WO2021100532A1 - 発熱体 - Google Patents
発熱体 Download PDFInfo
- Publication number
- WO2021100532A1 WO2021100532A1 PCT/JP2020/041797 JP2020041797W WO2021100532A1 WO 2021100532 A1 WO2021100532 A1 WO 2021100532A1 JP 2020041797 W JP2020041797 W JP 2020041797W WO 2021100532 A1 WO2021100532 A1 WO 2021100532A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heating element
- main body
- conductive
- heat generating
- electrode portion
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/34—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
- H05B3/342—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs heaters used in textiles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/02—Details
- H05B3/03—Electrodes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/34—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/54—Heating elements having the shape of rods or tubes flexible
- H05B3/56—Heating cables
Definitions
- the present invention relates to a heating element.
- the present application claims priority based on Japanese Patent Application No. 2019-208251 filed in Japan on November 18, 2019, the contents of which are incorporated herein by reference.
- planar heating element for example, one using carbon composite fiber is known. Since carbon composite fibers have high electrical resistance and require a large amount of electric power, there are concerns about their safety.
- Patent Document 1 a cloth provided with a cloth and an electrode portion in which a plurality of loops are formed and entwined in a row with a conductive thread whose core wire surface is coated with a conductive layer (copper, copper alloy, silver, etc.).
- the heater is disclosed as a heating element.
- the electrode portion of this heating element is composed of first and second electrode yarns of copper twisted yarns having different thicknesses on the outer periphery of the core wire (synthetic fiber, etc.), and the first electrode yarn and the second electrode yarn are other than the cloth. It is sewn in the direction.
- the heating element described in Patent Document 1 has problems such as excessive heat generation and temperature unevenness because the conductive portion of the electrode portion is copper and the electrical resistance is different from that of silver which is the conductive portion of the fabric. In addition, it is necessary to avoid excessive fever because excessive fever may induce the occurrence of shorts.
- the above problem leads to, for example, when the heating element is used for a supporter or the like that comes into direct contact with the skin, the skin is burned, the required temperature is not reached, and the function cannot be performed.
- the present invention has been made in consideration of the above points, and an object of the present invention is to provide a heating element which suppresses power consumption, excessive heat generation, temperature unevenness, and short circuit during use, and has excellent followability. And.
- an electrode portion that includes the material having the conductive metal, and a heating element that includes.
- the electrode portion is formed in a region where fine particles of the conductive metal are arranged in the heat generating portion main body.
- the electrode portion is a woven fabric or knitted fabric containing a conductive yarn coated with the conductive metal and arranged along a direction intersecting the direction along the conductive yarn. Is.
- the electrode portion is a foil formed of the conductive metal and arranged along a direction intersecting the direction along the conductive thread.
- At least one of the heat generating portion main body and the electrode portion has the knitted fabric.
- the knitted fabric is formed by warp knitting.
- a plastic film is laminated on at least one surface of the heat generating portion main body.
- the present invention it is possible to provide a heating element having excellent followability by suppressing power consumption, excessive heat generation, temperature unevenness, and short circuit during use.
- FIG. 10 It is a schematic plan view which shows the heating element of this embodiment. It is a front view in FIG. It is a figure which partially shows the structure of an example of the warp knitting which forms the heat generating part main body 10.
- FIGS. 1 to 3 show one aspect of the present invention, do not limit the present invention, and can be arbitrarily changed within the scope of the technical idea of the present invention. Further, in the following drawings, in order to make each configuration easy to understand, the scale and number of each structure are different from the actual structure.
- FIG. 1 is a schematic plan view showing a heating element of the present embodiment.
- FIG. 2 is a front view of FIG.
- the heating element 1 includes a heating unit main body 10, an electrode portion 30, and a plastic film 40 (not shown in FIG. 1).
- the heat generating portion main body 10 is formed in a substantially rectangular shape in a plan view.
- the electrode portions 30 are arranged at intervals in the length direction of the heat generating portion main body 10.
- the electrode portions 30 of the present embodiment are arranged at both ends of the heat generating portion main body 10 in the length direction at intervals.
- the direction is along the conductive thread of the heat generating portion main body, which will be described later, and the direction in which the electrode portion 30 is arranged with respect to the heat generating portion main body 10 is the X direction, which is the direction along the conductive thread.
- the intersecting directions, the direction orthogonal to the X direction is defined as the Y direction, and the thickness direction of the heat generating portion main body 10 orthogonal to the X direction and the Y direction is appropriately described as the Z direction.
- the heat generating portion main body 10 extends toward the + Y side from each of the rectangular portion 11 located on the ⁇ Y side of the center in the Y direction and both ends of the rectangular portion 11 in the X direction, and then bends toward the center side in the X direction and bends in the X direction. It has a bent portion 12 extending toward the surface and a protruding portion 13 extending from the tip of the bent portion 12 to the + Y side.
- the bent portion 12 extending in the X direction is arranged with a gap from the rectangular portion 11. Further, the tips of the bent portions 12 and the protrusions 13 are arranged with a gap.
- Each protrusion 13 is provided with a terminal 14.
- the terminal 14 is connected to the power supply 16 via the wiring 15.
- the power supply 16 either a DC power supply or an AC power supply can be used.
- the power supply 16 can output a voltage of DC 1.5 V or more and DC 25 V or less.
- examples of the power supply 16 include a DC 1.5V dry battery, a lithium polymer battery, a lithium battery, and a solid lithium battery.
- the power supply 16 uses a constant voltage device that converts an AC power supply of AC100V or AC200V into a DC current of, for example, DC1.5V or more and DC25V or less by an AC / DC adapter, and outputs the converted DC current. You can also.
- the power source 16 is preferably a DC power source (battery) from the viewpoint of portability.
- the temperature setting of the heat generating part main body is not particularly specified, but it is desirable to set it between 20 ° C. and 100 ° C.
- the temperature of the electrode portion is preferably lower than the temperature of the main body of the heat generating portion or 20 ° C. or less with respect to the temperature of the main body of the heat generating portion.
- the heat generating portion main body 10 is made of a woven fabric or a knitted fabric.
- a woven fabric is constructed by weaving threads that extend linearly in the vertical direction and threads that extend linearly in the horizontal direction at right angles.
- a knitted fabric is formed by connecting a plurality of loops with threads and regularly entwining the loops.
- the heat generating portion main body 10 of the present embodiment is preferably a knitted material from the viewpoint of elasticity. Further, as the heat generating portion main body 10 of the present embodiment, from the viewpoint that the temperature rises too much if the expansion and contraction is too large, the loop is knitted while advancing in the vertical direction rather than the weft knitting in which the loop is produced in the horizontal direction. It is preferable that the warp knitting is used to make the ground.
- FIG. 3 is a diagram partially showing the structure of an example of a warp knit that forms the heat generating portion main body 10.
- the threads shown by the solid line are the dyeable threads 61, 63, 65 supplied by the same reed, and the threads shown by the solid line are the dyeable threads 62, supplied by the other same reed. It is 64,66, and the dyeable yarns 61, 63, 65 are knitted mirror-symmetrically with the dyeable yarns 62, 64, 66 to form a net warp knitted fabric.
- the threads shown by the thick solid lines are the conductive threads 71, 73, 75 supplied by the same reed, and the threads shown by the thick broken lines are the conductive threads 72, 74, 76 supplied by the other same reeds, and the conductive threads 71. , 73, 75 are inserted into a net warp knitted fabric knitted with dyeable yarn together with conductive yarns 72, 74, 76.
- a group of conductive yarns 71, 73, 75 intersects with conductive yarns 72, 74, 76 of another group in a warp knitted fabric.
- the surface of the conductive yarn is coated with metal, substantially all the conductive yarns in the warp knitted fabric are electrically operated by arranging the conductive yarns along the X direction while intersecting the adjacent conductive yarns. Will be connected. As a result, even if one of the conductive threads is broken, it is possible to suppress excessive heat generation and temperature unevenness without heating at a specific position in the Y direction.
- the conductive threads 71 to 76 are composed of, for example, a core wire made of fibers and a conductive layer (conductive substance) that covers the surface of the core wire.
- the conductive layer is formed of, for example, a metal such as gold, silver, copper, zinc, lead, tin, aluminum, or iron.
- the conductive layer can be formed by, for example, thin-film deposition, plating, or the like, depending on the metal used. That is, the conductive threads 71 to 76 are plated threads.
- the metal forming the conductive layer is preferably silver, copper, gold, or iron, and more preferably silver or copper, in consideration of cost, hypersensitivity reaction to a living body, and low electrical resistance.
- the core wire is, for example, polyamide fiber, polyester fiber, polyurethane fiber, nylon fiber, acrylic fiber, vinylon fiber, polyethylene fiber, polyvinyl chloride fiber.
- Various synthetic fibers such as polypropylene fibers, various semi-synthetic fibers such as acetate fibers and polylactic acid fibers, various natural fibers such as cotton and hemp, and various recycled fibers such as rayon can be used.
- monofilaments or multifilaments of about 10d to 110d are used for the thickness of the conductive yarns 71 to 76, and the silver content of this seed yarn is 10% to 50% in terms of weight.
- the electrode portions 30 are formed at both ends of the rectangular portion 11 in the heat generating portion main body 10 in the X direction, the bent portion 12 and the protrusion portion 13.
- the electrode portion 30 is a metal fine particle layer 31 provided on both ends of the heat generating portion main body 10 and the + Z side surface 10a of the heat generating portion main body 10 as a material having a conductive metal. have.
- the metal fine particle layer 31 is formed in a region where the conductive metal is arranged on the heat generating portion main body 10.
- the method for forming the metal fine particle layer 31 is not particularly limited, and various printing methods such as screen printing using ink containing metal fine particles, offset printing, and inkjet printing can be selected.
- the metal fine particles forming the metal fine particle layer 31 fine particles of the same metal as the metal forming the conductive layer of the conductive threads 71 to 76 are selected.
- silver fine particles are used in consideration of cost and hypersensitivity reaction to a living body. More specifically, the fine particles are nano-silver particles having a silver particle size on the order of nanometers (0.01 to 50 micrometers).
- the fine particles shown in the present embodiment refer to fine particles having an average particle size of 0.01 to 50 micrometers as measured by a dynamic (static) light scattering measuring device without any limitation on the shape or the like.
- the average particle size of the fine particles is preferably 0.01 to 50 micrometers, more preferably 0.5 to 50 micrometers, still more preferably 1 to 20 micrometers.
- Examples of the method for measuring the particle size of the fine particles include CGS-3 manufactured by ALV of Germany and SAXSess mc2 manufactured by Antonio Par.
- the electrode portion 30 in which the metal fine particle layer 31 is laminated on the heat generating portion main body 10 it functions as a linear conductor by an aggregate of fine metal fine particles arranged densely. Further, when the metal fine particles adhere to the conductive thread, the conductive thread of the heat generating portion main body 10 and the metal fine particle layer 31 are electrically connected.
- the plastic film 40 is laminated on the surface 10b on the ⁇ Z side of the heat generating portion main body 10.
- the plastic film 40 may be laminated on both sides of the heat generating portion main body 10 in the Z direction.
- the plastic film 40 is formed of, for example, an elastomer such as polyester, polyurethane, or polyolefin in order to maintain the elasticity of the heat generating portion main body 10.
- the heating element 1 having the above configuration is, for example, mounted on the inside of a blanket or the like, mounted on a seating surface of a chair, mounted on underwear or footwear, or at least a part of a supporter, other equipment or materials, and water associated therewith. It can be widely used for heat retention, etc.
- the heating element 1 having the above configuration is supplied with power from the power supply 16 via the wiring 15, the terminal 14, and the electrode portion 30, so that the conductive threads 71 to 76 are energized and the heating unit main body 10 generates heat.
- the metal forming the conductive layer of the conductive threads 71 to 76 in the heating unit main body 10 and the metal forming the electrode portion 30 are formed of the same metal. Therefore, the difference in electrical resistance between the heat generating portion main body and the electrode portion becomes small, the risk of excessive heat generation and short circuit of the electrode portion 30 can be suppressed, and the safety can be enhanced. Further, in the heating element 1 of the present embodiment, since the difference in electrical resistance between the heating unit main body 10 and the electrode portion 30 is small, it is possible to suppress the occurrence of excessive heat generation and temperature unevenness. Deterioration due to sweat, water, and activator due to repeated use and washing is suppressed, and it can be uniformly heated at a constant temperature for a long period of time.
- the conductive portion of the heating portion main body 10 and the electrode portion 30 is made of metal and the electric resistance is small, for example, the power required to generate heat at 40 ° C. is reduced, and the power consumption is reduced. Can be suppressed.
- the heating element 1 of the present embodiment if silver is used as the conductive metal, the power consumption can be further suppressed.
- the metal fine particle layer 31 is provided as the electrode portion 30, the electric resistance is reduced, so that excessive heat generation of the electrode portion 30 can be suppressed and the occurrence of temperature unevenness can be further suppressed. It will be possible.
- the heating element 1 of the present embodiment when the heating element main body 10 is formed of a warp knit, the shrinkage due to washing or repeated use is smaller than that of a weft knit, so that the shrinkage accompanies the shrinkage. Therefore, it is possible to suppress the temperature rise of the heating element 1 and also to suppress the temperature change due to the deformation of the woven fabric.
- the heating element 1 of the present embodiment when the plastic film 40 is laminated on one surface of the heating element main body 10, the conductive threads 71 to 76 and the electrode portion 30 are deteriorated while maintaining the elasticity of the heating element main body 10. Is suppressed, and a heating element 1 that generates heat stably even after washing or repeated use can be obtained. Also. The risk of short circuit due to deterioration can also be suppressed.
- Example 1 to 6 Comparative Examples 1 to 2
- the heating elements of Examples 1 to 6 and Comparative Examples 1 and 2 were prepared according to the specifications shown in [Table 1] below. Specifically, in Examples 1 to 6 and Comparative Example 2, the heat generating portion main body in which the conductive thread was silver-plated thread was used. For Comparative Example 1, a heat generating portion main body in which the conductive thread was a carbon composite fiber was used. Further, in Examples 1 to 4, a heat generating portion main body whose knitting method is warp knitting was used. For Example 5 and Comparative Example 1, a heat generating portion main body, which is a woven fabric, was used. In Example 6 and Comparative Example 2, a heat generating portion main body whose knitting method was weft was used.
- Example 1 the surface of the core wire was an electrode portion formed of a silver conductive thread coated with silver.
- Example 2 to 3, 5 to 6, and Comparative Example 1 an electrode portion formed of a silver conductive thread and a silver fine particle layer was used.
- Example 4 an electrode portion formed of a silver fine particle layer was used.
- Comparative Example 2 the surface of the core wire was an electrode portion formed of a copper conductive thread coated with copper.
- a heating element in which a plastic film was laminated on one surface was used.
- Examples 1 and 2 and Comparative Examples 1 and 2 a heating element in which a plastic film was not laminated on one surface was used.
- the silver conductive thread used for the heat generating part main body and the electrode part is Sylbern ZAG (registered trademark) silver ion fiber, and the copper conductive thread is 33 copper wires of 50 microns plated with nickel.
- a conductive thread wound around a decitex aramid fiber was used.
- the average particle size of the silver fine particle layer was 1 to 5 micrometers, and no other conductive substance was blended, and a plastic resin was contained in order to give the coating film elasticity.
- the plastic film made of polyester and having a thickness of 50 ⁇ m was used. The plastic film was laminated on the heat generating portion main body and the electrode portion by laminating.
- Each heating element of Examples 1 to 6 and Comparative Example 1 used a heating element main body having a size of about 10 cm ⁇ about 20 cm, and Comparative Example 2 having a size of about 8 cm ⁇ about 13 cm.
- the heating unit main body was energized at 7 V. Divided by a line passing through the center of each side of the heat generating part body and divided into four parts with a size of about 5 cm x about 10 cm (Comparative Example 2 is about 4 cm x about 6.5 cm), the maximum temperature and the minimum temperature of each of the four parts Intermediate temperature calculated from ((maximum temperature + minimum temperature) / 2, rounded to the second digit of the decimal point), intermediate temperature of 4 parts of the heat generating part body and intermediate temperature of each intermediate temperature of 2 electrode parts, totaling 6 parts Evaluation of the difference, the difference in the intermediate temperature due to repeated use / washing, the presence / absence of energization failure due to disconnection, the temperature change in the intermediate temperature of the heat generating part body due to repeated use / washing, and the flexibility of the knee flexion part by the person in charge did.
- each of the above temperatures was measured with a FLIR C2 compact thermofluffy, and the maximum and minimum temperatures were confirmed and used for evaluation.
- the intermediate temperature of the electrode portion (+ portion and ⁇ portion, respectively) the maximum temperature and the minimum temperature of the electrode portion were measured from the thermography, and the average value of the temperatures at the above two points was taken as the intermediate temperature of the electrode portion.
- the evaluation of whether the heat generating part main body can generate heat to 40 ° C. at 7V is " ⁇ " when all the intermediate temperatures of the above four parts can generate heat to 40 ° C. when the heating unit main body is energized at 7V. (OK) was set, and the case where heat was not generated up to 40 ° C at 7 V was set as "x" (NG).
- the presence or absence of excessive heat generation was evaluated based on whether or not the difference in intermediate temperature between the four parts of the heat generating part main body and the two parts of the electrode part, a total of six parts, was within 20 ° C.
- the case where the difference between the maximum temperature and the minimum temperature among the intermediate temperatures of the six parts was within 20 ° C. was evaluated as “ ⁇ ” (OK), and the case where the difference exceeded 20 ° C. was evaluated as “x” (NG).
- the flexibility at the bent part was evaluated.
- 3 persons in charge (adults) mounted each heating element in a cylindrical knee supporter (auxiliary holder of "Knee Hoton” manufactured by Kiribai Chemical Co., Ltd.) and performed 10 bending and stretching exercises. After going around, 3 points were given when they felt flexible, 2 points were given when they felt a little flexible, and 1 point was given when they felt inflexible. The average value was calculated with the last digit of the decimal. 2.5 to 3 points were designated as " ⁇ " (OK), 1.5 to 2.4 were designated as ⁇ (No Bad), and 1.4 or less were designated as "x" (NG).
- the supporter is a support tool that supports the moving parts of humans (knees, elbows, necks, ankles, shoulders, wrists, hips, hip joints and their surroundings).
- a supporter having a structure in which a heating element can be incorporated into the movable part of the human is preferable.
- a structure formed in a cylindrical shape or a structure formed in a tubular shape by connecting the ends of at least one plane body can be adopted.
- the material of the supporter for example, power net material, soft pile material, double Russell material, single Russell material, mesh material and its combination, circular knit fabric, etc., which have elasticity and flexibility and are attached to humans. It is not particularly limited as long as it is possible to stabilize the movable part (joint part, etc.) of a human by pressing on. Further, an elastomer foam may be formed for cushioning and heat retaining effects.
- the heating elements of Examples 1 to 3 in which the method of knitting the heat generating part main body is warp knitting a good evaluation was obtained that the heat generating temperature change of the heat generating part main body due to repeated use and washing was 2 ° C. or less.
- the heating element of Example 5 which is a woven fabric and the heating element of Example 6 in which the knitting method is weft knitting the heat generation temperature change of the heat generating portion main body was evaluated to be less than 2 ° C. Therefore, by using a warp knitting method for the main body of the heat generating portion, it was possible to suppress a temperature change of the main body of the heat generating portion due to repeated use and washing.
- the conductive yarn was silver-plated yarn, and the heating elements of Examples 1 to 4, Example 6 and Comparative Example 2 of the knitted fabric were evaluated well in terms of flexibility. Further, the heating element of Example 5, which is a woven fabric, showed flexibility, although it was inferior to that of Examples 1 to 4.
- the configuration in which the heat generating portion main body 10 is formed of a warp knitted fabric is illustrated, but the configuration is not limited to this configuration, and for example, a configuration formed of a weft knitted fabric may be used. Good. Further, the heat generating portion main body 10 may be a woven fabric instead of a knitted fabric.
- the heat generating portion main body 10 is a woven fabric, either one of the yarn extending linearly in the vertical direction and the yarn extending linearly in the horizontal direction is a conductive yarn, and the above-mentioned electrode portions are provided on both ends of the conductive yarn. Just do it.
- the present invention is not limited to this configuration, and for example, it is formed of a conductive metal and is formed in a direction intersecting with the conductive thread. It may be formed of foil arranged in a row. Even when this configuration is adopted, the same actions and effects as those of the above embodiment can be obtained.
- the present invention can be applied to heating elements.
- heating element 10 ... heating part body, 30 ... electrode part, 40 ... plastic film, 71,72,73,74,75,76 ... conductive thread
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Surface Heating Bodies (AREA)
- Resistance Heating (AREA)
Abstract
本発明は、消費電力、過剰発熱および使用時のショートを抑制し、追随性にも優れた発熱体を提供することを目的とする。導電性金属で被覆された導電糸を含む織物または編物を有する発熱部本体(10)と、発熱部本体において、導電糸に沿った方向に間隔をあけて設けられ、導電性金属を有する素材を含む電極部(30)とを含む。
Description
本発明は、発熱体に関する。
本願は、2019年11月18日に、日本に出願された特願2019-208251号に基づき優先権を主張し、その内容をここに援用する。
本願は、2019年11月18日に、日本に出願された特願2019-208251号に基づき優先権を主張し、その内容をここに援用する。
面状の発熱体としては、例えば、カーボン複合繊維を使用したものが知られている。カーボン複合繊維は、電気抵抗が高く多くの電力が必要になるため、安全性が懸念される。
そこで、特許文献1には、芯線の表面が導電層(銅、銅合金、銀等)で被覆された導電糸で複数のループを連ねて形成・絡めて編み込んだ布地と電極部とを備える布ヒータが発熱体として開示されている。この発熱体における電極部は、芯線(合成繊維等)の外周に太さを替えた銅の撚糸した第1、第2電極糸で構成し、第1電極糸と第2電極糸が布地の他方面に縫い込まれている。
しかしながら、特許文献1に記載された発熱体は、電極部の導電部が銅であり布地の導電部である銀と電気抵抗が異なるため、過剰発熱や温度ムラという問題が生じる。また、過剰発熱は、ショートの発現を誘引する可能性があるため、過剰発熱を避けることが必要である。
上記の問題は、例えば、発熱体を直接皮膚と接触するサポーター等に用いた場合には、皮膚のやけど、必要な温度に到達せず機能が果たせない、等の問題につながる。
本発明は、以上のような点を考慮してなされたもので、消費電力、過剰発熱や温度ムラ、および使用時のショートを抑制し、追随性にも優れた発熱体を提供することを目的とする。
本発明の第1の態様に従えば、導電性金属で被覆された導電糸を含む織物または編物を有する発熱部本体と、前記発熱部本体において、前記導電糸に沿った方向に間隔をあけて設けられ、前記導電性金属を有する素材を含む電極部と、を含む発熱体が提供される。
また、上記本発明の一態様に係る発熱体において、前記電極部は、前記発熱部本体に前記導電性金属の微粒子が配された領域に形成されている。
また、上記本発明の一態様に係る発熱体において、前記電極部は、前記導電性金属で被覆され前記導電糸に沿った方向と交差する方向に沿って配された導電糸を含む織物または編物である。
また、上記本発明の一態様に係る発熱体において、前記電極部は、前記導電性金属で形成され前記導電糸に沿った方向と交差する方向に沿って配された箔である。
また、上記本発明の一態様に係る発熱体において、前記発熱部本体と前記電極部との少なくとも一方は前記編物を有する。
また、上記本発明の一態様に係る発熱体において、前記編物は、経編で形成されている。
また、上記本発明の一態様に係る発熱体において、前記発熱部本体の少なくとも一面には、プラスチックフィルムが積層されている。
本発明では、消費電力、過剰発熱や温度ムラ、および使用時のショートを抑制し、追随性にも優れた発熱体を提供することが可能になる。
以下、本発明の発熱体の実施の形態を、図1ないし図3を参照して説明する。
なお、以下の実施形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせている。
なお、以下の実施形態は、本発明の一態様を示すものであり、この発明を限定するものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせている。
図1は、本実施形態の発熱体を示す概略的な平面図である。図2は、図1における正面図である。
図1に示すように、発熱体1は、発熱部本体10と電極部30とプラスチックフィルム40(図1では図示せず)を備えている。発熱部本体10は、平面視略矩形状に形成されている。電極部30は、発熱部本体10の長さ方向に間隔をあけて配置されている。本実施形態の電極部30は、発熱部本体10の長さ方向の両端に間隔をあけて配置されている。
なお、以下の説明では、後述する発熱部本体の導電糸に沿った方向であり、発熱部本体10に対して電極部30が配置される方向をX方向とし、前記導電糸に沿った方向と交差する方向であり、X方向と直交する方向をY方向とし、X方向およびY方向と直交する発熱部本体10の厚さ方向をZ方向として適宜説明する。
発熱部本体10は、Y方向の中央よりも-Y側に位置する矩形部11と、矩形部11のX方向両端のそれぞれから+Y側に延出した後にX方向の中央側に屈曲しX方向に延びる屈曲部12と、屈曲部12の先端から+Y側に延出する突部13とを有している。X方向に延びる屈曲部12は、矩形部11と隙間をあけて配置されている。また、屈曲部12の先端同士および突部13同士は、隙間をあけて配置されている。
各突部13には、端子14がそれぞれ設けられている。端子14は、配線15を介して電源16に接続されている。電源16としては、直流電源と交流電源のいずれも使用することができる。直流電源を使用する場合、電源16は、DC1.5V以上、DC25V以下の電圧を出力するものを使用することができる。この場合、電源16としては、例えば、DC1.5Vの乾電池、リチウムポリマー電池、リチウム電池、固形リチウム電池を挙げることができる。また、電源16は、AC/DCアダプターによって、AC100V又はAC200Vの交流電源を、例えばDC1.5V以上、DC25V以下の直流電流に変換し、変換された直流電流を出力する定電圧装置を使用することもできる。発熱体1をサポーター等として用いる場合には、携帯性の観点から、電源16は直流電源(バッテリー)であることが好ましい。
発熱部本体の温度設定は特に規定はないが、20℃~100℃の間で設定することが望ましい。この場合の電極部の温度としては、発熱部本体の温度より低いか、発熱部本体の温度に対して20℃以下であることが望ましい。
発熱部本体の温度設定は特に規定はないが、20℃~100℃の間で設定することが望ましい。この場合の電極部の温度としては、発熱部本体の温度より低いか、発熱部本体の温度に対して20℃以下であることが望ましい。
発熱部本体10は、織物または編物で形成されている。織物は、縦方向に直線状に延びる糸と横方向に直線状に延びる糸とを直交させて織り込んで構成される。編物は、糸で複数のループを連ねて形成し、このループ同士を規則的に絡めて構成される。本実施形態の発熱部本体10としては、伸縮性の観点から編物であることが好ましい。また、本実施形態の発熱部本体10としては、伸縮が大きすぎると温度が上がり過ぎる観点から、ループがヨコ方向に進みながら編地を製作する緯編よりも、ループがタテ方向に進みながら編地を製作する経編であることが好ましい。
図3は、発熱部本体10を形成する経編の編物の一例の組織を部分的に示す図である。図3に示されるように、実線で示す糸は同一筬で供給される可染性糸61,63,65であり、実線で示す糸は他の同一筬で供給される可染性糸62,64,66であり、可染性糸61,63,65は可染性糸62,64,66と鏡面対称に編成されてネット経編地を形成する。太実線で示す糸は同一筬で供給される導電糸71,73,75であり、太破線で示す糸は他の同一の筬で供給される導電糸72,74,76であり、導電糸71,73,75は、導電糸72,74,76と共に可染性糸で編成されたネット経編地に挿入されている。
図3において、導電糸71,73,75のグループが他のグループの導電糸72,74,76と経編地中で交叉している。前述のように導電糸は表面に金属が被覆されているため、隣接する導電糸が交叉しつつX方向に沿って配置されることにより、経編地中の実質的に全ての導電糸が電気的に連結されていることになる。その結果、導電糸の一つが断線した場合でも、Y方向特定の位置で加熱されず過剰発熱や温度ムラが生じることを抑制できる。
導電糸71~76は、例えば、繊維からなる芯線と、この芯線の表面を被覆する導電層(導電物質)で構成されている。導電層としては、例えば、金、銀、銅、亜鉛、鉛、錫、アルミニウム、鉄等の金属で形成される。導電層は、用いる金属に対応して、例えば、蒸着、めっき等で形成することができる。すなわち、導電糸71~76は、鍍金糸である。導電層を形成する金属としては、コスト、生体への過敏反応、さらに電気抵抗の小ささを考慮すると銀、銅、金、鉄であることが好ましく、銀、銅であることがより好ましい。
芯線としては、例えば、ポリアミド繊維、ポリエステル繊維、ポリウレタン繊維、ナイロン繊維、アクリル繊維、ビニロン繊維、ポリエチレン繊維、ポリ塩化ビニール繊維。ポリプロピレン繊維等の各種合成繊維、アセテート繊維、ポリ乳酸繊維等の各種半合成繊維、綿、麻等の各種天然繊維、レーヨン等の各種再生繊維を用いることができる。導電糸71~76の太さは、銀鍍金糸の場合、10d~110d程度のモノフィラメント又はマルチフィラメントが用いられ、この種糸の場合の銀含有率は重量換算で10%~50%である。
電極部30は、発熱部本体10における矩形部11のX方向両端部、上記屈曲部12および突部13に形成されている。図1および図2に示されるように、電極部30は、導電性金属を有する素材として、発熱部本体10の両端部および発熱部本体10の+Z側の面10aに設けられた金属微粒子層31を有している。金属微粒子層31は、導電性の金属が発熱部本体10に配された領域に形成されている。金属微粒子層31の形成方法としては、特に限定されず、例えば、金属微粒子を含むインクを用いたスクリーン印刷、オフセット印刷、インクジェット印刷等、種々の印刷方法を選択可能である。
金属微粒子層31を形成する金属微粒子としては、導電糸71~76の導電層を形成する金属と同一金属の微粒子が選択される。本実施形態では、上述したように、コスト、生体への過敏反応を考慮して銀の微粒子が用いられている。より詳細には、微粒子は、銀の粒子径がナノメートルのオーダー(0.01~50マイクロメートル)であるナノ銀粒子である。
本実施形態で示す微粒子とは、形状などの制限はなく、動的(・静的)光散乱測定装置による測定で0.01~50マイクロメートルに平均粒子径を持つ微粒子を指す。
微粒子の平均粒径としては、0.01~50マイクロメートルが好ましく、0.5~50マイクロメートルがより好ましく、1~20マイクロメートルがさらに好ましい。
微粒子の粒径を測定方法としては、例えば、ドイツALV社製CGS-3、Anton Paar社製SAXSess mc2等が挙げられる。
微粒子の平均粒径としては、0.01~50マイクロメートルが好ましく、0.5~50マイクロメートルがより好ましく、1~20マイクロメートルがさらに好ましい。
微粒子の粒径を測定方法としては、例えば、ドイツALV社製CGS-3、Anton Paar社製SAXSess mc2等が挙げられる。
発熱部本体10上に金属微粒子層31が積層された電極部30においては、密に配置された微小な金属微粒子の集合体により線状の導電体として機能する。また、金属微粒子が導電糸に付着することにより、発熱部本体10の導電糸と金属微粒子層31とは電気的に接続されることになる。
プラスチックフィルム40は、図2に示すように、発熱部本体10の-Z側の面10bに積層されている。プラスチックフィルム40は、発熱部本体10のZ方向の両面に積層される構成であってもよい。プラスチックフィルム40としては、発熱部本体10の伸縮性を維持するために、例えば、ポリエステル、ポリウレタン、ポリオレフィン等のエラストマーで形成される。
上記構成の発熱体1は、例えば、ブランケット等の内側への装着、椅子の着座面への装着、アンダーウェアや履物への装着、あるいはサポーターの少なくとも一部、その他設備や材料、それに付随する水等の保温、等に広く用いることができる。
上記構成の発熱体1は、電源16から配線15、端子14および電極部30を介して給電されることにより、導電糸71~76に通電されて発熱部本体10が発熱する。
本実施形態の発熱体1においては、発熱部本体10における導電糸71~76の導電層を形成する金属と、電極部30(金属微粒子層31)を形成する金属とが同一金属で形成されるため、発熱部本体と電極部の電気抵抗の差が小さくなり、電極部30の過剰発熱およびショートの危険性を抑制でき安全性を高めることが可能になる。また、本実施形態の発熱体1においては、発熱部本体10と電極部30との間の電気抵抗の差が小さいため、過剰発熱や温度ムラの発生を抑制することが可能になり、そのことで繰返し使用・洗濯による汗、水、活性剤による劣化が抑えられ、長期間にわたり均一に一定温度で温めることができる。
また、本実施形態の発熱体1では、発熱部本体10と電極部30の導電部が金属であり電気抵抗が小さいため、例えば、40℃で発熱するために必要な電力が少なくなり、消費電力を抑制することができる。特に、本実施形態の発熱体1では、導電性金属として銀を用いると、より一層消費電力を抑えることができる。加えて、本実施形態の発熱体1では、電極部30として金属微粒子層31を有すると電気抵抗が小さくなるため、電極部30の過剰発熱を抑制でき、温度ムラの発生を一層抑制することが可能になる。
また、本実施形態の発熱体1では、発熱部本体10として経編の編物で形成されると、洗ったり繰り返し使用による収縮が緯編の編物である場合と比較して小さいため、収縮に伴って発熱体1の温度が上がってしまうことを抑制することができるとともに、織物での変形による温度変化も抑制できる。
さらに、本実施形態の発熱体1では、発熱部本体10の一面にプラスチックフィルム40が積層されると、発熱部本体10の伸縮性を維持しつつ、導電糸71~76および電極部30の劣化が抑制され、洗ったり繰り返し使用しても安定的に発熱する発熱体1が得られる。また。劣化に伴うショートの危険性も抑制することができる。
[実施例]
以下、実施例を示して本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更して実施することができる。
以下、実施例を示して本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更して実施することができる。
(実施例1~6、比較例1~2)
下記の[表1]に示す仕様にしたがって、実施例1~6、比較例1~2の発熱体を作製した。
具体的には、実施例1~6、比較例2については、導電糸が銀鍍金糸である発熱部本体を用いた。比較例1については導電糸がカーボン複合繊維である発熱部本体を用いた。また、実施例1~4については、編み方が経編である発熱部本体を用いた。実施例5、比較例1については、織物である発熱部本体を用いた。実施例6、比較例2については、編み方が緯編である発熱部本体を用いた。そして、実施例1については、芯線の表面が銀により被覆された銀導電糸で形成された電極部とした。実施例2~3、5~6、比較例1については、銀導電糸および銀微粒子層で形成された電極部とした。実施例4については、銀微粒子層で形成された電極部とした。比較例2については、芯線の表面が銅により被覆された銅導電糸で形成された電極部とした。実施例3~6については、一面にプラスチックフィルムを積層した発熱体とした。実施例1~2、比較例1、2については、一面にプラスチックフィルムを積層しない発熱体とした。
下記の[表1]に示す仕様にしたがって、実施例1~6、比較例1~2の発熱体を作製した。
具体的には、実施例1~6、比較例2については、導電糸が銀鍍金糸である発熱部本体を用いた。比較例1については導電糸がカーボン複合繊維である発熱部本体を用いた。また、実施例1~4については、編み方が経編である発熱部本体を用いた。実施例5、比較例1については、織物である発熱部本体を用いた。実施例6、比較例2については、編み方が緯編である発熱部本体を用いた。そして、実施例1については、芯線の表面が銀により被覆された銀導電糸で形成された電極部とした。実施例2~3、5~6、比較例1については、銀導電糸および銀微粒子層で形成された電極部とした。実施例4については、銀微粒子層で形成された電極部とした。比較例2については、芯線の表面が銅により被覆された銅導電糸で形成された電極部とした。実施例3~6については、一面にプラスチックフィルムを積層した発熱体とした。実施例1~2、比較例1、2については、一面にプラスチックフィルムを積層しない発熱体とした。
上記の発熱体において、発熱部本体および電極部に用いられる銀導電糸としては、シルベルンZAG(登録商標)銀イオン繊維、銅導電糸としては、ニッケルで鍍金した50ミクロンの銅線14本を33デシテックスのアラミド繊維に巻きつけた導電糸を用いた。銀微粒子層の平均粒径は、1~5マイクロメートルであり、他の導電物質は無配合で塗膜に伸縮性を持たせるため可塑性樹脂を含有した。プラスチックフィルムは、ポリエステル製で厚さ50μmのものを用いた。プラスチックフィルムは、ラミネート加工により発熱部本体および電極部に積層した。
[評価方法]
実施例1~6、比較例1の各発熱体は約10cm×約20cm、比較例2は約8cm×約13cmの発熱部本体を用いた。
実施例1~6、比較例1の各発熱体は約10cm×約20cm、比較例2は約8cm×約13cmの発熱部本体を用いた。
上記の各発熱体について、7Vで発熱部本体を通電させた。発熱部本体の各辺の中央を通る線で分断して約5cm×約10cm(比較例2は約4cm×約6.5cm)の大きさに4分割し、各4部位の最高温度および最低温度から算出した中間温度((最高温度+最低温度)/2、小数点2桁目を四捨五入)、発熱部本体の4部位の中間温度と2つの電極部の各中間温度の計6部位の中間温度の差、繰返し使用・洗濯による前記中間温度の差、及び断線による通電不良の有無、繰返し使用・洗濯による発熱部本体の中間温度の温度変化、担当者での膝屈曲部での柔軟性についてそれぞれ評価した。
上記の各温度は、FLIR C2コンパクトサーモフラフィーにて測定し、最高温度と最低温度をそれぞれ確認し、評価に使用した。また、電極部(+部、-部それぞれ)の中間温度は、上記サーモグラフィーから電極部の最高温度と最低温度を測定し、上記2点の温度の平均値を電極部の中間温度とした。
上記の各温度は、FLIR C2コンパクトサーモフラフィーにて測定し、最高温度と最低温度をそれぞれ確認し、評価に使用した。また、電極部(+部、-部それぞれ)の中間温度は、上記サーモグラフィーから電極部の最高温度と最低温度を測定し、上記2点の温度の平均値を電極部の中間温度とした。
7Vで発熱部本体が40℃に発熱可能であるかについての評価は、7Vで発熱部本体を通電させた場合に、上記4部位の中間温度全てが40℃に発熱可能な場合を「○」(OK)とし、7Vで40℃まで発熱しない場合を「×」(NG)とした。
発熱部本体の4部位と電極部の2部位の計6部位の中間温度の差が20℃以内かどうかから、過剰発熱の有無(温度ムラの有無)を評価した。6部位の中間温度の中の最高温度と最低温度の差が20℃以内の場合を「○」(OK)とし、差が20℃を超えた場合を「×」(NG)とした。
繰返し使用・洗濯による過剰発熱(温度ムラ)、通電不良の評価は、1時間の通電(7V)、洗濯機にて洗濯洗剤投入での洗濯、乾燥のサイクルを6回繰り返して、上記同様、計6部位の中間温度の差を評価した。6部位の中間温度の中の最高温度と最低温度の差が20℃を超えた場合を「×」(NG)、発熱本体の発熱なし(断線しているため)の場合を「△」(No Bad)とした。なお、上記発熱部本体4部位の中間温度全てが40℃に発熱しなかった比較例1の発熱体は評価しなかった。
繰返し使用・洗濯による発熱部本体の発熱温度変化の評価は、発熱部本体の各4部位について初期(6回繰返し使用・洗濯前)の中間温度と上記試験後の中間温度の差が4部位全て2℃以下の場合を「○」(OK)とし、中間温度の差が4部位のうち1部位でも2℃越えの場合を△(No Bad)とした。なお、繰返し使用・洗濯により過剰発熱が生じた比較例2と、通電不良が生じた実施例4の発熱体は評価しなかった。
屈曲した箇所での柔軟性について評価した。柔軟性の評価は、担当者3名(成人)にて円筒状の膝サポーター(桐灰化学(株)製、「ひざホットン」の補助ホルダー)内に各発熱体を装着し、屈伸運動を10回行った後に、柔軟性があると感じた場合を3点とし、柔軟性がややあると感じた場合を2点とし、柔軟性が無いと感じた場合を1点とし、3人の評価の平均値を小数下1桁で算出した。2.5~3点を「○」(OK)とし、1.5~2.4を△(No Bad)とし、1.4以下を「×」(NG)とした。
サポーターは、ヒトの可動部(膝、肘、首、足首、肩、手首、腰、股関節及びその周辺部)をサポートする支持具である。サポーターとしては、上記ヒトの可動部に発熱体を組込める構造を有するサポーターが好ましい。サポーターとしては、円筒形状に形成されている構成又は、少なくとも一つの平面体の端部をつなげて筒状に形成されている構成を採ることができる。サポーターの素材としては、例えば、パワーネット素材、ソフトパイル素材、ダブルラッセル素材、シングルラッセル素材、メッシュ素材及びその組合せ、丸編みニット生地等、伸縮性及び柔軟性を有しヒトに装着されたときに圧迫してヒトの可動部(関節部等)を安定させることが可能であれば特に限定されない。またクッション性、保温効果のためエラストマー発泡体が構成されても良い。
[表1]に示されるように、発熱部本体の導電糸と電極部の導電層が同一金属である実施例1~6の発熱体では、発熱部本体が40℃で発熱するための電力、および発熱部本体と電極部との発熱温度の差で良好な評価が得られた。すなわち、実施例1~6の発熱体では、消費電力および過剰発熱、温度ムラが抑制できる結果が得られた。また、発熱部本体の導電糸と電極部の導電層が同一金属である実施例1~6の発熱体では、電気抵抗の差が小さくなることから過剰発熱及び使用時のショートを抑制できることを推定できる。
これに対して、発熱部本体の導電糸と電極部の導電層が異なる金属である比較例1の発熱体では、発熱部本体が40℃で発熱するための電力で良好な評価が得られず、また比較例2では過剰発熱(温度ムラ)で良好な評価が得られなかった。そのため、導電糸の導電層と電極部の導電層が異なる金属である場合は、消費電力および過剰発熱(温度ムラ)の少なくとも一方が抑制できない結果が得られた。
また、電極部が銀導電糸および銀微粒子層で形成された実施例1~3、5~6の発熱体では、繰返し使用・洗濯による電極部の過剰発熱および通電不良に関して良好な評価が得られた。
また、発熱部本体の編み方が経編である実施例1~3の発熱体では、繰返し使用・洗濯による発熱部本体の発熱温度変化が2℃以下の良好な評価が得られた。一方、織物である実施例5の発熱体、および編み方が緯編である実施例6の発熱体では、発熱部本体の発熱温度変化が2℃以下には収まらない評価となった。従って、発熱部本体の編み方を経編とすることにより、繰返し使用・洗濯による発熱部本体の温度変化を抑制することができた。
また、導電糸が銀鍍金糸であり編物の実施例1~4、実施例6、比較例2の発熱体では、柔軟性に関して良好な評価が得られた。また、織物である実施例5の発熱体では、実施例1~4よりは劣るものの、柔軟性を示した。
以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記実施形態では、発熱部本体10が経編の編物で形成されている構成を例示したが、この構成に限定されず、例えば、緯編の編物で形成されている構成であってもよい。また、発熱部本体10が編物ではなく、織物である構成であってもよい。発熱部本体10が織物の場合は、縦方向に直線状に延びる糸と横方向に直線状に延びる糸のいずれか一方を導電糸とし、当該導電糸の両端側に上述した電極部を設ければよい。
また、上記実施形態では、電極部が導電糸と金属微粒子層の少なくとも一方を有する構成を例示したが、この構成に限定されず、例えば、導電性金属で形成され導電糸と交差する方向に沿って配された箔で形成してもよい。この構成を採った場合でも上記実施形態と同様の作用・効果が得られる。
本発明は、発熱体に適用できる。
1…発熱体、 10…発熱部本体、 30…電極部、 40…プラスチックフィルム、 71,72,73,74,75,76…導電糸
Claims (7)
- 導電性金属で被覆された導電糸を含む織物または編物を有する発熱部本体と、
前記発熱部本体において、前記導電糸に沿った方向に間隔をあけて設けられ、前記導電性金属を有する素材を含む電極部と、
を含むことを特徴とする発熱体。 - 前記電極部は、前記発熱部本体に前記導電性金属の微粒子が配された領域に形成されている、
請求項1に記載の発熱体。 - 前記電極部は、前記導電性金属で被覆され前記導電糸に沿った方向と交差する方向に沿って配された導電糸を含む織物または編物である、
請求項1に記載の発熱体。 - 前記電極部は、前記導電性金属で形成され前記導電糸に沿った方向と交差する方向に沿って配された箔である、
請求項1に記載の発熱体。 - 前記発熱部本体と前記電極部との少なくとも一方は前記編物を有する、
請求項1から4のいずれか一項に記載の発熱体。 - 前記編物は、経編で形成されている、
請求項5に記載の発熱体。 - 前記発熱部本体の少なくとも一面には、プラスチックフィルムが積層されている、
請求項1から6のいずれか一項に記載の発熱体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227010774A KR20220101074A (ko) | 2019-11-18 | 2020-11-10 | 발열체 |
CN202080073314.8A CN114651526A (zh) | 2019-11-18 | 2020-11-10 | 发热体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-208251 | 2019-11-18 | ||
JP2019208251A JP2021082456A (ja) | 2019-11-18 | 2019-11-18 | 発熱体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021100532A1 true WO2021100532A1 (ja) | 2021-05-27 |
Family
ID=75965867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/041797 WO2021100532A1 (ja) | 2019-11-18 | 2020-11-10 | 発熱体 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP2021082456A (ja) |
KR (1) | KR20220101074A (ja) |
CN (1) | CN114651526A (ja) |
TW (1) | TW202123768A (ja) |
WO (1) | WO2021100532A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623862U (ja) * | 1992-03-14 | 1994-03-29 | 株式会社原田産業 | 車両用直立面ヒータ |
JPH11283731A (ja) * | 1998-03-27 | 1999-10-15 | Unitika Glass Fiber Kk | 発熱織布 |
JP2000106268A (ja) * | 1998-09-29 | 2000-04-11 | Kotobuki Kogyo Kk | シート状ヒータの製造法 |
WO2013085051A1 (ja) * | 2011-12-09 | 2013-06-13 | 株式会社三機コンシス | 布ヒータ |
JP2017027670A (ja) * | 2015-07-16 | 2017-02-02 | 茶久染色株式会社 | 面状発熱体 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120096451A (ko) * | 2012-08-12 | 2012-08-30 | 박상구 | 도전성 실리콘고무 발열체의 제조방법 |
KR101585393B1 (ko) * | 2015-03-18 | 2016-01-14 | 주식회사 유니웜 | 부착식 전극을 이용한 카본사 면상발열체의 전극 형성방법 |
JP2019175671A (ja) * | 2018-03-28 | 2019-10-10 | セーレン株式会社 | 面状発熱体 |
-
2019
- 2019-11-18 JP JP2019208251A patent/JP2021082456A/ja active Pending
-
2020
- 2020-11-10 WO PCT/JP2020/041797 patent/WO2021100532A1/ja active Application Filing
- 2020-11-10 CN CN202080073314.8A patent/CN114651526A/zh active Pending
- 2020-11-10 KR KR1020227010774A patent/KR20220101074A/ko unknown
- 2020-11-12 TW TW109139578A patent/TW202123768A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0623862U (ja) * | 1992-03-14 | 1994-03-29 | 株式会社原田産業 | 車両用直立面ヒータ |
JPH11283731A (ja) * | 1998-03-27 | 1999-10-15 | Unitika Glass Fiber Kk | 発熱織布 |
JP2000106268A (ja) * | 1998-09-29 | 2000-04-11 | Kotobuki Kogyo Kk | シート状ヒータの製造法 |
WO2013085051A1 (ja) * | 2011-12-09 | 2013-06-13 | 株式会社三機コンシス | 布ヒータ |
JP2017027670A (ja) * | 2015-07-16 | 2017-02-02 | 茶久染色株式会社 | 面状発熱体 |
Also Published As
Publication number | Publication date |
---|---|
JP2021082456A (ja) | 2021-05-27 |
KR20220101074A (ko) | 2022-07-19 |
CN114651526A (zh) | 2022-06-21 |
TW202123768A (zh) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2790464B1 (en) | Cloth heater | |
TW535453B (en) | Electric heating/warming fabric articles | |
EP1339259A1 (en) | Electric heating fabric | |
US20110047957A1 (en) | Conductive yarn and cloth containing the same | |
US2327756A (en) | Electrically conductive fabric | |
JP2015156343A (ja) | 面状発熱体 | |
US11248316B2 (en) | Electromagnetic shielding fabric and yarn for its manufacture | |
US7759264B2 (en) | Textile sheet, method for manufacturing same, and use | |
CN109661049A (zh) | 一种有源柔性发热体及其制备方法和应用 | |
WO2021100532A1 (ja) | 発熱体 | |
JP6085162B2 (ja) | 平型絶縁被覆通電体 | |
KR20190002113U (ko) | 금속나노와이어 코팅 발열시트 전극구조 | |
CN211199873U (zh) | 一种高韧性抗拉针织布 | |
JP4705449B2 (ja) | 帯電抑制織物 | |
JP5845038B2 (ja) | 面状発熱体 | |
KR102032042B1 (ko) | 내구성이 우수한 발열직물 | |
TWM458829U (zh) | 穿戴式直流電暖裝置 | |
KR20130126556A (ko) | 발열사 및 이를 이용한 방한용 패드 및 이에 적용되는 발열사 접속 기판 | |
IT201800010666A1 (it) | Coprimaterasso termico o coperta termica | |
CN211090009U (zh) | 一种弹力石墨烯加热片 | |
JPH0860487A (ja) | 電導性織物 | |
KR102116632B1 (ko) | 발열기능을 구현하는 도전성원단에 양극 도전체로 구성된 면상발열체 | |
RU2074524C1 (ru) | Гибкий электронагреватель | |
JP3215634U (ja) | 導電性ストレッチテープ | |
EP0563919A1 (en) | Electrically conducting set of fibers in sheet form |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20889545 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20889545 Country of ref document: EP Kind code of ref document: A1 |