can be melted and the solder wettability can be improved by the flux of the substrate.
  • Comparative Example 1 when an anisotropic conductive film in which the half-life temperature of the organic peroxide is 1 minute higher than the solidus temperature of the solder particles is used, the curing of the resin does not proceed, so that it is good. Continuity is not obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Adhesive Tapes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 プリフラックス処理された基板に対して良好な導通を得ることができる導電性接着剤、及び電子部品の接続方法を提供する。重合性アクリル系化合物と、有機過酸化物と、はんだ粒子とを含有し、有機過酸化物の1分間半減期温度が、はんだ粒子の固相線温度より低い導電性接着剤を用いる。熱圧着時にはんだ粒子が押し潰され、酸化膜が除去されるとともに、溶融・流動することによりバンプ表面のプリフラックス層が除去され、導通が確保された後、接着剤成分が完全に硬化する。

Description

導電性接着剤、及び電子部品の接続方法
 本発明は、導電性粒子が分散された導電性接着剤、それを用いた電子部品の接続方法に関する。本出願は、日本国において2011年12月15日に出願された日本特許出願番号特願2011-274841を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 近年、基板の回路部分の保護のために樹脂系のプリフラックス処理が施されている。しかし、比較的低温で圧着を行う導電性接着剤を用いた接続工法では、端子上に存在するプリフラックス層が導通を阻害するという問題が生じる。
 この問題を解決するために、異方導電性接着フィルム中に酸成分等の有機膜分解成分を配合すること(例えば、特許文献1参照。)、圧着前にトリクロロエタン等でプリフラックスを洗浄除去すること(例えば、特許文献2参照。)などが提案されている。
 しかし、特許文献1の方法では、配合の自由度に制約が生じるとともに、酸成分等が端子等の部材を腐食する懸念がある。また、特許文献2の方法では、工程が増えるために製造コストが増大してしまう。
特開2011-77045号公報 特開平5-63355号公報
 本発明は、このような従来の実情に鑑みて提案されたものであり、プリフラックス処理された基板に対して良好な導通を得ることができる導電性接着剤、及び電子部品の接続方法を提供する。
 本件発明者らは、鋭意検討を行った結果、導電性粒子としてはんだ粒子を用い、重合開始剤として1分間半減期温度がはんだ粒子の固相線温度より低い有機過酸化物を用いることにより、プリフラックス処理された基板に対して良好な導通が得られることを見出した。
 すなわち、本発明に係る導電性接着剤は、重合性アクリル系化合物と、有機過酸化物と、はんだ粒子とを含有し、前記有機過酸化物の1分間半減期温度が、前記はんだ粒子の固相線温度より低いことを特徴とする。
 また、本発明に係る電子部品の接続方法は、膜形成樹脂と、重合性アクリル系化合物と、有機過酸化物と、はんだ粒子とを含有し、前記有機過酸化物の1分間半減期温度が、前記はんだ粒子の固相線温度より低い導電性接着剤を、プリフラックス処理された第1の電子部品の電極と第2の電子部品の電極との間に挟み、第1の電子部品と第2の電子部品とを熱圧着し、第1の電子部品の電極と、第2の電子部品の電極とを電気的に接続することを特徴とする。
 本発明によれば、有機過酸化物の1分間半減期温度がはんだ粒子の固相線温度より低いことにより、熱圧着時にはんだ粒子が押し潰され、酸化膜が除去されるとともに、溶融・流動することによりバンプ表面のプリフラックス層が除去され、導通が確保された後、接着剤成分が完全に硬化する。また、プリフラックス処理された基板に対して良好な導通を得ることができる。
 以下、本発明の実施の形態について、下記順序にて詳細に説明する。
1.導電性接着剤
2.電子部品の接続方法
3.実施例
 <1.導電性接着剤>
 本実施の形態における導電性接着剤は、接続時の硬化温度の低温化、タクトタイムの短縮化のため、有機過酸化物でラジカル重合を開始する重合性アクリル系化合物を熱硬化性接着主成分とするものである。
 すなわち、本実施の形態における導電性接着剤は、膜形成樹脂と、重合性アクリル系化合物と、有機過酸化物と、導電性粒子とを含有する。
 膜形成樹脂としては、フェノキシ樹脂、エポキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド、EVA等の熱可塑性エラストマー等を使用することができる。これらの中でも、耐熱性、接着性のために、ビスフェノールAとエピクロルヒドリンより合成されるフェノキシ樹脂を好ましく使用することができる。
 膜形成樹脂の使用量は、少なすぎるとフィルムを形成せず、多すぎると電気接続を得るための樹脂の排除性が低くなる傾向があるので、樹脂固形分(重合性アクリル系化合物と膜形成樹脂との合計)の80~30質量%、より好ましくは70~40質量%である。
 重合性アクリル系化合物としては、ポリエチレングリコールジアクリレート、リン酸エステル型アクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、イソオクチルアクリレート、ビスフェノキシエタノールフルオレンジアクリレート、2-アクリロイロキシエチルコハク酸、ラウリルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、トリシクロデカンジメタノールジメタクリレート、シクロヘキシルアクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレート、テトラヒドロフルフリルアクリレート、o-フタル酸ジグリシジルエーテルアクリレート、エトキシ化ビスフェノールAジメタクリレート、ビスフェノールA型エポキシアクリレート、ウレタンアクリレート、エポキシアクリレート、及びこれらに相当する(メタ)アクリレートを挙げることができる。これらの中でも、硬化物の凝集力の向上、導通信頼性の向上、接着性の向上などのため、ウレタンアクリレート、単官能アクリレートなどを併用することが好ましい。
 重合性アクリル系化合物の使用量は、少なすぎると導通信頼性が低くなり、多すぎると接着強度が低くなり、さらにフィルムを形成できない傾向があるので、好ましくは樹脂固形分(重合性アクリル系化合物とフィルム形成樹脂との合計)の20~70質量%、より好ましくは30~60質量%である。
 有機過酸化物としては、ジ(4-メチルベンゾイル)パーオキサイド(1分間半減期温度128.2℃)、ジ(3-メチルベンゾイル)パーオキサイド(1分間半減期温度131.1℃)、ジベンゾイル パーオキサイド(1分間半減期温度 130.0℃)、t-ヘキシル パーオキシベンゾエート(1分間半減期温度 160.3℃)、t-ブチル パーオキシベンゾエート(1分間半減期温度 166.8℃)、ジイソブチリル パーオキサイド(1分間半減期温度 85.1℃)、1,1,3,3-テトラメチルブチル パーオキシ-2-エチルヘキサノエート(1分間半減期温度 124.3℃)、ジラウロイル パーオキサイド(1分間半減期温度 116.4℃)、ジ(3,5,5-トリメチルヘキサノイル)パーオキサイド(1分間半減期温度 112.6℃)、t-ブチル パーオキシピバレート(1分間半減期温度 110.3℃)、t-ヘキシル パーオキシピバレート(1分間半減期温度 109.1℃)、t-ブチル パーオキシネオヘプタノエート(1分間半減期温度 104.6℃)、t-ブチル パーオキシネオデカノエート(1分間半減期温度 103.5℃)、t-ヘキシル パーオキシネオデカノエート(1分間半減期温度 100.9℃)、ジ(2-エチルヘキシル)パーオキシジカーボネート(1分間半減期温度 90.6℃)、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(1分間半減期温度 92.1℃)、1,1,3,3-テトラメチルブチル パーオキシネオデカノエート(1分間半減期温度 92.1℃)、ジ-sec-ブチル パーオキシジカーボネート(1分間半減期温度 85.1℃)、ジ-n-プロピル パーオキシジカーボネート(1分間半減期温度 85.1℃)、クミル パーオキシネオデカノエート(1分間半減期温度 85.1℃)等を挙げることができる。これらは、2種以上を併用することができる。
 有機過酸化物の使用量は、少なすぎると反応性が無くなり、多すぎると異方性導電フィルムの製品ライフが低下する傾向があるため、重合性アクリル系化合物100質量部に対し、好ましくは1~10質量部、より好ましくは3~7質量部である。
 本実施の形態では、有機過酸化物の1分間半減期温度が、はんだ粒子の固相線温度より低いものが用いられる。より好ましくは、有機過酸化物の1分間半減期温度が、はんだ粒子の固相線温度より0℃以上20℃以下低いものが用いられる。
 有機過酸化物の1分間半減期温度がはんだ粒子の固相線温度より高いと、はんだ粒子が溶融しても樹脂の硬化が進まないため、プリフラックス処理された基板に対して良好な導通が得られない。また、1分間半減期温度がはんだ粒子の固相線温度より20℃を超えて低いと、熱圧着時に導電性接着剤の硬化反応が早く進行し過ぎるため、低圧の熱圧着条件での良好な導通が困難となる。
 また、有機過酸化物の1分間半減期温度は、160℃以下であることが好ましい。これにより、200℃以下、2~3MPaの低温・低圧の熱圧着条件で良好な導通を得ることができる。
 はんだ粒子としては、硬化温度の低温化の点から、Sn(47)-Bi(53)系(固相線温度:139℃)、Sn(49)-In(34)-Pb(17)系(固相線温度:130℃)、Sn(22)-Bi(50)-Pb(28)系(固相線温度:124℃)、Sn(48)-In(52)系(固相線温度:117℃)などの低融点のものが好ましく用いられる。
 はんだ粒子の使用量は、少なすぎると導通不良が生ずる可能性が高まり、多すぎると短絡が生ずる可能性が高まるので、樹脂固形分100質量部に対し、好ましくは0.1~20質量部、より好ましくは0.2~10質量部である。また、はんだ粒子の平均粒径は、通常1~15μm、より好ましくは5~10μmである。
 また、本実施の形態における導電性接着剤を構成する他の添加組成物として、必要に応じて、各種アクリルモノマー等の希釈用モノマー、充填剤、軟化剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤等を含有することができる。
 このような構成からなる導電性接着剤は、有機過酸化物の1分間半減期温度が、はんだ粒子の固相線温度より低いことにより、熱圧着時にはんだ粒子が押し潰され、酸化膜が除去されるとともに、溶融・流動することによりバンプ表面のプリフラックス層が除去され、導通が確保された後、接着剤成分が完全に硬化するため、プリフラックス処理された基板に対して良好な導通を得ることができる。
 また、有機過酸化物の1分間半減期温度が、はんだ粒子の固相線温度より0℃以上20℃以下低いことにより、低圧の熱圧着条件で良好な導通を得ることができる。さらに、有機過酸化物の1分間半減期温度が160℃以下、具体的には80℃以上160℃以下であることにより、200℃以下、2~3MPaの低温・低圧の熱圧着条件で良好な導通を得ることができる。
 次に、前述した導電性接着剤の製造方法について、異方導電性フィルムを例に挙げて説明する。本実施の形態における異方導電性フィルムの製造方法は、剥離基材上に、膜形成樹脂と、重合性アクリル系化合物と、有機過酸化物と、はんだ粒子とを含有する組成物を塗布する塗布工程と、剥離基材上の組成物を乾燥させる乾燥工程とを有する。
 塗布工程では、前述のように有機過酸化物の1分間半減期温度が、はんだ粒子の固相線温度より低いものを配合し、有機溶剤を用いて調整した後、この組成物を剥離基材上にバーコーター、塗布装置等を用いて塗布する。
 有機溶剤としては、トルエン、酢酸エチル、又はこれらの混合溶剤、その他各種有機溶剤を用いることができる。また、剥離基材は、例えば、シリコーンなどの剥離剤をPET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)などに塗布した積層構造からなり、組成物のフィルム形状を維持する。
 次の乾燥工程では、剥離基材上の組成物を熱オーブン、加熱乾燥装置などにより乾燥させる。これにより、前述した導電性接着剤が膜状に形成された異方性導電フィルムを得ることができる。
 <2.電子部品の接続方法>
 次に、導電性接着剤を用いた電子部品の接続方法について説明する。具体例として示す電子部品の接続方法は、膜形成樹脂と、重合性アクリル系化合物と、有機過酸化物と、はんだ粒子とを含有し、有機過酸化物の1分間半減期温度が、はんだ粒子の固相線温度より低い導電性接着剤を、プリフラックス処理された第1の電子部品の電極と第2の電子部品の電極との間に挟み、第1の電子部品と第2の電子部品とを熱圧着し、第1の電子部品の電極と、第2の電子部品の電極とを電気的に接続する。なお、第2の電子部品は、プリフラックス処理されていても、プリフラックス処理されていなくても構わない。
 本実施の形態では、第1の電子部品と第2の電子部品とをはんだ粒子の固相線温度より5℃以上高い温度、具体的には5℃以上30℃以下高い温度で熱圧着する。これにより、はんだ粒子が押しつぶされ、酸化膜が除去されるとともに、溶融・流動することによりバンプ表面のプリフラックス層を除去することができる。また、有機過酸化物の1分間半減期温度は、はんだ粒子の固相線温度より低いため、接着剤成分を完全に硬化させることができる。
 また、有機過酸化物の1分間半減期温度が、はんだ粒子の固相線温度より0℃以上20℃以下低い導電性接着剤を用いた場合、低圧でも十分にはんだ粒子が押しつぶされ、酸化膜が除去されるとともに、溶融・流動することによりバンプ表面のプリフラックス層を除去することができる。
 また、有機過酸化物の1分間半減期温度が、160℃以下であることにより、200℃以下、2~3MPaの低温・低圧の熱圧着条件で良好な導通を得ることができる。
 本実施の形態における導電性接着剤は、様々な場面で使用することができるが、第1の電気部品が、液晶パネル、プリント配線板(PWB)など、また、第2の電気部品が、フレキシブル印刷回路基板、テープキャリアパッケージ(TCP)基板、チップオンフィルム(COF)基板などである場合に好ましく適用できる。また、太陽電池モジュールにおける太陽電池セルの電極とタブ線との接続に用いることもできる。
 また、本実施の形態の導電性接着剤により接続された接続体は、導電性粒子としてはんだ粒子により接続されているため、高い接続信頼性を有する。
 <3.実施例>
 以下、実施例を挙げて、本発明を具体的に説明するが、本発明は、これらの実施例に限定されるものではない。ここでは、所定の固相線温度を有するはんだ粒子と、所定の1分間半減期温度を有する有機過酸化物とを含むアクリル系熱硬化型の導電性接着フィルムを作製した。そして、この導電性接着フィルムを用いてプリフラックス処理されたリジット基板とフレキシブル基板とを接続させ、導通抵抗を評価した。
 [実施例1]
 (異方性導電フィルムの作製)
 フェノキシ樹脂(商品名:YP50、東都化成社製)を38質量部、ウレタンアクリレート(商品名:MP1600、東亜合成社製)を20質量部、2官能アクリルモノマー(商品名:DCP、新中村化学社製)を20質量部、単官能アクリルモノマー(商品名:A-SA、新中村化学社製)を10質量部、有機過酸化物(商品名:ナイパーBW、日本油脂社製、1分間半減期温度:130℃)を3質量部、シリカ(商品名:RY200、日本アエロジル社製)を2質量部、ゴム成分(商品名:JER-91、ジャパンエポキシレジン社製)を10質量部、シランカップリング剤(商品名:KMB503、信越化学工業社製)を1質量部、及び平均粒径10μmのはんだ粒子(固相線温度:139℃)を5質量部配合し、樹脂組成物を調製した。
 この樹脂組成物を、トルエン100質量部に溶解・混合させた後、剥離処理されたPETにバーコーターを用いて塗布し、60℃のオーブンで10分乾燥させ、厚さ30μmの異方性導電フィルムを作製した。
 はんだ粒子(固相線温度:139℃)は、次のように作製した。水アトマイズ法により、SnとBiとが溶融した合金(Sn:47%、Bi:53%)を所定のノズルから水中に噴霧し、急冷凝固して、平均粒径10μmのはんだ粒子を得た。
 (接続信頼性評価用構造体の作製・評価)
 プリフラックス処理(OSP(Organic Solderability Preservative)処理とも呼ぶ。)したリジット基板と、200μmピッチのCu配線をSnめっき処理したフレキシブル基板とを上記異方性導電フィルムを用いて所定の条件で接続した。プリフラックス処理は、リジット基板を25~40℃の水溶性プリフラックス(商品名:F2LX、四国化成社製)中に3~5分間浸漬させた後、このリジット基板をピークトップ260℃のリフローを3回Passさせた。
 この接続構造体の初期、及び温度サイクル試験(TCT:-55℃、15分間←→125℃、15分間を1000サイクル)後の導通抵抗を4端子法により測定した。初期の導通抵抗及びTCT後の導通抵抗の両者が0.5Ω以下であるものを○、それ以外を×と評価した。
 実施例1の異方性導電フィルムを用いて、145℃、2MPa、10秒という条件で熱圧着した接続構造体の導通抵抗の評価は○であった。また、実施例1の異方性導電フィルムを用いて、140℃、2MPa、10秒という条件で熱圧着した接続構造体の導通抵抗の評価は×であった。表1に導通抵抗の評価結果を示す。
 [実施例2]
 (異方性導電フィルムの作製)
 有機過酸化物(商品名:パーロイルL、日本油脂社製、1分間半減期温度:116℃)を3質量部とした以外は、実施例1と同様にして実施例2の異方性導電フィルムを作製した。
 (接続信頼性評価用構造体の作製・評価)
 実施例2の異方性導電フィルムを用いて、145℃、2MPa、10秒という条件で熱圧着した接続構造体の導通抵抗の評価は×であった。また、実施例2の異方性導電フィルムを用いて、145℃、5MPa、10秒という条件で熱圧着した接続構造体の導通抵抗の評価は○であった。表1に導通抵抗の評価結果を示す。
 [実施例3]
 (異方性導電フィルムの作製)
 固相線温度は130℃のはんだ粒子を5質量部、及び1分間半減期温度が116℃の有機過酸化物(商品名:パーロイルL、日本油脂社製)を3質量部とした以外は、実施例1と同様にして実施例3の異方性導電フィルムを作製した。
 はんだ粒子(固相線温度:130℃)は、次のように作製した。水アトマイズ法により、SnとInとPbとが溶融した合金(Sn:49%、In:34%、Pb:17%)を所定のノズルから水中に噴霧し、急冷凝固して、平均粒径10μmのはんだ粒子を得た。
 (接続信頼性評価用構造体の作製・評価)
 実施例3の異方性導電フィルムを用いて、135℃、2MPa、10秒という条件で熱圧着した接続構造体の導通抵抗の評価は○であった。表1に導通抵抗の評価結果を示す。
 [実施例4]
 (異方性導電フィルムの作製)
 固相線温度は130℃のはんだ粒子を5質量部、及び1分間半減期温度が92℃の有機過酸化物(商品名:パーロイルTCP、日本油脂社製)を3質量部とした以外は、実施例1と同様にして実施例4の異方性導電フィルムを作製した。
 (接続信頼性評価用構造体の作製・評価)
 実施例4の異方性導電フィルムを用いて、135℃、2MPa、10秒という条件で熱圧着した接続構造体の導通抵抗の評価は×であった。また、実施例2の異方性導電フィルムを用いて、135℃、5MPa、10秒という条件で熱圧着した接続構造体の導通抵抗の評価は○であった。表1に導通抵抗の評価結果を示す。
 [比較例1]
 (異方性導電フィルムの作製)
 1分間半減期温度が153℃の有機過酸化物(商品名:パーテトラA、日本油脂社製)を3質量部とした以外は、実施例1と同様にして比較例1の異方性導電フィルムを作製した。
 (接続信頼性評価用構造体の作製・評価)
 比較例1の異方性導電フィルムを用いて、145℃、2MPa、10秒という条件で熱圧着した接続構造体の導通抵抗の評価は×であった。表1に導通抵抗の評価結果を示す。
 [参照例1]
 (異方性導電フィルムの作製)
 はんだ粒子に代えて、Ni・Auめっきが施された樹脂粒子(日本化学製、平均粒径10μm)を5質量部とした以外は、実施例1と同様にして参照例1の異方性導電フィルムを作製した。
 (接続信頼性評価用構造体の作製・評価)
 参照例1の異方性導電フィルムを用いて、145℃、2MPa、10秒という条件で熱圧着した接続構造体の導通抵抗の評価は×であった。また、プリフラックス処理していないリジット基板を用いて、145℃、2MPa、10秒という条件で熱圧着した接続構造体の導通抵抗の評価は○であった。表1に導通抵抗の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4に示すように、有機過酸化物の1分間半減期温度が、はんだ粒子の固相線温度より低い異方性導電フィルムを用いることにより、プリフラックス処理された基板に対して良好な導通を得ることができる。
 また、実施例1、3に示すように、有機過酸化物の1分間半減期温度が、はんだ粒子の固相線温度より0℃以上20℃以下低い異方性導電フィルムを用いることにより、3MPa以下の低圧の熱圧着条件でも、プリフラックス処理された基板に対して良好な導通を得ることができる。
 また、実施例1に示すように、はんだ粒子の固相線温度より5℃以上高い温度で熱圧着することにより、はんだ粒子を押し潰した際、プリフラックスの除去とともに、はんだ粒子の一部を溶融させ、基板のフラックスによりはんだの濡れ性を向上させることができる。
 一方、比較例1に示すように、有機過酸化物の1分間半減期温度が、はんだ粒子の固相線温度より高い異方性導電フィルムを用いた場合、樹脂の硬化が進まないため、良好な導通が得られない。
 また、参照例1に示すように、導電性粒子として、Ni・Auめっきが施された樹脂粒子を用いた場合、普通の基板であれば良好な導通が得られるものの、プリフラックス処理された基板に対しては、フラックスが除去されず、良好な導通が得られない。

Claims (6)

  1.  重合性アクリル系化合物と、有機過酸化物と、はんだ粒子とを含有し、
     前記有機過酸化物の1分間半減期温度が、前記はんだ粒子の固相線温度より低い導電性接着剤。
  2.  前記有機過酸化物の1分間半減期温度が、前記はんだ粒子の固相線温度より0℃以上20℃以下低い請求項1記載の導電性接着剤。
  3.  前記有機過酸化物の1分間半減期温度が、160℃以下である請求項1又は2記載の導電性接着剤。
  4.  膜形成樹脂と、重合性アクリル系化合物と、有機過酸化物と、はんだ粒子とを含有し、前記有機過酸化物の1分間半減期温度が、前記はんだ粒子の固相線温度より低い導電性接着剤を、プリフラックス処理された第1の電子部品の電極と第2の電子部品の電極との間に挟み、第1の電子部品と第2の電子部品とを熱圧着し、第1の電子部品の電極と、第2の電子部品の電極とを電気的に接続する電子部品の接続方法。
  5.  前記第1の電子部品と前記第2の電子部品とを前記はんだ粒子の固相線温度より5℃以上高い温度で熱圧着する請求項4記載の電子部品の接続方法。
  6.  前記第1の電子部品と前記第2の電子部品とを2~3MPaの圧力で熱圧着する請求項4又は5記載の電子部品の接続方法。
PCT/JP2012/081931 2011-12-15 2012-12-10 導電性接着剤、及び電子部品の接続方法 WO2013089061A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147018765A KR102005129B1 (ko) 2011-12-15 2012-12-10 도전성 접착제, 및 전자 부품의 접속 방법
US14/363,894 US9752058B2 (en) 2011-12-15 2012-12-10 Electrically conductive adhesive agent, and method for connecting electronic component
EP12857225.2A EP2792722B1 (en) 2011-12-15 2012-12-10 Method for connecting electronic components and assembly resulting therefrom
IN1199MUN2014 IN2014MN01199A (ja) 2011-12-15 2012-12-10
CN201280061643.6A CN103987801B (zh) 2011-12-15 2012-12-10 导电性粘接剂及电子零件的连接方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011274841A JP6231257B2 (ja) 2011-12-15 2011-12-15 導電性接着剤、及び電子部品の接続方法
JP2011-274841 2011-12-15

Publications (1)

Publication Number Publication Date
WO2013089061A1 true WO2013089061A1 (ja) 2013-06-20

Family

ID=48612508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081931 WO2013089061A1 (ja) 2011-12-15 2012-12-10 導電性接着剤、及び電子部品の接続方法

Country Status (8)

Country Link
US (1) US9752058B2 (ja)
EP (1) EP2792722B1 (ja)
JP (1) JP6231257B2 (ja)
KR (1) KR102005129B1 (ja)
CN (1) CN103987801B (ja)
IN (1) IN2014MN01199A (ja)
TW (2) TWI655267B (ja)
WO (1) WO2013089061A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003704A1 (ja) * 2016-06-27 2018-01-04 株式会社スリーボンド 熱硬化型導電性接着剤
WO2018043296A1 (ja) * 2016-09-02 2018-03-08 株式会社スリーボンド (メタ)アクリル樹脂組成物およびそれを用いた導電性接着剤

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6231394B2 (ja) * 2014-02-03 2017-11-15 デクセリアルズ株式会社 アクリル系接着剤の反応率測定方法、及びアクリル系接着剤
JP2016035044A (ja) * 2014-06-03 2016-03-17 太陽インキ製造株式会社 導電性接着剤および電子部品
JP6280017B2 (ja) * 2014-10-03 2018-02-14 デクセリアルズ株式会社 異方性導電フィルム、並びに、接続方法及び接合体
JP6510846B2 (ja) * 2015-03-24 2019-05-08 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
JPWO2022102672A1 (ja) * 2020-11-12 2022-05-19
WO2024111481A1 (ja) * 2022-11-24 2024-05-30 デクセリアルズ株式会社 異方性導電膜、電子部品の製造方法、及びカード積層体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563355A (ja) 1991-08-30 1993-03-12 Hitachi Ltd 電子部品の実装組立方法
JP2008019327A (ja) * 2006-07-12 2008-01-31 Asahi Kasei Electronics Co Ltd 熱硬化性コーティング組成物
JP2009277769A (ja) * 2008-05-13 2009-11-26 Hitachi Chem Co Ltd 回路接続材料及びそれを用いた回路部材の接続構造
JP2010226140A (ja) * 2010-06-15 2010-10-07 Sony Chemical & Information Device Corp 接続構造体の製造方法
JP2011077045A (ja) 2010-11-12 2011-04-14 Sumitomo Electric Ind Ltd 導電性接着剤、電極の接続構造及び電子機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329028B2 (ja) * 2006-09-15 2013-10-30 パナソニック株式会社 電子部品実装構造体の製造方法
JP4872949B2 (ja) * 2007-10-12 2012-02-08 日立化成工業株式会社 回路接続材料及びそれを用いた回路部材の接続構造
JP5549103B2 (ja) 2008-07-11 2014-07-16 デクセリアルズ株式会社 異方性導電フィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563355A (ja) 1991-08-30 1993-03-12 Hitachi Ltd 電子部品の実装組立方法
JP2008019327A (ja) * 2006-07-12 2008-01-31 Asahi Kasei Electronics Co Ltd 熱硬化性コーティング組成物
JP2009277769A (ja) * 2008-05-13 2009-11-26 Hitachi Chem Co Ltd 回路接続材料及びそれを用いた回路部材の接続構造
JP2010226140A (ja) * 2010-06-15 2010-10-07 Sony Chemical & Information Device Corp 接続構造体の製造方法
JP2011077045A (ja) 2010-11-12 2011-04-14 Sumitomo Electric Ind Ltd 導電性接着剤、電極の接続構造及び電子機器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2792722A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003704A1 (ja) * 2016-06-27 2018-01-04 株式会社スリーボンド 熱硬化型導電性接着剤
JPWO2018003704A1 (ja) * 2016-06-27 2019-04-25 株式会社スリーボンド 熱硬化型導電性接着剤
US11421133B2 (en) 2016-06-27 2022-08-23 Threebond Co., Ltd. Thermosetting conductive adhesive
WO2018043296A1 (ja) * 2016-09-02 2018-03-08 株式会社スリーボンド (メタ)アクリル樹脂組成物およびそれを用いた導電性接着剤
JPWO2018043296A1 (ja) * 2016-09-02 2019-07-25 株式会社スリーボンド (メタ)アクリル樹脂組成物およびそれを用いた導電性接着剤
JP7148799B2 (ja) 2016-09-02 2022-10-06 株式会社スリーボンド (メタ)アクリル樹脂組成物およびそれを用いた導電性接着剤
US11505692B2 (en) 2016-09-02 2022-11-22 Threebond Co., Ltd. (Meth) acrylic resin composition and electroconductive adhesive using the same

Also Published As

Publication number Publication date
JP2013124330A (ja) 2013-06-24
JP6231257B2 (ja) 2017-11-15
TW201335330A (zh) 2013-09-01
EP2792722A4 (en) 2015-07-29
CN103987801A (zh) 2014-08-13
EP2792722A1 (en) 2014-10-22
CN103987801B (zh) 2016-08-24
US9752058B2 (en) 2017-09-05
US20140318709A1 (en) 2014-10-30
TWI655267B (zh) 2019-04-01
KR20140112017A (ko) 2014-09-22
TW201809189A (zh) 2018-03-16
KR102005129B1 (ko) 2019-07-29
EP2792722B1 (en) 2022-04-06
IN2014MN01199A (ja) 2015-07-03

Similar Documents

Publication Publication Date Title
JP6231257B2 (ja) 導電性接着剤、及び電子部品の接続方法
JP5540916B2 (ja) 接続構造体の製造方法
JP5565277B2 (ja) 異方性導電フィルム
KR101098205B1 (ko) 이방성 도전 필름
JP5972564B2 (ja) 接続方法、接続構造体、異方性導電フィルム及びその製造方法
JP7006029B2 (ja) 回路接続用接着剤組成物及び構造体
JP6133069B2 (ja) 加熱硬化型接着フィルム
JP2011202173A (ja) 異方性導電フィルム及びその製造方法
JP6231256B2 (ja) 異方性導電接着剤、及び電子部品の接続方法
JP6307294B2 (ja) 回路接続材料、及び電子部品の製造方法
JPH11154687A (ja) 回路板
WO2015133211A1 (ja) 接続構造体、接続構造体の製造方法、及び回路接続材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14363894

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012857225

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147018765

Country of ref document: KR

Kind code of ref document: A