WO2017010234A1 - 電気抵抗の不変特性を備えた導電性伸縮編地 - Google Patents

電気抵抗の不変特性を備えた導電性伸縮編地 Download PDF

Info

Publication number
WO2017010234A1
WO2017010234A1 PCT/JP2016/068181 JP2016068181W WO2017010234A1 WO 2017010234 A1 WO2017010234 A1 WO 2017010234A1 JP 2016068181 W JP2016068181 W JP 2016068181W WO 2017010234 A1 WO2017010234 A1 WO 2017010234A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
yarn
knitted fabric
knitting
knitted
Prior art date
Application number
PCT/JP2016/068181
Other languages
English (en)
French (fr)
Inventor
耕右 上田
孝 丸岡
佐藤 彰洋
博登 深田
真人 飯田
Original Assignee
グンゼ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015141427A external-priority patent/JP6657525B2/ja
Priority claimed from JP2015141428A external-priority patent/JP6657526B2/ja
Application filed by グンゼ株式会社 filed Critical グンゼ株式会社
Publication of WO2017010234A1 publication Critical patent/WO2017010234A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/14Other fabrics or articles characterised primarily by the use of particular thread materials

Definitions

  • the present invention is a knitted fabric that is rich in elasticity and flexibility and has a resilience when it is repeatedly stretched, but has a property that there is no change or suppression of electrical resistance between stretched and non-stretched.
  • the present invention relates to a conductive stretchable knitted fabric.
  • the present invention also relates to a conductive knitted fabric that can be suitably used as an electrode.
  • Patent Document 1 a sheet that has been knitted or woven by alternately arranging conductive parts and non-conductive parts has been proposed.
  • this sheet one of the options is to knitting or weaving the conductive portion using a metal thread such as gold, silver, or copper. Further, it has been assumed that conductive yarn is used for warp during weaving.
  • Patent Document 2 a fabric in which stretchable transmission lines configured to suppress disconnection and damage to the base fabric even when the fabric is repeatedly stretched.
  • an elastic garment used when collecting data such as an electrocardiogram or an electromyogram, or performing electrical treatment or electromagnetic wave treatment on a subject has been proposed (see Patent Document 3).
  • the conductive fiber is knitted into the elastic fabric by float knitting, so that the exposed amount of the conductive fiber on the back surface side (the side in contact with the subject's skin surface) is larger than the exposed amount on the front surface side.
  • the float knitting is a knitting structure in which a floating yarn is exposed to the back surface side at a predetermined pitch along the course direction, and a loop that is exposed to the front surface side is interposed between the floating yarn and the floating yarn.
  • Cut boss knitting is the process of knitting the main body of the knitted fabric.
  • the conductive fiber is threaded and knitting in the course direction is started, and the end of the float knitting on the same course.
  • the conductive fiber is removed, and the yarn is trimmed immediately, and this is repeated over the predetermined course in the same place in the wale direction (direction perpendicular to the course direction on the knitted ground). .
  • the yarn end of the conductive fiber inevitably extends in a floating state at two positions of the start position and the end position (both ends in the course direction) and remains as a free end. Become.
  • the yarn ends in such a floating state form a row in the wale direction, and form a knitted fabric end in which the volume is increased in thickness when viewed as the entire woven region of the conductive fibers.
  • JP 2000-221 A JP 2012-177210 A Japanese Patent No. 4609923
  • the conductive fibers have to be knitted by cut boss knitting, so that the floating yarn ends are arranged at the start and end positions in the conductive fiber knitting region.
  • the end of the knitted fabric is formed.
  • the edge of the knitted fabric touches the skin surface, it leads to a sense of incongruity such as itching and pain.
  • it is the hard conductive fibers that form the knitted fabric edge that further accelerates the deterioration of comfort.
  • the present invention is a knitted fabric that is rich in stretchability and flexibility and has resilience when repeated stretching in order to cope with the above-mentioned circumstances found in Patent Documents 1 and 2, etc. It is a first object of the present invention to provide a conductive stretchable knitted fabric having a characteristic that there is no or no change in electrical resistance when not stretched. Further, in order to cope with the above-mentioned circumstances found in Patent Document 3 and the like, the knitted fabric end having a thick volume added to the outer periphery of the knitted fabric due to the floating yarn end in the knitted fabric having conductivity.
  • An electrically conductive knitted fabric that can be applied to electrodes and can be freely selected without being restricted in the area and size to be formed, as well as preventing the occurrence of The second purpose is to provide it.
  • the conductive stretchable knitted fabric having the electric resistance invariant property according to the present invention is a knitted fabric knitted by mixing conductive yarn and elastic yarn, and proceeds while forming a loop in the knitted structure.
  • the direction is defined as the course direction or course
  • the direction perpendicular to the course direction on the knitted ground is defined as the wale direction or wale
  • the conductive yarn loops aligned in the course direction are between two courses adjacent in the wale direction.
  • it is characterized by having a knitted structure that appears on the front and back stitches periodically or randomly while forming two or more conductive contact portions per loop.
  • the cover factor of the conductive yarn in the course direction is preferably 0.15 or more.
  • Means employed by the present invention to achieve the second object are as follows. That is, the conductive knitted fabric capable of handling an electrode according to the present invention has a conductive portion knitted with conductive yarn mixed with at least one of a heat fusion material or a heat fusion material, and the conductive portion Is characterized in that the crossing portions of the conductive yarns are bonded by thermal fusion using the thermal fusion material or fusion by the thermal fusion material.
  • the conductive portion may be provided in a limited area with respect to a knitted fabric body knitted with non-conductive ground yarn.
  • the conductive portion is knitted on one side or both sides of the knitted fabric main body by cut boss knitting, and the outer peripheral portion of the conductive portion is subjected to fraying prevention treatment by the heat fusion material or the heat fusion material. Can be.
  • the conductive part forms a good contact surface formed by raising the conductive yarn in a thickness direction on one side of the knitted fabric body in excess of the knitted structure height of the ground yarn, and the good contact surface. And a current collecting surface knitted in correspondence with the well-conducting contact surface by a conductive yarn different from the conductive yarn.
  • the conductive stretch knitted fabric having the invariable property of electrical resistance according to the present invention is rich in stretchability and flexibility and also has resilience when it is repeatedly stretched. Therefore, it has a characteristic that the change in electrical resistance is completely eliminated or suppressed.
  • the conductive knitted fabric that can handle the electrodes according to the present invention it is possible that a knitted fabric end having increased thick volume due to the floating yarn end is generated at the outer periphery of the knitted fabric in the conductive knitted fabric. In addition to preventing the deterioration of the touch, it is possible to select freely without limiting the area and size to be formed.
  • FIG. 1 is a knitting structure diagram showing an embodiment of a conductive stretchable knitted fabric having an invariable property of electrical resistance according to the present invention (this embodiment is hereinafter referred to as “first embodiment”). It is the top view which showed the usage example of the electroconductive elastic stretch knitted fabric provided with the invariable characteristic of the electrical resistance which concerns on this invention.
  • 1 is a perspective view showing an embodiment of a conductive knitted fabric capable of handling electrodes according to the present invention (this embodiment is hereinafter referred to as “second embodiment”).
  • FIG. 4 is a cross-sectional structure diagram schematically showing a line AA in FIG. 3.
  • FIG. 1 shows a knitted structure of a conductive stretchable knitted fabric 1 (hereinafter referred to as “the knitted fabric 1 of the present invention”) having an invariable property of electrical resistance according to the present invention.
  • the conductive stretch knitted fabric 1 can be used as one of the components when manufacturing a wiring harness 2 as shown in FIG. 2, for example.
  • the harness 2 shown in FIG. 2 is formed in a flat and slender band shape and has two conductive surfaces parallel to each other along the longitudinal direction of the band. These two conductive surfaces are formed by the knitted fabric 1 of the present invention.
  • the knitted fabric 1 of the present invention is formed in a strip-like shape and exposed on the front and back surfaces of the harness 2, and the two knitted fabrics 1, 1 are mutually short-circuited. It is assumed that a non-conductive portion 3 is provided to prevent this.
  • a non-conductive portion 4 is also provided outside the band width direction with respect to the knitted fabrics 1 and 1 of the present invention, and when the side edge of the harness 2 comes into contact with another object, Countermeasures are taken to prevent electrical leakage.
  • the non-conductive portions 3 and 4 are all composed as a knitted fabric, and are formed in a state of being exposed on the front and back surfaces of the harness 2 as in the knitted fabric 1 of the present invention.
  • the knitted fabric 1 of the present invention may be provided with three or more in the band width direction of the harness 2 so that they are separated by the non-conductive portion 3, or one in the band width direction of the harness 2. You may provide only. Further, the non-conductive portion 4 may be provided only on one side of the knitted fabric 1 of the present invention or may not be provided.
  • the knitted fabric 1 of the present invention can be formed in a line shape instead of a band shape, or can be formed as a wide one that forms all of the band width direction and the band longitudinal direction of the harness 2 (these elements). Will be described later).
  • the arrangement and number of the knitted fabric 1 of the present invention are not limited at all.
  • the harness 2 itself is not limited to being formed in the form of a strap, but can be formed in a square such as a square or a rectangle.
  • the knitted fabric 1 (two conductive surfaces) of the present invention naturally has a conduction characteristic with low electrical resistance at both ends in the longitudinal direction of the belt.
  • the belt surface and / or the back surface of the belt has a conduction characteristic with low electrical resistance. Therefore, it may be used such that the magnitude of the electrical resistance is set according to the distance between the two points conducted in the longitudinal direction of the belt of the knitted fabric 1 of the present invention, or the length according to the electrical resistance is set on the contrary. . In some cases, it is possible to use a change in electrical resistance by utilizing the relationship between electrical resistance and length.
  • this harness 2 has abundant stretchability along the longitudinal direction of the belt, and the warp and bend in the front and back direction, with the knitted fabric 1 of the present invention and the non-conductive portions 3 and 4 integrated. It has abundant flexibility that can flexibly bend to the left and right along the surface direction, and even torsion. And when the harness 2 is expanded and contracted in the longitudinal direction of the belt in this way, when it is warped in the front and back direction or bent along the surface direction, and further when these expansion and contraction, warping, and bending are repeated many times. Even so, the electrical resistance has the property of being held in an invariable state.
  • low electrical resistance means that the voltage drop when a current flows is a resistance value that does not affect the function.
  • Specific resistance values vary depending on the application and use conditions. For example, for power supply, it is preferably 10 ⁇ / m or less, more preferably 1 ⁇ / m or less, and further preferably 0.1 ⁇ / m or less. However, the allowable range varies depending on the wiring length and supply current. In general, compared to power supply, signal current is generally low in current, so it can be tolerated to a higher resistance value.
  • “stretchability” refers to non-extension (normal state) This is a characteristic that has both the extension of the image and the immediate restoration by releasing from the extended state.
  • the stretchability of the knitted fabric 1 of the present invention and the non-conductive portions 3 and 4 is arbitrary, but it is desirable to have the same stretchability. By doing so, wrinkles and undulations can be made inconspicuous.
  • the stretchability can be regulated so that the conductive yarn is not damaged during elongation.
  • the degree of elongation (extension) from the non-stretched state is determined by the material and thickness of the material used for knitting (yarn), whether or not the knitting material is mixed, and how it is mixed (covering, plating, and assortment). Etc.), various factors such as the number of mixed use, the knitting structure, the band width and the band length as the harness 2, and the like can be dealt with by appropriately changing them according to a desired place.
  • “Elongation-restore repetition number” can be counted by a repeated tensile fatigue test using a dematcher type repeated fatigue tester.
  • a rectangular specimen having a long side in the course direction is used as the test piece as the harness 2.
  • the dimension of the test piece is 10 cm long and 1.5 cm short.
  • 40th cotton yarn is used for each of the non-conductive portions 3 and 4 that are arranged so as to sandwich the both sides of the conductive portion (knitted fabric 1 of the present invention). Consideration was given not to give (disturbance).
  • Such a harness 2 can be manufactured by adopting, for example, a method described in JP-A-11-279937 (a method of taking out tape fabric from a tubular fabric). That is, when performing knitting of a cylindrical fabric using a circular knitting machine, the non-conductive portion 4 on the outer side in the band width direction, the knitted fabric 1 of the present invention, the non-conductive portion 3 in the center of the band width direction, the knitted fabric 1 of the present invention, Knitting is performed by knitting a total of five sections of the non-conductive portion 4 on the outer side in the width direction simultaneously from a plurality of yarn feeders, and a piece of seam that melts with heat, water, solvent, etc. is placed between the pieces, and knitting
  • This is a method in which the harness 2 is taken out while being spirally separated by performing a process of melting this tether from the tubular fabric obtained later.
  • the conductive yarn 10 and the elastic yarn 11 are mixedly used as shown in FIG. As long as the conductive yarn 10 and the elastic yarn 11 are included, it is optional to mix other types of yarn.
  • the conductive yarn 10 and the elastic yarn 11 are mixedly used as shown in FIG. As long as the conductive yarn 10 and the elastic yarn 11 are included, it is optional to mix other types of yarn.
  • the knitting structure that can be adopted in the knitted fabric 1 of the present invention may be a knitting structure in which the loops of the conductive yarns 10 arranged in the course direction appear on the front and back.
  • two or more conductive contact portions 13 (the conductive yarns 10 are in contact with each other in a crossing manner) per loop of the conductive yarn 10 between two courses adjacent in the wale direction. A portion that is electrically short-circuited) is formed.
  • the direction in which the knitting structure advances while forming a loop is defined as “course” or “course direction”, and the direction perpendicular to the course direction on the knitting ground is defined as “wale” or “wale direction”. It is defined as That is, the course and the course direction mean the same direction, and the wale and the wale direction mean the same direction so as not to cause confusion in explanation.
  • the “number of courses” is the number of courses arranged in the direction of the wale
  • the “number of wales” is the number of wales arranged in the direction of the course.
  • the knitting structure illustrated in FIG. 1 is a rubber knitting (1 ⁇ 1). Therefore, the loops of the conductive yarns 10 arranged in the course direction appear alternately on the front and back stitches, and the knitted fabric 1 of the present invention exhibits substantially the same knitting structure on both the front and back stitches. .
  • the present invention is not limited to rubber. In other words, the pattern in which the loop of the conductive yarn 10 appears between the front and back stitches may be periodic in the course direction or random.
  • plating is used as a means for mixing the conductive yarn 10 and the elastic yarn 11. Therefore, the conductive yarn 10 and the elastic yarn 11 come close to each other to form a loop, and the loop formed mainly by the conductive yarn 10 appears on one side of the front or back surface, and the front or back surface On the other side, a loop formed mainly by the elastic yarn 11 appears.
  • the knitted fabric 1 of the present invention is one in which one surface is mainly formed of the conductive yarn 10 and the other surface is mainly formed of the elastic yarn 11 while the front and back stitches are substantially the same knitting structure.
  • the one surface is entirely formed of the conductive yarn 10 and the other surface is entirely formed of the elastic yarn 11, and there is a correlation between the surface and the formed yarn. It is not limited. That is, it does not mean that conduction cannot be obtained mainly on the surface where the elastic yarn 11 appears.
  • connection terminal for conduction of the type in which the knitted fabric 1 of the present invention is pierced in the thickness direction even if the surface on which the elastic yarn 11 appears is difficult to obtain conduction, the conduction can be obtained. I can.
  • the conductive contact portion 13 formed by contacting the conductive yarns 10 in an intersecting manner is coupled with the elastic yarn 11 as an adhesive element.
  • the conductive contact portion 13 is in the same state as that in which the loops of the conductive yarns 10 adjacent in the wale direction are fixed by soldering or the like at the intersecting positions thereof. Therefore, no matter what shape the loop of the conductive yarn 10 is deformed by extending or contracting the knitted fabric 1 of the present invention in the course direction, the yarn spent by the conductive yarn 10 to form the loop. The amount is unchanged.
  • the loops of the conductive yarns 10 are formed as a structure that appears on the front and on the back, the loops of the conductive yarns 10 adjacent in the course direction are in contact with each other when the knitted fabric 1 of the present invention is stretched. There is nothing. That is, since the conductive contact portion 13 does not increase or decrease, the electrical resistance in the course direction of the conductive yarn 10 remains unchanged. Needless to say, the larger the number of conductive contact portions 13 formed, the more reliable the electrical conductivity and the lower the electrical resistance.
  • the conductive contact portion 13 As a method for forming the conductive contact portion 13 (a bonding method using the elastic yarn 11), it is preferable to perform heat fusion or bonding by performing a heat setting process. It is preferable to use a material (for example, polyurethane or polyester) having heat adhesion. Polyurethane can also be said to be a suitable material for obtaining abundant stretchability. At the time of this heat setting process, it is important to position the knitted fabric so that the loops of the conductive yarns 10 adjacent in the course direction are not in contact with each other, and then heat treatment is performed, so that the above-described electrical resistance characteristics are stable. Will be obtained.
  • a material for example, polyurethane or polyester
  • the contact position between the conductive yarns 10 but also the contact position between the conductive yarns 10 and the elastic yarns 11 and the contact position between the elastic yarns 11 are heated by the heat setting process performed for joining the conductive contact portions 13. It may be fused. Further, the heat setting process may be performed until the entire length of the conductive yarn 10 is covered with the elastic yarn 11. (Naturally, the knitted fabric 1 in this case is between the both ends in the longitudinal direction of the band or between both ends of the cutting position. This is the specification for obtaining continuity).
  • the conductive contact portion 13 is positioned (arranged) with respect to the loop of the conductive yarn 10 in order to have the property of having a low electrical resistance and abundant elasticity and flexibility. Relationship), the positioning of the conductive contact portion 13 and the loop of the elastic yarn 11 (arrangement relationship), the wire diameter of the yarn used, the number of filaments, conductivity, and the like are important. In other words, the expansion / contraction operation relationship in the course direction between the loop of the conductive yarn 10 that is positionally restrained in the wale direction by the conductive contact portion 13 and the loop of the elastic yarn 11 that snuggles up to the loop of the conductive yarn 10. It is no exaggeration to say that the stretchability and flexibility of the yarn material itself used dominate the degree of stretchability and flexibility of the knitted fabric 1 of the present invention.
  • the knitted fabric 1 of the present invention has an action of causing the non-stretchable conductive yarn 10 to be bundled (folded) by being attached to the elastic yarn 11 that is intended to shrink the loop shape to a small size when not stretched (normal state). This is because, when stretched, the loop shape is attached to the elastic yarn 11 stretched in the course direction to cause the non-stretchable conductive yarn 10 to swell greatly (elongate the folded shape).
  • the conductive contact portion 13 is continuously distributed in the wale direction and the course direction, so that the conductive portion is planar. This spreads out and forms a conductive surface.
  • CF cover factor
  • the conductive yarn 10 preferably has a wire diameter of 10 to 120 ⁇ m.
  • the conductive yarn 10 can be subjected to a surface treatment on a resin fiber or a metal wire by wet or dry coating or plating, or an organic or inorganic thin film can be formed by vacuum film formation.
  • the conductive yarn 10 may be made by covering a resin fiber (such as a fluororesin).
  • the conductive yarn 10 includes, for example, pure metals such as aluminum, nickel, copper, titanium, magnesium, tin, zinc, iron, silver, gold, platinum, vanadium, molybdenum, tungsten, cobalt, and alloys thereof, stainless steel, brass It is also possible to use a metal wire formed by, for example. As described above, the metal wire is not particularly limited as to whether it is easily plastically deformed or whether it has a significant elastic restoring force (spring property).
  • the elastic yarn 11 may be a polyurethane or rubber-based elastomer material, or a covering yarn using polyurethane or elastomer material for the “core” and nylon or polyester for the “cover”. Note that it is recommended that the elastic yarn 11 be selected of a material so that the elastic yarn 11 does not extend beyond the elongation that is the limit of the tensile strength of the conductive yarn 10 (for the purpose of limiting the elongation of the conductive yarn 10). When a covering yarn is employed as the elastic yarn 11, it is possible to select a material so that the “cover” has a function of limiting the elongation of the conductive yarn 10.
  • the selection of the material for the elastic yarn 11 itself or “cover” may be performed for the purpose of adapting to the expansion and contraction behavior required for the knitted fabric 1 of the present invention. Further, for the purpose of limiting the elongation (load) of the conductive yarn 10, it may be controlled by the non-conductive portions 3 and 4.
  • the knitted fabric 1 of the present invention is a knitted fabric that is rich in stretchability and flexibility and also has a resilience when it is repeatedly stretched. And has the characteristic that no change in electrical resistance is present or suppressed. For this reason, in the case of wiring between a plurality of substrates, the wiring route has a complicated curve due to the arrangement of each substrate, or the wiring length and wiring route are not determined until the wiring stage. Also, when the substrates move after wiring, they can be used as suitable wiring members.
  • Example 1 The conductive yarn 10 uses one 78 dtex silver-plated fiber, the elastic yarn 11 uses 110 dtex polyurethane yarn, the length of the conductive yarn 10 is 363 cm, and a 5 mm width tape is knitted by milling (rubber knitting). did.
  • Example 2 A single 78 dtex silver-plated fiber was used for the conductive yarn 10, a 110 dtex polyurethane yarn was used for the elastic yarn 11, and the length of the conductive yarn 10 was 424 cm.
  • Example 3 A single 78 dtex silver-plated fiber was used for the conductive yarn 10, a 110 dtex polyurethane yarn was used for the elastic yarn 11, and the length of the conductive yarn 10 was 482 cm.
  • Example 4 A single 78 dtex silver-plated fiber is used for the conductive yarn 10, a 110 dtex polyurethane yarn is used for the elastic yarn 11, and the length of the conductive yarn 10 is 197 cm. did.
  • Example 5 Two 78 dtex silver-plated fibers were used for the conductive yarn 10, 110 dtex polyurethane yarn was used for the elastic yarn 11, and the length of the conductive yarn 10 was 198 cm, and a single tape having a width of 5 mm was knitted.
  • a single 33 dtex silver-plated fiber was used for the conductive yarn 10, a polyurethane yarn of 110 dtex was used for the elastic yarn 11, and the length of the conductive yarn 10 was 482 cm.
  • the electrical resistance at the time of elongation was measured in a range (60% elongation) in which a state in which the loops of the conductive yarns 10 adjacent in the course direction were not in contact with each other was obtained.
  • Table 1 in Examples 1 to 5 of the knitted fabric 1 of the present invention, the electric resistance value was hardly displaced between the non-stretched state and the stretched state, whereas in the comparative example, a large displacement was observed. was recognized.
  • a plurality of wrinkles such as holes were found due to the thin silver-plated fibers used.
  • the knitted fabric 1 of the present invention is not limited to be knitted as a cylindrical fabric, but may be knitted with a single sheet (non-cylindrical sheet shape) or a laminated structure in which a plurality of sheets are stacked. Also good. Therefore, knitting can be performed by a general-purpose knitting machine such as a circular knitting machine, a warp knitting machine, or a flat knitting machine.
  • the knitted fabric 1 of the present invention has many fields of use such as for clothing (as a wearable material) in addition to the above-mentioned power supply, signal, and medical use.
  • it is necessary to provide at least two courses with the conductive yarns 10 adjacent in the wale direction, but there is no limitation on how much the number of courses is increased. Therefore, the knitted fabric 1 of the present invention can be formed in a linear shape or a wide band shape. Therefore, as the harness 2 as shown in FIG. 2, all of the band width direction and the band longitudinal direction can be formed as the knitted fabric 1 of the present invention.
  • the knitted fabric 1 of the present invention can be formed as a square such as a square or a rectangle.
  • the elastic yarn 11 is heat-set as an adhesive element, so that the entire knitted fabric is in a “cut” state (can be cut off at an arbitrary position, there is no fraying at the cutting position, etc. (No post-processing is required). Therefore, since it can be freely cut out to an arbitrary band width, wiring work can be performed very easily and as a work with a high degree of freedom, for example, in the actual wiring.
  • FIG. 3 to 6 show an embodiment (second embodiment) of a conductive knitted fabric 100 that can handle electrodes according to the present invention.
  • the conductive knitted fabric 100 has a conductive portion 103 knitted with conductive yarn as a main portion.
  • the conductive portion 103 is knitted in a limited area with respect to the knitted fabric body 102.
  • the knitted fabric main body 102 is formed in a cylindrical shape as shown in FIG. 3, for example.
  • the cylinder shape (straight type, taper type, bowl shape, etc.) and the cylinder diameter can be changed according to the mounting location.
  • it may be a clothing shape (such as a shirt shape or a trouser shape), or may be a belt shape that can be attached by winding.
  • the conductive portion 103 is also arranged as a rectangular region and at two locations. However, the region shape, size, number of arrangements, and the like can be appropriately changed according to the mounting location and the number of necessary contacts. Needless to say.
  • the conductive part 103 will be described. As described above, in the second embodiment, since the conductive portion 103 is knitted in a limited area with respect to the knitted fabric main body 102, the outer peripheral portion of the conductive portion 103 faces the knitted fabric main body 102. It exists as a side part that forms a boundary. A fraying prevention process using a heat sealing material or a heat bonding material is performed on the side portion.
  • the fraying prevention process is a process of fixing a portion where the conductive yarn used for forming the conductive portion 103 intersects in the knitted structure, and the yarn end of the conductive yarn is floated by applying this fraying prevention treatment. Preventing it from becoming a state. That is, since the fraying prevention process is performed, the conductive portion 103 is formed in one piece (substantially flat state) in conformity with the knitted fabric body 102 without the side portion of the outer peripheral portion being lifted strangely. .
  • the side portion of the conductive portion 103 is different from the conventional elastic clothing (Patent Document 3), “the yarn ends of the conductive fibers extending in a floating state at both ends in the course direction are in the wale direction. By forming a row, it can be said that the knitted fabric edge where the volume is increased in thickness is not generated.
  • the fraying prevention method is performed by mixing at least one of a heat fusion material or a heat fusion material with the conductive yarn used to form the conductive portion 103, and then knitting the conductive portion 103, followed by heat setting after knitting. The procedure is to perform.
  • the difference between the heat-sealing material and the heat-sealing material may be distinguished by the strength of the bonding force generated by cooling from the semi-molten state.
  • a material having a weaker binding force (fusing) than that is a heat fusing material.
  • any material can be used as long as it can bond the intersecting portions of the conductive yarns 110 by heat setting. Accordingly, a material that has excellent stretchability (elasticity), is heat-sealed by heating, and retains high stretchability (elasticity) without losing stretchability (elasticity) at the heat-sealed portion. be able to.
  • a low melting point polyurethane can be given as a representative example of the heat-sealing material or the heat-sealing material.
  • Low melting point polyurethane is an optimal example.
  • condensation polymers such as polyethylene, nylon 6, nylon 66, polypropylene, polyvinyl chloride, vinyl polymers, and polyamides can be used.
  • Further specific examples include low melting point polyamide fiber yarns, low melting point polyester fiber yarns (low melting point polyester copolymer fiber yarns, low melting point aliphatic polyester fiber yarns) and the like. Of these, low melting point polyester fiber yarns are preferred.
  • Preferred copolymer components of the low melting point polyester copolymer constituting the low melting point polyester copolymer fiber yarn include glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, and 6-hydroxycaproic acid.
  • hydroxycarboxylic acids such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, polyethylene glycol, glycerin, pentaerythritol, etc.
  • Examples of the low melting point aliphatic polyester constituting the low melting point aliphatic polyester fiber yarn include polylactic acid, polyglycolic acid, poly-3-hydroxypropionate, poly-3-hydroxybutyrate, and poly-3. -Hydroxybutyrate valerate, polycaprolactone and the like.
  • Other commercially available heat-fusible fiber yarns include low-melting polyamide fiber yarns that melt with dry heat of 80 to 130 ° C. or wet heat of 50 to 100 ° C., such as Flor (manufactured by Unitika), Elder (Toray Industries, Inc.), Joiner (Fujibo), etc. can be used.
  • low-melting polyester fiber yarns that melt with dry heat of 80 to 130 ° C. or wet heat of 50 to 100 ° C., such as Sophit (Kuraray), Melty (Unitika), Solstar (Mitsubishi Rayon), Bel combi (manufactured by Kanebo Co., Ltd.), estenaal (manufactured by Toyobo Co., Ltd.), etc. may be used.
  • heat treatment by wet heat or dry heat is used as means for heat-sealing the heat-fusible fiber yarn by heat treatment.
  • wet heat treatment include treatment with hot liquid such as steam, hot water, and dye bath.
  • the dry heat treatment include a heat treatment such as hot air drying.
  • the heat treatment temperature has a preferred lower limit of 50 ° C. and a preferred upper limit of 100 ° C. A more preferred lower limit is 60 ° C., and a more preferred lower limit is 65 ° C.
  • the conductive yarn 110 is used as a “core”, and the heat-bonding material yarn or the heat-bonding material yarn is “covered”.
  • a method using a covering yarn (which may be SCY or DCY), a method in which a yarn made of a heat-fusion material or a yarn made of a heat-fusion material is aligned with a conductive yarn (may or may not be used as a plating knitting), etc. There is.
  • the crossing portion between the conductive yarns 110 is caused by the fact that the heated heat-sealable material causes heat-seal or the heat-sealable material causes coalescence. They will be joined (arrow F in FIG. 5).
  • the conductive yarn 110 after heat setting is required to have a conductive component exposed on a part or all of the yarn surface. Therefore, the exposed portion of the conductive yarn 110 is formed by appropriately adjusting the thickness and amount (number) of yarns made of heat-fusion material or yarns made of heat-fusion material, and the heating temperature when performing heat setting. I will let you.
  • the conductive portion 103 can be prevented from being caught by the yarn end because the yarn end of the conductive yarn 110 does not float in the side portion of the outer peripheral portion, and as a result, the conductive portion 103 can be prevented.
  • the anti-fraying effect can be obtained, so that the extension of the yarn end can be cut as short as possible. As a result, itching and pain when touching the skin surface are suppressed as much as possible. It will be possible.
  • the intersecting portion of the conductive yarns 110 is covered by the adhesion of the heat-seal material or the heat-seal material, the feeling of contact with the skin is alleviated and the slipping is improved, thereby improving the touch feeling. Will also help.
  • the entire outer periphery of the conductive portion 103 faces the knitted fabric main body 102 (the entire periphery is surrounded by the knitted fabric main body 102). It can also be arranged at the end position of the ground main body 102, and in this case, a free end (side not facing the knitted fabric main body 102) is generated in the conductive portion 103.
  • the knitted fabric main body 102 may not be provided, and the conductive portion 103 may be configured as a single object. In this case, the entire outer peripheral portion of the conductive portion 103 is a free end. Of course, it is possible to perform a fraying prevention process even at such a free end.
  • the conductive portion 103 has a well-conducting contact surface 105 and a current collecting surface 106. Both the good conducting contact surface 105 and the current collecting surface 106 are knitted into the knitted fabric body 102 by the conductive yarn 110. Actually, when the knitted fabric body 102 is knitted, the good contact surface 105 and the current collecting surface 106 are simultaneously knitted by cut boss knitting in accordance with the arrangement of the conductive portions 103. The fraying prevention process described above may be performed on both the good conducting contact surface 105 and the current collecting surface 106 or only one of them.
  • the good conducting contact surface 105 and the current collecting surface 106 are distributed on the front and back with the knitted fabric body 102 interposed therebetween, and are arranged to match each other.
  • the good conductive contact surface 105 is disposed on the side facing the subject's skin (the back side as the conductive knitted fabric 100), and the current collecting surface 106 is disposed on the side directed outward (the front side as the conductive knitted fabric 100).
  • FIG. 4 is an image diagram for facilitating understanding, but unlike the case shown in FIG. 4, the well-conducting contact surface 105 and the current collecting surface 106 are overlapped on the knitted fabric main body 102. Instead of forming a laminated structure such as a combined structure, in actuality, the knitted fabric body 102 is knitted into the knitted fabric main body 102 and appears on one or both sides with a raised state.
  • the conductive yarn 110 forming the good conducting contact surface 105 and the conductive yarn 110 forming the current collecting surface 106 are different from each other.
  • Another yarn (conductive yarn 110) is a state in which the good conducting contact surface 105 and the current collecting surface 106 are knitted as separate knitting structures (a state in which the yarn is fed from another yarn feeder and knitted). To tell. That is, it does not mean that the yarn types are different, and there is no problem in making the conductive yarn 110 forming the good conducting contact surface 105 and the conductive yarn 110 forming the current collecting surface 106 the same yarn type.
  • the conductive yarn 110 used for weaving the good conductive contact surface 105 and the conductive yarn 110 used for weaving the current collecting surface 106 are formed of a metal wire, a metal-coated wire, carbon fiber, or the like.
  • the metal component in the metal strand or the metal-coated wire gold, platinum, silver, copper, nickel, chromium, iron, copper, zinc, aluminum, tungsten, stainless steel and the like are suitable.
  • pure metals such as titanium, magnesium, tin, vanadium, cobalt, molybdenum, tantalum, and alloys thereof (brass, nichrome, etc.) can be used.
  • the metal strand not only a continuous long wire but also a twisted single wire can be used.
  • the core material is a resin fiber, wire or animal or plant fiber in a metal-coated wire
  • a wet coating method or a powder adhesion method can be used, including plating treatment employed in resin plating methods, etc. Good.
  • the core material is a metal wire
  • a thermal spraying method, a sputtering method, a CVD method, or the like can be employed.
  • Monofilaments, multifilaments, and spun (spun) yarns may be used as the core material, or wooly processed yarns, covering yarns such as SCY and DCY, and bulky processed yarns such as fluffed yarns may be used.
  • these metal wires, metal-coated wires, and carbon fibers may be mixed with non-conductive fibers.
  • a spun (spun) yarn can be used for blended yarn, covering yarn, or assortment. It is also possible to mix with a fiber having a melting point and a softening point higher than the heat setting temperature.
  • the good guiding contact surface 105 is configured such that the conductive yarn bulges beyond the height in the thickness direction with respect to the knitting structure of the ground yarn forming the knitted fabric main body 102.
  • a float knitting is used to form a float knitted layer, whereby the floating yarn 111 by the conductive yarn 110 is directed to the skin surface of the subject (the conductive knitted fabric 100). As a result, an exposed state is generated on the back side, and the exposed floating yarn 111 is distributed in a planar shape, so that the good conducting contact surface 105 is formed.
  • the pitch in the course direction in which the float yarn 111 is formed is shifted for each adjacent course, and at least one end position of the float yarn 111 (the loop 112 knitted to the knitted fabric body 102) Try to be uneven between adjacent courses.
  • the amount shifted in the course direction is not particularly limited, and may be one, two, or more when counted by the number of loops. In the illustrated example, both ends of the float 111 are arranged so as to be uneven between adjacent courses, but only one end may be shifted (that is, the length of the float 111 is different). .
  • Such a well-guided contact surface 105 surely comes into contact with a three-dimensional and complicated curved surface, unevenness, flexible part, etc. existing on the skin surface of the subject. It will also follow the fine movement of the skin accurately. Therefore, reliable conductivity can be obtained. Further, in the float knitted layer forming the good guiding contact surface 105, one end position or both end positions of the floating yarn 111 are arranged unevenly between adjacent courses, and therefore the floating yarn 111 and the floating yarn 111 are arranged along the course direction. Loops 112 (portions knitted into the knitted fabric main body 102) generated between the floats 111 are not aligned in a straight line in the wale direction.
  • the good conducting contact surface 105 has a broad surface as a whole, the density of the floating yarn 111 is high (the contact area that conducts with the subject's skin surface is large), and the conductivity is increased accordingly. It can be said that it is expensive.
  • the current collecting surface 106 is configured by knitting the knitted fabric body 102 with full knit.
  • the knitting structure employed for the current collecting surface 106 for example, a flat knitting, a rubber knitting, a smooth knitting, a pearl knitting, or a changed structure thereof (for example, Milan rib or cardboard knit) can be employed. Since the current collecting surface 106 is arranged so as to match the good conducting contact surface 105 via the knitted fabric body 102 as described above, the float that forms the good conducting contact surface 105 by weaving the current collecting surface 106. All the knitted layers (all courses) are electrically connected.
  • the current collecting surface 106 by providing the current collecting surface 106, the total amount of the conductive yarns 110 used for the conductive portion 103 can be increased, and the number of contact points between the conductive yarns 110 can be increased. As a result, the electrical resistance as the conductive portion 103 is increased. Can be lowered. Therefore, when performing data collection such as an electrocardiogram or electromyogram, the current waveform can be satisfactorily extracted from the good contact surface 105 brought into contact with the subject's skin surface through the current collecting surface 106, Further, when performing electrical therapy, electromagnetic wave therapy, or the like, a current can be satisfactorily applied from the current collecting surface 106 to the subject's skin surface through the good conductive surface 105.
  • the knitted fabric body 102 is knitted with non-conductive ground yarn.
  • ground yarn synthetic fiber (for example, polyester fiber or nylon fiber), natural fiber, a material in which synthetic fiber and elastic yarn are mixed, or the like can be used.
  • the knitting structure employed for the knitted fabric body 102 is not limited at all. For example, a flat knitting, a rubber knitting, a smooth knitting, a pearl knitting, or a changed structure thereof (for example, a Milan rib or a cardboard knit) can be employed. Naturally, for knitting, not only a circular knitting machine but also a flat knitting machine can be used.
  • the organization knitted by the weft knitting as listed above may be a knitting organization (tricot knitting, Raschel knitting, Miranese knitting, etc.) knitting by warp knitting.
  • a form selected from at least one of inlay, drawing, and composite yarn may be adopted.
  • polyurethane or rubber-based elastomer material may be used alone, or covering yarn using polyurethane or rubber-based elastomer material for “core” and nylon or polyester for “cover” can do.
  • covering yarn functions such as hydrophilicity, water repellency, corrosion resistance / corrosion resistance, and coloring can be imparted to the conductive knitted fabric 100. It is also useful for improving the feel (feel) and controlling elongation.
  • the conductive knitted fabric 100 of the present invention has a fray-proofing process applied to the outer peripheral portion of the conductive portion 103, and therefore the conductive portion 103 has a conductive yarn at the side of the outer peripheral portion. 110 yarn ends do not float. Therefore, it is possible to prevent the conductive yarn 110 from being caught by the yarn end. As a result, the conductive portion 103 can be prevented from fraying. Moreover, since the fray-preventing effect can be obtained, the extension of the yarn end can be cut as short as possible, and as a result, itching and pain sensations when contacting the skin surface can be prevented.
  • the intersecting portion of the conductive yarns 110 is covered by the adhesion of the heat-seal material or the heat-seal material, the feeling of contact with the skin is alleviated and the slipping is improved, thereby improving the touch feeling. Will also help.
  • the yarn end can be fixed by the fraying prevention effect, even when a float knitting is adopted for the conductive portion 103, the knitting is always performed at the position where the knitting ends in the course direction (a loop is formed). There is no need. Therefore, the knitting design (the pitch in the course direction for generating the float yarn) can be freely performed, and there is an advantage that the region and the size for forming the float knitting can be freely selected.
  • this invention is not limited to the said embodiment, It can change suitably according to embodiment.
  • the use of the conductive knitted fabric 100 according to the present invention is not limited, and the conductive knitted fabric 100 can be implemented in various fields that require electrical conductivity in the electronic and electrical fields.
  • the good contact surface 105 can be used as a heater.
  • the conductive portion 103 is not limited to be provided with the good conductive contact surface 105 and the current collecting surface 106, and may be either one. Further, in the case where both of the good conducting contact surface 105 and the current collecting surface 106 are provided, the good conducting contact surface 105 and the current collecting surface 106 are not necessarily identical in arrangement and area shape between the front and back of the knitted fabric body 102. There is no need to let them. Therefore, the current collecting surface 106 can be made smaller or larger than the good conducting contact surface 105.
  • the good conducting contact surface 105 when the good conducting contact surface 105 is formed by weaving a float knitted layer, it is also possible to adopt a back hair knitting or the like that can obtain a knitting structure similar to the float knitting instead of the float knitting. It is.
  • the good conducting contact surface 105 when the good conducting contact surface 105 is formed by weaving a tuck knitting layer, instead of the tuck knitting, a deer knitting or a single knitting that can obtain a knitting structure similar to the tuck knitting is adopted. It is also possible.
  • Conductive stretch knitted fabric with constant property of electrical resistance (knitted fabric of the present invention) DESCRIPTION OF SYMBOLS 2 Harness 3 Non-conductive part 4 Non-conductive part 10 Conductive thread 11 Elastic thread 13 Conductive contact part 100 Conductive knitted fabric capable of handling electrodes (conductive knitted fabric of the present invention) 102 Knitted fabric body 103 Conductive portion 105 Well-conducting contact surface 106 Current collecting surface 110 Conductive yarn 111 Floating yarn 112 Loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Knitting Of Fabric (AREA)

Abstract

導電性を備えた編地において、伸縮性及び柔軟性が豊富で伸長を繰り返した際の復元性をも備えた編地でありながら、伸長時と非伸長時とで電気抵抗の変化が皆無又は抑制される特性を備えたものはなかった。 導電糸と弾性糸とを混用して製編された編地であって、編組織においてループを形成しつつ進む方向をコース方向又はコースと定義し編地面上でコース方向と垂直に交差する方向をウエール方向又はウエールと定義するときに、コース方向に並ぶ導電糸のループがウエール方向で隣接する2コース間では1ループ当たり2箇所以上の導通接点部を形成させつつ周期的又はランダムに表目と裏目とに現出する編み組織とされている。

Description

電気抵抗の不変特性を備えた導電性伸縮編地
  本発明は、伸縮性及び柔軟性が豊富で伸長を繰り返した際の復元性をも備えた編地でありながら、伸長時と非伸長時とで電気抵抗の変化が皆無又は抑制される特性を備えた導電性伸縮編地に関する。また本発明は、電極などとして好適に使用できる導電編地に関する。
 従来、導電性を有する部位と非導電性を有する部位とを交互に配置して製編又は製織したシーツが提案されている(特許文献1)。このシーツにおいて、導電性を有する部位は、金、銀、銅などの金属糸を用いて製編又は製織することが選択肢の一つとされていた。また、製織の際には導電糸を経糸に用いることが想定されていた。
 一方、布帛を繰り返し伸縮させても断線や基布損傷を抑制できるように構成した伸縮伝送線が配置された布帛が提案されている(特許文献2)。この布帛において、伸縮伝送線には、直径0.03mmの銅線100本を束ねた集合線4本を直径1.8mmの組紐まわりに撚り合わせ、更にそのまわりに仮撚加工糸を二重(二層)に撚り合わせることで構成させたもののみが例示されている。
 また、心電図や筋電図等のデータ採取、或いは電気治療や電磁波治療などを対象者に対して行う場合に使用する弾性着衣が、従来、提案されている(特許文献3参照)。この弾性着衣は、弾性布地に導電繊維をフロート編により編み込むことで、裏面側(対象者の肌面へ接触させる側)の導電繊維の表出量を表面側への表出量よりも多くする構成としたものである。フロート編は、コース方向に沿いつつ所定ピッチで裏面側へ浮き糸を表出させる一方で、浮き糸と浮き糸との間に、表面側へ表出するループを介在させた編組織である。
 ところで、弾性布地を編地本体としてその限られた領域内にフロート編を編み込むためには、カットボス編を採用しなければならない。カットボス編は、編地本体の製編を進めて行く過程で、フロート編の開始位置では導電繊維の糸入れをしてコース方向への編み込みを開始し、また同一コース上におけるフロート編の終了位置では導電繊維の糸抜けをし、直ちに糸切りを行い、これをウエール方向(コース方向に対して編地面上で垂直に交差する方向)の同一箇所で同じ様に所定コースにわたって繰り返す編み方である。
 そのため、フロート編を行った領域は、必然的に、導電繊維の糸端が開始位置及び終了位置の2箇所(コース方向の両端部)で浮遊状態に延び出して、自由端として残存することになる。しかも、このような浮遊状態の糸端はウエール方向で列を成し、導電繊維の編み込み領域全体として見れば、肉厚的にボリュウムが増した編地端を形成するようになっている。
 一方、フロート編は、1コース内の編み込み終了位置で必ず編みを行って(編み込みのループを形成させて)、コースごとに編み込みを終了させる必要がある。そうでなければ、浮き糸自体が浮遊状態となるので、延び出す浮遊糸長が異様に長くなってしまうからである。
特開2000-221号公報 特開2012-177210号公報 特許第4609923号公報
 特許文献1に示されたシーツにおいて、導電性を有する部位に金、銀、銅などの金属糸を用いたり、製織の際に導電糸を経糸に用いたりすると、ゴワツキ性が強く出て柔軟性を豊富にすることが困難となる。また、シーツを伸縮させるような使用をすると金属糸が塑性変形を繰り返し起こすことになり、断線の危険性が高まる懸念が生じる。のみならず、伸長に対する復元性が低いため、伸縮性が得られる使用期間は制限されたものとなり、伸縮性を期待される用途としては不向きな一面を有していた。
 一方、特許文献2に示された布帛において、伸縮伝送線は銅の集合線だけでも直径換算で1~2mmにも匹敵するのではないかと推測され、加えて、芯となる直径1.8mmの組紐や更には仮撚加工糸による二重(二層)の被覆層をも必要とすることで、全体として相当に太いものとなっている。それ故、仮に伸縮による断線が抑制されるものであったとしても、伸縮性の豊富さ、柔軟性の豊富さ、伸長に対する復元性などにおいて、何ら期待できるものではないと言わざるを得ない。
 このように特許文献1のシーツであれ、また特許文献2の布帛であれ、伸縮性及び柔軟性が豊富で伸長を繰り返した際の復元性をも備えた編地でありながら、伸長時と非伸長時とで電気抵抗の変化が皆無又は抑制される特性を備えさせることに関しては、着眼していなかったと言うことができる。また、複数の基板間を配線するような場合にあって、各基板の配置により配線経路が複雑な曲がりを有するものとなっていたり、配線する段階まで配線長さや配線経路が確定していなかったり、基板同士が配線後に移動したりするとき等には、これら特許文献1のシーツや特許文献2の布帛不適を配線部材として用いるのは不向きであった。
 また特許文献3に示された弾性着衣では、前記したように導電繊維の編み込みをカットボス編により行わざるを得なかったので、導電繊維の編み込み領域における始端位置及び終端位置に、浮遊糸端が列を成した編地端が発生している。このような編地端が肌面に触れると掻痒感(かゆさ)や痛感などの違和感に繋がり、着心地を悪化させることは言うまでもない。編地端を形成しているのが硬質の導電繊維であることが、着心地の悪化に一層拍車をかけることになるのは明らかである。
 また、このような編地端では、伸び出した導電繊維の糸端が引っ掛かりなどの原因となりやすく、導電繊維の編み込み領域にほつれを誘発するおそれもあった。
 一方、フロート編では、編み込みを終了する位置で必ず編みを行う(ループを形成させる)ことが要求されるため、編設計(浮き糸を生じさせるためのコース方向のピッチ等)が制限され、結果としてフロート編で形成する領域の形状や大きさが制限されてしまうという不自由さがあった。
 本発明は、特許文献1や2等に見られる前記事情に対処するために、伸縮性及び柔軟性が豊富で伸長を繰り返した際の復元性をも備えた編地でありながら、伸長時と非伸長時とで電気抵抗の変化が皆無又は抑制される特性を備えた導電性伸縮編地を提供することを第一の目的とする。
 また本発明は、特許文献3等に見られる前記事情に対処するために、導電性を有する編地において、編地外周部に浮遊糸端を要因として肉厚的なボリュウムを増した編地端が生じることを可及的に防止でき、肌触りの悪化を防止できると共に、形成させる領域や大きさに制限が付されることなく自由な選択ができるようにした電極対応が可能な導電編地を提供することを第二の目的とする。
 前記第一の目的を達成するために本発明が採用した手段は次の通りである。
 即ち、本発明に係る電気抵抗の不変特性を備えた導電性伸縮編地は、導電糸と弾性糸とを混用して製編された編地であって、編組織においてループを形成しつつ進む方向をコース方向又はコースと定義し編地面上で前記コース方向と垂直に交差する方向をウエール方向又はウエールと定義するときに、コース方向に並ぶ導電糸のループがウエール方向で隣接する2コース間では1ループ当たり2箇所以上の導通接点部を形成させつつ周期的又はランダムに表目と裏目とに現出する編み組織とされていることを特徴とする。
 前記導通接点部がウエール方向及びコース方向に集合した分布とされることで形成される導電面において、コース方向の前記導電糸によるカバーファクターが0.15以上であることが望ましい。
  前記第二の目的を達成するために本発明が採用した手段は次の通りである。
 即ち、本発明に係る電極対応が可能な導電編地は、熱融着材料又は熱合着材料の少なくとも一方が混用された導電糸によって製編された導電部を有しており、前記導電部は前記導電糸同士の交差部を前記熱融着材料による熱融着又は前記熱合着材料による合着で結合されていることを特徴とする。
 前記導電部は、非導電性の地糸により製編された編地本体に対して領域を限って設けられたものとすることができる。
 この場合、前記導電部はカットボス編により前記編地本体の片面又は両面に編み込まれており、前記導電部の外周部には、前記熱融着材料又は前記熱合着材料によるほつれ止め処理が施されたものとすることができる。
 前記導電部は、前記編地本体の片面で厚み方向に前記地糸の編組織高さを超えて前記導電糸が隆起することで形成された良導接触面と、前記良導接触面を形成する前記導電糸とは別の導電糸により当該良導接触面と対応させて編み込まれた集電面とを有したものとすることができる。
 本発明に係る電気抵抗の不変特性を備えた導電性伸縮編地は、伸縮性及び柔軟性が豊富で伸長を繰り返した際の復元性をも備えるものでありながら、伸長時と非伸長時とで電気抵抗の変化が皆無又は抑制される特性を備えている。
 本発明に係る電極対応が可能な導電編地では、導電性を有する編地において、編地外周部に浮遊糸端を要因として肉厚的なボリュウムを増した編地端が生じることを可及的に防止でき、肌触りの悪化を防止できると共に、形成させる領域や大きさに制限が付されることなく自由な選択ができるようになっている。
本発明に係る電気抵抗の不変特性を備えた導電性伸縮編地の実施形態(この実施形態を以下では「第1実施形態」と言う)を示した編組織図である。 本発明に係る電気抵抗の不変特性を備えた導電性伸縮編地の使用例を示した平面図である。 本発明に係る電極対応が可能な導電編地の実施形態(この実施形態を以下では「第2実施形態」と言う)を示した斜視図である。 図3のA-A線に対応させて模式的に示した断面構造図である。 第2実施形態の導電部に熱セットを施した状態を模式的に示した編組織である。 第2実施形態における導電部の良導接触面(フロート編層によるもの)について編地本体を省略したうえで模式的に示した編組織である。
 以下、本発明の実施の形態を、図面に基づき説明する。
 図1は、本発明に係る電気抵抗の不変特性を備えた導電性伸縮編地1(以下、「本発明編地1」と言う)の編組織を示している。この導電性伸縮編地1は、例えば図2に示すような配線用ハーネス2を製造する際において、その構成要素の一つとして使用することができる。
 図2に示したハーネス2は偏平で細長い帯紐状を呈して形成され、帯長手方向に沿って互いに平行な2本の導電面を備えたものとしてある。これら2本の導電面が、本発明編地1によって形成されている。
 図2に示した例では本発明編地1が細帯状であって且つハーネス2の表裏面に露出する状態に形成され、2本の本発明編地1,1の相互間には互いの短絡を防止するための非導電部3が設けられたものとしてある。
 また、これら本発明編地1,1に対する帯幅方向の外側にも非導電部4が設けられており、ハーネス2の側縁部が他物と接触したときに本発明編地1による短絡や漏電等が起こらないように対処してある。非導電部3,4は、いずれも編地として組成されており、本発明編地1と同様にハーネス2の表裏面に露出する状態に形成されている。
 なお、本発明編地1は、ハーネス2の帯幅方向の中に3本以上設けてそれらを非導電部3で区分けするようにしてもよいし、ハーネス2の帯幅方向の中に1本だけ設けてもよい。また非導電部4については本発明編地1の片側だけとしたり、設けなかったりしてもよい。
 また本発明編地1は、帯状とせず、線状に形成することも可能であるし、ハーネス2の帯幅方向及び帯長手方向の全部を形成する広幅のものとして形成することもできる(これらについては後述する)。要は、本発明編地1の配置や形成数は何ら限定されるものではない。またハーネス2自体も、そもそも帯紐状に形成することが限定されるものではなく、正方形や長方形などの四角形に形成すること等も可能である。
 図2で示したハーネス2では、当然に、本発明編地1(2本の導電面)が帯長手方向の両端部で電気抵抗の低い導通特性を有したものとされている。のみならず、帯長手方向の任意位置であっても、帯表面及び/又は帯裏面において電気抵抗の低い導通特性を有したものとされている。従って、本発明編地1の帯長手方向において導通させる2点間距離に応じて電気抵抗の大小を設定したり、反対に電気抵抗に応じた長さを設定したりするといった使い方をすればよい。場合によっては、電気抵抗と長さとの関係を利用して電気抵抗変化を活用するといった使い方もできる。
 また、このハーネス2は、本発明編地1及び非導電部3,4が一体となって帯長手方向に沿った豊富な伸縮性を有していると共に、表裏方向へ向けた反りや曲がり、面方向に沿った左右への曲がり、更には捻りなどに自由に対応できるだけの豊富な柔軟性を有している。そして、このようにハーネス2を帯長手方向に伸縮させたときや、表裏方向へ反らせたり面方向に沿って曲げたりしたとき、更にはこれらの伸縮や反り、曲げを何度も繰り返したときであっても、電気抵抗は不変状態に保持される特性を有している。
 ここにおいて「電気抵抗の低い」とは、電流を流した際の電圧降下が機能に影響を与えない抵抗値であることを言う。具体的な抵抗値は、用途や使用条件によって種々に異なっている。例えば、給電用であれば10Ω/m以下、より好ましくは1Ω/m以下、さらには0.1Ω/m以下が望ましいが、配線長や供給電流により許容範囲は異なる。
 一般に、給電用と比較して、信号用の場合は電流が低いことが一般的であるので、より高抵抗値まで許容可能である
 一方、「伸縮性」とは、非伸長時(常態)からの伸長と、この伸長状態からの解放による即時復元との両方を備えた特性を言う。本発明編地1と非導電部3,4とで、伸縮性は任意であるが、同じ伸縮牲を有していることが望ましい。こうすることで、シワや波打ちを目立ちにくくすることができる。また伸長時に導電糸がダメージを受けないように、伸縮牲を規制することもできる。非伸長状態からどれだけ伸長するかの度合い(伸長度)については、製編に用いる材料(糸)の材質や太さ、製編材料の混用の有無や混用方法(カバリング、プレーティング、引き揃え等)、混用数、編成組織、ハーネス2としての帯幅や帯長さ等といった様々なファクターを、所望されるところに応じて適宜変更することで対応することができる。
 なお、復元に関しては非伸長時の長さに100%回復することが理想である。しかし、必ずしも100%回復が限定されるものではなく、伸長と復元との繰り返し数を規定したうえで、この規定数以内のときは80%以上回復するような特性を備えるものであれば「良」と見なすなど、用途に応じた性能を設定すればよい。
 この「伸長-復元繰り返し数」が1000回に満たない場合は、実質上、実用に向かないと言わざるを得ない。
 「伸長-復元繰り返し数」は、デマッチャ式繰返疲労試験機を用いた繰返し引っ張り疲労試験により、計数することができる。この場合、ハーネス2としての試験片にはコース方向を長辺とする長方形のものを用いる。本第1実施形態では試験片の寸法を長辺10cm、短辺1.5cmとした。また、試験片の中で、導電部(本発明編地1)の両側を挟む配置となる非導電部3,4にはそれぞれ40番手の綿糸を用いるものとし、これによって導電部に伸びの影響(外乱)を与えないように配慮した。
 試験片には非伸長時の5cm間隔おきにマーキングしておく。そしてこのマーキングの間隔が伸長時に10cmになることを目安にストローク(伸長度)を調整した。試験は室温下で行い、60回/分の速度で伸長と復元とを3000回、及び1万回繰り返し実行し、その後のマーキング間隔及びマーキング間の抵抗値を測定して、規定の結果が得られていることを確認することにより、その繰り返し数の達成と見なした。
 このようなハーネス2は、例えば特開平11―279937号に記載の方法(筒状生地からテープ生地を取り出す方法)等を採用して製造することができる。すなわち、丸編機を用いた筒状生地の製編を行うに際して、帯幅方向外側の非導電部4、本発明編地1、帯幅方向中央の非導電部3、本発明編地1、帯幅方向外側の非導電部4、の合計5区分を複数の給糸口から同時進行で製編する編みを行うと共に、ピース間に熱、水、溶剤などで溶ける繋ぎの糸を入れ、製編後に得られた筒状生地からこの繋ぎの糸を溶かす処理を行うことにより、ハーネス2を螺旋状に分離しつつ取り出すという方法である。
 本発明編地1の製編時には、図1に示すように導電糸10と弾性糸11とを混用させる。導電糸10と弾性糸11とが含まれていれば、その他に別種の糸を混用させることは任意である。
 本発明編地1の製編時には、図1に示すように導電糸10と弾性糸11とを混用させる。導電糸10と弾性糸11とが含まれていれば、その他に別種の糸を混用させることは任意である。
 本発明編地1に採用し得る編組織は、コース方向に並ぶ導電糸10のループが、表目と裏目とに現出する編み組織とすればよい。このような編組織を採用することで、ウエール方向で隣接する2コース間では導電糸10の1ループ当たり、必ず、2箇所以上の導通接点部13(導電糸10同士が交差状に接触して電気的に短絡する部分)が形成されることになる。
 なお本明細書では、編組織においてループを形成しつつ進む方向を「コース」又は「コース方向」と定義し、編地面上でコース方向と垂直に交差する方向を「ウエール」又は「ウエール方向」と定義する。すなわち、コースとコース方向とは同じ方向を意味し、ウエールとウエール方向とは同じ方向を意味することにして、説明上の混乱が生じないようにする。但し、「コース数」とはウエール方向に並ぶコースの数であり、同様に「ウエール数」とはコース方向に並ぶウエールの数である。
 図1に例示した編組織はゴム編(1×1)としてある。そのため、コース方向に並ぶ導電糸10のループが交互に表目と裏目とに現出した状態となって、本発明編地1は表目も裏目も略同じ編組織を呈するものとなっている。なお、ゴム編に限定されるものではない。すなわち、導電糸10のループが表目と裏目との間で現出するパターンは、コース方向において周期的なものとしてもよいし、ランダムなものとしてもよい。
 また、図例の編組織では導電糸10と弾性糸11との混用手段としてプレーティングを採用してある。そのため、導電糸10と弾性糸11とが寄り添ってループを形成するようになっており、しかも、表目又は裏目の一方面では主として導電糸10により形成されるループが現出し、表目又は裏目の他方面では主として弾性糸11により形成されるループが現出したものとなっている。
 このように、本発明編地1は、表目と裏目とが略同じ編組織でありながら、一方面は主として導電糸10で形成され、他方面は主として弾性糸11で形成されたものである。とは言え、一方面が全て導電糸10で形成されたり他方面が全て弾性糸11で形成されたりすることが限定されるということではなく、またこのような面と形成糸との相関関係が限定されるものでもない。すなわち、主として弾性糸11が現出した面では導通が得られないということではない。また本発明編地1を厚さ方向に突き刺すタイプの導通用の接続端子を用いることで、主として弾性糸11が現出した面がたとえ導通を得にくいものであったとしても、導通を得ることはできる。
 導電糸10同士が交差状に接触することで形成された導通接点部13は、弾性糸11を接着剤要素として結合されている。言い換えれば、この導通接点部13は、ウエール方向で隣接する導電糸10のループ同士を、それらの交差位置で半田付け等により固定したのと同じような状態にする。そのため、本発明編地1をコース方向で伸長させたり収縮させたりして、導電糸10のループがどのような形状に変形したとしても、導電糸10がそのループを形成するのに費やした糸量は不変である。
 しかも、導電糸10のループは表目に現出したり裏目に現出したりする組織としてあるので、本発明編地1の伸縮時にあって、コース方向で隣接する導電糸10のループ同士が接触することはない。すなわち、導通接点部13が増減するようなことはないので、導電糸10におけるコース方向の電気抵抗は不変となる。なお、導通接点部13の形成数が多ければ多いほど、導電性が確実化され、また電気抵抗が低く抑えられることは言うまでもない。
 導通接点部13の形成方法(弾性糸11による結合方法)は、熱セット処理を施すことによる熱融着や合着などとするのが好適であり、そのためには弾性糸11として熱溶融性や熱合着牲を備えた材料(例えばポリウレタンやポリエステル等)を用いるのが好適となる。またポリウレタンは、豊富な伸縮性を得るうえでも好適な材料であると言うことができる。この熱セット処理時には、コース方向で隣接する導電糸10のループ同士が非接触となる寸法に編地を位置決めしたうえで熱処理を施すことが重要であり、それによって前記した電気抵抗の特性が安定して得られることになる。
 なお、導通接点部13を結合するために行う熱セット処理により、導電糸10同士の接触位置のみならず、導電糸10と弾性糸11との接触位置や弾性糸11同士の接触位置なども熱融着されるようにしてもよい。また、導電糸10の全長を弾性糸11により被覆する状態まで熱セット処理を行ってもよい(当然にこの場合の本発明編地1は、帯長手方向の両端間や切断位置両端間での導通を得るための仕様となる)。
 本発明編地1において、電気抵抗の低い導電性を備えたうえで、且つ伸縮性や柔軟性が豊富となる特性を備えるためには、導電糸10のループに対する導通接点部13の位置づけ(配置関係)や、この導通接点部13と弾性糸11のループとの位置づけ(配置関係)、更には使用される糸の線径やフィラメント数、導電性等が重要となる。言い換えれば、この導通接点部13によりウエール方向で位置的に拘束されることになる導電糸10のループと、この導電糸10のループに寄り添った弾性糸11のループとのコース方向の伸縮動作関係、及び使用される糸素材自体の伸縮牲や柔軟牲が、本発明編地1としての伸縮性、柔軟性の程度を支配するといっても過言ではない。
 すなわち、本発明編地1は、非伸長時(常態)にはループ形を小さく縮めようとする弾性糸11に付随させて非伸縮性の導電糸10を小さく纏まらせる(折り畳む)作用を生じさせ、反対に伸長時にはループ形をコース方向に引き延ばされる弾性糸11に付随させて非伸縮性の導電糸10も大きく膨らませる(折り畳まれた形状を延ばす)作用を生じさせるからである。
 そこで、導電糸10のループに対する導通接点部13の位置づけを最良のものとし、伸縮牲のある本発明編地1を得るためには、導通接点部13を結合するために行う熱セット処理時に、編地にテンション(拡布)を加えないか又は低テンションに抑えるようにするのが望ましい。
 なお、図2に例示したように本発明編地1を細帯状に形成する場合などでは、導通接点部13がウエール方向及びコース方向に連続した分布とされることで、導通部分が面状に広がり、これによって導電面が形成されることになる。
 ひとつの目安として、コース方向の導電糸10は、編目長又はループ長(cm)をL、恒重式番手をNとおいたときに次式によって表されるカバーファクター(CF)が、0.15以上となるようにする。
     CF=1/(L√N)
 カバーファクター(CF)が0.15未満であると編地厚が十分でなく、また電気抵抗も実用上の範囲を超えて高くなる傾向にあるため、不適であると言える。
 導電糸10は、線径10~120μmのものとするのが好適である。導電糸10は、樹脂繊維や金属線に対して湿式や乾式のコーティング、又はメッキなどで表面処理を施したり、真空成膜により有機又は無機の薄膜を成膜したりすることが可能である。また、導電糸10には、樹脂繊維(フッ素樹脂など)をカバリングしたものを使用することもできる。このようにすることで、本発明編地1に親水性、撥水性、耐食・防食性、すべり牲、カラーリング等の機能を持たせることができる。
 なお、導電糸10には、例えばアルミ、ニッケル、銅、チタン、マグネシウム、錫、亜鉛、鉄、銀、金、白金、バナジウム、モリブデン、タングステン、コバルト等の純金属やそれらの合金、ステンレス、真鍮等により形成された金属線を用いることもできる。このように金属線に関しては、塑性変形しやすいものであるか否か、或いは、顕著な弾性復元力(バネ性)を備えたものであるか否かなどについて、特に限定されるものではない。
 弾性糸11には、ポリウレタンやゴム系のエラストマー材料、或いは「芯」にポリウレタンやエラストマー材料を用い「カバー」にナイロンやポリエステルを用いたカバリング糸などを採用することができる。
 なお、弾性糸11は、導電糸10の引張強度限界となる伸長度を超えて伸長することがないように(導電糸10の伸長を制限する目的で)、素材選びすることが推奨される。弾性糸11としてカバリング糸を採用する場合は、「カバー」において、導電糸10の伸長制限作用を持たせるような素材選びをすることも可能である。またこのような、弾性糸11自体、或いは「カバー」の素材選びは、本発明編地1に要求される伸縮挙動に適応させる目的で行うものとしてもよい。また、導電糸10の伸長(負荷)を制限する目的では非導電部3,4で制御することもあり得る。
 例えば、伸長からの復元(戻り)が急峻で勢いの強い挙動となるように要求される場合であれば、比較的太くて強弾性の弾性糸11を選択する。反対に、伸長からの復元がじわじわとゆっくりした挙動となるように要求される場合であれば、比較的細くて弱弾性の弾性糸11を選択するといった具合である。
 以上、詳説したところから明らかなように、本発明編地1は、伸縮性及び柔軟性が豊富で伸長を繰り返した際の復元性をも備えた編地でありながら、伸長時と非伸長時とで電気抵抗の変化が皆無又は抑制される特性を備えている。そのため、複数の基板間を配線するような場合にあって、各基板の配置により配線経路が複雑な曲がりを有するものとなっていたり、配線する段階まで配線長さや配線経路が確定していなかったり、基板同士が配線後に移動したりするとき等にも、好適な配線部材として使用可能である。
 また、伸長時と非伸長時とで電気抵抗が不変であるので、外乱を嫌う信号線としても好適に使用できることになる。
[実施例]
 以下に、本発明編地1の実施例を例示するが、これらは技術的な理解を助けるために開示するものであり、本発明の技術的範囲は以下の例示に限定されるものではない。
(実施例1)
 導電糸10には78dtexの銀メッキ繊維1本を用い、弾性糸11には110dtexのポリウレタン糸を用いて、導電糸10の糸長を363cmとしてフライス(ゴム編)により5mm幅のテープを製編した。
(実施例2)
 導電糸10には78dtexの銀メッキ繊維1本を用い、弾性糸11には110dtexのポリウレタン糸を用いて、導電糸10の糸長を424cmとしてフライスにより5mm幅のテープを製編した。
(実施例3)
 導電糸10には78dtexの銀メッキ繊維1本を用い、弾性糸11には110dtexのポリウレタンによる糸を用いて、導電糸10の糸長を482cmとしてフライスにより5mm幅のテープを製編した。
(実施例4)
 導電糸10には78dtexの銀メッキ繊維1本を用い、弾性糸11には110dtexのポリウレタン糸を用いて、導電糸10の糸長を197cmとしてシングル(平編)により5mm幅のテープを製編した。
(実施例5)
 導電糸10には78dtexの銀メッキ繊維2本を用い、弾性糸11には110dtexのポリウレタン糸を用いて、導電糸10の糸長を198cmとしてシングルにより5mm幅のテープを製編した。
(比較例)
 導電糸10には33dtexの銀メッキ繊維1本を用い、弾性糸11には110dtexのポリウレタン糸を用いて、導電糸10の糸長を482cmとしてフライスにより5mm幅のテープを製編した。
Figure JPOXMLDOC01-appb-T000001
 伸長時における電気抵抗の測定は、コース方向で隣接する導電糸10のループ同士が非接触となる状態が得られる範囲(60%伸長)で行った。
 表1から明らかなように、本発明編地1の実施例1~5では、非伸長時と伸長時との間で電気抵抗値が殆ど変位していなかったのに対し、比較例では大きな変位が認められた。のみならず、比較例では、使用した銀メッキ繊維が細いことが原因して穴などの疵が複数発見された。
 ところで、本発明は、前記実施形態に限定されるものではなく、実施の形態に応じて適宜変更可能である。
 例えば、本発明編地1は筒状生地として製編することが限定されるものではなく、一枚もの(非筒状のシート状)、或いは複数枚を重ね合わせた積層構造で製編してもよい。従って、丸編機や経編機、横編機など、汎用の編機によって製編することができる。
 本発明編地1は、前記した給電用、信号用、医療用など以外にも、衣料用(ウエアラブル素材等として)など、多くの利用分野を有する。
 本発明編地1は、導電糸10をウエール方向で隣接させて少なくとも2コース設けることが必要であるが、コース数をどの程度に増やすかの限定は一切ない。そのため、本発明編地1として、線状に形成することも可能であるし幅広の帯状に形成することも可能である。従って、図2に示したようなハーネス2として、その帯幅方向及び帯長手方向の全部を本発明編地1として形成することもできる。
 また、本発明編地1は正方形や長方形などの四角形として形成することもできる。この場合、弾性糸11を接着剤要素として熱セット処理することで、編地全体が「切りっぱ」の状態(任意の箇所で切り離しが可能であり、切断位置でのほつれなどがなく、切り口に対する後処理が不要な状態)になる。そのため、任意の帯幅へと切り出すことが自在に行えるから、現物合わせの電気配線時などに、配線作業が極めて容易に、且つ自由度の高い作業として行うことができる。
 図3乃至図6は、本発明に係る電極対応が可能な導電編地100の実施形態(第2実施形態)を示している。図3から明らかなように、この導電編地100は導電糸によって製編された導電部103を主要部とする。本第2実施形態では、導電部103は編地本体102に対して領域を限って編み込まれたものとしてある。
 まず概要について説明する。編地本体102は、例えば図3に示すように筒状に形成されており、心電図や筋電図等のデータ採取、或いは電気治療や電磁波治療などを対象者に対して行う場合に、対象者の腕や脚、胴部などを通すことができるようになっている。
 なお、装着箇所に応じて筒形状(ストレート形やテーパ形、或いは瓢箪形など)や筒径を変更可能であることは言うまでもない。また、筒状とすること以外に、衣類形体(シャツ形やズボン形など)としてもよいし、帯状にして巻き付けによる装着を可能としたものとしてもよい。導電部103についても、図3では四角形状の領域として且つ2箇所に配置されたものとしているが、装着箇所や必要接点数などに応じて領域形状、大きさ、配置数などを適宜変更可能であることは言うまでもない。
 次に、導電部103について説明する。前記したように、本第2実施形態において、導電部103は編地本体102に対して領域を限って編み込まれたものとしているので、この導電部103の外周部は、編地本体102に臨んで境界を形成する辺部として存在している。この辺部には、熱融着材料又は熱合着材料を用いたほつれ止め処理が施されている。
 ほつれ止め処理は、導電部103の形成に用いた導電糸が編組織の中で交差している部分を固定させる処理であって、このほつれ止め処理を施すことで、導電糸の糸端が浮遊状態となるのを阻止している。すなわち、このほつれ止め処理が施されていることから、導電部103は外周部の辺部が異様に浮き上がることなく、編地本体102に馴染んで一体状(略フラットな状態)に形成されている。
 このことから、導電部103の辺部は、従来の弾性着衣(前記特許文献3)とは異なって、「コース方向の両端部に浮遊状態で延び出した導電繊維の糸端が、ウエール方向で列を成すことにより、肉厚的にボリュウムが増すことになった編地端」を発生させたものではない、と言うことができる。
 ほつれ止め処理の実施方法は、導電部103の形成に用いる導電糸に対し、熱融着材料又は熱合着材料の少なくとも一方を混用させ、そのうえで導電部103を製編し、製編後に熱セットを行うという手順とする。
 熱融着材料と熱合着材料との差異は、半溶融状態からの冷却により生じる結合力の強弱によって区別すればよく、結合力が強い(熱融着)ものは熱融着材料とし、これよりも結合力が弱い(合着)ものは熱合着材料とする。この区別は明確とは言えず不明瞭部分を含むが、要は、本発明では熱セットによって導電糸110の交差部を結合できる材料であればよいものとおく。従って、伸縮性(弾性)に優れ、加熱によって熱融着し、かつ、熱融着部位においては伸縮性(弾性)が失われることなく、高度の伸縮性(弾性)が保有されるものを用いることができる。
 具体的には、熱融着材料又は熱合着材料の代表例として低融点ポリウレタンを挙げることができる。低融点ポリウレタンは、最適例であると言える。その他、ポリエチレン、ナイロン6、ナイロン66、ポリプロピレン、ポリ塩化ビニル、ビニル系ポリマー、ポリアミド等の縮合系ポリマーなどを採用可能である。
 更なる具体例をとしては、低融点ポリアミド繊維糸、低融点ポリエステル系繊維糸(低融点ポリエステル共重合体繊維糸、低融点脂肪族ポリエステル繊維糸)等が挙げられる。なかでも、低融点ポリエステル系繊維糸が好ましい。
 前記低融点ポリエステル共重合体繊維糸を構成する低融点ポリエステル共重合体の好ましい共重合成分としては、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、4-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸等のヒドロキ シカルボン酸類の他、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ポリエチレングリコール、グリセリン、ペンタ エリスリトール等の分子内に複数の水酸基を含有する化合物類またはそれらの誘導体、アジピン酸、セバシン酸、フマル酸、テレフタル酸、イソフタル酸、 2,6-ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸、5-テトラブチルホスホニウムイソフタル酸、5-テトラブチルホスホニウムイソフタ ル酸等の分子内に複数のカルボン酸基を含有する化合物類またはそれらの誘導体が挙げられる。
 前記低融点脂肪族ポリエステル繊維糸を構成する低融点脂肪族ポリエステルと しては、例えば、ポリ乳酸、ポリグリコール酸、ポリ-3-ヒドロキシプロピオネート、ポリ-3-ヒドロキシブチレート、ポリ-3-ヒドロキシブチレートバ リレート、ポリカプロラクトン等が挙げられる。
 前記熱融着性繊維糸の市販品としては、他に、80~130℃の乾熱や、50~100℃の湿熱で溶融する低融点ポリアミド繊維糸、例えば、フロール(ユニチカ社製)、エルダー(東レ社製)、ジョイナー(フジボウ社製)等を用いることができる。
 また、80~130℃の乾熱や、50~100℃の湿熱で溶融する低融点ポリエステル繊維糸、例えば、ソフィット(クラレ社製)、メルティ(ユニチカ社製)、ソルスター(三菱レイヨン社製)、ベルコンビ(鐘紡社製)、エステナール(東洋紡績社製)等を用いてもよい。
 前記熱融着性繊維糸を熱処理して熱融着させる手段としては、湿熱または乾熱による熱処理が用いられる。湿熱処理としては、例えば、蒸気や、熱水、染色浴などの熱液体による処理が挙げられる。乾熱処理としては、例えば、熱風乾燥などによる熱処理などの処理が挙げられる。
 なお、精練や染色、ソーピング等の浴中工程を行う場合は、浴中で湿熱処理による熱融着が可能となるため、工程削減にもなり好ましい。この場合の熱処理温度は、好ましい下限が50℃、好ましい上限が100℃である。より好ましい下限としては60℃、さらに好ましい下限は65℃である。
 導電糸110に対して熱融着材料や熱合着材料を混用させる方法には、導電糸110を「芯」とし、熱融着材料製の糸又は熱合着材料製の糸を「カバー」とするカバリング糸(SCYでもDCYでもよい)を用いる方法や、導電糸に熱融着材料製の糸又は熱合着材料製の糸を引き揃える(プレーティング編としてもしなくてもよい)方法などがある。
 熱セットでは、図5に示すように、加熱された熱融着材料が熱融着を生じたり、熱合着材料が合着を生じたりすることが要因で、導電糸110同士の交差部が結合されることになる(図5の矢符F)。この場合、熱セット後の導電糸110は、糸表面の一部又は全部に導電成分が露出した状態とすることが求められる。そのため、熱融着材料製の糸又は熱合着材料製の糸としての太さや糸量(本数)、熱セットを行う際の加熱温度などを適宜調整して、導電糸110の露出部分を生じさせるようにする。
 このようなほつれ止め処理を施すことで、導電部103はその外周部の辺部で導電糸110の糸端が浮遊状態に生じないので、糸端による引っ掛かりを防止でき、その結果として導電部103のほつれ止め効果に繋がることなる。また、ほつれ止め効果が得られることで、糸端の延び出しを可及的に短く切断することができることになり、その結果、肌面に接触した際の掻痒感や痛感を可及的に抑止できることになる。加えて、導電糸110同士の交差部が熱融着材料や熱合着材料の付着によって被覆されるので、肌面との接触感が緩和されると共に滑りがよくなって、肌触り感の向上にも役立つようになる。
 なお、本第2実施形態では、導電部103の外周部が全て編地本体102に臨むようになっている(全周が編地本体102で囲まれている)が、導電部103は、編地本体102の端部位置に配置することもでき、この場合には、導電部103に自由端(編地本体102に臨まない辺部)が生じることになる。また、編地本体102を備えず、導電部103を単独物として構成することもでき、この場合には、導電部103の外周部が全て自由端となる。このような自由端においても、ほつれ止め処理を施すことは勿論可能である。
 図4に示すように、本第2実施形態において導電部103は、良導接触面105と集電面106とを有したものとしている。これら良導接触面105及び集電面106は、いずれも導電糸110により編地本体102に編み込まれている。実際には、編地本体102を製編するときに、導電部103の配置に対応させてカットボス編によって良導接触面105及び集電面106を同時に編み込むようにする。前記したほつれ止め処理は、これら良導接触面105及び集電面106の両方に対して施してもよいし、いずれか一方のみに施しても良い。
 良導接触面105と集電面106とは、編地本体102を挟んで表裏に振り分けられ、互いに合致する配置とされている。良導接触面105が対象者の肌面へ向けられる側(導電編地100としての裏側)に配置され、集電面106が外方へ向けられる側(導電編地100としての表側)に配置されている。
 なお、図4は理解を容易にするためのイメージ図であるが、この図4に示したのとは異なり、良導接触面105や集電面106はそれらの肉厚を編地本体102に重ね合わせたような積層構造を形成するものではなく、実際には、編地本体102に編み込まれた状態でその片面又は両面に隆起状態を伴って現出する状態となっている。
 良導接触面105を形成する導電糸110と、集電面106を形成する導電糸110とは、それぞれ別の糸とされている。別の糸(導電糸110)とは、良導接触面105と集電面106とが別の編み組織として編み込まれている状態(別の給糸口から給糸されて製編された状態)を言う。すなわち、糸種を異ならせるといった意味ではないので、良導接触面105を形成する導電糸110と集電面106を形成する導電糸110とを同じ糸種とすることには何ら問題はない。
 良導接触面105の編み込みに用いる導電糸110や、集電面106の編み込みに用いる導電糸110は、金属素線や金属被覆線、又は炭素繊維などにより形成されたものとする。
 金属素線や金属被覆線における金属成分の具体例としては、金、白金、銀、銅、ニッケル、クロム、鉄、銅、亜鉛、アルミ、タングステン、ステンレスなどが好適となる。その他にも、チタン、マグネシウム、錫、バナジウム、コバルト、モリブデン、タンタル等の純金属をはじめ、それらの合金(真鍮、ニクロムなど)を挙げることができる。
 金属素線には、連続した長線だけでなく単線を撚り合わせたものを使用することもできる。一方、金属被覆線において、その芯材を樹脂製の繊維や線材若しくは動植物繊維とするときは、樹脂メッキ法などに採用されるメッキ処理をはじめ、湿式塗布法や粉体付着法などを行えばよい。また、芯材を金属製の線材とするときでは溶射法、スパッタ法、CVD法等を採用することもできる。芯材にはモノフィラメント、マルチフィラメント、紡績(スパン)糸を使用すればよく、或いはウーリー加工糸やSCY、DCYなどのカバリング糸、毛羽加工糸などの嵩高加工糸を使用することもできる。
 その他、これら金属素線や金属被覆線、炭素繊維を非導電繊維と混用させるものでもよい。例えば、紡績(スパン)糸を用いて混紡糸やカバリング糸、引き揃えとすることができる。また、熱セット温度よりも融点、軟化点が高い繊維との混用とすることも可能である。
 良導接触面105は、編地本体102を形成している地糸の編組織に対し、その厚み方向の高さを超えて導電糸が隆起するように構成したものである。図6に示すように、本第2実施形態ではフロート編を採用してフロート編層を形成させることにより、導電糸110による浮き糸111が対象者の肌面へ向けられる側(導電編地100としての裏側)で露出する状態を生じさせ、この露出した浮き糸111が面状に分布する状態として、良導接触面105を形成させている。
 このようなフロート編層は、浮き糸111が形成されるコース方向のピッチを、隣接するコースごとにずらし、浮き糸111の少なくとも一端位置(編地本体102に対して編み込まれるループ112)が、隣接するコース間で不揃いになるようにする。コース方向へずらす量は特に限定されるものではなく、ループ数で数えて1個や2個としてもよいし、或いはそれ以上としてもよい。また図例では、浮き糸111の両端位置が、共に隣接するコース間で不揃いとなるようにしてあるが、一端位置のみをずらす(すなわち、浮き糸111の長さが異なる)ようにしてもよい。
 このような良導接触面105では、対象者の肌面に存在する3次元的で且つ複雑な曲面や凹凸、柔軟部位などに対して確実に接触することになる。また肌面の細かな動きにも的確に追従するようになる。従って、確実な導電性が得られるものである。
 また、良導接触面105を形成しているフロート編層では、浮き糸111の一端位置又は両端位置が、隣接するコース間で不揃いに配置されているので、コース方向に沿って浮き糸111と浮き糸111との間に生じるループ112(編地本体102に編み込まれる部分)がウエール方向で直線状に揃うことがない。すなわち、良導接触面105は全体が面としての広がりを有したものとなって、浮き糸111の集密度が高く(対象者の肌面と導通する接触面積が大きく)なり、それだけ導電性が高いと言える。
 これに対し、集電面106は、編地本体102に対してフルニットで編み込むことで構成されている。集電面106に採用する編組織は、例えば、平編、ゴム編、スムース編、パール編又はそれらの変化組織(例えば、ミラノリブや段ボールニットなど)を採用することができる。この集電面106は、前記したように編地本体102を介して良導接触面105に合致する配置とするので、この集電面106の編み込みによって良導接触面105を形成しているフロート編層(全コース)が全て電気的に接続されることになる。
 すなわち、この集電面106を設けることにより、導電部103に用いる導電糸110の総糸量を増やすことができ、また導電糸110相互の接点も増えるので、結果として導電部103としての電気抵抗を低くすることもできる。
 そのため、心電図や筋電図等のデータ採取等を行うに際しては、対象者の肌面に接触させた良導接触面105からこの集電面106を介して電流波形を良好に取り出すことができ、また電気治療や電磁波治療等を行うに際しては、この集電面106から良導接触面105を介して対象者の肌面に電流を良好に印加することができる。
 次に、編地本体102について説明する。編地本体102は、非導電性の地糸により製編されている。地糸には、合成繊維(例えばポリエステル繊維やナイロン繊維等)や天然繊維、合成繊維と弾性糸とを混用した素材等を使用することができる。
 また、編地本体102に採用する編組織は何ら限定されるものではない。例えば、平編、ゴム編、スムース編、パール編又はそれらの変化組織(例えば、ミラノリブや段ボールニットなど)を採用することができる。当然に、製編には丸編機に限らず横編機などを使用することができる。またこれら列挙したような緯編みで編成される組織に限らず、経編みで編成される組織(トリコット編、ラッシェル編、ミラニーズ編など)としてもよい。
 編地本体102を前記のように筒状に製編することで対象者の腕や脚、胴部などを通す構成とする場合などでは、編地本体102の製編時に更に弾性糸を混用して、筒径(周長)や筒軸長さを拡縮する方向で豊富な伸縮が得られるようにするのが、対象者への装着や装着位置固定、及び取り外しを容易にするうえで好適である。
 ここにおいて「弾性糸」は、引っ張り力の無負荷時(非伸長時=常態)では収縮状態を維持し、引っ張り力が負荷されたときには引っ張り力に応じて自由に伸長するものであって、且つ、この引っ張り力を解除して無負荷時に戻せば、伸長状態から元の収縮状態に復元する(収縮する)素材を言う。
 弾性糸の混用方法としては、インレイ、引き揃え、又は複合糸の少なくとも一つから選択される形態を採用すればよい。弾性糸には、ポリウレタンやゴム系のエラストマー材料を単独で用いてもよいし、「芯」にポリウレタンやゴム系のエラストマー材料を用い、「カバー」にナイロンやポリエステルを用いたカバリング糸などを採用することができる。このようなカバリング糸を採用することで、導電編地100に親水性、撥水性、耐食・防食性、カラーリング等の機能を付与させることができる。また触感(肌触り)の向上や伸びの制御にも有用である。
 以上、詳説したところから明らかなように、本発明の導電編地100は、導電部103の外周部にほつれ止め処理が施されているので、導電部103はその外周部の辺部で導電糸110の糸端が浮遊状態に生じない。そのため、導電糸110の糸端による引っ掛かりを防止でき、その結果として導電部103のほつれ止め効果に繋がることなる。
 また、ほつれ止め効果が得られることで、糸端の延び出しを可及的に短く切断することができることになり、その結果、肌面に接触した際の掻痒感や痛感を防止できることになる。加えて、導電糸110同士の交差部が熱融着材料や熱合着材料の付着によって被覆されるので、肌面との接触感が緩和されると共に滑りがよくなって、肌触り感の向上にも役立つようになる。
 のみならず、ほつれ止め効果によって糸端の固定ができるために、導電部103にフロート編などを採用した場合でも、コース方向において編み込みを終了する位置で必ず編みを行う(ループを形成させる)といった必要がなくなる。そのため、編設計(浮き糸を生じさせるためのコース方向のピッチ等)を自由に行えるものとなり、フロート編等を形成させる領域や大きさなどを自由な選択できるという利点がある。
 ところで、本発明は、前記実施形態に限定されるものではなく、実施の形態に応じて適宜変更可能である。
 本発明に係る導電編地100はその用途が限定されるものではなく、電子、電気分野での導電性が必要とされる多方面において実施することができる。例えば、良導接触面105をヒーターとして使用するようなこともできる。
 導電部103は、良導接触面105と集電面106とを備えることが限定されるものではなく、いずれか一方でもよい。また、良導接触面105と集電面106とを両方備える場合にあって、良導接触面105と集電面106とは、必ずしも編地本体102の表裏間で配置や領域形状を完全一致させる必要はない。従って、良導接触面105よりも集電面106の方を小さくしたり反対に大きくしたりすることができる。
 導電部103において、良導接触面105をフロート編層の編み込みによって構成させる場合にあって、フロート編に代えて、フロート編に類似した編組織が得られる裏毛編などを採用することも可能である。
 導電部103において、良導接触面105をタック編層の編み込みによって構成させる場合にあって、タック編に代えて、タック編に類似した編組織が得られる鹿の子編や片畦編などを採用することも可能である。
   1 電気抵抗の不変特性を備えた導電性伸縮編地(本発明編地)
  2 ハーネス
  3 非導電部
  4 非導電部
  10 導電糸
  11 弾性糸
 13 導通接点部
 100 電極対応が可能な導電編地(本発明の導電編地)
 102 編地本体
 103 導電部
 105 良導接触面
 106 集電面
 110 導電糸
 111 浮き糸
 112 ループ

Claims (2)

  1.  導電糸と弾性糸とを混用して製編された編地であって、
     編組織においてループを形成しつつ進む方向をコース方向又はコースと定義し編地面上で前記コース方向と垂直に交差する方向をウエール方向又はウエールと定義するときに、
     コース方向に並ぶ導電糸のループがウエール方向で隣接する2コース間では1ループ当たり2箇所以上の導通接点部を形成させつつ周期的又はランダムに表目と裏目とに現出する編み組織とされている
    ことを特徴とする電気抵抗の不変特性を備えた導電性伸縮編地。
  2.  前記導通接点部がウエール方向及びコース方向に集合した分布とされることで形成される導電面において、コース方向の前記導電糸によるカバーファクターが0.15以上であることを特徴とする請求項1記載の電気抵抗の不変特性を備えた導電性伸縮編地。
                                                                                      
PCT/JP2016/068181 2015-07-15 2016-06-17 電気抵抗の不変特性を備えた導電性伸縮編地 WO2017010234A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-141428 2015-07-15
JP2015-141427 2015-07-15
JP2015141427A JP6657525B2 (ja) 2015-07-15 2015-07-15 電気抵抗の不変特性を備えた導電性伸縮編地
JP2015141428A JP6657526B2 (ja) 2015-07-15 2015-07-15 導電編地

Publications (1)

Publication Number Publication Date
WO2017010234A1 true WO2017010234A1 (ja) 2017-01-19

Family

ID=57756946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068181 WO2017010234A1 (ja) 2015-07-15 2016-06-17 電気抵抗の不変特性を備えた導電性伸縮編地

Country Status (1)

Country Link
WO (1) WO2017010234A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099976A (ja) * 2017-12-08 2019-06-24 グンゼ株式会社 シート状ハーネス生地及びシート状ハーネス生地の製造方法
CN110353331A (zh) * 2019-07-17 2019-10-22 军事科学院系统工程研究院军需工程技术研究所 一体式心电信号监测及电刺激理疗服装
JP2020007660A (ja) * 2018-07-06 2020-01-16 グンゼ株式会社 導電性編地の電極接続構造及び導電性編地の電極接続方法
WO2020174457A1 (en) * 2019-02-25 2020-09-03 Exodus Innovation Ltd. Electrically conductive yarns and electrically conductive fabrics made therefrom
CN112236189A (zh) * 2019-02-26 2021-01-15 株式会社艾科纳研究所 心脏支撑网以及植入型除颤器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610976Y2 (ja) * 1988-01-26 1994-03-23 日本蚕毛染色株式会社 ほう帯
JP2007191811A (ja) * 2006-01-17 2007-08-02 Seiren Co Ltd 伸縮性導電繊維材料
JP2008111225A (ja) * 2006-10-27 2008-05-15 Textronics Inc 着用物を製作するための丸編管体、および、縫い目なし丸編着用物を製作する方法
JP2008546209A (ja) * 2005-06-10 2008-12-18 テクストロニクス, インク. 機能調整能力を有する表面機能性電気−テキスタイル、それを製造する方法およびそれを含む利用形態
JP2011212353A (ja) * 2010-03-31 2011-10-27 Kyowa Textile Kk 磁石入り弾性リングとその製造方法、および2種類の磁石入り弾性リング対とその使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610976Y2 (ja) * 1988-01-26 1994-03-23 日本蚕毛染色株式会社 ほう帯
JP2008546209A (ja) * 2005-06-10 2008-12-18 テクストロニクス, インク. 機能調整能力を有する表面機能性電気−テキスタイル、それを製造する方法およびそれを含む利用形態
JP2007191811A (ja) * 2006-01-17 2007-08-02 Seiren Co Ltd 伸縮性導電繊維材料
JP2008111225A (ja) * 2006-10-27 2008-05-15 Textronics Inc 着用物を製作するための丸編管体、および、縫い目なし丸編着用物を製作する方法
JP2011212353A (ja) * 2010-03-31 2011-10-27 Kyowa Textile Kk 磁石入り弾性リングとその製造方法、および2種類の磁石入り弾性リング対とその使用方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019099976A (ja) * 2017-12-08 2019-06-24 グンゼ株式会社 シート状ハーネス生地及びシート状ハーネス生地の製造方法
JP7021820B2 (ja) 2017-12-08 2022-02-17 グンゼ株式会社 シート状電気信号伝達生地及びシート状電気信号伝達生地の製造方法
JP2022058797A (ja) * 2017-12-08 2022-04-12 グンゼ株式会社 シート状電気信号伝達生地及びシート状電気信号伝達生地の製造方法
JP2020007660A (ja) * 2018-07-06 2020-01-16 グンゼ株式会社 導電性編地の電極接続構造及び導電性編地の電極接続方法
JP7218049B2 (ja) 2018-07-06 2023-02-06 グンゼ株式会社 導電性編地の電極接続構造及び導電性編地の電極接続方法
WO2020174457A1 (en) * 2019-02-25 2020-09-03 Exodus Innovation Ltd. Electrically conductive yarns and electrically conductive fabrics made therefrom
CN112236189A (zh) * 2019-02-26 2021-01-15 株式会社艾科纳研究所 心脏支撑网以及植入型除颤器
CN110353331A (zh) * 2019-07-17 2019-10-22 军事科学院系统工程研究院军需工程技术研究所 一体式心电信号监测及电刺激理疗服装

Similar Documents

Publication Publication Date Title
WO2017010236A1 (ja) 電気抵抗の可変特性を備えた導電性伸縮編地及び導電パーツ
WO2017010234A1 (ja) 電気抵抗の不変特性を備えた導電性伸縮編地
JP5993493B1 (ja) 導電用ハーネス
WO2016181690A1 (ja) 導電性伸縮編地及び導電用ハーネス
EP2790464B1 (en) Cloth heater
CN1976805B (zh) 用于加热或者取暖的纺织结构
WO2017175706A1 (ja) 衣類
WO2017119489A1 (ja) 導電性伸縮糸、導電性伸縮布帛及び導電性伸縮編地
JP6949320B2 (ja) 導電性ストレッチ連続状体
US7759264B2 (en) Textile sheet, method for manufacturing same, and use
JP2013019064A (ja) 導電性布帛
JP7068569B2 (ja) 引張センサ
JP2012193467A (ja) 導電性布帛
JP6657526B2 (ja) 導電編地
JP2017031534A (ja) 導電部を備えた伸縮性衣類
KR101588893B1 (ko) 도전성 직물지 및 그 제조방법
JP6766300B2 (ja) 分離配線可能な平型多芯ハーネス
JP6407209B2 (ja) 導電性ハーネス及び導電性伸縮編地
JP6896967B2 (ja) 人体動作検出用ウェア
JP6657525B2 (ja) 電気抵抗の不変特性を備えた導電性伸縮編地
JP2020008418A (ja) 引張センサ及びその製造方法
JP2016216886A5 (ja)
JP6078197B2 (ja) 導電性伸縮編地
JP6678927B2 (ja) 導電用ハーネス、導電用ハーネス構造および導電用ハーネス取付構造
JP5945960B2 (ja) 布材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824214

Country of ref document: EP

Kind code of ref document: A1