WO2013088922A1 - 内燃機関とその制御方法 - Google Patents

内燃機関とその制御方法 Download PDF

Info

Publication number
WO2013088922A1
WO2013088922A1 PCT/JP2012/080068 JP2012080068W WO2013088922A1 WO 2013088922 A1 WO2013088922 A1 WO 2013088922A1 JP 2012080068 W JP2012080068 W JP 2012080068W WO 2013088922 A1 WO2013088922 A1 WO 2013088922A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
exhaust
temperature
timing
internal combustion
Prior art date
Application number
PCT/JP2012/080068
Other languages
English (en)
French (fr)
Inventor
長岡 大治
正志 我部
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to EP12857737.6A priority Critical patent/EP2792862B1/en
Priority to US14/364,548 priority patent/US9422848B2/en
Priority to CN201280061021.3A priority patent/CN103987931B/zh
Publication of WO2013088922A1 publication Critical patent/WO2013088922A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/04Combinations of different methods of purification afterburning and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/10Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying inlet or exhaust valve timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an aftertreatment device for treating exhaust gas, an internal combustion engine having a variable valve mechanism capable of freely changing the opening timing of the exhaust valve, and a control method therefor.
  • DPF diesel particulate collection filter
  • PM fine particles
  • deNOx catalyst nitrogen oxide compound reduction catalyst
  • DOC oxidation for diesel
  • catalytic devices such as urea SCR catalyst (urea selective reduction catalyst).
  • the post-injection immediately after the main injection is performed by the injector so that the exhaust gas is brought into a high temperature state and the unburned fuel is discharged from the exhaust valve.
  • JP 2003-003831 A Japanese Laid-Open Patent Publication No. 2005-083351 JP 2011-127471 A
  • the present invention has been made in view of the above-described problems, and its purpose is to provide an early stage of a post-treatment device that treats exhaust gas with little or no addition of a conventional configuration.
  • An internal combustion engine capable of promoting temperature rise and supplying exhaust gas containing a large amount of unburned fuel components to an aftertreatment device and a control method thereof.
  • An internal combustion engine of the present invention for solving the above-described object is an internal combustion engine including an exhaust gas aftertreatment device and a variable valve mechanism capable of freely changing an opening timing of the exhaust valve, and the exhaust gas is treated by the aftertreatment device. Or when regenerating the aftertreatment device, the variable valve mechanism opens the exhaust valve that opens in the exhaust stroke during normal combustion within the range of the afterburning period, and enters the cylinder.
  • the exhaust gas that has reached a high temperature can be converted into a post-treatment device (DPF, catalyst) by changing the exhaust valve opening / closing timing with little or no addition to the conventional configuration.
  • the temperature of the catalyst in the aftertreatment device can be rapidly increased.
  • the unburned fuel component hereinafter referred to as HC component
  • HC component is added to the exhaust gas by at least one of the additional injection of the fuel injection valve and the injection of the addition valve. It can be supplied to a processing device.
  • the HC component that has undergone thermal decomposition can be supplied to the catalyst of the aftertreatment device, and the DPF regeneration fuel in a high temperature state can be supplied.
  • the decomposition of HC can be promoted before reaching the catalyst, the amount of noble metal in the catalyst can be reduced and the cost can be reduced.
  • the dependence of HC decomposition on the catalyst is reduced, the regeneration of the aftertreatment device can be performed stably even if the catalyst is deteriorated.
  • the timing of opening the exhaust valve is set to 20 ° ATDC to 50 ° ATDC that is in the early stage of the expansion stroke and within the range of the afterburning period.
  • the timing is set to 50 ° ATDC to 90 ° ATDC before the bottom dead center, after the start of the afterburning period (about ATDC 15 °), the timing at which the cylinder is brought into a high temperature and high pressure state by the main injection, that is,
  • exhaust gas containing unburned fuel is supplied to the aftertreatment device at a very high temperature (800 ° C-400 ° C).
  • the catalyst can be rapidly heated and the PM can be regenerated.
  • the exhaust valve normally opens and closes in the exhaust stroke, and exhausts the exhaust gas after combustion.
  • the timing for starting additional injection of the fuel injection valve and the end thereof are within a range from the timing of opening the exhaust valve to the timing of closing the valve in the means for raising the temperature. If the timing to start or the timing to start and end the injection of the addition valve is set, the decomposition of HC is promoted at high temperature and high pressure, and the exhaust gas in the state of HC gasification is supplied to the aftertreatment device. it can. Thereby, it can prevent that unburned fuel adheres in a cylinder.
  • the additive valve is provided in the exhaust port of any one cylinder of the multi-cylinder internal combustion engine, the additive can be injected while the exhaust gas is kept at a high temperature. Gasification of components can be promoted. In the case of a multi-cylinder internal combustion engine, in consideration of the promotion of gasification, the HC component can be most efficiently gasified by providing an addition valve in the exhaust port of any one of the cylinders.
  • the post-treatment device includes a urea SCR catalyst, and urea water is contained within a range from the opening timing of the exhaust valve to the closing timing of the temperature raising means.
  • the internal combustion engine when the temperature raising means is performed, includes means for increasing a main injection amount of the injection valve so as to compensate for a torque that decreases by once opening the exhaust valve.
  • the torque that decreases when the exhaust valve is opened once in the early stage of the expansion stroke can be corrected by increasing the main injection amount.
  • a correction amount that provides the same torque as that during normal combustion may be referred to from the correction amount map for engine rotation and fuel injection amount.
  • An internal combustion engine control method for solving the above-described problem is an internal combustion engine control method including an exhaust gas post-treatment device.
  • the exhaust valve that opens in the exhaust stroke during normal combustion is opened within the range of the afterburning period, and the exhaust gas that has become high temperature and high pressure due to the combustion of the fuel injected into the cylinder is After supplying to the aftertreatment device and raising the temperature of a part or all of the aftertreatment device to a predetermined temperature or higher, additional injection of the fuel injection valve in the cylinder is performed in accordance with the opening timing of the exhaust valve. Or adding an unburned fuel component to the exhaust gas by an addition valve provided in the exhaust passage.
  • the present invention it is possible to promote an early temperature increase of an aftertreatment device that treats exhaust gas with little or no addition to the conventional configuration, and to increase unburned fuel components.
  • the contained exhaust gas can be supplied to the aftertreatment device.
  • FIG. 1 is a cross-sectional view showing a cylinder of an internal combustion engine according to a first embodiment of the present invention.
  • FIG. 2 is a schematic view showing the internal combustion engine of the first embodiment according to the present invention.
  • FIG. 3 is a diagram showing the operation of the injector and the exhaust valve of the internal combustion engine shown in FIG. 1, wherein (a) shows the means for raising the temperature of the aftertreatment device, and (b) shows the unburned fuel to the aftertreatment device.
  • Means for supplying FIG. 4 is a table showing the relationship between the crank angle, the in-cylinder pressure, and the in-cylinder temperature of the internal combustion engine shown in FIG.
  • FIG. 5 is a flowchart showing the operation of the internal combustion engine shown in FIG. FIG.
  • FIG. 6 is a schematic view showing an internal combustion engine according to a second embodiment of the present invention.
  • FIG. 7 is a schematic view showing an internal combustion engine according to a third embodiment of the present invention.
  • FIG. 8 is a schematic view showing an internal combustion engine according to a fourth embodiment of the present invention.
  • an internal combustion engine and a control method thereof will be described with reference to the drawings.
  • an in-line four-cylinder diesel engine will be described as an example.
  • the present invention is not limited to a diesel engine, but can be applied to a gasoline engine.
  • the number of cylinders and the arrangement of cylinders are limited. do not do.
  • Note that the dimensions of the drawings are changed so that the configuration can be easily understood, and the ratios of the thicknesses, widths, lengths, and the like of the respective members and parts do not necessarily match the ratios of actually manufactured parts.
  • a cylinder 1 of a multi-cylinder engine includes a piston 3 that reciprocates in a cylinder liner 2.
  • a combustion chamber 4 is provided above the piston 3, an injector (fuel injection valve) 5 that injects fuel into the combustion chamber 4, an exhaust valve device 6 that exhausts exhaust gas Ga from the combustion chamber 4, and air Ai to the combustion chamber 4.
  • An intake valve device 7 is provided.
  • the injector 5 is an injection valve capable of multistage injection that performs after injection (additional injection) after at least main injection (main injection), and may be configured to perform pilot injection or pre-injection before main injection.
  • the exhaust valve device 6 opens and closes the exhaust valve 6a by the valve drive device 6b, and discharges the exhaust gas Ga to the exhaust port 8a.
  • the valve driving device 6b is connected to a variable valve timing mechanism (variable valve mechanism) 11, and can freely change the valve opening timing and the valve closing timing of the exhaust valve 6a.
  • the variable valve timing mechanism 11 is formed, for example, by a device that advances or retards the cam mechanism from the crankshaft by hydraulic pressure when the valve driving device 6b is formed by a cam mechanism. These are so-called phase change type variable valve timing mechanisms.
  • the opening timing of the exhaust valve 6a is varied, the exhaust gas is exhausted by advancing or retarding the phase of the crankshaft and the camshaft by the hydraulic pressure in the hydraulic chamber provided between the cam pulley and the camshaft.
  • the opening timing of the valve 6a is varied.
  • valve driving device 6b and the variable valve timing mechanism 11 are not limited to the above configuration.
  • the valve driving device 6b is provided with a cam mechanism having a plurality of cams, and the variable valve timing mechanism 11 is switched to the plurality of cams.
  • a solenoid solenoid valve may be used for the device or the exhaust valve device 6.
  • the intake valve device 7 opens and closes the intake valve 7a by the valve drive device 7b, and supplies air Ai from the intake port 9a.
  • the valve driving device 7b an electromagnetic driving device in which a plunger is provided in a cam mechanism or a solenoid is used.
  • this valve drive device 7b a valve drive device of a known technique can be used.
  • the injector 5 and the variable valve timing mechanism 11 are each configured to control their operations by an ECU (control device) 12 called an engine control unit.
  • the ECU 12 is a microcontroller that is connected to various sensors and performs overall electrical control in charge of control of the engine 10 by an electric circuit.
  • the fuel injection amount and fuel of the injector 5 are controlled.
  • the injection and exhaust valve 6a opening timing is controlled.
  • the above-described cylinder 1 is provided in an engine body 13 composed of a cylinder block and a cylinder head, an exhaust path 8 composed of an exhaust port 8a and an exhaust manifold 8b, and an intake air
  • An intake passage 9 including a port 9a and an intake manifold 9b is provided.
  • an EGR system (exhaust gas recirculation device) 15 including a turbocharger 14, an EGR cooler 15a, and an EGR valve 15b is provided.
  • the exhaust passage 8 is provided with a post-treatment device 20 for treating exhaust gas, and the post-treatment device 20 includes a catalyst device 21 and a DPF 22.
  • the catalyst device 21 includes a deNOx catalyst (nitrogen oxide compound reduction catalyst) 21a having a LNT catalyst and a DOC (diesel oxidation catalyst) 21b.
  • the intake passage 9 includes an intake filter 16, an intercooler 17, and an intake throttle 18.
  • the crank angle sensor 23, the cam angle sensor 24, the DPF temperature sensors 25a and 25b, and the DPF differential pressure sensors 26a and 26b are provided.
  • the ECU 12 uses the crank angle detected by the crank angle sensor 23 and the cam angle detected by the cam angle sensor 24, the ECU 12 adjusts the injection timing of the injector 5 and the valve opening timing of the exhaust valve 6a.
  • Various other sensors are provided in the engine 10, but are omitted in the description of the embodiment.
  • the configuration of the engine 10 is a known configuration, and each device can use a known technology.
  • a variable valve timing mechanism capable of providing a post-treatment device 20 including at least a catalyst device 21 such as a deNOx catalyst 21a and a DOC 21b and a DPF 22 in the exhaust passage 8 and freely changing a valve opening timing of the exhaust valve 6a. If 11 is provided, the other configuration is not limited to the above configuration.
  • PB is the premix combustion period in the initial stage of injection
  • DB is the diffusion combustion period of the main combustion
  • AB is the period in which the unburned fuel injected in the early stage of the expansion burns is AB
  • the start timing of the main injection of the injector 5 is A1
  • the end timing is A2
  • the opening timing of the exhaust valve 6a in the expansion stroke is A3
  • the closing timing is A4
  • the opening timing of the exhaust valve 6a in the exhaust stroke is A5.
  • the ECU 12 When raising the temperature of the aftertreatment device 20 or when regenerating by burning PM of the DPF 23, first, as shown in FIG. 3A, the ECU 12 normally sets the injection timing of the injector 5 The variable valve timing mechanism 11 is controlled at the injection timing, and the exhaust valve 6a is opened and closed at a timing different from the timing performed in the normal exhaust stroke.
  • the injector 5 performs main injection from the injection start timing A1 to the injection end timing A2. Then, the afterburning period AB starts from the injection end timing A2. Thereafter, the exhaust valve 6a is opened within the range of the burning period AB.
  • the valve opening timing A3 of the exhaust valve 6a at this time is a timing immediately after the start of the afterburning period AB in the early stage of the expansion stroke.
  • the start of the afterburning period AB starts from the injection end timing A2, more specifically in the range of 0 ° ATDC to 20 ° ATDC, and the end is before the bottom dead center (90 ° ATDC). become. Therefore, the valve opening timing A3 is in the range from the start of the afterburning period AB to the bottom dead center in the early stage of the expansion stroke, preferably in the range of 0 ° ATDC to 90 ° ATDC, more preferably 20 ° ATDC. Within the range of ⁇ 50 ° ATDC.
  • the exhaust gas Ga having a very high exhaust gas temperature (800 ° C. to 400 ° C.) is sent to the aftertreatment device 20. Can be supplied. Further, since the valve opening timing A3 is also within the range of the afterburning period AB, unburned fuel remains in the cylinder 1, and the unburned fuel component (hereinafter referred to as HC component) gasified under high temperature and high pressure. ) Can be supplied to the post-processing device 20.
  • HC component unburned fuel component
  • A4 is the timing before the bottom dead center, and is preferably 50 ° ATDC to 90 ° ATDC. Thereby, exhaust gas Ga can be prevented from being sucked back into the cylinder 1.
  • the exhaust valve 6a is opened again at the normal valve opening timing A5, and the remaining post-combustion exhaust gas Ga is discharged.
  • the ECU 12 controls the injector 5 without changing the valve opening timing A3 and the valve closing timing A4 of the exhaust valve 6a, and starts the after injection after the main injection.
  • the start timing and end timing of the after injection may be within the range of the valve opening timing A3 to the valve closing timing A4 of the exhaust valve 6a, and are substantially the same in this embodiment.
  • the fuel injected by the after injection is opened in the exhaust valve 6a and immediately discharged to the exhaust pipe, so that no soot is generated.
  • the unburned fuel is decomposed at high temperature and high pressure, and can be made into an HC component suitable for use in the aftertreatment device 20.
  • the exhaust valve 6a is opened within the range of the post-burn period AB of the very early expansion stroke, so that the exhaust gas Ga that has become high temperature and high pressure in the diffusion combustion period DB is post-treated.
  • the temperature is raised by supplying to 20, it can be supplied to the aftertreatment device 20 in a state containing a large amount of HC components. 21 and DPF 22 undergo thermal decomposition, and gasified HC components can be supplied.
  • PM can be regenerated in the DPF 22 without performing post injection, and fuel adheres to the cylinder liner 2 that is generated when PM is regenerated using post injection, and the oil is diluted.
  • the increase in blow-by gas can solve the problem of significantly reducing the durability of the engine 10.
  • the post-processing apparatus 20 can further obtain the following effects.
  • the purification rate can be improved by early temperature rise during cold and HC decomposition during rich.
  • the supplied HC component can be easily burned under the high temperature exhaust gas Ga, and since the heat capacity is small, it is possible to promote rapid temperature increase of the catalyst device particularly immediately after starting.
  • decomposition of the HC component can be promoted in the catalyst device 21 such as the deNOx catalyst 21a and the DOC 21b, the amount of noble metal in the catalyst device 21 can be reduced, and the cost can be reduced.
  • the DPF 22 has a low catalyst dependency for the decomposition of the HC component, PM regeneration can be performed stably even if the catalyst deteriorates.
  • the injection amount at this time is a correction amount map for the engine speed and the fuel injection amount so that the torque reduced by opening the exhaust valve 6a can be compensated to obtain a torque equivalent to that during normal combustion. Is stored in the ECU 12, and the ECU 12 reads the correction amount map and corrects the injection amount during the above operation.
  • the control method described in this flowchart is a program calculated by the ECU 12.
  • the temperature detected by the DPF sensor 25a provided upstream of the DPF 22 is the pre-temperature Ta of the DPF 22
  • the temperature detected by the DPF sensor 25b provided downstream of the DPF 22 is the post-temperature Tb of the DPF 22
  • the DPF differential pressure sensors 26a and 26b Let ⁇ P be the pressure difference before and after the DPF 22 detected by.
  • step S1 is performed to determine whether or not the pre-temperature Ta of the DPF 22 is lower than a predetermined determination temperature Tc.
  • the determination temperature Tc is a temperature at which it can be determined that the temperature of the catalyst device in the post-processing device 20 is low.
  • This determination temperature Tc is a temperature that varies depending on the type of the catalyst device and the configuration in the exhaust passage 8.
  • step S2 is performed to determine whether or not the pressure difference ⁇ P before and after the DPF 22 is smaller than a predetermined determination pressure value Pc.
  • this determination pressure value Pc is a value that can determine the degree to which the PM clogs within the DPF 22 and the function does not deteriorate. Set.
  • step S1 and S2 it is determined that the DPF pre-temperature Ta is low, that is, it is necessary to raise the temperature of the catalyst device 21 in the post-processing device 20, and the pressure difference ⁇ P before and after the DPF 22 is large, that is, it is necessary to regenerate the DPF 22. If so, then step S3 is performed in which the injector 5 performs main injection with an increased injection amount. The increase amount of the injection amount is corrected with the correction map of the injection amount as described above, and prevents a decrease in torque caused by a stroke performed below.
  • Step S4 is performed in which the exhaust valve 6a is opened in the early afterburn period AB of the expansion stroke and closed before the bottom dead center.
  • the valve opening timing and the valve closing timing at this time are the valve opening timing A3 and the valve closing timing A4 described above.
  • step S5 is performed to open and close the exhaust valve 6a in the exhaust stroke.
  • Step S6 is performed to determine whether the pre-temperature Ta of the DPF 22 is equal to or higher than the catalyst activation temperature Td. If the pre-temperature Ta of the DPF 22 is lower than the catalyst activation temperature Td in step S6, that is, if the temperature of the catalyst device 21 of the post-treatment device 20 has not been sufficiently increased, steps S3 to S5 are performed again.
  • the catalyst activation temperature Td is a temperature indicated when the catalyst device 21 of the post-treatment device 20 becomes equal to or higher than a predetermined temperature, and varies depending on the type of the catalyst device 21 of the post-treatment device 20, and is preferably 180 ° C. Set within the range of ⁇ 250 ° C.
  • step S7 is performed in which the exhaust valve 6a is opened in the post-burn period AB at the early stage of the expansion stroke.
  • the injector 5 performs after-injection step S8 after the exhaust valve 6a is opened until it is closed.
  • step S9 which closes the exhaust valve 6a before a bottom dead center is performed.
  • Steps S7 to S9 are steps in which after injection is performed during step S4 described above.
  • the HC component is supplied to the catalyst device 21 and combusted to further increase the temperature of the catalyst device 21.
  • HC component is supplied to DPF22 and PM is combusted.
  • Step S10 is performed to open and close the exhaust valve 6a in the exhaust stroke.
  • step S11 for determining whether or not the previous temperature Ta of the DPF 22 is equal to or higher than the abnormal catalyst temperature Te is performed. If the previous temperature Ta of the DPF 22 becomes equal to or higher than the abnormal catalyst temperature Te, the temperature of the catalyst device 21 increases excessively and the catalyst device 21 breaks down. In this case, this control method is completed.
  • the abnormal catalyst temperature Te is stored in advance in the ECU 12, and is preferably set to 650 ° C. to 750 ° C.
  • step S11 it is only necessary to be able to determine an abnormal temperature rise in the temperature of the catalyst device 21, and the present invention is not limited to the above method.
  • a heat generation amount may be calculated from the amount of fuel injected by after injection, and a catalyst temperature estimation step for estimating the catalyst temperature in combination with the characteristics of the catalyst may be performed.
  • step S11 is performed to determine whether or not the pressure difference ⁇ P before and after the DPF 22 is smaller than the determination pressure value Pc.
  • the pressure difference ⁇ P is smaller than the determination pressure value Pc, the PM of the DPF 22 has been regenerated, and this control method is completed.
  • step S12 is performed to determine whether the post-temperature Tb of the DPF 22 is equal to or higher than the abnormal DPF temperature Tf. If the post-temperature Tb of the DPF 22 is equal to or higher than the abnormal DPF temperature Tf, the temperature of the DPF 22 increases excessively and the DPF 22 breaks down. In this case, this control method is completed.
  • the abnormal DPF temperature Tf is stored in advance in the ECU 12, and is preferably set to 650 ° C. to 750 ° C.
  • the operational effects described in the operation of the engine 10 described above can be performed only by changing the opening / closing timing of the exhaust valve 6a and the injection timing of the injector 5 without adding a new device. Can be obtained.
  • the temperature of the catalyst device 21 and the temperature of the DPF 22 can be monitored to prevent abnormal temperature rise of each device.
  • the engine 30 is configured to include an HC addition nozzle (addition valve) 31 in the exhaust port 8a in addition to the configuration of the engine of the first embodiment.
  • HC addition nozzle 31 is provided as in this embodiment, when the injector 5 is a unit injector or the like and does not support multi-stage injection, or when the after injection amount increases even if multi-stage injection is supported. This may be applied to cases where the problem of oil dilution occurs, and when the after-injection amount further affects the in-cylinder combustion.
  • the HC addition nozzle 31 is preferably provided in the exhaust port 8a in the vicinity of the combustion chamber 4 so that the exhaust gas Ga can be injected while keeping the temperature as high as possible to promote gasification. Further, if the number of HC addition nozzles 31 is a multi-cylinder engine such as the engine 30, it is suitable for gasification of HC components if the exhaust port 8 a of any one cylinder 1 is provided. In addition, if it is difficult to attach the exhaust port 8a to the exhaust port 8a, the arrangement position is preferably within the exhaust manifold 8b directly below the turbocharger 14.
  • the operation of the engine 30 is performed by adding HC to the exhaust gas Ga from the HC addition nozzle 31 in addition to or without performing the after injection described in the first embodiment.
  • the injection timing 31 is set to be within the range described in the additional injection described above.
  • the engine 40 includes a urea SCR device (urea selective reduction catalyst) 41a in place of the deNOx catalyst of the catalyst device of the aftertreatment device of the engine of the first embodiment, and a urea addition nozzle 42 in the exhaust port 8a.
  • the urea addition nozzle 42 is an injection valve that is provided in the exhaust port 8a or in the vicinity of the exhaust port 8a, and injects urea water when discharging the high-temperature exhaust gas Ga from the exhaust valve 6a in the early stage of the expansion stroke.
  • the injection timing is the same as that of the HC addition nozzle described above.
  • urea decomposition of urea is accelerated under high temperature and high pressure, urea can evaporate early, ammonia gasification can be promoted, and the deNOx effect can be exhibited immediately after the engine 40 is started. Further, since urea water can be prevented from being precipitated as a solid substance at a specific temperature, the exhaust pipe is not blocked.
  • the engine 50 includes an in-port oxidation catalyst 51 in each exhaust port 8a in addition to the configuration of the engine of the first embodiment. According to this configuration, the HC component supplied to the in-port oxidation catalyst 51 can be easily burned under high temperature exhaust gas, and the heat capacity can be reduced. can do.
  • the internal combustion engine of the present invention promotes an early temperature increase of the aftertreatment device that treats exhaust gas and adds a lot of unburned fuel components without adding a new device or adding a little configuration. Since exhaust gas can be supplied to the aftertreatment device, it can be used particularly for vehicles equipped with diesel engines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

 後処理装置20で排ガスGaの処理を行うときに、又は後処理装置20を再生するときに、可変バルブタイミング機構11が、通常燃焼時には排気行程で開弁する排気バルブ6aを、後燃え期間ABの範囲内で開弁し、シリンダ1内へ噴射された燃料の燃焼により、高温、且つ高圧になった排ガスGaを後処理装置20へと供給することにより、後処理装置20の一部又は全部を予め設定した温度以上に昇温する手段を備えると共に、その後に、昇温する手段での排気バルブ6aの開弁時期に合せて、シリンダ1内のインジェクタ5の追加噴射、又は、排気ポート8aに設けたHC添加ノズル31の噴射の少なくともどちらか一方により排ガスGaに未燃燃料成分を添加する手段を備えることにより、排ガスを処理する後処理装置20の早期の昇温を促進し、且つ、未燃燃料成分を多く含んだ排ガスを後処理装置20に供給する。

Description

内燃機関とその制御方法
 本発明は、排ガスを処理する後処理装置と、排気弁の開弁時期を自在に変化できる可変弁機構を備えた内燃機関とその制御方法に関する。
 現在、エンジン(内燃機関)の排ガスを処理する後処理装置として、PM(微粒子)を捕集するDPF(ディーゼル微粒子捕集フィルタ)や、deNOx触媒(酸化窒素化合物還元触媒)、DOC(ディーゼル用酸化触媒)、及び尿素SCR触媒(尿素選択的還元触媒)などの触媒装置がある。実際にエンジンの排気路に設ける場合はそれらを組み合わせて、排ガスを浄化している(例えば、特許文献1、特許文献2、及び特許文献3参照)。
 この後処理装置で排ガスを浄化する際には、排ガス温度を200度~250度程度の高温に昇温して触媒装置の触媒を活性化させることが重要である。また、DPFに捕集されたPMを燃焼して、DPFを再生する際には、燃料を供給し燃焼させて昇温することが必要となる。
 そこで、排ガスを高温状態にすると共に、未燃燃料を排気弁から排出するように、インジェクタで主噴射直後のポスト噴射を行っている。
 このポスト噴射はシリンダ内の排ガス温度が低下した状態で行われる場合には、シリンダライナに燃料が付着してオイル中に燃料が希釈し、エンジンの耐久性が低下するという問題を生じる。また、低圧、低温の状態のシリンダ内に噴射する為、供給燃料の熱分解も進まず、触媒に有利なHC成分までの分解が進まないという問題もある。
 この問題に対して、排気管へ直接HCを添加する方法もあり、この方法ではオイルへの燃料希釈は防げるが、筒内より更に低温低圧下への噴射であるため、ポスト噴射より更に燃料の熱分解に時間がかかるという問題は解決できていない。
特開2003-003831号公報 特開2005-083351号広報 特開2011-127471号広報
 本発明は、上記の問題を鑑みてなされたものであり、その目的は、従来の構成に少しの構成を追加するだけで、若しくは全く追加せずに、排ガスを処理する後処理装置の早期の昇温を促進し、且つ、未燃燃料成分を多く含んだ排ガスを後処理装置に供給することができる内燃機関とその制御方法を提供することである。
 上記の目的を解決するための本発明の内燃機関は、排ガスの後処理装置と、排気弁の開弁時期を自在に変化できる可変弁機構を備える内燃機関において、前記後処理装置で排ガスの処理を行うときに、又は前記後処理装置を再生するときに、前記可変弁機構が、通常燃焼時には排気行程で開弁する前記排気弁を、後燃え期間の範囲内で開弁し、気筒内へ噴射された燃料の燃焼により、高温、且つ高圧になった排ガスを前記後処理装置へと供給することにより、前記後処理装置の一部又は全部を予め設定した温度以上に昇温する手段を備えると共に、前記後処理装置の一部又は全部を予め設定した温度以上に昇温した後に、前記昇温する手段での前記排気弁の開弁時期に合せて、気筒内の燃料噴射弁の追加噴射、又は、排気路に設けた添加弁の噴射の少なくともどちらか一方により排ガスに未燃燃料成分を添加する手段を備えて構成される。
 この構成によれば、従来の構成に少しの構成を追加するだけで、若しくは全く追加せずに、排気弁開閉タイミングを変更するだけで、高温になった排ガスを、後処理装置(DPF、触媒)に供給して、後処理装置の触媒の温度を急速に上昇することができる。また、その後、燃料噴射弁の追加噴射、又は添加弁の噴射の少なくともどちらか一方により未燃燃料成分(以下、HC成分という)を排ガスに添加することで、HC成分が多く含んだ排ガスを後処理装置に供給することができる。
 そのため、後処理装置の触媒に熱分解が進行したHC成分を供給することができ、また、高温の状態のDPF再生用燃料を供給することができる。この結果、触媒に至る前でHCの分解を促進することができるので、触媒の貴金属量を減らすことができ、コストダウンができる。加えて、HC分解の触媒依存度が低くなるので、触媒が劣化しても後処理装置の再生を安定して行うことができる。
 また、上記の内燃機関において、前記排気弁の開弁のタイミングを膨張行程の早期で、且つ後燃え期間の範囲内である20°ATDC~50°ATDCに設定し、前記排気弁の閉弁のタイミングを下死点より前の50°ATDC~90°ATDCに設定すると、後燃え期間の開始(~ATDC15°程度)後で、主噴射により気筒が高温、且つ高圧の状態になったタイミング、つまり非常に早期の膨張行程(ATDC20°~50°)で、排気弁を開弁することで、非常に高い温度(800℃~400℃)で、未燃燃料を含んだ排ガスを後処理装置に供給して、触媒の早期昇温とPM再生を行うことができる。
 また、下死点よりも前に閉じることで、膨張行程初期に開いた後に、気筒内が負圧となり排ガスが吸い戻されることを防ぐことができる。この後、排気弁は排気行程で通常の開閉を行い燃焼後の排ガスを排出する。
 加えて、上記の内燃機関において、前記昇温する手段での前記排気弁の開弁のタイミングから閉弁のタイミングまでの間の範囲内に、前記燃料噴射弁の追加噴射を開始するタイミングと終了するタイミング、又は前記添加弁の噴射を開始するタイミングと終了するタイミングを設定すると、高温、且つ高圧下でHCの分解が促進され、HCガス化した状態の排ガスを後処理装置に供給することができる。これにより、シリンダ内に未燃燃料が付着することを防ぐことができる。
 その上、上記の内燃機関において、多気筒内燃機関の何れか1つの気筒の排気ポートに前記添加弁を備えると、排ガスが高温を保っている状態で添加剤を噴射することができるので、HC成分のガス化を促進することができる。また、多気筒内燃機関の場合、そのガス化の促進を考慮した場合は、何れか1つの気筒の排気ポートに添加弁を備えると、最も効率よくHC成分をガス化することができる。
 さらに、上記の内燃機関において、前記後処理装置に尿素SCR触媒を含むと共に、前記昇温する手段での前記排気弁の開弁のタイミングから閉弁のタイミングまでの間の範囲内に尿素水を噴射する尿素添加弁を排気ポートに備えると、高温下で尿素の分解が促進され、始動直後からdeNOx効果を向上することができる。
 さらに、上記の内燃機関において、前記昇温する手段を行うときに、前記排気弁を一旦開弁することで低下するトルクを補うように、前記噴射弁の主噴射量を増加させる手段を備えると、膨張行程の早期に排気弁を一旦開弁することで低下するトルクを、主噴射量を増やすことによって、補正することができる。このとき、通常燃焼時と同じトルクになるような補正量を、エンジン回転と燃料噴射量に対する補正量マップから参照するとよい。
 また、上記の問題を解決するための内燃機関の制御方法は、排ガスの後処理装置を備える内燃機関の制御方法において、前記後処理装置で排ガスの処理を行うときに、又は前記後処理装置を再生するときに、通常燃焼時には排気行程で開弁する排気弁を、後燃え期間の範囲内で開弁し、気筒内へ噴射された燃料の燃焼により、高温、且つ高圧になった排ガスを前記後処理装置へと供給し、前記後処理装置の一部又は全部を予め定めた温度以上に昇温した後に、前記排気弁の開弁のタイミングに合せて、気筒内の燃料噴射弁の追加噴射により、又は排気路に設けた添加弁により、排ガスに未燃燃料成分を添加することを特徴とする方法である。
 この方法によれば、従来の構成に少しの構成を追加するだけで、若しくは全く追加せずに、上記と同様の作用効果を得ることができる。そのため、殆ど追加コストがかからないので、製造コストを低減することができる。
 本発明によれば、従来の構成に少しの構成を追加するだけで、若しくは全く追加せずに、排ガスを処理する後処理装置の早期の昇温を促進し、且つ、未燃燃料成分を多く含んだ排ガスを後処理装置に供給することができる。
図1は、本発明に係る第1の実施の形態の内燃機関の気筒を示した断面図である。 図2は、本発明に係る第1の実施の形態の内燃機関を示した概略図である。 図3は、図1に示す内燃機関のインジェクタと排気弁の動作を示した図であり、(a)に後処理装置を昇温する手段を示し、(b)に後処理装置へ未燃燃料を供給する手段を示す。 図4は、図1に示す内燃機関のクランク角、筒内圧、及び筒内温度の関係を示した表である。 図5は、図1に示す内燃機関の動作を示すフローチャートである。 図6は、本発明に係る第2の実施の形態の内燃機関を示した概略図である。 図7は、本発明に係る第3の実施の形態の内燃機関を示した概略図である。 図8は、本発明に係る第4の実施の形態の内燃機関を示した概略図である。
 以下、本発明に係る実施の形態の内燃機関とその制御方法について、図面を参照しながら説明する。この実施の形態は、直列4気筒のディーゼルエンジンを例に説明するが、本発明はディーゼルエンジンに限定せずに、ガソリンエンジンにも適用することができ、その気筒数や、気筒の配列は限定しない。なお、図面に関しては、構成が分かり易いように寸法を変化させており、各部材、各部品の板厚や幅や長さなどの比率も必ずしも実際に製造するものの比率とは一致させていない。
 まず、本発明に係る第1の実施の形態の内燃機関について、図1及び図2を参照しながら説明する。先に、図1に示す本発明に係る第1の実施の形態のエンジン(内燃機関)のシリンダ(気筒)について説明する。多気筒エンジンのシリンダ1は、シリンダライナ2の内を往復運動するピストン3を備える。
 このピストン3の上部に燃焼室4を設け、この燃焼室4へ燃料を噴射するインジェクタ(燃料噴射弁)5、燃焼室4から排ガスGaを排出する排気弁装置6、及び燃焼室4へ空気Aiを供給する吸気弁装置7を備える。
 インジェクタ5は、少なくともメイン噴射(主噴射)の後に、アフター噴射(追加噴射)する多段噴射可能な噴射弁であり、メイン噴射の前にパイロット噴射やプレ噴射するよう構成してもよい。
 排気弁装置6は、弁駆動装置6bによって排気バルブ6aを開閉し、排気ポート8aへ排ガスGaを排出する。弁駆動装置6bは、可変バルブタイミング機構(可変弁機構)11と接続され、排気バルブ6aの開弁、及び閉弁タイミングを自由に変更することができる。
 この可変バルブタイミング機構11は、例えば、弁駆動装置6bをカム機構で形成し場合に、可変バルブタイミング機構11を油圧によりカム機構をクランクシャフトから進角、又は遅角する装置で形成する。これらは、所謂、位相変化型可変バルブタイミング機構と呼ばれるものである。排気バルブ6aの開弁のタイミングを可変する場合は、カムプーリとカムシャフトとの間に設けた油圧室の油圧によって、クランクシャフトとカムシャフトとの位相を進角、又は遅角させることで、排気バルブ6aの開弁のタイミングを可変する。
 この弁駆動装置6bと可変バルブタイミング機構11は、上記の構成に限定せず、例えば、弁駆動装置6bに複数のカムを有するカム機構を設け、可変バルブタイミング機構11にその複数のカムを切り換える装置や、排気弁装置6にソレノイド電磁弁を用いてもよい。
 吸気弁装置7は、弁駆動装置7bによって吸気バルブ7aを開閉し、吸気ポート9aから空気Aiを供給する。弁駆動装置7bは、カム機構やソレノイドにプランジャを設ける電磁駆動装置などを用いる。この弁駆動装置7bは、周知の技術の弁駆動装置を用いることができる。
 インジェクタ5、及び可変バルブタイミング機構11をそれぞれエンジンコントロールユニットと呼ばれるECU(制御装置)12でそれらの動作を制御するように構成する。この、ECU12は、各種センサと接続され、電気回路によってエンジン10の制御を担当している電気的な制御を総合的に行うマイクロコントローラであり、この実施の形態ではインジェクタ5の燃料噴射量及び燃料噴射、及び排気バルブ6aの開弁タイミングを制御している。
 図2に示すように、この実施の形態のエンジン10は、上記のシリンダ1をシリンダブロックとシリンダヘッドからなるエンジン本体13に設け、排気ポート8aと排気マニホールド8bとからなる排気路8、及び吸気ポート9aと吸気マニホールド9bとからなる吸気路9を備える。加えて、ターボチャージャ14と、EGRクーラー15aとEGRバルブ15bを備えたEGRシステム(排気再循環装置)15を備える。
 排気路8には、排ガスを処理する後処理装置20を設け、後処理装置20は、触媒装置21とDPF22とを備える。触媒装置21は、LNT触媒を有するdeNOx触媒(酸化窒素化合物還元触媒)21a、DOC(ディーゼル用酸化触媒)21bとからなる。吸気路9には、吸気フィルタ16、インタークーラー17、及び吸気スロットル18を備える。
 また、前述したECU12と接続されるセンサとして、クランク角センサ23、カム角センサ24、DPF温度センサ25aと25b、及びDPF差圧センサ26aと26bを備える。このクランク角センサ23で検知されたクランク角とカム角センサ24で検知されたカム角を用いて、ECU12が、インジェクタ5の噴射タイミングや、排気バルブ6aの開弁タイミングを調節している。エンジン10にはその他にも各種センサが設けられているが、実施の形態の説明では省略する。
 上記のエンジン10の構成は、周知の構成であり、各装置も周知の技術を用いることができる。この実施の形態においては、少なくともdeNOx触媒21aやDOC21bなどの触媒装置21とDPF22を備える後処理装置20を排気路8に設け、且つ排気バルブ6aの開弁タイミングを自在に変更できる可変バルブタイミング機構11を設けていれば、他の構成は上記の構成に限定しない。
 次に、エンジン10の動作について、図3、及び図4を参照しながら説明する。ここで燃焼の上死点前で、噴射初期の予混合燃焼期間をPB、主燃焼の拡散燃焼期間をDB、膨張行程初期で噴射された未燃燃料が燃焼する期間である後燃え期間をABとする。また、インジェクタ5の主噴射の開始タイミングをA1、終了タイミングをA2、膨張行程での排気バルブ6aの開弁タイミングをA3、閉弁タイミングをA4、排気行程での排気バルブ6aの開弁タイミングをA5とする。
 後処理装置20の温度を昇温する場合に、又はDPF23のPMを燃焼させて再生する場合に、先ず、図3の(a)に示すように、ECU12が、インジェクタ5の噴射のタイミングを通常噴射時期のまま、可変バルブタイミング機構11を制御して、通常時の排気行程で行われるタイミングとは別のタイミングで、排気バルブ6aを開弁、及び閉弁する。
 次に、インジェクタ5が噴射開始タイミングA1から噴射終了タイミングA2まで、主噴射を行う。そして、噴射終了タイミングA2から後燃え期間ABが始まる。この後燃え期間ABの範囲内で排気バルブ6aを開弁する。このときの排気バルブ6aの開弁タイミングA3は、膨張行程の早期の、後燃え期間ABが始まってから直ぐのタイミングである。
 この実施の形態では、後燃え期間ABの開始は、噴射終了タイミングA2からであり、詳しくは0°ATDC~20°ATDCの範囲内で、その終了は、下死点(90°ATDC)より前になる。よって、開弁タイミングA3は、膨張行程早期の後燃え期間ABの開始から下死点までの範囲内であって、好ましくは0°ATDC~90°ATDCの範囲内で、より好ましくは20°ATDC~50°ATDCの範囲内である。
 排気バルブ6aを非常に早期の膨張行程の開弁タイミングA3で開弁することで、図4に示すように、非常に高い排ガス温度(800℃~400℃)の排ガスGaを後処理装置20へ供給することができる。また、開弁タイミングA3は後燃え期間ABの範囲内でもあるので、シリンダ1内には未燃燃料が残っており、高温、且つ高圧下でガス化した未燃燃料成分(以下、HC成分という)を後処理装置20へ供給することができる。
 膨張行程の初期に開弁すると、逆にシリンダ1内が負圧となり排ガスGaを吸い戻す可能性があるので、遅くとも下死点より前に閉じることが必要であり、排気バルブ6aの閉弁タイミングA4は、図3の(a)に示すように、下死点より前のタイミングであり、好ましくは50°ATDC~90°ATDCである。これにより、排ガスGaがシリンダ1内へ吸い戻されることを防ぐことができる。
 その後、排気バルブ6aを通常の開弁タイミングA5で再度開いて残りの燃焼後排ガスGaを排出する。この動作を行なって、高温、且つ高圧の排ガスGaを後処理装置20へ供給して、後処理装置20の触媒装置21、及びDPF22の一部又は全部を予め設定した温度以上に昇温した後に、図3の(b)に示すように、排気バルブ6aの開弁タイミングA3、及び閉弁タイミングA4を代えずに、ECU12がインジェクタ5を制御して、主噴射の後にアフター噴射を開始する。
 このアフター噴射の開始タイミングと終了タイミングは、排気バルブ6aの開弁タイミングA3から閉弁タイミングA4の期間の範囲内であればよく、この実施の形態では、略同時とする。従来、膨張行程初期の後燃え期間が長引くと排気温度は上昇し、ススの生成が増える傾向がある。しかし、この実施の形態では、アフター噴射で噴射した燃料は排気バルブ6aが開弁しており、直ぐに排気管に排出されるので、ススの生成は起こらない。この未燃燃料は高温、且つ高圧下で燃料分解が進み、後処理装置20での利用に適したHC成分とする事ができる。
 上記の動作によれば、非常に早期の膨張行程の後燃え期間ABの範囲内で、排気バルブ6aを開弁するので、拡散燃焼期間DBで高温、且つ高圧になった排ガスGaを後処理装置20へ供給して昇温した後に、HC成分を多く含んだ状態で後処理装置20へ供給することができるので、後処理装置20の一部、又は全てを昇温し、昇温後に触媒装置21、及びDPF22へ熱分解が進行し、ガス化したHC成分を供給することができる。
 また、ポスト噴射を行わずにDPF22でのPMの再生を行うことができ、ポスト噴射を用いてPMの再生を行ったときに発生する、シリンダライナ2に燃料が付着して、オイルが希釈し、ブローバイガスが増加することで、エンジン10の耐久性を著しく低下させるという問題を解決することができる。
 これにより後処理装置20は、さらに以下の効果を得ることができる。deNOx触媒21aにおいて、冷間時の早期昇温やリッチ時のHC分解により浄化率を向上させることできる。また、DOC21bにおいて、供給されたHC成分が高温の排ガスGa下で容易に燃焼させることができ、熱容量も小さいので、特に始動直後などの触媒装置の急速昇温を促進することができる。加えて、deNOx触媒21aやDOC21bなどの触媒装置21において、HC成分の分解を促進できるので、触媒装置21の貴金属量を減らすことができ、コストダウンすることができる。さらに、DPF22において、HC成分の分解の触媒依存度が低いので、触媒が劣化してもPM再生を安定して行うことができる。
 その上、上記の効果を別途、装置を追加することなく、排気バルブ6aの開閉タイミングの変更や、インジェクタ5の噴射タイミングの変更のみで、殆ど追加コストを掛けずに得ることができる。
 上記の動作を行うときに、インジェクタ5から噴射される主噴射の噴射量を増やすと、膨張行程の早期に排気バルブ6aを開弁することでトルクの低下を防ぐことができる。このときの噴射量は、排気バルブ6aを開弁することで低下するトルク分を補って、通用燃焼時と同等のトルクを得ることができるように、エンジン回転数と燃料噴射量に対する補正量マップをECU12に記憶させておき、上記の動作の際にECU12がその補正量マップを読み出して噴射量を補正する。
 次に、上記のエンジン10の制御方法を、図5に示すフローチャートを参照しながら説明する。このフローチャートに記載の制御方法はECU12で演算されるプログラムである。ここで、DPF22の上流に設けたDPFセンサ25aで検知する温度をDPF22の前温度Ta、DPF22の下流に設けたDPFセンサ25bで検知する温度をDPF22の後温度Tb、DPF差圧センサ26aと26bで検知するDPF22の前後の圧力差をΔPとする。
 先ず、DPF22の前温度Taが、予め定めた判定温度Tcよりも低いか否かを判断するステップS1を行う。この判定温度Tcは、後処理装置20内の触媒装置の温度が低いことを判断することができる温度である。この判定温度Tcは触媒装置の種類や、排気路8内の構成によって変わる温度である。
 次に、DPF22の前後の圧力差ΔPが、予め定めた判定圧力値Pcよりも小さいか否かを判断するステップS2を行う。DPF22の前後の圧力差ΔPが大きくなると、DPF22にPMが詰まっているということが分かるので、この判定圧力値Pcは、DPF22内にPMが詰まり機能が低下しない程度を判断することができる値に設定する。
 ステップS1とS2でDPF前温度Taが低い、つまり後処理装置20内の触媒装置21の昇温が必要と判断され、且つDPF22の前後の圧力差ΔPが大きい、つまりDPF22の再生が必要と判断された場合は、次に、インジェクタ5が噴射量を増加した主噴射を行うステップS3を行う。この噴射量の増加量は、前述した通り噴射量の補正マップで補正されたものを用いて、以下に行われる行程によって生じるトルクの低下を防止する。
 次に、排気バルブ6aを膨張行程の早期の後燃え期間ABで開弁し、下死点前で閉弁するステップS4を行う。このときの開弁タイミング、及び閉弁タイミングは前述した開弁タイミングA3、及び閉弁タイミングA4とする。次に、排気バルブ6aを排気行程で開弁して、閉弁するステップS5を行う。
 次に、DPF22の前温度Taが触媒活性温度Td以上か否かを判断するステップS6を行う。このステップS6でDPF22の前温度Taが触媒活性温度Tdよりも低い場合は、つまり十分に後処理装置20の触媒装置21が昇温できていない場合は、再度ステップS3からステップS5までを行う。この触媒活性温度Tdは、後処理装置20の触媒装置21が予め定めた温度以上になったときに示す温度であり、後処理装置20の触媒装置21の種類などにより変化し、好ましくは180℃~250℃の範囲内に設定する。
 DPF22の前温度Taが触媒活性温度Td迄達すると、次に、排気バルブ6aを膨張行程の早期の後燃え期間ABで開弁するステップS7を行う。次に、インジェクタ5が、排気バルブ6aが開弁してから、閉弁するまでの間に、アフター噴射を行うステップS8を行う。そして、排気バルブ6aを下死点前で閉弁するステップS9を行う。このステップS7~S9は、前述のステップS4の間に、アフター噴射を行うステップである。これでHC成分が触媒装置21に供給され、燃焼して触媒装置21の温度がさらに上昇する。また、DPF22にHC成分が供給され、PMを燃焼する。
 次に、排気バルブ6aを排気行程で開弁して、閉弁するステップS10を行う。次に、DPF22の前温度Taが異常触媒温度Te以上か否かを判断するステップS11を行う。DPF22の前温度Taが異常触媒温度Te以上になると、触媒装置21の温度が上がり過ぎてしまい、触媒装置21が故障してしまうので、この場合に、この制御方法は完了する。この異常触媒温度Teは、予めECU12に記憶されており、好ましくは650℃~750℃に設定する。
 このステップS11では、触媒装置21の温度の異常昇温を判断することができればよく、上記の方法に限定しない。例えば、アフター噴射で噴射された燃料量から発熱量を算出し、触媒の特性と合わせて触媒温度を推定する触媒温度推定ステップを行ってもよい。
 DPF22の前温度Taが異常触媒温度Teよりも低い場合は、次に、DPF22の前後の圧力差ΔPが判定圧力値Pcよりも小さいか否かを判断するステップS11を行う。圧力差ΔPが判定圧力値Pcよりも小さい場合は、DPF22のPMを再生できたことになり、この制御方法は完了する。
 圧力差ΔPが判定圧力値Pc以上の場合は、次に、DPF22の後温度Tbが異常DPF温度Tf以上か否かを判断するステップS12を行う。DPF22の後温度Tbが異常DPF温度Tf以上でなると、DPF22の温度が上がり過ぎてしまい、DPF22が故障してしまうので、この場合に、この制御方法は完了する。この異常DPF温度Tfは、予めECU12に記憶されており、好ましくは650℃~750℃に設定する。
 以上のエンジン10の制御方法によれば、排気バルブ6aの開閉タイミングとインジェクタ5の噴射タイミングを変更するだけで、別途新たな装置を追加することなく、上記のエンジン10の動作で述べた作用効果を得ることができる。加えて、触媒装置21の温度、及びDPF22の温度をモニタリングし、各装置の異常昇温を防止することができる。上記の方法以外にも、各装置の異常昇温を検知したときに、膨張行程初期のアフター噴射で噴射される燃料量を調節する方法や排気バルブ6aの開弁開始時期を遅角させる方法を用いて、各装置の温度を調整してもよい。
 次に、本発明に係る第2の実施の形態のエンジンについて、図6を参照しながら説明する。このエンジン30は、第1の実施の形態のエンジンの構成に加えて、排気ポート8aにHC添加ノズル(添加弁)31を備える構成である。この実施の形態のように、HC添加ノズル31を設ける場合は、インジェクタ5がユニットインジェクタなどで、多段噴射に対応していない場合、また、多段噴射に対応していてもアフター噴射量が増えるとオイル希釈の問題が発生する場合、さらに、アフター噴射量が増えると筒内の燃焼に影響を与える場合などに適用するとよい。
 このHC添加ノズル31は、出来るだけ排ガスGaが高温を保っている状態で噴射し、ガス化を促進することができるように、燃焼室4の近傍の排気ポート8aに備えることが好ましい。また、HC添加ノズル31の配置数は、エンジン30のように多気筒エンジンであれば、いずれか一つのシリンダ1の排気ポート8aに備えると、HC成分のガス化に好適である。加えて、その配置位置は、仮に排気ポート8aへの取り付けが難しい場合は、ターボチャージャ14直下の排気マニホールド8b内がよい。
 このエンジン30の動作は、第1の実施の形態で説明したアフター噴射に加えて、又は、アフター噴射を行わずに、HC添加ノズル31からHCを排ガスGaに添加する、この時のHC添加ノズル31の噴射タイミングは前述の追加噴射で説明した範囲内のタイミングとする。
 この構成によれば、アフター噴射の代わりにHC添加ノズル31を用いても、前述と同様の作用効果を得ることができるので、アフター噴射を行うことができないエンジンにも適用することが可能となる。
 次に、本発明に係る第3の実施の形態のエンジンについて、図7を参照しながら説明する。このエンジン40は、第1の実施の形態のエンジンの後処理装置の触媒装置のdeNOx触媒に変えて、尿素SCR装置(尿素選択的還元触媒)41aを備えると共に、排気ポート8aに尿素添加ノズル42を備える。この尿素添加ノズル42は、排気ポート8a若しくは排気ポート8aの近傍に設けられ、膨張行程の早期の排気バルブ6aからの高温の排ガスGaの排出時に尿素水を噴射する噴射弁である。その噴射のタイミングは、前述のHC添加ノズルと同様のタイミングとする。
 この構成によれば、高温、且つ高圧下で尿素の分解が促進され、尿素が早期に蒸発し、アンモニアガス化を促進することができ、エンジン40の始動直後からdeNOx効果を発揮することができる。また、尿素水が特定の温度下で固形物質として析出することを防ぐことができるので、排気管を閉塞することがなくなる。
 次に、本発明にかかる第4の実施の形態のエンジンについて、図8を参照しながら説明する。このエンジン50は、第1の実施の形態のエンジンの構成に加えて、各排気ポート8aにポート内酸化触媒51を備える。この構成によれば、ポート内酸化触媒51に供給されたHC成分が高温排ガス下で容易に燃焼させることができ、熱容量も小さくすることができるので、特に、始動直後の触媒を急速に昇温することができる。
 上記の第1~第4の実施の形態を車両に搭載するときには、それぞれ組み合わせてもよい。
 本発明の内燃機関は、新たに装置を追加せず、又は少しの構成を追加するだけで、排ガスを処理する後処理装置の早期の昇温を促進し、且つ、未燃燃料成分を多く含んだ排ガスを後処理装置に供給することができるので、特にディーゼルエンジンを搭載した車両に利用することができる。
1 シリンダ(気筒)
2 シリンダライナ
3 ピストン
4 燃焼室
5 インジェクタ
6 排気弁装置
7 吸気弁装置
8 排気路
9 吸気路
10、30、40、50 エンジン(内燃機関)
11 可変バルブタイミング機構
12 ECU(制御装置)
13 エンジン本体
14 ターボチャージャ
15 EGRシステム
20 後処理装置
21 触媒装置
21a deNOx触媒(酸化窒素化合物還元触媒)
21b DOC(ディーゼル用酸化触媒)
22 DPF(ディーゼル微粒子捕集フィルタ)
31 HC添加ノズル(添加弁)
41a 尿素SCR装置(尿素選択的還元触媒)
42 尿素添加ノズル(尿素添加弁)
51 ポート内酸化触媒

Claims (7)

  1.  排ガスの後処理装置と、排気弁の開弁時期を自在に変化できる可変弁機構を備える内燃機関において、
     前記後処理装置で排ガスの処理を行うときに、又は前記後処理装置を再生するときに、前記可変弁機構が、通常燃焼時には排気行程で開弁する前記排気弁を、後燃え期間の範囲内で開弁し、気筒内へ噴射された燃料の燃焼により、高温、且つ高圧になった排ガスを前記後処理装置へと供給することにより、前記後処理装置の一部又は全部を予め設定した温度以上に昇温する手段を備えると共に、
     前記後処理装置の一部又は全部を予め設定した温度以上に昇温した後に、前記昇温する手段での前記排気弁の開弁時期に合せて、気筒内の燃料噴射弁の追加噴射、又は、排気路に設けた添加弁の噴射の少なくともどちらか一方により排ガスに未燃燃料成分を添加する手段を備えることを特徴とする内燃機関。
  2.  前記排気弁の開弁のタイミングを膨張行程の早期で、且つ後燃え期間の範囲内である20°ATDC~50°ATDCに設定し、前記排気弁の閉弁のタイミングを下死点より前の50°ATDC~90°ATDCに設定することを特徴とする請求項1に記載の内燃機関。
  3.  前記昇温する手段での前記排気弁の開弁のタイミングから閉弁のタイミングまでの間の範囲内に、前記燃料噴射弁の追加噴射を開始するタイミングと終了するタイミング、又は前記添加弁の噴射を開始するタイミングと終了するタイミングを設定することを特徴とする請求項1又は2に記載の内燃機関。
  4.  多気筒内燃機関の何れか1つの気筒の排気ポートに前記添加弁を備えることを特徴とする請求項1~3のいずれか1項に記載の内燃機関。
  5.  前記後処理装置に尿素SCR触媒を含むと共に、前記昇温する手段での前記排気弁の開弁のタイミングから閉弁のタイミングまでの間の範囲内に尿素水を噴射する尿素添加弁を排気ポートに備えることを特徴とする請求項1~4のいずれか1項に記載の内燃機関。
  6.  前記昇温する手段を行うときに、前記排気弁を一旦開弁することで低下するトルクを補うように、前記燃料噴射弁の主噴射量を増加させる手段を備えることを特徴とする請求項1~5のいずれか1項に記載の内燃機関。
  7.  排ガスの後処理装置を備える内燃機関の制御方法において、
     前記後処理装置で排ガスの処理を行うときに、又は前記後処理装置を再生するときに、通常燃焼時には排気行程で開弁する排気弁を、後燃え期間の範囲内で開弁し、気筒内へ噴射された燃料の燃焼により、高温、且つ高圧になった排ガスを前記後処理装置へと供給し、
     前記後処理装置の一部又は全部を予め定めた温度以上に昇温した後に、前記排気弁の開弁のタイミングに合せて、気筒内の燃料噴射弁の追加噴射により、又は排気路に設けた添加弁により、排ガスに未燃燃料成分を添加することを特徴とする内燃機関の制御方法。
PCT/JP2012/080068 2011-12-12 2012-11-20 内燃機関とその制御方法 WO2013088922A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12857737.6A EP2792862B1 (en) 2011-12-12 2012-11-20 Internal combustion engine and control method for same
US14/364,548 US9422848B2 (en) 2011-12-12 2012-11-20 Internal combustion engine and control method for same
CN201280061021.3A CN103987931B (zh) 2011-12-12 2012-11-20 内燃机及其控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011271257A JP5961995B2 (ja) 2011-12-12 2011-12-12 内燃機関とその制御方法
JP2011-271257 2011-12-12

Publications (1)

Publication Number Publication Date
WO2013088922A1 true WO2013088922A1 (ja) 2013-06-20

Family

ID=48612377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080068 WO2013088922A1 (ja) 2011-12-12 2012-11-20 内燃機関とその制御方法

Country Status (5)

Country Link
US (1) US9422848B2 (ja)
EP (1) EP2792862B1 (ja)
JP (1) JP5961995B2 (ja)
CN (1) CN103987931B (ja)
WO (1) WO2013088922A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092932A1 (ja) * 2013-12-20 2015-06-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
US11905877B2 (en) * 2014-02-26 2024-02-20 Transportation Ip Holdings, Llc Methods and systems for multi-fuel engine
US11668218B2 (en) * 2021-09-30 2023-06-06 Transportation Ip Holdings, Llc Methods and systems for multi-fuel engine
GB2545876A (en) * 2015-08-13 2017-07-05 Gm Global Tech Operations Llc A method of operating an internal combustion engine
DK179038B1 (en) * 2015-11-02 2017-09-11 Man Diesel & Turbo Filial Af Man Diesel & Turbo Se Tyskland A two-stroke internal combustion engine with a SCR reactor located downstream of the exhaust gas receiver
JP6447586B2 (ja) * 2016-07-05 2019-01-09 トヨタ自動車株式会社 内燃機関の制御装置
JP2019019741A (ja) * 2017-07-14 2019-02-07 いすゞ自動車株式会社 後処理装置
JP7006138B2 (ja) * 2017-11-01 2022-01-24 いすゞ自動車株式会社 後処理装置
CN111836956B (zh) 2018-03-12 2022-11-22 沃尔沃卡车集团 用于控制内燃发动机装置的方法
IT201800003689A1 (it) * 2018-03-16 2019-09-16 Lombardini Srl Metodo per controllare un apparato di iniezione di un motore a combustione interna
JP7091922B2 (ja) * 2018-08-07 2022-06-28 トヨタ自動車株式会社 内燃機関の制御装置
SE542977C2 (en) * 2019-02-20 2020-09-22 Scania Cv Ab Four-Stroke Internal Combustion Engine and Method of Operating Four-Stroke Internal Combustion Engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170556A (ja) * 1998-12-08 2000-06-20 Mitsubishi Motors Corp 内燃機関の排気弁作動制御装置
JP2003003831A (ja) 2001-06-26 2003-01-08 Toyota Motor Corp 排気ガス浄化装置、および排気ガスの浄化方法
JP2005083351A (ja) 2003-09-11 2005-03-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010121505A (ja) * 2008-11-19 2010-06-03 Nissan Motor Co Ltd 内燃機関の燃料噴射制御装置
JP2010196569A (ja) * 2009-02-25 2010-09-09 Isuzu Motors Ltd 排気ガス浄化システム及び排気ガス浄化方法
JP2011127471A (ja) 2009-12-16 2011-06-30 Mitsubishi Heavy Ind Ltd 往復動内燃機関の排ガス浄化方法及び排ガス浄化システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2267310B (en) 1992-05-27 1996-04-24 Fuji Heavy Ind Ltd System for controlling a valve mechanism for an internal combustion engine
IT1266889B1 (it) * 1994-07-22 1997-01-21 Fiat Ricerche Metodo di autoinnesco della rigenerazione in un filtro particolato per un motore diesel con sistema d'iniezione a collettore comune.
JP2004293340A (ja) * 2003-03-25 2004-10-21 Mitsubishi Fuso Truck & Bus Corp 排ガス浄化装置
JP2007187149A (ja) * 2005-12-13 2007-07-26 Nissan Motor Co Ltd エンジンの燃料噴射制御方法及び燃料噴射制御装置
JP2007162585A (ja) * 2005-12-14 2007-06-28 Nissan Motor Co Ltd エンジンの燃料噴射制御装置及び燃料噴射制御方法
JP2008025382A (ja) * 2006-07-18 2008-02-07 Toyota Motor Corp 内燃機関の排気浄化装置
JP4591423B2 (ja) * 2006-08-09 2010-12-01 株式会社デンソー エンジンの燃料未燃分推定装置、排気浄化装置の温度推定装置
JP4497167B2 (ja) * 2007-03-01 2010-07-07 トヨタ自動車株式会社 燃料噴射装置
US8783014B2 (en) * 2009-09-10 2014-07-22 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine
CN102859137A (zh) * 2010-04-26 2013-01-02 丰田自动车株式会社 内燃机
JP5862292B2 (ja) * 2011-12-28 2016-02-16 マツダ株式会社 ディーゼルエンジンの制御装置
JP5867443B2 (ja) * 2013-04-12 2016-02-24 トヨタ自動車株式会社 内燃機関

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000170556A (ja) * 1998-12-08 2000-06-20 Mitsubishi Motors Corp 内燃機関の排気弁作動制御装置
JP2003003831A (ja) 2001-06-26 2003-01-08 Toyota Motor Corp 排気ガス浄化装置、および排気ガスの浄化方法
JP2005083351A (ja) 2003-09-11 2005-03-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2010121505A (ja) * 2008-11-19 2010-06-03 Nissan Motor Co Ltd 内燃機関の燃料噴射制御装置
JP2010196569A (ja) * 2009-02-25 2010-09-09 Isuzu Motors Ltd 排気ガス浄化システム及び排気ガス浄化方法
JP2011127471A (ja) 2009-12-16 2011-06-30 Mitsubishi Heavy Ind Ltd 往復動内燃機関の排ガス浄化方法及び排ガス浄化システム

Also Published As

Publication number Publication date
EP2792862A1 (en) 2014-10-22
JP5961995B2 (ja) 2016-08-03
CN103987931B (zh) 2016-09-07
US9422848B2 (en) 2016-08-23
US20140325963A1 (en) 2014-11-06
CN103987931A (zh) 2014-08-13
EP2792862A4 (en) 2015-10-07
EP2792862B1 (en) 2020-07-29
JP2013122206A (ja) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5961995B2 (ja) 内燃機関とその制御方法
US11333053B2 (en) Lean burn internal combustion engine exhaust gas temperature control
EP2181260A2 (en) Control apparatus and control method for internal combustion engine
CN103835822A (zh) 用于控制内燃发动机中的排气气体再循环系统的方法
JP2009191659A (ja) 内燃機関の制御装置
JP2004232544A (ja) エンジンの燃料噴射制御装置
WO2009090941A1 (ja) 内燃機関の燃料噴射制御装置
WO2012121299A1 (ja) 燃焼制御装置
JP4715644B2 (ja) 内燃機関の制御装置
JP4591403B2 (ja) 内燃機関の制御装置
JP4502129B2 (ja) 内燃機関の燃料噴射制御装置
JP5287797B2 (ja) エンジンの制御方法及び制御装置
JP2011220260A (ja) エンジン制御装置
JP2012167562A (ja) ディーゼルエンジン
JP2006266220A (ja) 後処理装置の昇温制御装置
EP1582719A1 (en) Diesel engine control system
WO2010035340A1 (ja) 内燃機関の燃料噴射制御装置
JP2006274911A (ja) 後処理装置の昇温制御装置
JP4720798B2 (ja) 内燃機関の排気浄化システム
JP7505375B2 (ja) 車両の制御システム及びプログラム
JP5811319B2 (ja) エンジンの排気浄化装置
JP2007255210A (ja) 内燃機関の制御装置
JP6300190B2 (ja) エンジンの排気浄化装置
JP6459004B2 (ja) エンジンの排気浄化装置
JP5464059B2 (ja) エンジンの制御方法及び制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12857737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14364548

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012857737

Country of ref document: EP