WO2013085051A1 - 布ヒータ - Google Patents

布ヒータ Download PDF

Info

Publication number
WO2013085051A1
WO2013085051A1 PCT/JP2012/081854 JP2012081854W WO2013085051A1 WO 2013085051 A1 WO2013085051 A1 WO 2013085051A1 JP 2012081854 W JP2012081854 W JP 2012081854W WO 2013085051 A1 WO2013085051 A1 WO 2013085051A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
fabric
conductive
yarn
heater
Prior art date
Application number
PCT/JP2012/081854
Other languages
English (en)
French (fr)
Inventor
正秀 松本
Original Assignee
株式会社三機コンシス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三機コンシス filed Critical 株式会社三機コンシス
Priority to US14/363,010 priority Critical patent/US9955532B2/en
Priority to CN201280060711.7A priority patent/CN103988574B/zh
Priority to KR1020147015295A priority patent/KR101681819B1/ko
Priority to JP2013540133A priority patent/JP5543034B2/ja
Priority to EP12855511.7A priority patent/EP2790464B1/en
Publication of WO2013085051A1 publication Critical patent/WO2013085051A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • H05B3/342Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
    • H05B3/345Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles knitted fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/54Heating elements having the shape of rods or tubes flexible
    • H05B3/56Heating cables
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/011Heaters using laterally extending conductive material as connecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/014Heaters using resistive wires or cables not provided for in H05B3/54
    • H05B2203/015Heater wherein the heating element is interwoven with the textile
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/036Heaters specially adapted for garment heating

Definitions

  • the present invention relates to a fabric heater, and more particularly to a fabric heater in which an electrode portion is provided on a fabric that is a knitted fabric.
  • the cloth heater is a planar heater in which electrodes are provided on a cloth. Many techniques related to such cloth heaters have been proposed so far.
  • the heat generating sheet described in Patent Document 1 uses a thread-like insulating wire spirally wound with a metal wire or a strip-like foil as a heating wire, and uses natural fiber or synthetic fiber as an insulating wire. .
  • This heat generating sheet is constructed by weaving such heat generating wires and insulating wires and providing an electrode wire to form an electric circuit.
  • the heating element described in Patent Document 2 is a woven fabric formed by weaving warp and weft.
  • a conductive yarn is used as the warp yarn
  • a non-conductive yarn is used as the weft yarn, and generates heat when electric power is applied.
  • the reticulated heater described in Patent Document 3 is formed by trickling that a plurality of heater wires are formed by continuously looping a loop in a plane and continuously.
  • the wire for the heater has a wire diameter of 0.02 mm to 0.12 mm, and the outer periphery is coated with enamel paint. Further, the pitch of the stitches of the tricko knitting is 0.5 mm to 5 mm.
  • the mesh heater having such a configuration has an effect that it can be brought into close contact with a curved surface having a complicated shape.
  • the planar heater described in Patent Document 4 is a technique invented by the present applicant.
  • the planar heater described in Patent Document 4 includes a first cloth portion and a second cloth portion.
  • the first cloth portion includes two first electrode yarns.
  • One electrode thread is connected to the positive electrode of the battery, and the other first electrode thread is connected to the negative electrode of the battery.
  • One first electrode yarn and the other first electrode yarn are knitted by reversible knitting so as not to cross.
  • the second fabric portion is formed by circular knitting of a second electrode yarn that is a conductor and a heating yarn that generates heat when energized.
  • the current flowing out of the battery causes one of the first electrode yarn, the second electrode yarn, the heating yarn, the other second electrode yarn, and the other first electrode yarn in this order.
  • the heating yarn is configured to flow and generate heat.
  • JP-A-7-161456 JP 2004-33730 A Japanese Patent Laid-Open No. 2001-110555 Utility Model Registration No. 3171497
  • the heat generating sheet described in Patent Document 1 is configured such that one of a heat generating wire and an insulating wire extending in a straight line is oriented in the vertical direction, and the other is oriented in the horizontal direction, and both are woven.
  • the heating element described in Patent Document 2 is a woven fabric in which a conductive thread is used as a warp, a non-conductive thread is used as a weft, and the warp and weft are woven together. Such fabrics are not stretchable.
  • the reticulated heater described in Patent Document 3 is formed by trickling the heater wires, so that the reticulated heater can be extended by applying tension to the reticulated heater.
  • the element wire for the heater is made of metal, even if the tension is removed, the stretched mesh heater is maintained in the stretched state, and the mesh heater cannot be contracted to the original state. That is, the mesh heater described in Patent Document 3 is not configured to be extendable.
  • the planar heater described in Patent Document 4 can be freely expanded and contracted because the fabric is a knitted fabric.
  • the fabric heater having such elasticity There are many demands from the market for using a fabric heater having such elasticity. Therefore, the present applicant has continued research on a fabric heater that has a higher stretchability than before and that rapidly raises the temperature.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a cloth heater that expands and contracts in all directions and quickly increases its temperature.
  • a fabric heater according to the present invention for solving the above-mentioned problems is composed of a fabric formed by knitting by forming a plurality of loops with conductive yarns and tangling the loops together, and an electrode yarn.
  • An electrode portion provided on the fabric with a space therebetween, and the conductive yarn is composed of a core wire made of fiber and a conductive layer or a conductive foil covering the surface of the core wire. It is characterized by that.
  • the conductive yarn is composed of the core wire made of fiber and the conductive layer or conductive foil covering the surface of the core wire, the conductive yarn can be made flexible and the cloth heater Can be quickly raised to a predetermined temperature. Also, since the fabric is formed by knitting by forming a plurality of loops with flexible conductive yarns and entwining the loops with each other, the fabric can be made elastic and the fabric can be omnidirectional Can be freely expanded and contracted.
  • a fabric heater according to the present invention for solving the above-mentioned problems is composed of a fabric knitted by forming a plurality of loops with conductive yarns and entwining the loops with each other, and an electrode yarn, and is spaced from the fabric.
  • the conductive yarn is formed of an assembly line having at least one or a plurality of conductive strands.
  • the conductive yarn is composed of the assembly wire having at least one or a plurality of conductive strands
  • the conductive yarn can be made flexible, and the cloth heater can be quickly moved to a predetermined temperature. Can be raised.
  • the fabric is formed by knitting by forming a plurality of loops with flexible conductive yarns and entwining the loops with each other, the fabric can be made elastic and the fabric can be omnidirectional Can be freely expanded and contracted.
  • the fabric is formed as a single piece by reversible knitting in which the conductive yarn is knitted on one side and the yarn formed of fibers appears only on the other side. It is characterized by.
  • the conductive yarn is knitted on one surface side
  • the one surface side can function as a conductive surface.
  • the yarn formed of fibers is knitted by reversible knitting that appears only on the other side, the other side can function as an insulating surface.
  • the cloth heater according to the present invention is characterized in that the electrode part is configured by sewing with the electrode thread.
  • the electrode part is configured by sewing the electrode thread, the electrode part can be made flexible. Therefore, the electrode portion can be deformed with the deformation of the fabric.
  • the cloth heater according to the present invention is characterized in that the electrode yarn constituting the electrode portion is formed by twisting a copper wire on an outer periphery of a core wire made of a fiber.
  • the electrode yarn can be formed flexibly. Therefore, an electrode thread that can be easily sewn into the fabric can be obtained.
  • the electrode section includes a first electrode yarn formed by twisting a relatively thin copper wire on the outer periphery of the core wire, and a relatively thick copper wire twisted on the outer periphery of the core wire.
  • the second electrode thread is sewn from one side of the fabric, and the second electrode thread is sewn from the other side of the fabric. It is characterized by.
  • the first electrode yarn formed by twisting relatively thin copper wires on the outer periphery of the core wire is sewn on the other side of the fabric, the first electrode yarn and the fabric It is possible to improve the electrical adhesion between the electrodes and soften the electrode part.
  • the second electrode yarn formed by twisting a relatively thick copper wire on the outer periphery of the core wire is sewn into the fabric on one side of the fabric, the current supplied by the thick copper wire to the fabric is ensured. Thus, the occurrence of a voltage drop can be prevented.
  • the electrode thread for sewing into the cloth from the one side and the electrode thread for sewing into the cloth from the other side are continuously sewn to the electrode part,
  • the stitched electrode thread is used as a lead wire extending outward from the edge of the fabric.
  • the lead wire connected to the electrode portion is continuously connected to the electrode portion only by the electrode yarn for sewing into the fabric from one side and the electrode yarn for sewing into the fabric from the other side. Since the electrode thread thus stitched extends outward from the edge of the fabric, the lead wire can be stretched. Therefore, even when the positional relationship between the power source and the fabric heater changes, the fabric heater can be used without applying a load to the fabric heater, the lead wire, and the portion where the lead wire and the fabric heater are connected.
  • the cloth heater can be formed to be extendable in all directions, and the temperature can be raised quickly.
  • FIG.7 and FIG.8 It is a perspective view which shows the state of the electrode thread
  • the fabric heater 1 includes a fabric 2 knitted by forming a plurality of loops 5 with conductive yarns 4 and entwining the loops 5 with each other, and electrode yarns. And an electrode portion 30 provided on the fabric 2 with a space therebetween.
  • the conductive yarn 4 can include two types. As shown in FIG. 5, the first conductive yarn 4 is composed of a core wire 10 made of fibers, and a conductive layer 11 covering the surface of the core wire 10 or a conductive foil 12. As shown in FIG. 6, the second conductive yarn 4 is composed of an assembly line 7 having at least one or a plurality of conductive strands 6 a.
  • the cloth heater 1 according to the present invention can be formed so as to be expandable and contractible in all directions, and has a specific effect that the temperature can be raised quickly.
  • a fabric is formed by connecting a plurality of loops with yarns, and these loops are regularly entangled with each other.
  • the yarns extending linearly in the vertical direction and the yarns extending linearly in the horizontal direction are orthogonal to each other. Weaving and weaving, and others.
  • the fabric 2 used in the fabric heater according to the present invention is a knitted fabric.
  • the fabric 2 As the form of the fabric 2, one formed by knitting only the conductive yarn 4 and the yarn 20 formed of fibers while the conductive yarn 4 is knitted on the one surface side 3 (hereinafter referred to as “fiber yarn 20”). It can be mentioned that it is knitted by reversible knitting that appears only on the other side and formed into one sheet.
  • the fabric 2 in which the conductive yarn 4 is knitted on one side 3 and the fiber yarn 20 is knitted by reversible knitting that appears only on the other side will be described as an example.
  • a plurality of conductive yarns 4 are arranged on the one surface side 3 of the fabric 2 at regular intervals, and each conductive yarn 4 is arranged at the upper side of FIG.
  • a loop 5 is formed toward the conductive yarn 4 located at the position.
  • Each conductive yarn 4 is knitted with the loops 5 intertwined with each other.
  • the method of knitting the conductive yarn 4 is not particularly limited, and the conductive yarn 4 may be knitted by weft knitting, or the conductive yarn 4 may be knitted by vertical knitting.
  • the weft knitting include tenshi knitting, rib knitting (also referred to as milling knitting or rubber knitting) and pearl knitting (also referred to as linking knitting or garter knitting).
  • Examples of warp knitting include tricot knitting and atlas knitting.
  • the method of knitting the conductive yarn 4 may be appropriately selected according to the use of the fabric heater 1 or the like.
  • the fiber yarn 20 is knitted on the other side 13 as shown in FIG.
  • the fiber yarn 20 is reversibly knitted so as to appear only on the other side 13.
  • the fiber yarn 20 includes a plurality of loops 21 at regular intervals in a direction orthogonal to the direction in which the plurality of conductive yarns 4 are knitted. These loops 21 are knitted to be integral with the conductive yarn 4 by being entangled with the loop 5 formed in the conductive yarn 4.
  • “reversible knitting” refers to a method of knitting so that the yarn appearing on one side is different from the yarn appearing on the other side.
  • the loop 21 of the fiber yarn 20 is knitted with the knitting needle. And then moved upward from the conductive yarn 4 and then lowered again below the conductive yarn 4 with a knitting needle. At this time, the loop 21 of the fiber yarn 20 is entangled with the loop 5 of the conductive yarn 4. By repeating this process, the loop 21 is sequentially connected to the conductive yarn 4, and the surface of the fiber yarn 20 is formed on the other surface side 13.
  • the conductive yarn 4 according to the first embodiment includes a core wire 10 made of fiber and a conductive layer 11 covering the surface of the core wire 10 or a conductive foil 12.
  • the conductive yarn 4 according to the second embodiment is composed of an assembly line 7 having at least one or a plurality of conductive strands 6a. These two types will be described in detail with reference to FIGS.
  • the electroconductive thread 4 is what gave the anti-corrosion process, for example, anti-corrosion plating, corrosion-resistant enamel coating, etc. to the thread
  • the material is not specifically limited.
  • the core wire 10 is formed of a fiber, and the conductive layer 11 is formed on the surface of the core wire 10, and FIG. As shown in B), the core wire 10 is formed of fibers, and a conductive foil 12 is wound around the surface of the core wire 10.
  • the fibers constituting the core wire 10 include synthetic fibers, natural fibers, and mixed fibers of synthetic fibers and natural fibers.
  • the core wire 10 can be formed of polyamide or polyester.
  • the polyamide include nylon, Kepler (Kepler is a registered trademark), and Techneil (Technyl is a registered trademark).
  • the polyester include tetron (Tetron is a registered trademark).
  • the conductive layer 11 is formed on the surface of the core wire by plating (electroless or electrolytic).
  • the conductive layer 11 is preferably one having high conductivity such as copper, copper alloy, silver and silver alloy.
  • the foil 12 is a band-like member, and is wound around the surface of the core wire 10 so as to extend spirally in the length direction of the core wire 10. The entire surface of the core wire 10 is covered with the foil 12.
  • the foil 12 made of a copper alloy containing 0.3% by mass of tin is used.
  • Such a foil 12 having a thickness and a width suitable for the type of the core wire 10 to be used is used.
  • the foil 12 having a thickness of 12 ⁇ m and a width of 170 ⁇ m is used.
  • the foil 12 having a thickness of 27 ⁇ m and a width of 320 ⁇ m is used.
  • the conductive yarn 4 may be formed as a collective line obtained by combining a plurality of wires composed of a core wire 10 made of fibers and a conductive layer 11 covering the surface of the core wire 10 or a conductive foil 12.
  • the conductive yarn 4 according to the second embodiment is composed of an assembly line 7 having at least one or more conductive strands 6a.
  • the assembly line 7 include those composed of conductive strands 6a and non-conductive strands 6b and those composed entirely of conductive strands 6a. As long as the assembly line 7 has at least one conductive strand 6a, the total number of the conductive strand 6a and the non-conductive strand 6b is not limited.
  • the assembly line 7 shown in FIG. 6 (A) is configured such that one conductive element wire 6a is provided at the center and six non-conductive element wires 6b are arranged around it.
  • the six non-conductive strands 6b are arranged around the conductive strand 6a in parallel with each other without being further combined.
  • the assembly line 7 may be formed by disposing the conductive strand 6a and the non-conductive strand 6b around the conductive strand 6a.
  • the assembly line 7 may be formed by providing the non-conductive strand 6b at the center and the conductive strand 6a around the periphery. When the nonconductive strand 6b is provided at the center, the assembly line 7 may be formed by disposing the conductive strand 6a and the nonconductive strand 6b around the nonconductive strand 6b. .
  • the assembly line 7 shown in FIG. 6 (B) is formed by combining only a plurality of conductive strands 6a.
  • the assembly line 7 is not limited to the one formed by combining only the conductive yarns 6a, and may be formed by combining the conductive strands 6a and the non-conductive strands 6b.
  • the conductive yarn 4 shown in FIG. 6 (C) is configured such that one conductive strand 6a is provided at the center and six non-conductive strands 6b are arranged around the conductive strand 4a.
  • the six non-conductive strands 6b are twisted together and extend spirally around the conductive strand 6a.
  • the assembly line 7 may be formed by disposing the conductive strand 6a and the non-conductive strand 6b around the conductive strand 6a.
  • the assembly line 7 may be formed by providing the non-conductive strand 6b at the center and the conductive strand 6a around the periphery.
  • the assembly line 7 may be formed by disposing the conductive strand 6a and the nonconductive strand 6b around the nonconductive strand 6b. Moreover, you may comprise all the electrically conductive thread
  • the assembly line 7 may be formed by further combining a plurality of lines having the structure shown in FIG. Further, the assembly line 7 may be formed by weaving the conductive strand 6a and the non-conductive strand 6b.
  • the conductive wire 6a for example, a copper alloy containing tin is used.
  • the cloth heater 1 suitable for the case of forming with 0.3 mass% tin-containing copper alloy can be formed.
  • the conductive wire 6a is not limited to a tin-containing copper alloy as long as it has conductivity, and can be formed of various members.
  • the conductive wire 6a can be selected and used with a wire diameter corresponding to the application, but the cloth heater 1 of the present embodiment has a conductive wire formed with a wire diameter of 25 ⁇ m. 6a is selected and used.
  • a plating film (electroless or electrolytic) may be provided as necessary.
  • the plating film preferably has corrosion resistance.
  • the plating film is a material having corrosion resistance such as silver, tin, nickel, or an alloy thereof.
  • the outer diameter of the conductive yarn 4 according to the second embodiment is, for example, about 75 ⁇ m when silver plating is formed on the surface of the core wire 7 in which the strands 6 of 25 ⁇ m are combined.
  • the fiber yarn 20 can be any of synthetic fiber, natural fiber, and mixed fiber of synthetic fiber and natural fiber.
  • the fiber yarn 20 can be formed of polyamide or polyester.
  • the polyamide include nylon, Kepler (Kepler is a registered trademark), and Techneil (Technyl is a registered trademark).
  • the polyester include tetron (Tetron is a registered trademark).
  • a yarn having a thickness of 30 denier is used as the fiber yarn 20, and a yarn having a suitable thickness is selected according to the application.
  • the electrode part 30 is provided in two places of the fabric 2.
  • the electrode portions 30 provided in two places are provided with a predetermined interval.
  • the electrode part 30 can also be provided in two or more places, if the function of the cloth heater 1 is not inhibited.
  • Such an electrode part 30 is formed by stitching electrode threads into the cloth 2, the electrode part 30 formed in advance in a predetermined shape is attached to the cloth 2 with an adhesive, or joined with a joining member such as a staple. It is possible to select from the form to be performed and the form in which the electrode yarn is partially knitted into the fabric 2 in the process of knitting the fabric 2 as necessary.
  • the electrode part 30 will be described by taking as an example a form in which electrode threads are sewn into the fabric 2.
  • the electrode part 30 When the electrode part 30 is formed by sewing the electrode thread into the cloth 2, the electrode part 30 follows the form in which the electrode thread is sewn into the cloth 2 so as not to deform in accordance with the expansion and contraction of the cloth 2, and the expansion and contraction of the cloth 2. Then, there are two types of forms, such as a form in which the electrode thread is sewn into the fabric 2 so as to be freely deformed.
  • the electrode portion 30 is constituted by a stitching method of decorative stitching in which the seam is deformed according to the deformation of the fabric 2. Good.
  • the form of the decorative sewing uses both the form of decorative sewing in which the decorative part appears on both sides of the cloth 2 and the form of decorative sewing in which the decorative part appears only on one side. be able to.
  • the electrode portion 30 is formed of the conductive yarn. It is good to form by the single-sided decoration by which a decoration part is formed in the one surface side 3 where 4 has appeared.
  • a plurality of needles for example, 2 to 4 needles are used.
  • a first electrode thread 31 (hereinafter simply referred to as electrode thread 31) used for the upper thread and a second electrode thread 35 (hereinafter simply referred to as electrode thread 35) used for the lower thread are core wires ( It is formed by twisting a copper wire (not shown) on the outer periphery of the not shown.
  • the electrode yarn 31 is formed by twisting a copper wire having a relatively small wire diameter around the outer periphery of the core wire
  • the electrode yarn 35 is formed by twisting a copper wire having a relatively large wire diameter around the outer periphery of the core wire.
  • the electrode yarn 31 is formed by twisting a copper wire having an outer diameter of 0.05 mm or less around the outer periphery of the core wire, and the electrode yarn 35 is made of a copper wire having an outer diameter of 0.08 mm or more on the outer periphery of the core wire. It is formed by twisting yarn.
  • the electrode yarn 31 improves the electrical adhesion between the fabric 2 and softens the electrode portion 30.
  • the electrode yarn 35 prevents a voltage drop by securing a current supplied to the fabric 2.
  • the core wire constituting the electrode yarn 31 and the electrode yarn 35 any of synthetic fibers, natural fibers, and mixed fibers of synthetic fibers and natural fibers can be used.
  • the core wire can be formed of polyamide or polyester.
  • the polyamide include nylon, Kepler (Kepler is a registered trademark), and Techneil (Technyl is a registered trademark).
  • the polyester include tetron (Tetron is a registered trademark).
  • the electrode yarns 31 and 35 are not only those in which a conductive wire is twisted on a core wire made of fibers, but also those having a corrosion-resistant plating film formed on the surface of a conductive wire such as a copper wire and a copper alloy wire. You can also.
  • the material for forming the corrosion-resistant plating film is a material having corrosion resistance such as silver, tin, nickel, or an alloy thereof. In addition, you may comprise only a copper wire or a copper alloy wire, without giving a corrosion-resistant plating film according to a use.
  • the electrode unit 30 formed using two needles will be described.
  • the electrode yarn 31 is used as an upper yarn
  • the electrode yarn 35 is used as a lower yarn.
  • the electrode thread 31 that is the upper thread is sewn into the fabric 2 so that the letter “Z” of the alphabet continues on the one side 3 on which the conductive thread 4 is knitted.
  • the sewn electrode thread 31 has a portion 31 that is parallel to each other, a portion 33 that is orthogonal to the portions 32 that are parallel to both sides, and that connects the portions 32 that are parallel to both sides, and parallel to both sides.
  • a portion 34 that connects the parallel portions 32 on both sides so as to cross the forming portion 32 obliquely.
  • the sewn electrode thread 31 is fixed to the electrode thread 35, which is a lower thread, at a constant interval in the sewing direction at the parallel portion 32, so that the sewn shape is maintained.
  • Electrode yarn 35 which are lower threads are used. As shown in FIG. 8, the electrode yarn 35 is parallel to form a broken line at a position corresponding to the parallel portion 32 of the electrode yarn 31 on the other surface side 13 in which the fiber yarn 20 is knitted, and is sewn in the sewing direction. It extends to.
  • the electrode thread 31 that is the upper thread is composed of three parts 41 that are parallel to each other, a part 42 that is orthogonal to the parts 41 that are parallel to each other, and that connects the parts 41 that are parallel to each other, and a part 41 that is parallel to each other. It is sewn into the one surface side 3 so that the part 43 which connects the parts 41 which make a cross
  • the sewn electrode thread 31 is fixed by the electrode thread 35, which is a lower thread, at constant intervals in the sewing direction at the parallel portions 41, and the sewn shape is maintained.
  • the electrode yarn 35 extends in the sewing direction in parallel so as to form a broken line at a position corresponding to the parallel portion of the electrode yarn 31 on the other surface side 13 where the fiber yarn 20 is knitted.
  • the electrode part is formed by decorative stitching using four needles, there are four parallel parts. Further, four electrode threads 35 as lower threads are used, and the four electrode threads 35 are sewn so as to extend in the sewing direction so as to form a wavy line.
  • the electrode portion 30 Since the electrode portion 30 is formed by stitching the electrode threads 31 and 35 on one side, the electrode portion 30 itself expands and contracts in response to the expansion and contraction of the fabric 2.
  • the electrode portions 30 and 40 using the electrode yarn 31 and the electrode yarn 35 are knitted by reversible knitting in which the conductive yarn 4 is knitted on the one side 3 and the fiber yarn 20 appears only on the other side.
  • the present invention is not limited to the case where the present invention is applied to the fabric 2 that is formed.
  • the electrode portions 30 and 40 using the electrode yarn 31 and the electrode yarn 35 can also be applied to a fabric formed by weaving only the conductive yarn 4.
  • the electrode part may be formed using an electrode thread for the upper thread and a thread made of fiber for the lower thread.
  • the electrode part in that case should just be comprised similarly to the structure of said electrode part 30 and 40.
  • a lead wire 100 shown in FIG. 10 is a kind of such wiring. It should be noted that only the thread 3 for sewing into the fabric 2 from the one side 3 of the fabric 2 and the thread for sewing into the fabric 2 from the other side 13 of the fabric 2 are chained outside the edge of the fabric 2. Those that extend to are said to be “empty rings” in Japan.
  • the lead wire 100 has only an electrode thread 31 for sewing into the fabric 2 from the one side 3 and an electrode thread 35 for sewing into the fabric from the other side 13 continuously to the electrode portion 30. It is formed by stitching together on the outer side of the edge of the fabric 2.
  • the lead wire 100 is formed by a process of sewing the electrode threads 31 and 35 into the fabric 2 with an overlock sewing machine (not shown). In the lead wire 100, the electrode threads 31 and 35 are sewn to the edge of the cloth 2, and then the cloth 2 is moved from the position of the sewing needle so that only the electrode threads 31 and 35 are mutually connected without the cloth 2 being sandwiched therebetween. It is formed by sewing together.
  • the lead wire 100 can be obtained by connecting the fabric heater 1 and the power source with the lead wire 100. Expands and contracts as the fabric heater 1 moves.
  • the fabric 2 formed by knitting the conductive yarn 4 and the fiber yarn 20 described above has a stretchability of 20% to 200% in all directions.
  • the electrode portions 30 and 40 are provided by sewing, the electrode portions 30 and 40 are deformed following the expansion and contraction of the fabric 2.
  • the fabric heater 1 having such characteristics can be attached while maintaining a state in close contact with an object whose shape changes.
  • the cloth heater 1 can be attached to an object having a complicated shape without a gap.
  • the cloth heater 1 is connected to the electrode unit 30 by the power source 50, and the fabric 2 is heated by applying a voltage to the electrode unit 30 by the power source 50.
  • the power source 50 either a DC power source or an AC power source can be used.
  • the power supply 50 that outputs a voltage of DC 1.5 V or more and DC 25 V or less can be used.
  • examples of the power source 50 include a DC1.5V dry battery and a lithium polymer battery.
  • the power source 50 uses a constant voltage device that converts an AC power supply of AC100V or AC200V into a DC current of DC1.5V or more and DC25V or less and outputs the converted DC current by an AC / DC adapter. You can also.
  • the power source 50 can be an AC power source or a power source that outputs a pulse voltage.
  • FIG. 1 and FIG. 2 the mode of connection between the fabric heater 1 and the power source 50 and the operation of the fabric heater 1 will be described by taking a case where a DC power source is used as the power source 50 as an example.
  • the power supply 50 includes wirings 51 that extend to the electrode portions 30.
  • Each wiring 51 has a connector 52 at its tip.
  • the connector 52 is configured to be detachable from the connector 36 provided in the electrode unit 30.
  • the lead wire 100 is used as an extendable wiring.
  • the cloth heater 1 is connected to the power source 50 by connecting the lead wire 100 directly to the power source 50 or by providing the connector 36 at the tip of the lead wire 100 and connecting the connector 36 and the connector 52. Is done.
  • the fabric heater 1 functions as a heater.
  • the conductive yarns 4 knitted on one side of the fabric 2 energize the electrode parts 30.
  • the fabric 2 constituting the fabric heater 1 gives a certain resistance value between the electrode portions 30. Therefore, Joule heat corresponding to the resistance value is generated between the electrode portions 30 in the fabric 2.
  • the generated Joule heat can be expressed by the following formula (1), where P is Joule heat, I is a flowing current value, and R is a resistance value between the electrode portions 30.
  • P (Watt) I x I x R (1)
  • the temperature of the cloth heater 1 is determined by Joule heat generated from the cloth 2, the resistance value between the electrode parts 30 and the voltage applied to the electrode part 30 are determined according to the temperature to be obtained. Note that a constant voltage may be applied continuously as the voltage, or on and off may be repeated as appropriate using a controller (not shown). Moreover, since the fiber yarn 20 is knitted on the other side 13 of the fabric 20, the fiber yarn 20 functions as an insulator, and the other side 13 is electrically insulated.
  • the conductive yarn 4 constituting the fabric 2 has a structure comprising a core wire 10 made of fibers and a conductive layer 11 or a foil 12 covering the surface of the core wire 10, or FIG.
  • the structure is composed of an assembly line having one or a plurality of conductive wires 6a. Since the conductive yarn 4 has the structure shown in FIG. 5 or FIG. 6, when a voltage is applied to the electrode portion 30, the fabric heater 1 is heated to a predetermined temperature in a short time. In addition, since the fabric 2 is configured by knitting the conductive yarn 4, the region between the electrode portions 30 is heated uniformly without unevenness. Moreover, since the fiber yarn 20 is knitted, the other surface side 13 of the fabric 2 functions as an insulating surface.
  • a voltage of 18.9 V is applied to the electrode part 30 of the cloth heater 1 formed to have a length of 1300 mm and a width of 100 mm, and a current of 1.65 A is passed between the electrode parts 30, so that the cloth heaters 1 to 31.
  • a current of 1.65 A is passed between the electrode parts 30, so that the cloth heaters 1 to 31.
  • the cloth heater 1 described above has an expansion / contraction ratio of 20% to 200%, it can be used when being kept warm by being attached to a desired part of various objects such as a human body, an animal, or a structure. Moreover, the cloth heater 1 can be used for a cold protection device by using it for a glove or a muffler. When the fabric heater 1 is used for such an application, the fabric heater 1 is used by being formed into an appropriate shape according to a heat retaining object such as a belt shape.
  • the fabric 2 is wrapped around the desired portion.
  • the cloth heater 1 expands and contracts, the cloth heater 1 is deformed so as to follow the shape of the heat retaining object, and no gap is formed between the cloth heater 1 and the heat retaining object.
  • the cloth heater 1 can be stretched and deformed according to the shape of the object to be kept warm, and can be attached in close contact with the part to be kept warm.
  • the conductive yarn 4 is plated with silver or the like or coated with a copper foil or the like because the cloth heater 1 can be provided with an action of preventing the generation of static electricity and an antibacterial action.
  • the stretchability confirmation test includes a test sample 110 formed of the fabric 2 constituting the fabric heater 1 according to the present invention, a comparative test sample 120 formed of stainless mesh, and carbon fiber.
  • the test sample 130 for comparison formed in (1) was used.
  • the test sample 110 is formed by weaving a conductive yarn 4 obtained by silver plating a core wire made of nylon and a fiber yarn 20 made of nylon. Specifically, the test sample 110 is knitted by reversible knitting where the conductive yarn 4 is knitted on one side and the fiber yarn 20 appears only on the other side.
  • test sample 120 a stainless steel wire having a wire diameter of 0.18 mm was plain woven, a mesh of 0.455 mm, and an aperture ratio of 51.0% was used. .
  • test sample 130 used what was formed in the diameter of the fiber of 7.0 micrometers, and the density of 1.78 g / cm ⁇ 3 >.
  • each test sample 110, 120, 130 tension is applied to each test sample 110, 120, 130, and each test sample 110, 120, 130 is pulled in one direction to check whether it is stretched. Removed and confirmed whether to return to the original state.
  • the specific confirmation was performed by attaching two marks 140 to each test sample 110, 120, 130 with an interval of 100 mm and measuring changes in the two intervals. As shown in FIG. 11, the distance between the two marks 140 was visually measured with a measure 150 provided with a scale in the immediate vicinity of the two marks 140.
  • the fabric 2 constituting the fabric heater 1 according to the present invention expands as the tension is applied, and restores the original state as the tension is removed. That is, the fabric 2 constituting the fabric heater 1 according to the present invention freely expands and contracts.
  • the expansion / contraction rate of the fabric 2 was confirmed to be 20% or more although it depends on the tension.
  • the test sample 210 is obtained by weaving a conductive yarn 4 obtained by silver-plating a core wire made of nylon and a fiber yarn 20 made of nylon. Specifically, the test sample 110 is knitted by reversible knitting where the conductive yarn 4 is knitted on one side and the fiber yarn 20 appears only on the other side.
  • the test sample 210 has a vertical dimension of 35 mm and a horizontal dimension of 120 mm.
  • the test sample 220 is a parallel carbon fiber having 1000 filaments, a fiber diameter of 7.0 ⁇ m, a density of 1.78 g / cm 3 , and a volume resistance of 1.6 ⁇ 10 ⁇ 3 ⁇ ⁇ cm 3. 7 are woven in the vertical direction, the vertical dimension is 35 mm, and the horizontal dimension is 90 mm.
  • the heating of the test samples 210 and 220 was performed by providing each test sample 210 and 220 with two electrodes at a predetermined interval and applying a DC voltage of 3.0 V between the electrodes.
  • the temperature was measured by a far-infrared imaging method using the principle of an infrared radiation thermometer that measures the amount of far-infrared radiated from the surface of each test sample 210, 220 with a detector.
  • the measuring instrument was a T335 type manufactured by FLIR, and the analysis software was a Quick Plot manufactured by FLIR. Further, the temperature was measured for each of the three points of each test sample 210 and 220.
  • FIG. 12 shows the result of temperature measurement of the test sample 210
  • FIG. 13 shows the result of temperature measurement of the test sample 220
  • the horizontal axis of FIG.12 and FIG.13 represents time (second), and the vertical axis
  • shaft represents temperature (degreeC).
  • the solid line shown by FIG.12 and FIG.13 shows transition of the temperature rise of the 1st measurement point where temperature rises comparatively slowly in each test sample 210,220, and a dotted line shows temperature somewhat quicker.
  • the change in the temperature rise at the second measurement point that rises is shown, and the wavy line shows the change in the temperature rise at the third measurement point where the temperature rises quickly.
  • the temperature from the first measurement point to the third measurement point of the test sample 210 was about 20 ° C. before the voltage was applied.
  • the temperature from the first measurement point to the third measurement point of the test sample 210 starts to rise when about 5 seconds have elapsed since the voltage was applied, and when 60 seconds have elapsed since the voltage was applied, The temperature at the measurement point exceeded 28 ° C, the temperature at the second measurement point exceeded 30 ° C, and the temperature at the third measurement point rose to about 32 ° C.
  • 120 seconds have elapsed since the voltage was applied
  • the temperature at the first measurement point is about 30 ° C.
  • the temperature at the second measurement point exceeds 32 ° C.
  • the temperature at the third measurement point is up to about 35 ° C. Rose.
  • the temperature from the first measurement point to the third measurement point of the test sample 220 was about 20 ° C. before the voltage was applied.
  • the temperature from the first measurement point to the third measurement point of the test sample 220 began to rise when about 5 seconds had elapsed since the voltage was applied.
  • the temperature at the first measurement point only rises to about 24 ° C.
  • the temperature at the second measurement point rises only to a temperature exceeding 26 ° C.
  • the temperature at the three measurement points increased only to about 29 ° C.
  • the temperature at the first measurement point rises only to a temperature below 26 ° C.
  • the temperature at the second measurement point rises only to about 28 ° C.
  • the third measurement The point temperature only increased to about 30 ° C.
  • the power consumption of the test sample 210 was 1.23W.
  • the power consumption of the test sample 220 was 1.35W.
  • the fabric heater 1 according to the present invention rises to a temperature of 30 ° C. or more in a short time of about 120 seconds after applying a voltage, whereas the heater composed of carbon fiber is It was found that the temperature did not reach 30 ° C. It has also been found that the fabric heater 1 according to the present invention consumes less power than a heater made of carbon fiber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

【課題】全方向に伸縮し、迅速に昇温する布ヒータを提供する。 【解決手段】導電糸4で複数のループ5を形成し、ループ5同士を相互に絡めることによって編み込んで一枚に形成された布地2と、電極糸31,35によって構成され、布地2に間隔を空けて設けられた電極部30と、を備え、導電糸4が、繊維からなる芯線10と、芯線10の表面を被覆する導電層11又は導電性を有する箔12とで構成されている布ヒータ1、又は導電糸4が、1又は複数の導電性素線6aを少なくとも有した集合線7で構成されている布ヒータ1によって上記の課題を解決する。

Description

布ヒータ
 本発明は、布ヒータに関し、さらに詳しくは、編物である布地に電極部を設けた布ヒータに関する。
 布ヒータは、布地に電極が設けられた面状のヒータである。こうした布ヒータに関する技術は、これまでに多数提案されている。
 特許文献1に記載されている発熱シートは、糸状の絶縁線に金属線又は帯状の箔を螺旋状に巻き付けたものを発熱線として使用し、天然繊維又は合成繊維を絶縁線として使用している。この発熱シートは、こうした発熱線と絶縁線とを織り込むと共に電極線を設けて電気回路を形成することによって構成されたものである。
 特許文献2に記載された発熱体は、たて糸とよこ糸とを織り込んで形成された織物である。この発熱体は、導電性を有する糸がたて糸として使用され、非導電性の糸がよこ糸として使用されており、電力が印加されることによって熱を発生するものである。
 特許文献3に記載されている網状ヒータは、複数のヒータ用の素線がループをたて方向に平面的に連続させて綴るトリッコ編みをして形成されたものである。ヒータ用の素線は、線径が0.02mm~0.12mmであり、エナメル塗料が外周に被覆されている。また、トリッコ編みの編み目のピッチは、0.5mm~5mmである。こうした構成を備えた網状ヒータは、複雑な形状の曲面に密着させることができるという効果を奏する。
 特許文献4に記載されている面状ヒータは、本出願人が発明した技術である。特許文献4に記載されている面状ヒータは、第1の布部と第2の布部とを備えている。第1の布部は2本の第1の電極糸を備えている。一方の電極糸は電池の正極に接続され、他方の第1の電極糸は電池の負極に接続されている。一方の第1の電極糸と他方の第1の電極糸とは、交叉しないようにリバーシブル編みで編まれている。第2の布部は、導電体である第2の電極糸と、通電された場合に発熱する発熱糸とが丸編みで編まれている。この面状ヒータは、電池から流出した電流が、一方の第1の電極糸、第2の電極糸、発熱糸、他の第2の電極糸、及び他方の第1の電極糸をこの順番に流れて発熱糸が発熱するように構成されている。
特開平7-161456号公報 特開2004-33730号公報 特開2001-110555号公報 実用新案登録第3171497号公報
 特許文献1に記載された発熱シートは、直線状に延びる発熱線及び絶縁線の一方が縦方向に向けられると共に、他方が横方向に向けられて、両者が織り込まれて構成されたものである。同様に特許文献2に記載された発熱体も、導電性を有する糸がたて糸として使用され、非導電性の糸がよこ糸として使用され、たて糸とよこ糸とが織り込まれて構成された織物である。こうした織物は伸縮性がない。
 特許文献3に記載された網状ヒータは、ヒータ用の素線がトリッコ編みされて構成されているので、網状ヒータに張力を与えると網状ヒータを伸張させることができる。しかし、ヒータ用の素線が金属で形成されているので、張力を除去しても、伸張した網状ヒータは伸張された状態が維持され、網状ヒータを元の状態に収縮させることができない。すなわち、特許文献3に記載されている網状ヒータは、伸縮自在には構成されていない。
 一方、特許文献4に記載された面状ヒータは、布地が編物なので、自在に伸縮させることが可能である。こうした伸縮性を備えた布ヒータを利用したいという市場からの要求は、多く存在している。そのため、本出願人は、これまでよりも高い伸縮性を備えると共に、迅速に昇温する布ヒータに関する研究を続けてきた。
 本発明は、上記課題を解決するためになされたものであり、その目的は、全方向に伸縮し、迅速に昇温する布ヒータを提供することにある。
 上記課題を解決するための本発明に係る布ヒータは、導電糸で複数のループを形成し、該ループ同士を相互に絡めることによって編み込んで一枚に形成された布地と、電極糸によって構成され、前記布地に間隔を空けて設けられた電極部と、を備え、前記導電糸が、繊維からなる芯線と、該芯線の表面を被覆する導電層又は導電性を有する箔とで構成されていることを特徴とする。
 この発明によれば、導電糸が繊維からなる芯線と、芯線の表面を被覆する導電層又は導電性を有する箔とで構成されているので、導電糸を柔軟にすることができると共に、布ヒータを所定の温度まで迅速に上昇させることができる。また、布地が、柔軟性を有する導電糸で複数のループを形成し、ループ同士を相互に絡めることによって編み込まれて形成されているので、布地に弾性を持たせることができ、布地を全方向に自在に伸縮させることができる。
 上記課題を解決するための本発明に係る布ヒータは、導電糸で複数のループを形成し、該ループ同士を相互に絡めることによって編み込まれた布地と、電極糸によって構成され、前記布地に間隔を空けて設けられた電極部と、を備え、前記導電糸が、1又は複数の導電性素線を少なくとも有した集合線で構成されていることを特徴とする。
 この発明によれば、導電糸が、1又は複数の導電性素線を少なくとも有した集合線で構成されているので、導電糸を柔軟にすることができると共に、布ヒータを所定の温度まで迅速に上昇させることができる。また、布地が柔軟性を有する導電糸で複数のループを形成し、ループ同士を相互に絡めることによって編み込まれて形成されているので、布地に弾性を持たせることができ、布地を全方向に自在に伸縮させることができる。
 本発明に係る布ヒータにおいて、前記布地は、前記導電糸が一面側に編み込まれると共に、繊維で形成された糸が他面側にのみ現れるリバーシブル編みによって編み込まれて一枚に形成されていることを特徴とする。
 この発明によれば、布地は、導電糸が一面側に編み込まれているので、一面側を導電面として機能させることができる。また、繊維で形成された糸が他面側にのみ現れるリバーシブル編みによって編み込まれているので、他面側を絶縁面として機能させるとことができる。
 本発明に係る布ヒータにおいて、前記電極部が前記電極糸で飾り縫いして構成されていることを特徴とする。
 この発明によれば、電極部は電極糸を飾り縫いして構成されているので、電極部を柔軟にすることができる。そのため、布地の変形に伴って電極部を変形させることができる。
 本発明に係る布ヒータにおいて、前記電極部を構成する前記電極糸が、繊維からなる芯線の外周に銅線を撚糸して形成されていることを特徴とする。
 この発明によれば、芯線が繊維で形成されているので、電極糸を柔軟に形成することができる。そのため、布地に縫い込みやすい電極糸を得ることができる。
 本発明に係る布ヒータにおいて、前記電極部は、相対的に細い銅線が前記芯線の外周に撚糸して形成された第1電極糸と、相対的に太い銅線が前記芯線の外周に撚糸して形成された第2電極糸とから構成され、前記第1電極糸が前記布地の一方の面から縫い込まれ、前記第2電極糸が前記布地の他方の面から縫い込まれて構成されていることを特徴とする。
 この発明によれば、相対的に細い銅線が芯線の外周に撚糸して形成された第1電極糸が布地の他面側に縫い込まれているので、この第1電極糸と布地との間の電気的密着性を向上させると共に、電極部を柔らかくすることができる。また、相対的に太い銅線が芯線の外周に撚糸して形成された第2電極糸が布地の一面側に布地に縫い込まれているので、太い銅線が布地に供給する電流を確保することによって電圧降下の発生を防止することができる。
 本発明に係る布ヒータにおいて、前記一面側から前記布地に縫い込むための電極糸及び前記他面側から前記布地に縫い込むための電極糸だけで前記電極部に連続して相互に縫い合わされ、当該縫い合わされた電極糸が前記布地の端縁よりも外側に延びるリード線として用いられていることを特徴とする。
 この発明によれば、電極部に接続されるリード線が、一面側から布地に縫い込むための電極糸及び他面側から布地に縫い込むための電極糸だけで、電極部に連続して相互に縫い合わされ、当該縫い合わされた電極糸が布地の端縁よりも外側に延びているので、そのリード線を伸縮自在にすることができる。そのため、電源と布ヒータとの位置関係が変化する場合でも、布ヒータ、リード線、及びリード線と布ヒータとがつながれている部分に負荷をかけないで布ヒータを使用することができる。
 本発明によれば、布ヒータを全方向に伸縮可能に形成することができ、迅速に昇温させることができる。
本発明の一実施形態に係る布ヒータの一面側の平面図である。 図1に示した布ヒータの他面側の平面図である。 導電糸の編み目をモデル的に示した拡大図である。 導電糸に対して繊維で形成された糸をリバーシブル編みした状態をモデル的に示した拡大図である。 芯線の表面を導電層で被覆した導電糸(A)と、芯線の表面を箔で被覆した導電糸(B)との構造図である。 1本の導電性素線と複数の非導電性素線とで形成された集合線(A)と、導電性素線をより合わせて形成した集合線(B)と、複数の非導電性素線を導電性素線の周囲により合わせて形成した集合線(C)との構造図である。 電極糸が片面飾り縫いされた状態を示す斜視図である。 片面飾り縫いされた電極糸の形態を維持する下糸の状態を示す斜視図である。 図7及び図8とは別形態の片面飾り縫いがされた電極糸及び下糸の状態を示す斜視図である。 電極部に連続して設けられた伸縮可能なリード線をモデル的に示す説明図である。 伸縮性の確認試験の説明図である。 本発明に係る布ヒータを構成する布地で形成した試験サンプルの温度上昇の推移を表すグラフである。 比較用の試験サンプルの温度上昇の推移を表すグラフである。
 以下、本発明の実施形態について図面を参照しながら説明する。なお、本発明の技術的範囲は、以下の記載や図面にのみ限定されるものではない。
 [基本構成]
 本発明に係る布ヒータ1は、図1~3に示すように、導電糸4で複数のループ5を形成し、ループ5同士を相互に絡めることによって編み込まれた布地2と、電極糸によって構成され、布地2に間隔を空けて設けられた電極部30と、を備えている。
 導電糸4としては、2種類の形態のものを挙げることができる。第1の導電糸4は、図5に示すように繊維からなる芯線10と、この芯線10の表面を被覆する導電層11又は導電性を有する箔12とで構成されたものである。第2の導電糸4は、図6に示すように、1又は複数の導電性素線6aを少なくとも有する集合線7で構成されたものである。
 本発明に係る布ヒータ1によれば、全方向に伸縮可能に形成することができ、迅速に昇温させることができるという特有の効果を奏することができる。
 以下、布ヒータ1の各構成の詳細について図面を適宜参照しながら説明する。
 〈布地〉
 一般に、布は、糸で複数のループを連ねて形成し、このループ同士を規則的に絡めて構成される編物、縦方向に直線状に延びる糸と横方向に直線状に延びる糸とを直交させて織り込む織物、及びその他のものがある。本発明に係る布ヒータに使用されている布地2は、図3及び図4に示すように、編物である。
 布地2の形態としては、導電糸4だけを編み込んで形成したものと、導電糸4が一面側3に編み込まれると共に、繊維で形成された糸20(以下、「繊維糸20」という。)が他面側にのみ現れるリバーシブル編みによって編み込まれて一枚に形成されているものと、を挙げることができる。以下、導電糸4が一面側3に編み込まれると共に、繊維糸20が他面側にのみ現れるリバーシブル編みによって編み込まれて一枚に形成されている布地2を例に説明する。
 導電糸4は、図3に示すように、布地2の一面側3に一定間隔を空けて複数配されており、各導電糸4は、その長さ方向の一定ピッチごとに、図3の上側に位置する導電糸4に向けてループ5が形成されている。各導電糸4は、このループ5同士を互いに絡み合わせて編み込まれている。
 なお、導電糸4の編み方は、特に限定がなく、横編みで導電糸4を編み込んでもよいし、縦編みで導電糸4を編み込んでもよい。横編みとしては、例えば、天竺編み、リブ編み(フライス編み又はゴム編みともいう。)及びパール編み(リンクス編み又はガーター編みともいう。)を挙げることができる。縦編みとしては、例えば、トリコット編み及びアトラス編みを挙げることができる。導電糸4の編み方は、布ヒータ1の用途等に応じて適宜に選択すればよい。
 繊維糸20は、図4に示すように、他面側13に編み込まれている。繊維糸20は、他面側13にのみ現れるようにリバーシブル編みされている。繊維糸20は、複数の導電糸4が編まれる方向と直交する方向に、一定間隔ごとに複数のループ21を備えている。これらのループ21は、導電糸4に形成されているループ5に絡められることによって、導電糸4と一体になるように編み込まれている。なお、ここでいう「リバーシブル編み」とは、一方の面に現れる糸と、他方の面に現れる糸とが異なるように編み込む編み方のことをいう。
 具体的には、導電糸4を上糸に使用すると共に、繊維糸20を下糸に使用して導電糸4と繊維糸20とを編み込む場合、繊維糸20のループ21を編み針で導電糸4に向けて上昇させて導電糸4よりも上側に移動し、その後に再び編み針で導電糸4よりも下側に降下させる。繊維糸20のループ21は、このときに導電糸4のループ5に絡められる。この工程が繰り返されることによって、ループ21が導電性糸4に順次に繋がれ、繊維糸20の面が他面側13に形成される。
 〈導電糸〉
 導電糸4の形態は、次の2種類のものがある。第1の形態に係る導電糸4は、繊維からなる芯線10と、この芯線10の表面を被覆する導電層11又は導電性を有する箔12とからなるものである。第2の形態に係る導電糸4は、1又は複数の導電性素線6aを少なくとも有する集合線7で構成されたものである。この2種類の形態について、図5及び図6を参照して詳細に説明する。なお、導電糸4は、導電性を有する糸に耐食加工、例えば、耐食めっきや耐食エナメル塗装等を施したものであることが好ましく、その材質に特に限定はない。
 (第1の形態に係る導電糸)
 第1の形態に係る導電糸4としては、例えば、図5(A)に示すように、芯線10が繊維で形成され、芯線10の表面に導電層11が形成されたものと、図5(B)に示すように、芯線10が繊維で形成され、芯線10の表面に導電性を有する箔12を巻いたものとを挙げることができる。
 芯線10を構成する繊維としては、合成繊維、天然繊維及び合成繊維と天然繊維との混合繊維を挙げることができる。芯線10を合成繊維で形成する場合、芯線10は、ポリアミド又はポリエステルで形成することができる。ポリアミドとしては、例えば、ナイロン、ケプラー(ケプラーは登録商標)及びテクニール(テクニールは登録商標)を挙げることができる。ポリエステルとしては、例えば、テトロン(テトロンは登録商標)を挙げることができる。
 導電層11は、例えば、図5(A)に示すように、めっき(無電解又は電解)によって芯線の表面に形成される。導電層11は、銅、銅合金、銀及び銀合金等の導電性が高いものが好ましい。
 箔12は、帯状の部材であり、芯線10の長さ方向に螺旋状に延びるようにして芯線10の表面に巻き付けられている。芯線10は、この箔12によって表面の全体が被覆されている。箔12は、例えば、0.3質量%の錫入り銅合金で形成されたものが用いられる。
 こうした箔12は、使用される芯線10の種類に適応した厚さ及び幅を有するものが使用される。例えば、維度が56dtexのポリエステルで形成された芯線10を箔12で被覆する場合、厚さが12μm、幅が170μmに形成された箔12が使用される。また、太さが250デニール、維度が48dtexのポリエステルで形成された芯線10を箔12で被覆する場合、厚さが27μm、幅が320μmに形成された箔12が使用される。
 なお、導電糸4は、繊維からなる芯線10と、この芯線10の表面を被覆する導電層11又は導電性を有する箔12とからなる線を複数よりあわせた集合線で形成してもよい。
 (第2の形態に係る導電糸)
 第2の形態に係る導電糸4は、図6(A)から図6(C)に示すように、1又は複数の導電性素線6aを少なくとも有する集合線7で構成されたものである。集合線7としては、導電性素線6aと非導電性素線6bとで構成されたものと、すべて導電性素線6aで構成されたものとを挙げることができる。なお、集合線7は、少なくとも1本の導電性素線6aを有していれば、導電性素線6aと非導電性素線6bとを合計した本数は限定されない。
 図6(A)に示す集合線7は、中心に1本の導電性素線6aが設けられ、その周囲に6本の非導電性素線6bが配置されて構成されている。6本の非導電性素線6bは、より合わされないで互いに平行をなして導電性素線6aの周囲に配置されている。なお、集合線7は、導電性素線6aの周囲に導電性素線6aと非導電性素線6bとを配置して形成してもよい。また、集合線7は、中心に非導電性素線6bを設け、周囲に導電性素線6aを配置して形成してもよい。なお、中心に非導電性素線6bを設ける場合、集合線7は、非導電性素線6bの周囲に導電性素線6aと非導電性素線6bとを配置して形成してもよい。
 図6(B)に示す集合線7は、複数の導電性素線6aだけがより合わされて形成されたものである。ただし、集合線7は、導電性糸6aだけをより合わせて形成したものには限定されず、導電性素線6aと非導電性素線6bとをより合わせて形成してもよい。
 図6(C)に示す導電糸4は、中心に1本の導電性素線6aが設けられ、その周囲に6本の非導電性素線6bが配置されて構成されている。6本の非導電性素線6bは、より合わされて導電性素線6aの周囲で螺旋状に延びている。なお、集合線7は、導電性素線6aの周囲に導電性素線6aと非導電性素線6bとを配置して形成してもよい。また、集合線7は、中心に非導電性素線6bを設け、周囲に導電性素線6aを配置して形成してもよい。なお、中心に非導電性素線6bを設ける場合、集合線7は、非導電性素線6bの周囲に導電性素線6aと非導電性素線6bとを配置して形成してもよい。また、導電糸4は、すべて導電性素線6aで構成してもよい。
 なお、図には示していないが、集合線7は、図6(C)に示した構造の線を、さらに複数より合わせて形成してもよい。また、集合線7は、導電性素線6aと非導電性素線6bとを編み込んで形成してもよい。
 導電性素線6aは、例えば、錫入り銅合金が使用される。例えば、0.3質量%の錫入り銅合金によって形成した場合に好適な布ヒータ1を形成することができる。ただし、導電性素線6aは、導電性を有するものであれば、錫入り銅合金に限定されず、種々の部材で形成することができる。また、導電性素線6aは、用途に応じた線径に形成されたもの選択して使用することできるが、本実施形態の布ヒータ1は、線径が25μmに形成された導電性素線6aを選択して使用している。
 なお、めっき皮膜(無電解又は電解)が必要に応じて設けられていてもよい。めっき皮膜は耐食性を有するものが好ましく、例えば、銀、錫、ニッケル又はその合金等の耐食性を有する材料である。
 第2の形態に係る導電糸4の外径は、例えば、25μmの素線6が7本より合わされた芯線7の表面に銀めっきが形成された場合に約75μmになる。
 〈繊維糸〉
 繊維糸20は、合成繊維、天然繊維及び合成繊維と天然繊維との混合繊維のいずれをも用いることができる。繊維糸20を合成繊維で形成する場合、繊維糸20は、ポリアミド又はポリエステルで形成することができる。ポリアミドとしては、例えば、ナイロン、ケプラー(ケプラーは登録商標)及びテクニール(テクニールは登録商標)を挙げることができる。ポリエステルとしては、例えば、テトロン(テトロンは登録商標)を挙げることができる。こうした繊維糸20は、例えば、30デニールの太さに形成された糸が使用されるが、用途に応じて好適な太さの糸が選定される。
 〈電極部〉
 電極部30は、布地2の2箇所に設けられている。2箇所に設けられた電極部30同士は、所定の間隔を空けて設けられている。ただし、布ヒータ1の機能を阻害しなければ、電極部30は2箇所以上に設けることもできる。こうした電極部30は、布地2に電極糸を縫い込んで形成する形態、あらかじめ所定の形状に形成された電極部30を布地2に接着剤で貼り付けたり、ホチキス等の結合部材で結合させたりする形態、及び布地2を編み込む工程で電極糸を布地2に部分的に編み込んで形成する形態等の中から必要に応じて選択することができる。以下、布地2に電極糸を縫い込んで形成する形態を例にして電極部30を説明する。
 布地2に電極糸を縫い込んで電極部30を形成する場合、電極部30は、布地2の伸縮に応じて変形しないように電極糸を布地2に縫い込む形態と、布地2の伸縮に追従して自在に変形するように電極糸を布地2に縫い込む形態との2種類の形態がある。電極部30が布地2の伸縮に追従して自在に変形するように電極糸を布地2に縫い込む場合、縫い目が布地2の変形に応じて変形する飾り縫いという縫い方で電極部30を構成するとよい。
 導電糸4だけを編み込んで形成した布地2の場合、飾り縫いの形態は、飾り部が布地2の両面に現れる形態の飾り縫い、及び片面だけに現れる形態の飾り縫いのどちらの形態も利用することができる。一方、導電糸4が一面側3に編み込まれると共に、繊維糸20が他面側13にのみ現れるリバーシブル編みによって編み込まれて一枚に形成されている布地2の場合、電極部30は、導電糸4が現れている一面側3に飾り部が形成される片面飾りによって形成するとよい。飾り縫いをする際には、複数の針、例えば、2~4本の針を使用して行う。
 上糸に使用される第1電極糸31(以下、単に電極糸31という。)及び下糸に使用される第2電極糸35(以下、単に電極糸35という。)は、繊維からなる芯線(図示しない)の外周に銅線(図示しない)を撚糸して形成されている。電極糸31は線径が相対的に細い銅線を芯線の外周に撚糸して形成され、電極糸35は線径が相対的に太い銅線を芯線の外周に撚糸して形成されている。具体的には、電極糸31は芯線の外周に外径が0.05mm以下の銅線を撚糸することによって形成され、電極糸35は芯線の外周に外径が0.08mm以上の銅線を撚糸して形成されている。電極糸31は、布地2との間の電気的密着性を向上させると共に、電極部30を柔らかくしている。一方、電極糸35は、布地2に供給する電流を確保することによって電圧降下を防止している。
 電極糸31及び電極糸35を構成する芯線は、合成繊維、天然繊維及び合成繊維と天然繊維との混合繊維のいずれをも用いることができる。芯線を合成繊維で形成する場合、芯線は、ポリアミド又はポリエステルで形成することができる。ポリアミドとしては、例えば、ナイロン、ケプラー(ケプラーは登録商標)及びテクニール(テクニールは登録商標)を挙げることができる。ポリエステルとしては、例えば、テトロン(テトロンは登録商標)を挙げることができる。
 ただし、電極糸31,35は、繊維からなる芯線に導線を撚糸したもの以外にも、銅線及び銅合金線等、導電性を有する線の表面に耐食めっき皮膜が形成されたものを使用することもできる。この耐食めっき皮膜の形成材料は、銀、錫、ニッケル又はその合金等の耐食性を有する材料である。なお、用途に応じて耐食めっき皮膜を施さずに、銅線や銅合金線だけで構成してもよい。
 こうした電極糸31,35によって構成された電極部30について、図7及び図8を参照して、2本の針を使用して形成された電極部30について説明し、図9を参照して、3本の針を使用して形成された電極部40について説明する。
 まず、2本の針を使用して形成された電極部30について説明する。電極部30は、電極糸31が上糸として使用され、電極糸35が下糸として使用されている。上糸である電極糸31は、図7に示すように、導電糸4が編み込まれている一面側3で、アルファベットのZの文字が連なるように布地2に縫い込まれる。縫い込まれた電極糸31は、相互に平行をなす部分31と、両側の平行をなす部分32と直交し、かつ、両側の平行をなす部分32同士を連絡する部分33と、両側の平行をなす部分32を斜めに横切るようにして、両側の平行をなす部分32同士を連絡する部分34とから構成される。縫い込まれた電極糸31は、平行をなす部分32で、縫製方向の一定間隔毎に下糸である電極糸35に固定されることによって、縫い込まれた形状が維持されている。
 下糸である電極糸35は、2本使用されている。電極糸35は、図8に示すように、繊維糸20が編み込まれた他面側13で、電極糸31の平行をなす部分32に対応する位置に破線をなすように平行をなして縫製方向に延びている。
 次に、3本の針を使用して形成された電極部40について図9を参照して説明する。
 上糸である電極糸31は、相互に平行をなす3つの部分41と、平行をなす部分41と直交し、平行をなす部分41同士を連絡する部分42と、平行をなす部分41を斜めに横切るようして、平行をなす部分41同士を連絡する部分43とが構成されているように、一面側3に縫い込まれている。縫い込まれた電極糸31は、各平行をなす部分41で、縫製方向の一定間隔毎に下糸である電極糸35で固定されて、縫い込まれた形状が維持されている。
 下糸である電極糸35は3本使用されている。電極糸35は、繊維糸20が編み込まれている他面側13で、電極糸31の平行をなす部分に対応する位置に破線をなすように平行をなして縫製方向に延びている。
 なお、4本の針を使用して飾り縫いして電極部を形成する場合、平行をなす部分は4本になる。また、下糸である電極糸35は4本使用され、波線をなすようにして4本の電極糸35が縫製方向に延びるように縫い込まれる。
 こうした電極部30は、電極糸31,35が片面飾り縫いされて形成されるので、布地2の伸縮に対応して電極部30自体も伸縮する。ただし、電極糸31と電極糸35とを用いた電極部30,40は、導電糸4が一面側3に編み込まれると共に、繊維糸20が他面側にのみ現れるリバーシブル編みによって編み込まれて一枚に形成されている布地2に適用する場合には限定されない。電極糸31と電極糸35とを用いた電極部30,40は、導電糸4だけを編み込んで形成した布地に適用することもできる。
 なお、電極部は、上糸に電極糸を使用し、下糸に繊維からなる糸を使用して形成してもよい。その場合の電極部は、上記の電極部30,40の構造と同様に構成すればよい。
 電源等に接続するための配線は、この電極部30に接続される。図10に示すリード線100は、こうした配線の一種である。なお、布地2の一面側3から布地2に縫い込むための糸3及び布地2の他面側13から布地2に縫い込むための糸だけが、布地2の端縁よりも外側に鎖のように延びるものは、日本では「空環」といわれている。
 リード線100は、図10示すように、一面側3から布地2に縫い込むための電極糸31及び他面側13から布地に縫い込むための電極糸35だけが、電極部30に連続して布地2の端縁よりも外側で相互に縫い合わされて形成されている。このリード線100は、電極部30をオーバーロックミシン(図示しない)で布地2に電極糸31,35縫い込む工程で形成される。リード線100は、布地2の端縁まで電極糸31,35を縫い込んだ後、ミシン針の位置から布地2を移動させ、布地2を間に挟まない状態で電極糸31,35だけを相互に縫い合わせて形成される。こうしたリード100は伸縮性があるので、例えば、布ヒータ1の電源に対する位置が移動する態様で布ヒータ1を使用する場合、布ヒータ1と電源とをリード線100で接続すれば、リード線100は布ヒータ1の移動に伴って伸縮する。
 以上に説明した導電糸4と繊維糸20とが編み込まれて形成された布地2は、全方向に20%~200%の伸縮性を有している。また、飾り縫いして電極部30,40を設けた場合、電極部30,40が布地2の伸縮に追従して変形する。こうした特性を備えた布ヒータ1は、形状が変化する対象物に密接した状態を維持して装着させるこができる。また、布ヒータ1は、複雑な形状の対象物に隙間なく装着させることができる。
 布ヒータ1は、図1及び図2に示したように、電源50が電極部30に接続され、電源50によって電極部30に電圧が印加されることにより布地2が加熱される。
 (電源)
 電源50は、直流電源と交流電源のいずれも使用することができる。直流電源を使用する場合、電源50は、DC1.5V以上、DC25V以下の電圧を出力するものを使用することができる。この場合、電源50としては、例えば、DC1.5Vの乾電池、リチウムポリマー電池を挙げることができる。また、電源50は、AC/DCアダプターによって、AC100V又はAC200Vの交流電源を、例えばDC1.5V以上、DC25V以下の直流電流に変換し、変換された直流電流を出力する定電圧装置を使用することもできる。さらに、電源50は、交流電源や、パルス電圧を出力する電源を用いることができる。以下、図1及び図2を参照して、電源50として直流電源を用いた場合を例にして、布ヒータ1と電源50との接続の態様及び布ヒータ1の作用を説明する。
 図1及び図2は、直流電源である電源50と布ヒータ1との接続態様の一例を示している。電源50は、図1及び図2に示すように、各電極部30まで延びる配線51を備えている。各配線51は、その先端にコネクタ52を備えている。このコネクタ52は、電極部30に設けられたコネクタ36と着脱自在に構成されている。
 なお、電極部30から延びるリード線100を設けた場合、リード線100は、伸縮可能な配線として利用される。この場合、布ヒータ1は、リード線100を電源50に直に接続したり、リード線100の先端にコネクタ36を設け、このコネクタ36とコネクタ52とを接続したりして、電源50に接続される。
 次に布ヒータ1がヒータとして機能する原理を説明する。電極部30に電圧を印加したとき、布地2の一面側に編み込まれた導電糸4が、電極部30同士を通電させる。布ヒータ1を構成する布地2は、電極部30同士の間に一定の抵抗値を与えている。そのため、電極部30同士の間に抵抗値に応じたジュール熱が布地2に発生する。発生するジュール熱は、ジュール熱をP、流れる電流値をI、電極部30の間の抵抗値をRとすると、次の(1)式で表すことができる。
P(ワット)=I×I×R・・・・・(1)
 布ヒータ1の温度は、布地2から発生するジュール熱によって定まるので、得ようとする温度に応じて電極部30同士の間の抵抗値及び電極部30に印加する電圧が決定される。なお、電圧は、一定電圧を連続的に印加してもよく、図示しないコントローラを使用して、適宜にオンとオフとを繰り返し行ってもよい。また、繊維糸20が布地20他面側13に編み込まれているので、繊維糸20が絶縁体として機能し、他面側13は電気的に絶縁される。
 布地2を構成している導電糸4は、図5に示したように、繊維からなる芯線10と、この芯線10の表面を被覆する導電層11若しくは箔12とからなる構造、又は図6に示したように、1又は複数の導電性素線6aを有する集合線で構成された構造である。導電糸4がこうした図5又は図6に示した構造を備えているので、電極部30に電圧を印加すると、布ヒータ1は、短時間で所定の温度まで昇温される。なお、布地2は、導電糸4が編み込まれて構成されているので、電極部30同士の間の領域は、むらなく均等に昇温される。また、布地2の他面側13は、繊維糸20が編み込まれているので、絶縁面として機能している。
 例えば、長さ1300mm、幅100mmに形成された布ヒータ1の電極部30に18.9Vの電圧を印加し、電極部30同士の間に1.65Aの電流を流し、布ヒータ1から31.2Wのジュール熱(ワット密度は0.024W/cm)を発生させたとき、布ヒータ1の全体が2分で約20℃昇温することを確認することができた。
 以上の布ヒータ1は、20%~200%の伸縮率を有するため、人体、動物、又は構造物等の様々な対象の所望部分に装着して保温する場合に使用することができる。また、布ヒータ1は、手袋に使用したり、マフラーに使用したりすることによって、防寒具にも利用することができる。こうした用途に布ヒータ1を利用する場合、布ヒータ1は、帯状等の保温対象に応じた適宜な形状に形成して使用される。
 人体や動物を部分的に保温する場合、人体や動物の保温したい部分に巻き付けて使用する。特に、人体や動物の関節部分等の形態が変化する部分に装着する場合に有効である。関節部分は形態が変化するが、布ヒータ1は伸縮するので、布ヒータ1は、関節部分の形態の変化に追従し、人体や動物の動作を妨害することが効果的に防止できる。
 構造物を部分的に一定温度に保温する場合も、所望の部分に布地2を巻き付けて使用する。この場合、布ヒータ1が伸縮するため、保温の対象の形状に追従するように布ヒータ1が変形し、布ヒータ1と保温の対象との間に隙間が形成されることがない。特に、複雑な形状の部位を保温する場合に有効であり、布ヒータ1が伸縮して保温対象の形状に応じて変形し、保温の対象となる部分に密着させて装着することができる。
 また、導電糸4が銀等でめっきされたり、銅箔等で被覆されたりした場合は、布ヒータ1に、静電気の発生を防止する作用及び抗菌作用を付与することができるので好ましい。
 以下、本発明の布ヒータ1を構成する布地2で作製した試験サンプル、及び比較用の試験サンプルを用いて、伸縮性の確認試験及び温度上昇の確認試験を行った。
 [伸縮性の確認試験]
 伸縮性の確認試験は、図11に示すように、本発明に係る布ヒータ1を構成する布地2で形成した試験サンプル110、ステンレスメッシュで形成した比較用の試験サンプル120、及び炭素繊維を織り込んで形成された比較用の試験サンプル130を用いて行った。
 試験サンプル110は、ナイロンからなる芯線に銀めっきをした導電糸4と、ナイロンからなる繊維糸20とを編み込んで形成されたものである。具体的には、試験サンプル110は、導電糸4を一面側に編み込み、繊維糸20を他面側にのみ現れるリバーシブル編みによって編み込んだものである。
 試験サンプル120は、線径が0.18mmのステンレス線が平織りされ、目開きが0.455mm、開口率が51.0%に形成された40メッシュのステンレスのメッシュで形成されたものを用いた。また、試験サンプル130は、繊維の直径が7.0μmで、密度が1.78g/cmに形成されたものを用いた。
 確認試験は、図11に示すように、各試験サンプル110,120,130に張力を加え、各試験サンプル110,120,130を一方向に引っ張り、伸張するかどうかを確認し、その後に張力を除去し、元の状態に戻るかどうかを確認した。具体的な確認は、2つの目印140を100mmの間隔を空けて各試験サンプル110,120,130に付け、2つの間隔の変化を測定して行った。2つの目印140同士の間隔の測定は、図11に示すように、2つの目印140の直近に目盛りが設けられたメジャー150を添え、目視して行った。
 [試験結果]
 試験サンプル110は、張力を加えると2つの目印140の間隔が約125mmまで伸張し、張力を除去すると2つの目印140の間隔が約98mmになった。すなわち、試験サンプル110の伸縮率は約25%であった。これに対し、試験サンプル120は、張力を加えると2つの目印140の間隔が若干伸張したが、張力を除去しても2つの目印140の間隔は収縮することなく伸張された状態がそのまま維持された。また、試験サンプル130は、張力を加えても、2つの目印140の間隔はほとんど伸張しなかった。
 以上の試験結果から分かるように、本発明に係る布ヒータ1を構成する布地2は、張力を加えたことに伴って伸張し、張力を除去したことに伴って元の状態に復元する。すなわち、本発明に係る布ヒータ1を構成する布地2は自由に伸縮する。なお、布地2の伸縮率は、張力もよるが、20%以上であることが確認された。
 [温度上昇の確認試験]
 温度上昇の確認試験は、布地2で作製した試験用の試験サンプル210と、炭素繊維を織り込んで形成された試験用の試験サンプル220を用いて行った。
 試験サンプル210は、ナイロンからなる芯線に銀めっきをした導電糸4と、ナイロンからなる繊維糸20とを編み込んだものである。具体的には、試験サンプル110は、導電糸4を一面側に編み込み、繊維糸20を他面側にのみ現れるリバーシブル編みによって編み込んだものである。なお、試験サンプル210は、縦方向の寸法が35mm、横方向の寸法が120mmである。
 試験サンプル220は、フィラメント数が1000本、繊維の直径が7.0μm、密度が1.78g/cm、体積抵抗値は、1.6×10-3Ω・cmである炭素繊維を平行に7本織り込んだもので、縦方向の寸法が35mm、横方向の寸法が90mmに形成されたものである。
 試験サンプル210,220の加熱は、各試験サンプル210,220に一定の間隔を空けて2つの電極を設け、電極の間に3.0Vの直流電圧を印加して行った。
 温度の測定は、各試験サンプル210,220の表面から放射される遠赤外線量を検知器で測定する赤外放射温度計の原理を利用した遠赤外撮像法によって行った。測定機器は、FLIR社製のT335型を使用し、解析ソフトウェアは、FLIR社製のQuick Plotを使用した。また、温度の測定は、各試験サンプル210,220の3点についてそれぞれ行った。
 [試験結果]
 図12は、試験サンプル210の温度測定の結果を示し、図13は、試験サンプル220の温度測定の結果を示している。図12及び図13の横軸は時間(秒)を表し、縦軸は温度(℃)を表している。また、図12及び図13に示されている実線は、各試験サンプル210,220において、温度が比較的遅く上昇する第1測定点の温度上昇の推移を示し、点線は、温度がやや迅速に上昇する第2測定点の温度上昇の推移を示し、波線は、温度が迅速に上昇する第3測定点の温度上昇の推移を示している。
 図12に示すように、試験サンプル210の第1測定点から第3測定点の温度は、電圧を印加する前の時点では約20℃であった。試験サンプル210の第1測定点から第3測定点の温度は、電圧を印加してから約5秒を経過した時点で上昇し始め、電圧を印加してから60秒が経過しとき、第1測定点の温度は28℃を超え、第2測定点の温度は30℃を超え、第3測定点の温度は約32℃まで上昇した。電圧を印加してから120秒が経過したとき、第1測定点の温度は約30℃であり、第2測定点の温度は32℃を超え、第3測定点の温度は、約35℃まで上昇した。
 図13に示すように、試験サンプル220の第1測定点から第3測定点の温度は、電圧を印加する前の時点では約20℃であった。試験サンプル220の第1測定点から第3測定点の温度は、電圧を印加してから約5秒を経過した時点で上昇し始めた。しかし、電圧を印加してから60秒が経過しとき、第1測定点の温度は約24℃までしか上昇せず、第2測定点の温度は26℃を超える温度までしか上昇せず、第3測定点の温度は、約29℃までしか上昇しなかった。電圧を印加してから120秒が経過したとき、第1測定点の温度は26℃を下回る温度までしか上昇せず、第2測定点の温度は約28℃までしか上昇せず、第3測定点の温度は、約30℃までしか上昇しなかった。
 試験サンプル210の消費電力は1.23Wであった。これに対し、試験サンプル220の消費電力は1.35Wであった。
 以上の試験結果から、本発明に係る布ヒータ1は、電圧を印加してから約120秒という短時間で全体が30℃以上の温度まで上昇するのに対し、炭素繊維によって構成されたヒータは、温度が30℃まで達しないことが判明した。また、本発明に係る布ヒータ1は、炭素繊維によって構成されたヒータよりも消費電力が少ないことも判明した。
 1 布ヒータ
 2 布地
 4 導電糸
 6a 導電性素線
 6b 非導電性素線
 7 集合線
 10 芯線
 11 導電層
 12 箔
 20 繊維糸(繊維で形成された糸)
 30 電極部
 31 電極糸
 35 電極糸
 36 コネクタ
 40 電極部
 50 直流電源
 51 配線
 52 コネクタ
 100 リード線

Claims (7)

  1.  導電糸で複数のループを形成し、該ループ同士を相互に絡めることによって編み込んで一枚に形成された布地と、
     電極糸によって構成され、前記布地に間隔を空けて設けられた電極部と、を備え、
     前記導電糸が、繊維からなる芯線と、該芯線の表面を被覆する導電層又は導電性を有する箔とで構成されていることを特徴とする布ヒータ。
  2.  導電糸で複数のループを形成し、該ループ同士を相互に絡めることによって編み込んで一枚に形成された布地と、
     電極糸によって構成され、前記布地に間隔を空けて設けられた電極部と、を備え、
     前記導電糸が、1又は複数の導電性素線を少なくとも有した集合線で構成されていることを特徴とする布ヒータ。
  3.  前記布地は、前記導電糸が一面側に編み込まれると共に、繊維糸が他面側にのみ現れるリバーシブル編みによって編み込まれて一枚に形成されている、請求項1又は2に記載の布ヒータ。
  4.  前記電極部が前記電極糸で飾り縫いして構成されている、請求項1~3のいずれか1項に記載の布ヒータ。
  5.  前記電極部を構成する前記電極糸が、繊維からなる芯線の外周に銅線を撚糸して形成されている、請求項1~4のいずれか1項に記載の布ヒータ。
  6.  前記電極部は、相対的に細い銅線が前記芯線の外周に撚糸して形成された第1電極糸と、相対的に太い銅線が前記芯線の外周に撚糸して形成された第2電極糸とから構成され、前記第1電極糸が前記布地の一方の面から縫い込まれ、前記第2電極糸が前記布地の他方の面から縫い込まれて構成されている、請求項5に記載の布ヒータ。
  7.  前記一面側から前記布地に縫い込むための電極糸及び前記他面側から前記布地に縫い込むための電極糸だけで前記電極部に連続して相互に縫い合わされ、当該縫い合わされた電極糸が前記布地の端縁よりも外側に延びるリード線として用いられている、請求項4に記載の布ヒータ。
PCT/JP2012/081854 2011-12-09 2012-12-07 布ヒータ WO2013085051A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/363,010 US9955532B2 (en) 2011-12-09 2012-12-07 Fabric heater
CN201280060711.7A CN103988574B (zh) 2011-12-09 2012-12-07 布加热器
KR1020147015295A KR101681819B1 (ko) 2011-12-09 2012-12-07 천 히터
JP2013540133A JP5543034B2 (ja) 2011-12-09 2012-12-07 布ヒータ
EP12855511.7A EP2790464B1 (en) 2011-12-09 2012-12-07 Cloth heater

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011270713 2011-12-09
JP2011-270713 2011-12-09

Publications (1)

Publication Number Publication Date
WO2013085051A1 true WO2013085051A1 (ja) 2013-06-13

Family

ID=48574401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081854 WO2013085051A1 (ja) 2011-12-09 2012-12-07 布ヒータ

Country Status (6)

Country Link
US (1) US9955532B2 (ja)
EP (1) EP2790464B1 (ja)
JP (2) JP5543034B2 (ja)
KR (1) KR101681819B1 (ja)
CN (1) CN103988574B (ja)
WO (1) WO2013085051A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752821B1 (ja) * 2014-02-21 2015-07-22 株式会社クラレ 面状発熱体
JP2018128402A (ja) * 2017-02-10 2018-08-16 株式会社三機コンシス 面状センサー及び布ヒータ
CN111542264A (zh) * 2017-12-15 2020-08-14 阿尔卑斯阿尔派株式会社 传感器装置及其制造方法以及车辆用座椅
WO2021100532A1 (ja) * 2019-11-18 2021-05-27 ライオン株式会社 発熱体

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143536B (zh) * 2013-03-08 2017-04-05 费德罗-莫格尔动力系有限责任公司 具有可延伸的电功能性纱引线的可缠绕纺织套筒及其构建方法
US9327838B2 (en) * 2013-05-14 2016-05-03 Sikorsky Aircraft Corporation On-blade deice heater mat
KR20150067893A (ko) * 2013-12-10 2015-06-19 현대자동차주식회사 탄소섬유 면상발열체의 전극 및 그 제조방법
WO2015088115A1 (ko) * 2013-12-11 2015-06-18 주식회사 마루더함 조립식 전기난방매트
JP2016123744A (ja) * 2015-01-06 2016-07-11 アトムメディカル株式会社 呼吸用ガスの加温加湿器及びジャケットヒータ
US20160369466A1 (en) * 2015-06-17 2016-12-22 Apollo Sun Global Co., Ltd. Heating pad applied for melting snow on roads
JP2019150232A (ja) 2018-03-01 2019-09-12 ロレアル 可撓性加熱装置
WO2019190152A1 (ko) * 2018-03-29 2019-10-03 주식회사 히톨로지 섬유 전극을 이용한 유연성 발열 시트
US12012022B2 (en) * 2020-09-28 2024-06-18 GM Global Technology Operations LLC Weft knit interdigitated electrodes for automotive interior heating elements
JPWO2022124037A1 (ja) * 2020-12-09 2022-06-16
US20220369742A1 (en) * 2021-05-17 2022-11-24 Supreme Corporation Heatable glove liner, glove containing the same, and method of making the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132088A (ja) * 1987-11-17 1989-05-24 Toray Ind Inc 糸状発熱体から成る織物
JPH04167389A (ja) * 1990-10-29 1992-06-15 Daikin Ind Ltd 面状発熱体
JPH07161456A (ja) 1993-12-03 1995-06-23 Okazaki Seisakusho:Kk 発熱シート
JP2001110555A (ja) 1999-10-08 2001-04-20 Showa Electric Wire & Cable Co Ltd 網状ヒータ
JP3171497B2 (ja) 1992-12-11 2001-05-28 株式会社東芝 導波管の接続構造
JP2004033730A (ja) 2002-02-25 2004-02-05 Malden Mills Ind Inc 電気加熱/加温用の織繊維製品
JP2008108561A (ja) * 2006-10-25 2008-05-08 Nippon Zeon Co Ltd 面状発熱体の設置方法及び面状発熱体ユニット
JP3171497U (ja) * 2011-08-23 2011-11-04 株式会社三機コンシス 面状ヒータおよび衣料

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396539A (en) * 1977-02-03 1978-08-23 Matsushita Electric Ind Co Ltd Manufacture of flat heater
JPS6138791A (ja) * 1984-07-31 1986-02-24 Biken Kogyo Kk リング状又は管状物外周面の加工方法
JPS6138791U (ja) * 1984-08-15 1986-03-11 亮拿 佐藤 電熱線を織込んだ発熱用メリヤス布
JPH0743991Y2 (ja) * 1986-09-02 1995-10-09 ダイキン工業株式会社 面状発熱体の電極構造
US5484983A (en) * 1991-09-11 1996-01-16 Tecnit-Techische Textilien Und Systeme Gmbh Electric heating element in knitted fabric
JPH11214131A (ja) * 1998-01-29 1999-08-06 Kobayashi Tadao 面状発熱体およびその製造方法
US6723967B2 (en) 2000-10-10 2004-04-20 Malden Mills Industries, Inc. Heating/warming textile articles with phase change components
CN1125710C (zh) 2001-09-02 2003-10-29 吴莹旭 一种非织造的纤维板材及其制造方法
EP1362940A1 (en) * 2002-05-13 2003-11-19 N.V. Bekaert S.A. Electrically conductive yarn comprising metal fibers
AU2003279888A1 (en) * 2002-06-28 2004-01-19 North Carolina State University Fabric and yarn structures for improving signal integrity in fabric based electrical circuits
AU2003304637A1 (en) * 2003-09-17 2005-04-06 N.V. Bekaert S.A. Heatable textile product
US20050150649A1 (en) * 2004-01-13 2005-07-14 Japan Matex Kabushiki Kaisha (Japan Corporation) Heat release sheet and heat sink
DE102004037410B4 (de) * 2004-07-30 2020-03-12 Gentherm Gmbh Heizelement mit einer Vielzahl von Heizsträngen
JP2007184230A (ja) * 2005-12-06 2007-07-19 Japan Vilene Co Ltd 面状発熱体
WO2008013459A2 (en) * 2006-07-24 2008-01-31 Ward, Robert, William Textile articles incorporating an electrical heating element(s)
DE102006034860A1 (de) * 2006-07-25 2008-01-31 Carl Freudenberg Kg Textiles Flächengebilde, Verfahren zur Herstellung und Verwendung
TW201129223A (en) 2010-02-08 2011-08-16 I-Shou Tsai Electric heating pad

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01132088A (ja) * 1987-11-17 1989-05-24 Toray Ind Inc 糸状発熱体から成る織物
JPH04167389A (ja) * 1990-10-29 1992-06-15 Daikin Ind Ltd 面状発熱体
JP3171497B2 (ja) 1992-12-11 2001-05-28 株式会社東芝 導波管の接続構造
JPH07161456A (ja) 1993-12-03 1995-06-23 Okazaki Seisakusho:Kk 発熱シート
JP2001110555A (ja) 1999-10-08 2001-04-20 Showa Electric Wire & Cable Co Ltd 網状ヒータ
JP2004033730A (ja) 2002-02-25 2004-02-05 Malden Mills Ind Inc 電気加熱/加温用の織繊維製品
JP2008108561A (ja) * 2006-10-25 2008-05-08 Nippon Zeon Co Ltd 面状発熱体の設置方法及び面状発熱体ユニット
JP3171497U (ja) * 2011-08-23 2011-11-04 株式会社三機コンシス 面状ヒータおよび衣料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2790464A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5752821B1 (ja) * 2014-02-21 2015-07-22 株式会社クラレ 面状発熱体
JP2018128402A (ja) * 2017-02-10 2018-08-16 株式会社三機コンシス 面状センサー及び布ヒータ
CN111542264A (zh) * 2017-12-15 2020-08-14 阿尔卑斯阿尔派株式会社 传感器装置及其制造方法以及车辆用座椅
CN111542264B (zh) * 2017-12-15 2023-06-20 阿尔卑斯阿尔派株式会社 传感器装置及其制造方法以及车辆用座椅
WO2021100532A1 (ja) * 2019-11-18 2021-05-27 ライオン株式会社 発熱体
JP2021082456A (ja) * 2019-11-18 2021-05-27 ライオン株式会社 発熱体
KR20220101074A (ko) 2019-11-18 2022-07-19 라이온 가부시키가이샤 발열체

Also Published As

Publication number Publication date
EP2790464A1 (en) 2014-10-15
US9955532B2 (en) 2018-04-24
KR101681819B1 (ko) 2016-12-01
EP2790464A4 (en) 2015-08-19
CN103988574A (zh) 2014-08-13
JP2014157824A (ja) 2014-08-28
JP6018600B2 (ja) 2016-11-02
JPWO2013085051A1 (ja) 2015-04-27
EP2790464B1 (en) 2017-03-08
JP5543034B2 (ja) 2014-07-09
CN103988574B (zh) 2016-05-04
KR20140099476A (ko) 2014-08-12
US20140374404A1 (en) 2014-12-25

Similar Documents

Publication Publication Date Title
JP6018600B2 (ja) 布ヒータ
WO2009145536A2 (ko) 도전성 패드 및 그 제조방법
JP5436491B2 (ja) 面状発熱体
JP5869734B2 (ja) 微細発熱糸及びそれを用いた発熱体
US20170196275A1 (en) Heated clothing
JP5509824B2 (ja) 布材の製造方法
TW200925344A (en) Electric heating fabric device
JP5464063B2 (ja) 布枠体及びその製造方法
CN201967157U (zh) 软性加热组件
TWI343426B (en) Textiles flaechengebilde, verfahren zur herstellung und verwendung
WO2017010234A1 (ja) 電気抵抗の不変特性を備えた導電性伸縮編地
KR20100124962A (ko) 도전성 패드 및 그 제조방법
JPS6216649B2 (ja)
JP6657526B2 (ja) 導電編地
JP2015026422A (ja) 導電性布帛
TW201440748A (zh) 布加熱器
RU2543966C2 (ru) Гибкий нагревательный элемент
JP2014114525A (ja) 平型絶縁被覆通電体
JP5845038B2 (ja) 面状発熱体
IT201800010666A1 (it) Coprimaterasso termico o coperta termica
JP2023177330A (ja) 布ヒータ及び加熱部材
WO2021100532A1 (ja) 発熱体
JP6171665B2 (ja) 導電性布帛、布状ヒーター、及び車両用ヒーター
KR20160140288A (ko) 전도선 및 이를 구비한 편성물
JPH01157081A (ja) 布帛状発熱体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280060711.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013540133

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147015295

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012855511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012855511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14363010

Country of ref document: US