WO2013088993A1 - 丸ダイスを用いた歯車の転造方法 - Google Patents

丸ダイスを用いた歯車の転造方法 Download PDF

Info

Publication number
WO2013088993A1
WO2013088993A1 PCT/JP2012/081359 JP2012081359W WO2013088993A1 WO 2013088993 A1 WO2013088993 A1 WO 2013088993A1 JP 2012081359 W JP2012081359 W JP 2012081359W WO 2013088993 A1 WO2013088993 A1 WO 2013088993A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
die
gear
pressing
round
Prior art date
Application number
PCT/JP2012/081359
Other languages
English (en)
French (fr)
Inventor
永田英理
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to CN201280062222.5A priority Critical patent/CN103987473B/zh
Priority to US14/350,630 priority patent/US9399250B2/en
Priority to EP12858029.7A priority patent/EP2792430B1/en
Publication of WO2013088993A1 publication Critical patent/WO2013088993A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H5/00Making gear wheels, racks, spline shafts or worms
    • B21H5/02Making gear wheels, racks, spline shafts or worms with cylindrical outline, e.g. by means of die rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F17/00Special methods or machines for making gear teeth, not covered by the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/14Making specific metal objects by operations not covered by a single other subclass or a group in this subclass gear parts, e.g. gear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49462Gear making
    • Y10T29/49467Gear shaping
    • Y10T29/49471Roll forming

Definitions

  • a holding portion for holding a work having a cylindrical outer surface so as to freely roll around the axial center of the cylindrical outer surface is disposed opposite to each other with the work interposed therebetween, each being about an axis parallel to the axis
  • the present invention relates to a rolling method of a gear using a round die, including a pair of rotating round dies and a driving mechanism for pressing the pair of round dies into a work while synchronously controlling the rotational speed and the pressing amount.
  • the rolling gear according to the present invention is used in many industrial products including automotive parts and the like.
  • automotive parts for example, in automobiles, hybridization or electrification is rapidly advanced, and among them, various electric actuators are required to have small power consumption and small size in the future. Furthermore, components of these actuators are also required to have good power transmission efficiency and manufacturing efficiency.
  • gears are used for the actuator. These gears greatly affect the function, manufacturing cost, etc. of the actuator.
  • a rolling method in which a round die is pressed against a cylindrical solid work is known.
  • a pair of round dies having a desired gear shape are disposed opposite to each other with the work interposed, and the round dies are pressed against the surface of the work while synchronously controlling the rotational speeds of both round dies and the pushing speed to the work.
  • step refers to a phenomenon in which the work moves along the rotation axis of the round die when the round die is pushed into the work. This phenomenon occurs when the relative position between the teeth of the die and the tooth groove previously formed on the surface of the work is not appropriate.
  • a step occurs due to the two acting as screw movement / return movement. If a step occurs, rolling is performed to a region of the surface of the work where the gear is not originally formed, so it is difficult to maintain the quality of the gear.
  • biting teeth, forming teeth, finishing teeth, etc. are provided along the circumferential direction on each of the outer peripheral portions of the roll dies disposed opposite to each other across the work.
  • the worm is formed on the work within the range of one rotation.
  • a chamfered portion which causes a forming tooth or a relief tooth to follow the worm as the work moves in the axial direction at the time of forming the worm.
  • An object of the present invention is to solve the above-mentioned problems of the prior art and to obtain a gear rolling method using a circular die which can obtain teeth of an appropriate shape and which does not occur during machining.
  • the rotation mode in which the round die and the work rotate in an interlocking manner is a friction wheel mode based on the pressing force of each other, the tooth groove is formed on the work by pushing the round die, and the gear mode based on the engagement between the work and the round die
  • the outer diameter of the work is set so that the length obtained by dividing the tooth base outer peripheral length of the tooth space by the number of teeth to be formed at the time of change is equal to the tip pitch of the round die.
  • the initial length of the work is set so that the length obtained by dividing the outer peripheral length of the tooth bottom by the number of teeth scheduled to be formed Set the outer diameter. That is, the outer diameter of the workpiece is determined in consideration of the depth of the tooth grooves formed on the workpiece when the rotation mode of the workpiece shifts from the friction wheel mode to the gear mode. In this case, the division of the teeth on the work ends when the tooth grooves are formed. According to this method, the round die and the work rotate at an appropriate relative phase, and a step does not occur in the rolling process, so that an accurate gear can be obtained.
  • the pressing amount of the round die on the workpiece when changing to the gear mode may be set to 0.1 mm to 0.3 mm.
  • the work to be rolled is usually a metal and has a predetermined plastic deformability. That is, as in the present configuration, when the round die is pushed by 0.1 mm to 0.3 mm, the circumference of the tip of the round die is surrounded by the wall of such height, which is sufficient to restrain the tip. Good resistance. If the amount of pressing is small, the round die may still slide on the work, and therefore, it does not mean that the tooth division has ended.
  • the pressing amount is set excessively, although it is advantageous in terms of restraint of the tooth tips, the initial outer diameter of the work becomes large, so it becomes difficult to divide the tooth bottom. Also, if the outer diameter of the workpiece is increased, the volume of the workpiece base material that contributes to the formation of the tooth tip increases. Therefore, additional additional work is required, for example, because the shape of the teeth is not appropriate or the depth of the bottom of the round die is set large in order to absorb excess base material volume, and efficiency is impaired.
  • FIG. 1 and 2 show an outline of a rolling apparatus used in the present embodiment.
  • the pair of dies 1 is pushed toward the work 3 by, for example, the hydraulic drive unit 2.
  • the rotation of the dies 1 is driven by, for example, an AC servomotor 4.
  • the left and right dies 1 are synchronously controlled by a CNC device (not shown) in terms of rotational speed and pressing amount.
  • the work 3 is supported by the support portions 5 on both sides along the rotation axis X.
  • the work 3 is freely driven (corotated) by the rotation of the die 1.
  • One support 51 supporting the work 3 is fixed to the device table 6.
  • the other support portion 52 that supports the work 3 is movable along the rotational axis X with respect to the device table 6.
  • the support 52 presses the work 3 along the direction of the rotation axis X by air pressure or the like. Thereby, it is possible to cope with the elongation of the work 3 caused by the pressing of the die 1 against the work 3.
  • the device table 6 including the support portions 51 and 52 is movable along the direction of the rotation axis X along the guide member 8 installed on the device bed 7.
  • the rotation speed of the work 3 can be measured by a rotation sensor 9 set at an outer peripheral position with respect to one side of the support 5. Further, the length of the work can be measured by the distance sensor 10 disposed coaxially with one of the support portions 5.
  • FIG. 3 shows a state at the moment when the die 1 with a tip diameter d1 contacts the workpiece 3 with an outer diameter dv. The distance between the two axes is a0.
  • the die tip circle diameter da1 accurately divides the outer periphery of the workpiece 3; Calculated from).
  • FIG. 4 shows a state in which the two pitch circles are in contact with each other when the pressing of the die 1 into the work 3 is completed.
  • the pitch circle diameter of the die 1 is d1
  • the tooth root diameter of the completed gear is df2
  • the interaxial distance between the die 1 and the gear when the two are in mesh is a1.
  • d1 is the reference circle of the die
  • a1 (da1 + df2) / 2 It becomes.
  • df2 is the base diameter of the helical gear teeth.
  • the work 3 and the die 1 move as follows.
  • it can be considered as the rotational movement of the friction wheel pair in which the die tip end circle and the work outer periphery (tooth bottom circle) are respectively rolling circles.
  • the rotation speed of the die is ⁇ 1
  • the rotation speed of the work is ⁇ 2
  • the pressing amount of the die is x
  • the tip diameter of the die tip is da1
  • the outer diameter of the work is dv
  • ⁇ 2 is expressed by Equation (2) Ru.
  • Equation (3) is established, where z1 is the number of teeth of the die and z2 is the number of teeth of the gear.
  • the work moves as a friction wheel until a tooth groove is formed on the surface of the work 3. That is, the rotation mode of the work which can be expressed by the above-mentioned equation (2) will be referred to as a friction wheel mode. In this condition no walk takes place. However, when the tooth groove is formed and the tip of the die 1 which is pressed in contact with the die 1 is fitted into the tooth groove, the work 3 rotates in conjunction with the die as a gear. That is, the rotation mode of the work which can be expressed by the above equation (3) is referred to as a gear mode. When the workpiece is rotated in the gear mode, if the tip of the die is not properly cut on the workpiece surface, a step will occur.
  • the base material of the work 3 needs to appropriately surround the tip of the die 1. That is, it is necessary to form a tooth gap of sufficient depth.
  • the material of the work used for rolling is almost steel or metal such as aluminum. If the material is a metal, the material itself has plastic deformability. Therefore, when the tip of the die 1 tries to slide on the surface of the work 3, the height of the wall surrounding the tip of the die 1 is set to an appropriate height.
  • the work 3 has an extra base material. In that case, the accuracy of the gear after molding may be lost, or additional man-hours may be generated, such as correcting the tooth profile of the die 1 so as to be able to absorb excess metal. In addition, the yield of the material is reduced because the extra base material is required.
  • the shape of the gear to be formed is shown in Table 1, and the shape of the die 1 is shown in Table 2.
  • the gear to be formed is a helical gear having two teeth.
  • the die 1 is designed so that the reference circle and the pitch circle of the die 1 become equal in the finished state where the pressing is completed.
  • the number of teeth z1 of the die is set to 85 in view of the constraint and the like for attaching the die 1 to the rolling apparatus.
  • the tooth profile of the die 1 is an involute tooth profile. Each piece of the die 1 is calculated on the assumption that the pitch circle of the die 1 in a state in which the pressing of the die 1 into the work 3 is completed matches the reference circle of the die 1.
  • the value of the dislocation coefficient in Table 2 is changed.
  • the shape of the die 1 is the same, the values of the orthogonal module, the orthogonal pressure angle and the twist angle change.
  • the outer diameter of the work 3 was determined prior to die design. First, as shown in FIG. 5, the axis-perpendicular section of the gear was drawn using CAD, and a circle in which the cross-sectional area S1 of the portion pressed by the die 1 and the cross-sectional area S2 of the raised portion were equal was calculated. Further, since the number of teeth of the gear to be formed is 2, the tip diameter of the die 1 is 242.7 mm, and the number of teeth of the die 1 is 85, the outer diameter of the work 3 is 5 in consideration of the above equation (1). It became .71 mm. As a work material, S45C was used.
  • Tooth shape error, tooth line slope error, tooth thickness, etc. are considered to be modifiable by the tooth surface correction of the die 1.
  • the tooth streak error it can not be easily corrected even by tooth surface correction.
  • Table 3 in the case of the material diameter of 5.71 mm calculated above, the tooth streak direction error was the smallest.
  • the pitch error was also minimal.
  • the step can be evaluated by measuring the change in the rotational speed of the workpiece 3 during rolling. That is, when the pressing of the die 1 is ideally performed, as long as the rotational speed of the die is controlled to be constant, the rotational speed of the work becomes constant after transition to the gear mode. On the other hand, in the stage of the friction mode at the time of the initial pressing, the diameter of the work gradually decreases from the state where no tooth groove is formed on the surface of the work until the tooth groove of a certain depth is formed become. Therefore, the rotational speed of the work increases with the pressing. In addition, because the division is not properly performed as if the initial diameter of the work is far from the ideal value, the speed change of the work, for example, a long stroke occurs after the teeth of the die securely bite into the work Appears large.
  • the rotational speed of the work was measured using a rotation sensor 9 shown in FIG.
  • the rotation sensor 9 has a cylinder provided on the side of the work 3 with a slit for generating a predetermined pulse per one rotation, and the rotation is read by a photoelectric rotation sensor. The results are shown in FIG. For reference, the change in work rotation speed calculated by Equation (1) and Equation (2) is also shown in the figure.
  • FIG. 7 shows positional displacement data of the support portion in the axial direction, which is measured simultaneously with FIG.
  • this measurement was performed by providing a distance sensor 10 (laser displacement gauge) on one side of the device table supporting the workpiece 3 and measuring the axial position of the device table by laser light.
  • the sign of the step indicates movement in FIG. 2 in which plus is to the right and minus is to the left.
  • About work 4.8mm it was confirmed that it has walked 10 mm or more to the back side. Since the detection range of the distance sensor 10 was exceeded, the data was saturated at 0.5 mm or more.
  • the stroke amount was small for the workpiece 5.71 mm, and it was 1.7 mm to the far side.
  • 6.25 mm it was found that after stepping to the back side by a pushing amount of 1 mm to 2.5 mm, it was walking to the front side.
  • the height was evaluated again for the work 3 with an outer diameter of 5.81 mm, 5.91 mm, and 6.0 mm, which is close to 5.71 mm.
  • the 5.91 mm workpiece 3 to which the outer diameter of the workpiece was further added by 0.2 mm showed the best result.
  • the change of the rotational speed is equal to the value of the equation (2) when the work rotation is about 0.1 mm which is the pressing amount at which the tooth groove is formed. Then I settled on the number of revolutions of equation (3).
  • the length was minimized to 1 mm or less.
  • the material of the gear to be rolled is determined according to the material of the die 1, and in particular, the diameter of the work 3 is set larger by a predetermined amount.
  • the material of the work used is, for example, a metal such as steel
  • the appropriate outer diameter addition length of the work is approximately 0.2 mm as described above It can be determined that This depth may vary depending on the plastic deformability of the material and the size of the work and die. Therefore, the appropriate additional length can be determined to be 0.1 to 0.3 mm.
  • workpiece work diameter long according to the material to be used.
  • FIG. 10 is a schematic view showing the trajectory of the tip of the die as seen from the direction perpendicular to the axis with the work 3 fixed.
  • the arc length obtained by dividing the outer periphery of the work by the number of teeth, and the circle pitch of the tip of the die 1 are set equal.
  • the die 1 is pushed in with the rotation of the work, its locus becomes a Archimedean spiral. Therefore, the actual length of the spiral to be determined is smaller than in the case of arc-based division calculation.
  • the pressing speed of the die is higher than the rotational speed, the next tooth hits the work while the first tooth bites into the work largely.
  • the angle of the tip of the die with respect to the surface of the work is more inclined. For this reason, the position where the tooth tip of the die abuts on the surface of the work is not appropriate, which causes a step. Therefore, when the die 1 is pressed, the pressing of the pair of dies with respect to the work may be performed intermittently until the rotation mode of the die and the work changes from the friction wheel mode to the gear mode.
  • the tip of the die can be brought into contact with the surface of the work at an angle close to the normal direction.
  • a step such as reducing the external force component that the teeth of the die press against the workpiece, for example, in the direction of the rotation axis.
  • the pressing modes to the respective tooth spaces can be made equal. That is, after applying pressing of a predetermined form to all the tooth spaces, new cutting is equally applied to each tooth space to perform cutting while forming uniform tooth spaces over the entire circumference. be able to. Therefore, it is possible to obtain a rolling gear with high accuracy.
  • the rolling apparatus and rolling method of a gear using a round die according to the present invention can be applied to the manufacture of many types of industrial products such as ball screws, worms, fluctuating pitch screws as well as general bolts and screws.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)
  • Gears, Cams (AREA)

Abstract

 適切な形状の歯を得ることができ、加工中に歩みの生じない丸ダイスを用いた歯車の転造方法を得るよう、円筒状外面を有するワークを円筒状外面の回転軸芯の周りに自由転動自在となるよう支持部に支持し、回転軸芯と平行な軸芯周りに回転する一対の丸ダイスを、ワークを挟んで対向配置し、一対の丸ダイスを、駆動機構によって互いの回転速度および押込量を同期制御しつつワークに押込み操作し、丸ダイスとワークとが連動回転する回転態様が、互いの押付力に基づく摩擦車態様から、丸ダイスの押し込みによってワークに歯溝が形成され、ワークと丸ダイスとの係合に基づく歯車態様に変化する際の、歯溝の歯底外周長さを形成予定の歯数で割った長さが、丸ダイスの歯先円ピッチと等しくなるようにワークの外径を設定する。

Description

丸ダイスを用いた歯車の転造方法
 本発明は、円筒状外面を有するワークをこの円筒状外面の軸芯周りに自由転動自在に保持する保持部と、ワークを挟んで対向配置され、夫々が軸芯と平行な軸芯周りに回転する一対の丸ダイスと、一対の丸ダイスを、回転速度および押込量を同期制御しつつワークに押込み操作する駆動機構とを備えた、丸ダイスを用いた歯車の転造方法に関する。
 本発明に係る転造歯車は、自動車用部品等を初め多くの工業製品に用いられている。例えば、自動車においてはハイブリッド化あるいは電動化が急速に進められており、中でも各種電動アクチュエータには今後、消費電力が少なく体格の小さいものが求められる。さらに、これらアクチュエータの構成部品は、動力伝達効率や製造効率が良いことも求められる。
 アクチュエータには多くの歯車が用いられる。これら歯車は、アクチュエータの機能・製造コスト等に大きく影響する。一般に歯車を効率よく製造する方法として、例えば、円筒形の中実状ワークに対して丸ダイスを押し付ける転造方法が知られている。この方法は、求める歯車の形状を備えた一対の丸ダイスを、ワークを挟んで対向配置させ、双方の丸ダイスの回転速度およびワークに対する押込み速度を同期制御しつつワークの表面に丸ダイスを押し付け、歯車を形成するものである。
 ダイスを用いた転造方法には直線状のラックダイスを用いるものと、円筒状の丸ダイスを用いるものとがある。このうち、ラックダイスを用いた転造では、一定長さのラックダイスの端部付近の歯先をワークに押し当て、ダイスをワークに押し付けながらダイスを送り操作してワークを転動させる。ラックダイスの歯丈はワークに当たり始める転造初期に用いる領域と転造が終了する時期に用いる領域とでは異なっていることが多い。そのため、ラックダイスを用いた転造では、形成する歯車の形状はラックダイスの長さに影響される。
 一方、丸ダイスの場合は丸ダイスを回転させつつワークに押しつける。よって、丸ダイスの何れの部分も歯の形状が同じであり、丸ダイスの構成は簡単なものとなる。また丸ダイスの回転方向を転造中に切り替えることも可能であり、大型ウォームやはすば歯車の転造成形に応用されている。
 従来、このような丸ダイスを用いた歯車の転造方法としては、たとえば下記公知文献に記載されたものがある。この技術は、転造装置の簡素化を図りつつ「歩み」を低減させることのできるはすば歯車・ウォーム及びねじ(歯すじにリードを持った機械要素)の転造装置を提供するものである。ここで、歩みとは、丸ダイスをワークに押し込む際に、ワークが丸ダイスの回転軸芯に沿って移動する現象をいう。この現象は、ダイスの歯とワークの表面に先に形成されている歯溝との相対位置が適切でないときに生じる。つまり、ダイスの歯先がワークの歯溝に対して偏って押し付けられる結果、両者がネジのすすみ/もどり運動のように作用することで歩みが発生する。歩みが発生すると、ワークの表面のうち本来歯車を形成しない領域まで転造加工されるため、歯車の品質保持が困難となる。
 上記公知技術では、歩みの発生を軽減すべく、ワークを挟んで対向配置したロールダイスの外周部のそれぞれに、食い込み歯、成形歯および仕上げ歯等を周方向に沿って設け、各ロールダイスが1回転する範囲内でワークにウォームを成形するものである。各ロールダイスの外周部の軸方向一端側には、ウォームの成形時におけるワークの軸方向への移動に伴い、成形歯ないし逃げ歯をウォームに追従させる面取り部を設けてある。これにより、各ダイスをコントローラにより駆動制御させることなく歩み現象による不具合を抑制できるという。
特開2010-075963  (〔0052段落〕)
 しかし、上記従来の技術では、丸ダイスの形状として、その周方向に食い込み歯、成形歯および仕上げ歯等を形成する必要がある。そのため、丸ダイスが特殊なものとなって製作に手間が掛かるうえ、製作コストも増大する。また、当該丸ダイスは、ラックダイスと同様にワークに対して1回転のみ駆動可能であるから作製する歯車の形状が制限される。このように、上記従来の転造方法にあっては合理的に歯車を転造加工するには未だ改善すべき点が多くある。
 本発明は、上記従来技術の課題を解決し、適切な形状の歯を得ることができ、加工中に歩みの生じない丸ダイスを用いた歯車の転造方法を得ることを目的とする。
〔第1の特徴手段〕
 本発明の丸ダイスを用いた歯車の転造方法では、円筒状外面を有するワークを円筒状外面の回転軸芯の周りに自由転動自在となるよう支持部に支持すると共に、回転軸芯と平行な軸芯周りに回転する一対の丸ダイスを、ワークを挟んで対向配置する。次に、一対の丸ダイスを、駆動機構によって互いの回転速度および押込量を同期制御しつつワークに押込み操作する。丸ダイスとワークとが連動回転する回転態様が、互いの押付力に基づく摩擦車態様から、丸ダイスの押し込みによってワークに歯溝が形成されてワークと丸ダイスとの係合に基づく歯車態様に変化する際の、歯溝の歯底外周長さを形成予定の歯数で割った長さが、丸ダイスの歯先円ピッチと等しくなるようにワークの外径を設定する。
〔作用効果〕
 丸ダイスを用いて歯車を転造する場合、ワークの当初の表面形状は単なる円筒面である。そのため、丸ダイスの押し込みによって互いに当接を開始した丸ダイスとワークとは摩擦歯車の態様で連れ回りを始める。更に丸ダイスの押し込みが進むとワークの表面に歯溝が形成されてゆく。丸ダイスとワークとが確実に噛み合うようになると、両者は歯車態様で回転する。このようにこれら二つの態様として導かれるワークの回転速度に差があると歩みが発生するが、当初発生した歩みも次第に収束する。歩みが収束したあとの工程においては歯形が安定して形成される。
 本発明では、ワークに確実に歯溝が形成された状態で、その歯底の外周長さを形成予定の歯数で割った長さが丸ダイスの歯先円ピッチとなるようにワークの初期外径を設定する。即ち、ワークの外径は、ワークの回転態様が摩擦車態様から歯車態様に移行するときにワークに形成されている歯溝の深さを考慮して決定する。この場合、歯溝が形成された時点でワーク上に歯の割り切りが終了することになる。本方法であれば、丸ダイスとワークとが適切な相対位相で回転し、転造過程で歩みが生じず、正確な歯車を得ることができる。
〔第2の特徴手段〕
 本発明の丸ダイスを用いた歯車の転造方法においては、歯車態様に変化する際のワークに対する丸ダイスの押込量を0.1mm~0.3mmに設定するとよい。
〔作用効果〕
 丸ダイスをワークに対して滑らすことなく押し込むには、丸ダイスの歯先を周囲から拘束する壁部をワークの表面に形成するのが好ましい。転造加工するワークは通常金属であり、所定の塑性変形能を有する。つまり、本構成のごとく、丸ダイスを0.1mm~0.3mmだけ押し込むと、丸ダイスの歯先の周囲はこれだけの高さの壁部で囲まれることとなり、歯先を拘束するのに十分な抵抗力が発揮される。この押し込み量が少ないと、その後も丸ダイスがワークに対して滑るおそれがあるため、歯の割り切りが終了したことにはならない。一方、押し込み量を過大に設定すると、歯先の拘束という意味では有利になるものの、ワークの初期外径が大きくなるため、歯底の割り切りが困難となる。また、ワーク外径が大きくなれば、ワークの母材のうち歯先の形成に寄与するボリュームが多くなる。よって、歯の形状が適切でなくなったり、余剰の母材ボリュームを吸収するために丸ダイスの歯底深さを大きく設定するなど、別途の付加作業が必要になって効率化が損なわれる。
〔第3の特徴手段〕
 本発明の丸ダイスを用いた歯車の転造方法においては、回転態様が摩擦車態様から歯車態様に変化するまでの間、ワークに対する一対の丸ダイスの押し込みを断続的に行うとよい。
〔作用効果〕
 本構成のごとく、回転態様が歯車態様に変化するまでの間、丸ダイスの押し込み量を断続的に増やすことで、丸ダイスの歯先をワークの表面に対して法線方向に近い角度で当接させることができる。よって、丸ダイスの歯が、回転軸芯方向に沿って、或いは、回転軸芯方向に対して直角な方向にワークを加圧する外力成分が低減でき、歩みの発生を効果的に抑制することができる。また、丸ダイスの歯先をワークの表面に押し込む際に丸ダイスの押し込み量を断続的に行うことで、夫々の歯溝に対する押込態様を等しくすることができる。つまり、全ての歯溝に対して一定の押し込みを完了した後、次の新たな押し込みを各歯溝に付与することで、全周に亘って均等な歯溝を形成しつつ割り切りが終了する。よって、その後の押し込み加工がより確実なものとなり、精度のよい転造歯車を得ることができる。
転造装置の構造を示す説明図である。 転造装置のうちワークの支持構造を示す説明図である。 ワーク及びダイスの加工前の寸法を示す図である。 ワーク及びダイスの加工後の寸法を示す図である。 ワーク直径の算出方法を示す説明図である。 ダイスの押し込み量とワークの回転速度との関係を示す図である。 ダイスの押し込み量とワークの軸方向変位との関係を示す図である。 歩みが最小となったダイスの押し込み量とワークの回転速度との関係を示す図である。 ダイスの押し込み量に対してワークの軸方向変位が最小になった例を示す図である。 ワーク表面に対するダイス歯先の押し込み軌跡を示す図である。
(転造装置の概要)
 本発明に係る丸ダイス(以下、単に「ダイス」と称する)を用いた歯車の転造方法につき、以下、図面を用いて説明する。図1および図2に、本実施形態に用いる転造装置の概要を示す。一対のダイス1は、例えば油圧駆動部2によりワーク3の側に押し込まれる。これらダイス1の回転は例えばACサーボモータ4で駆動される。左右のダイス1は回転速度および押し込量を図外のCNC装置により同期制御される。一方、ワーク3は図2に示すごとく、回転軸芯Xに沿った両側の支持部5で支持される。ワーク3はダイス1の回転により自由駆動(連れ周り)される。ワーク3を支持する一方の支持部51は装置台6に固定される。ワーク3を支持する他方の支持部52は、装置台6に対して回転軸芯Xに沿って移動可能である。この支持部52は空気圧等によりワーク3を回転軸芯Xの方向に沿って押し付ける。これにより、ワーク3に対するダイス1の押し付けによって生じるワーク3の伸びに対応することができる。これら支持部51,52を備える装置台6は、装置ベッド7の上に設置された案内部材8に沿って回転軸芯Xの方向に沿って移動可能である。これにより、ワーク3に対するダイス1の押し付けによって仮に歩みが生じた場合に、ワーク3が回転軸芯Xの方向に沿って移動できるように構成してある。ワーク3の回転速度は、支持部5の一方側に対して外周位置に設定した回転センサ9によって測定可能である。また、ワークの歩みは、一方の支持部5と同軸芯上に配置した距離センサ10で測定可能である。
(ワーク形状およびダイス形状)
 所期の歯車を得るためには、ダイス1の緒元とワーク3の緒元とが適合している必要がある。ワーク3の外径は、ワーク3の外周を歯数で除した寸法と形成する歯車の歯先円ピッチとが等しくなるように決定する。
 図3は、歯先円直径da1のダイス1が外径dvのワーク3に接触した瞬間の状態を示す。両者の軸間距離はa0である。このとき、ワーク3の外周を正確に割り切るダイス歯先円直径da1は、ワーク3の外径をdv、ダイス1の歯数をz1、ワーク3の歯数をz2、とするとき、数式(1)から計算される。
Figure JPOXMLDOC01-appb-M000001
 図4は、ワーク3に対するダイス1の押し込みが終了した状態での、両者のピッチ円どうしが接している状態を示す。図4に示すごとく、ダイス1のピッチ円直径はd1であり、完成した歯車の歯底径はdf2であり、両者が噛み合った状態でのダイス1と歯車との軸間距離はa1である。押し込み前のワーク3とダイス1と中心間距離a0は
 a0=(dv+da1)/2である。
 一方、ワーク3に対するダイス1の押し込みが終了した状態での中心間距離a1は、ダイスの基準円をd1とすると
 a1=(d1+d2)/2 となり、かつ
 a1=(da1+df2)/2 となる。
なお図4のうちdf2は、はすば歯車の歯底円直径である。
 転造工程において、ワーク3とダイス1とは以下のように運動する。
 図3に示す押し込み当初の段階では、ダイス歯先円とワーク外周(歯底円)とを夫々ころがり円とした摩擦車対の回転運動と考えることができる。ここでダイスの回転速度をω1、ワークの回転速度をω2、ダイスの押し込み量をx、ダイスの歯先円直径をda1、ワークの外径をdvとすると、ω2は数式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 一方、図4では、ダイス1とワーク3とは歯車対の噛み合いとみなされるため、z1をダイスの歯数、z2を歯車の歯数とすると数式(3)の関係が成立する。
Figure JPOXMLDOC01-appb-M000003
 ダイス1の押し込みの初期において、ワーク3の表面に歯溝が成形されるまでワークは摩擦車として運動する。即ち、上記数式(2)で表すことのできるワークの回転態様を摩擦車態様と称することにする。この状態では歩みは生じない。
 しかし、歯溝が成形され、順次押込当接するダイス1の歯先が歯溝に嵌り込むようになると、ワーク3は歯車としてダイスと連動回転するようになる。即ち、上記数式(3)で表すことのできるワークの回転態様となり、これを歯車態様と称することにする。歯車態様でワークが回転するようになると、ダイスの歯先がワーク表面に上手く割り切られていないと歩みが生じる。つまり、ワークの回転が歯車態様となったとき、数式(2)と数式(3)とで表すワークの回転速度に差があると、ワークの運動がねじのすすみ/もどりの様な差動運動となって歩みが生じる。よって、歩みを生じさせないためには、ワークの回転が摩擦車態様から歯車態様に変化する瞬間に、正確な割り切りがなされており、しかもワークに対してダイスが滑らないことが必要となる。
 特に、正確な割り切りについては、ワーク3に形成された歯溝の歯底円外周をワーク歯数Z2で除した長さとダイス1の歯先円ピッチとが等しくなることが必要である。
 一方、ダイス1の滑りを防止するためには、ダイス1の歯先の周囲をワーク3の母材が適切に取り囲んでいる必要がある。つまり、十分な深さの歯溝が形成されている必要がある。通常、転造に用いられるワークの材料は、鋼材やアルミニウム等の金属が殆どである。素材が金属であれば、材料自身が塑性変形能を有する。よって、ワーク3の表面でダイス1の歯先が滑ろうとする場合に、ダイス1の歯先を取り囲む壁部の高さを適切な高さに設定する。
 ただし、壁部の高さが高過ぎる場合、ワーク3はそれだけ余剰の母材を有することになる。その場合、成形後の歯車の精度が損なわれたり、余剰の金属を吸収することができるようダイス1の歯形を修正するなど付加工数が発生する。また、余剰の母材が必要になる分だけ材料の歩留まりが悪くなる。
 以下には、ワーク3の外径をより正確に決定する手法につき説明する。
 例として、形成する歯車の形状を表1に示し、ダイス1の形状を表2に示す。
 形成する歯車は歯数が2のはすば歯車とした。
 ダイス1は、押込みが終了した仕上げ状態で、ダイス1の基準円とピッチ円とが等しくなるように設計する。ダイスの歯数z1は、ダイス1を転造装置に取り付ける制約条件等に鑑みて85とした。ダイス1の歯形はインボリュート歯形である。ダイス1の各緒元は、ワーク3に対するダイス1の押し込みが終了した状態でのダイス1のピッチ円が、ダイス1の基準円に一致するものとして算出している。よって、ワーク3に対してダイス1を転位させて加工する場合には、例えば表2の中の転位係数の値を変化させることとなる。この場合、ダイス1の形状は同じであるものの、歯直角モジュール・歯直角圧力角・ねじれ角の値は変化する。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
〔割り切り〕
 ダイス設計に先立ってワーク3の外径を決定した。まず図5に示すように、歯車の軸直角断面をCADを用いて描き、ダイス1が押し込む部分の断面積S1と、それにより盛り上がる部分の断面積S2とが等しくなる円を計算した。また、形成する歯車の歯数が2、ダイス1の歯先径が242.7mm、ダイス1の歯数が85であるので、上述の数式(1)も勘案してワーク3の外径は5.71mmとなった。尚、ワーク材料としてはS45Cを用いることにした。
 ワーク3としては、外径5.71mmのものを中心に、比較のために、4.3mmから6.5mmに至る合計8種類のものを使用し、図1および図2に示した転造装置を用いて実際に転造加工を行なった。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000006
 成形精度は、歯すじ誤差で評価した。歯形誤差や歯すじ勾配誤差、歯厚等はダイス1の歯面修正で修整可能と考えられるが、歯すじ誤差については、歯面修整等によっても簡単には修正できない。
 表3に示したごとく、上記で算出した素材径5.71mmのものが歯筋方向誤差が最も小さかった。尚、ピッチ誤差も最小であった。
 次にこれらのワーク3に対して転造加工中に生じた歩みの評価を行った。歩みは、転造中におけるワーク3の回転速度の変化を測定することで評価することができる。つまり、ダイス1の押し込みが理想的に行われた場合、ダイスの回転速度が一定に制御されている限り、歯車態様に移行した後はワークの回転速度も一定となる。これに対して、押し込み当初の摩擦態様の段階においては、ワークの表面に全く歯溝が形成されていない状態から、ある程度の深さの歯溝が形成されるまでのあいだワークの直径は順次小さくなる。よって、押し込みに伴なってワークの回転速度は速くなる。
 また、ワークの当初の直径が理想値から離れている場合ほど、割り切りが適切にされていないから、ダイスの歯がワークに確実に噛み込んだ後に長く歩みが発生するなど、ワークの速度変化が大きく表れる。
 そこで、上記転造加工で誤差が最も少なかった外径5.71mmのワーク3を中心に、4.8mmおよび6.25mmのワークを用いて回転速度の変化を測定した。ワークの回転速度は、図2に示す回転センサ9を用いて測定した。この回転センサ9は、ワーク3の側に備えた円筒に一回転当たり所定のパルスを発生するスリットを備えておき、その回転を光電式回転センサで読みとるものである。
 この結果を図6に示す。参考のため数式(1)および数式(2)で計算したワーク回転速度の変化も図中に併記した。
 図6に示すように、各ワークとも押し込み量0mm近傍、および押し込み量0.9mm以上の部分では、それぞれ数式(2)および数式(3)で計算した回転速度とよく一致していることが分かる。
 また、ワーク外径5.71mmは回転速度変化が小さく、数式(3)の計算結果と一致した回転速度となった。ワーク4.8mmについては、数式(2)で計算した回転速度付近まで立ち上がり、その後高回転側より緩やかに数式(3)で計算した値に近づいていく様子が分かる。また、ワーク6.25mmについては、4.8mmとは反対に数式(2)で計算した回転速度付近まで立ち上がった後、低回転側より数式(3)の回転速度まで変化することが分かった。
 図7は、図6と同時に計測した、歩みにともなう支持部の軸芯方向の位置変位データである。
 この測定は、図2に示すごとく、ワーク3を支持する装置台の一方側に距離センサ10(レーザ変位計)を備え、レーザ光によって装置台の軸方向の位置を計測することで行った。
 歩みの符号は図2においてプラスが右へ、マイナスが左への移動を示している。
 ワーク4.8mmについては、奥側へ10mm以上歩んでいることが確認された。なお距離センサ10の検出範囲を超えたため、0.5mm以上でデータは飽和した。
 ワーク5.71mmについて、歩み量は小さく奥側へ1.7mmとなった。
 6.25mmについては、押し込み量1mmから2.5mmにわたり奥側へ歩んだ後、手前側に歩むことが分かった。
 さらに、歩みが最小になるワーク径を求めるため、5.71mmに近い、外径5.81mm、5.91mm、6.0mmのワーク3について改めて歩みを評価した。
 この結果、ワーク外径をさらに0.2mm加えた5.91mmのワーク3が最も良い結果を示した。図8に示すように、5.91mmのワーク3の場合、回転数の変化は、歯溝が形成される押し込み量である約0.1mmまではワークの回転は数式(2)の値と一致し、その後数式(3)の回転数に落ち着いた。また、図9に示すように5.91mmのワークでは歩みが1mm以下と最小となった。
 以上のごとく、本実施形態の歯車の転造方法においては、ダイス1の緒元に応じて転造する歯車の緒元を決定し、特に、ワーク3の直径を所定量だけ大きく設定する。用いるワークの材料が例えば鋼材等の金属であり、形成する歯車および加工に用いるダイスの緒元が一般的なものである場合、ワークの適切な外径付加長さは上記のごとくおよそ0.2mmであると判断できる。
 尚、この深さは、材料の塑性変形能やワークおよびダイスのサイズによって変動し得る。よって、適切な付加長さは、0.1~0.3mmと判断できる。
 尚、金属に限らず、熱可塑性の樹脂などを用いて歯車を転造する場合には、用いる材料に応じてワーク直径を長く設定すると良い。
〔別実施形態〕
(押し込み速度の影響)
 図10に、ワーク3を固定し、軸直角方向から見たダイス歯先の軌跡を示した模式図を示す。通常、割り切り計算では、ワークの外周を歯数で除した円弧長さと、ダイス1の歯先の円ピッチとを等しく設定する。しかしワークの回転とともにダイス1が押し込まれるため、その軌跡はアルキメデスの螺旋となる。よって、実際の求めるべき螺旋の長さは、円弧基準の割り切り計算の場合より小さくなる。
 また、回転速度に対してダイスの押し込み速度が大きいと、先の歯が大きくワークに食い込んだ状態で次の歯がワークに当たることとなる。よって、ワークの表面に対するダイスの歯先の角度がより傾斜した状態となる。このため、ダイスの歯先がワークの表面に当接する位置が適切でなくなり、歩みの原因となる。
 そこで、ダイス1の押し込みに際しては、ダイスとワークとの回転態様が摩擦車態様から歯車態様に変化するまでの間、ワークに対する一対のダイスの押し込みを断続的に行うとよい。
 その結果、ダイスの歯先をワークの表面に対して法線方向に近い角度で当接させることができる。よって、ダイスの歯がワークに対して例えば回転軸芯方向に沿って加圧する外力成分が低減できるなど、歩みの発生を効果的に抑制することができる。
 また、ダイスの歯先をワークの表面に押し込む際にダイスの押し込み量を断続的に行うことで、夫々の歯溝に対する押込態様を等しくすることができる。つまり、全ての歯溝に対して所定の形態の押し込みを施した後、新たな押し込みを各歯溝に均等に付与することで、全周に亘って均等な歯溝を形成しつつ割り切りを行うことができる。よって、精度のよい転造歯車を得ることができる。
 本発明の丸ダイスを用いた歯車の転造装置および転造方法は、一般のボルトやネジの他、ボールネジ、ウォーム、変動ピッチネジなど多くの種類の工業製品の製造に適用可能である。
1  ダイス
3  ワーク
5  支持部
6  装置台
7  装置ベッド
8  案内部材
X  回転軸芯
 
 

Claims (3)

  1.  円筒状外面を有するワークを前記円筒状外面の回転軸芯の周りに自由転動自在となるよう支持部に支持し、
     前記回転軸芯と平行な軸芯周りに回転する一対の丸ダイスを前記ワークを挟んで対向配置し、
     前記一対の丸ダイスを、駆動機構によって互いの回転速度および押込量を同期制御しつつ前記ワークに押込み操作し、
     前記丸ダイスと前記ワークとが連動回転する回転態様が、
     互いの押付力に基づく摩擦車態様から、前記丸ダイスの押し込みによって前記ワークに歯溝が形成され、前記ワークと前記丸ダイスとの係合に基づく歯車態様に変化する際の、
     前記歯溝の歯底外周長さを形成予定の歯数で割った長さが、前記丸ダイスの歯先円ピッチと等しくなるように前記ワークの外径を設定する丸ダイスを用いた歯車の転造方法。
  2.  前記歯車態様に変化する際の前記ワークに対する前記丸ダイスの押込量を0.1mm~0.3mmに設定してある請求項1に記載の丸ダイスを用いた歯車の転造方法。
  3.  前記回転態様が前記摩擦車態様から前記歯車態様に変化するまでの間、前記ワークに対する前記一対の丸ダイスの押し込みを断続的に行う請求項1または2に記載の丸ダイスを用いた歯車の転造方法。
PCT/JP2012/081359 2011-12-16 2012-12-04 丸ダイスを用いた歯車の転造方法 WO2013088993A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280062222.5A CN103987473B (zh) 2011-12-16 2012-12-04 使用圆板牙的齿轮的滚轧方法
US14/350,630 US9399250B2 (en) 2011-12-16 2012-12-04 Thread rolling method for gear using cylindrical dies
EP12858029.7A EP2792430B1 (en) 2011-12-16 2012-12-04 Gear rolling method using circular dies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-276173 2011-12-16
JP2011276173A JP5862270B2 (ja) 2011-12-16 2011-12-16 丸ダイスを用いたはすば歯車の転造方法

Publications (1)

Publication Number Publication Date
WO2013088993A1 true WO2013088993A1 (ja) 2013-06-20

Family

ID=48612447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081359 WO2013088993A1 (ja) 2011-12-16 2012-12-04 丸ダイスを用いた歯車の転造方法

Country Status (5)

Country Link
US (1) US9399250B2 (ja)
EP (1) EP2792430B1 (ja)
JP (1) JP5862270B2 (ja)
CN (1) CN103987473B (ja)
WO (1) WO2013088993A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105328091A (zh) * 2015-12-11 2016-02-17 北京科技大学 一种大模数圆柱齿轮近净热轧成形装置
CN106391955B (zh) * 2016-09-08 2018-04-13 重庆大学 一种齿轮轧制强制分齿机构
CN106493273B (zh) * 2016-12-30 2019-01-04 山东大学 一种数控齿轮滚轧成形装置及其应用
CN110076230B (zh) * 2019-04-04 2021-01-01 华南理工大学 一种齿形零件滚轧旋压成形装置及方法
CN111761316B (zh) * 2020-06-28 2021-10-08 瑞安市车辆配件厂 斜齿齿圈加工工艺
KR102341384B1 (ko) * 2021-08-26 2021-12-20 디와이씨 주식회사 키홈이 형성되는 스플라인 전조 가공시스템
CN114473082B (zh) * 2021-12-22 2023-04-28 东台市双厦工具有限公司 使用圆板牙的齿轮的滚轧方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3310773B1 (ja) * 1957-07-23 1958-12-26
JP2005193302A (ja) * 2005-03-09 2005-07-21 Toyota Central Res & Dev Lab Inc 歯車状部材の転造方法
JP2010075963A (ja) 2008-09-25 2010-04-08 Mitsuba Corp ウォーム転造装置およびウォーム転造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367612A (en) * 1943-01-12 1945-01-16 Reed Arthur Bradford Thread rolling machine
DE915328C (de) * 1949-11-01 1954-07-19 Pee Wee Maschinen Und Appbau I Verfahren und Vorrichtung zur Herstellung von Verzahnungen an runden Werkstuecken durch Walzen
US3606782A (en) * 1969-12-08 1971-09-21 Lear Siegler Inc Gear rolling method and apparatus
JPS5985338A (ja) * 1982-11-05 1984-05-17 Aichi Kiki Kk 歯車加工面の転造仕上加工方法
CN1041893A (zh) * 1988-10-05 1990-05-09 “阿尼梯姆”科学生产联合企业 纵向滚压外形的设备
CN1223417C (zh) 2001-06-21 2005-10-19 株式会社日精 蜗杆滚轧加工方法及其蜗杆
JP3995528B2 (ja) * 2002-05-28 2007-10-24 株式会社ショーワ ウォームの製造方法
JP2007290001A (ja) 2006-04-25 2007-11-08 Nachi Fujikoshi Corp ウォーム用平ダイス転造盤
CN201405015Y (zh) * 2009-05-25 2010-02-17 泉州丰源机械有限公司 一种蜗杆辊压机
JP5641295B2 (ja) * 2010-06-15 2014-12-17 アイシン精機株式会社 インボリュート歯車の転造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3310773B1 (ja) * 1957-07-23 1958-12-26
JP2005193302A (ja) * 2005-03-09 2005-07-21 Toyota Central Res & Dev Lab Inc 歯車状部材の転造方法
JP2010075963A (ja) 2008-09-25 2010-04-08 Mitsuba Corp ウォーム転造装置およびウォーム転造方法

Also Published As

Publication number Publication date
CN103987473A (zh) 2014-08-13
EP2792430B1 (en) 2017-06-28
JP5862270B2 (ja) 2016-02-16
EP2792430A4 (en) 2016-01-06
CN103987473B (zh) 2016-06-15
JP2013126667A (ja) 2013-06-27
US20140245610A1 (en) 2014-09-04
EP2792430A1 (en) 2014-10-22
US9399250B2 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
WO2013088993A1 (ja) 丸ダイスを用いた歯車の転造方法
JP2013126667A5 (ja)
JP3873056B2 (ja) ウォームギヤの転造加工方法
US6418767B2 (en) Round die type form rolling apparatus
US9707616B2 (en) Form rolling apparatus and form rolling method
JP7115547B2 (ja) ねじ軸およびその製造方法、並びに、ステアリングホイールの電動位置調節装置およびその製造方法
US11975755B2 (en) Screw shaft and method for producing same, and electric position-adjusting device for steering wheel
JP5625718B2 (ja) 転造加工方法
JP6474308B2 (ja) 自動車用ホイールリムの製造装置及び製造方法
JP2008049384A (ja) 歯車の転造方法
JPWO2022080331A5 (ja)
US10010927B2 (en) Apparatus for smoothing a toothing system and production process
JP5888502B2 (ja) はすば歯車の転造方法
JP3515060B2 (ja) 冷間鍛造方法及びその装置
JP5135837B2 (ja) 歯車の転造方法および転造装置
JP4077482B2 (ja) 螺旋体の転造加工方法とその転造用ダイス
JP2006342971A (ja) ウォームギヤ
CN103752953A (zh) 一种离散式滚压齿轮加工方法
JP5145744B2 (ja) はすば状突起含有転造物の製造方法
JP2012161813A (ja) 転造装置
WO2012090660A1 (ja) 内歯転造方法
JP6155877B2 (ja) ねじの転造方法
JPH11285761A (ja) 丸ダイス式転造装置
JP2006341287A (ja) コップ状又は環状の回転対称加工物の内面に作用するマンドレルで内部輪郭を製作する方法
JP2011152560A (ja) 転造用平ダイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858029

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012858029

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14350630

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE